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Fig. 1. Steps of our learning-based plant population method: we use satellite images (a) and predict coverage maps for vegetation (b). We use these maps

to identify regions for placing plants (c) and to learn the parameters for our procedural models when populating new virtual cities with complex plants (d),

which significantly increases the realism of urban landscapes (e).

The placement of vegetation plays a central role in the realism of virtual
scenes. We introduce procedural placement models (PPMs) for vegetation
in urban layouts. PPMs are environmentally sensitive to city geometry and
allow identifying plausible plant positions based on structural and func-
tional zones in an urban layout. PPMs can either be directly used by defin-
ing their parameters or learned from satellite images and land register data.
This allows us to populate urban landscapes with complex 3D vegetation
and enhance existing approaches for generating urban landscapes. Our
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framework’s effectiveness is shown through examples of large-scale city
scenes and close-ups of individually grown tree models. We validate the
results generated with our framework with a perceptual user study and its
usability based on urban scene design sessions with expert users.
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1 INTRODUCTION

The visual simulation of urban models and the generation of
their 3D geometries are fundamental open problems in computer
graphics that have been addressed by many approaches. Existing
methods range from modeling façades, buildings, city block
subdivisions, to entire cities with viable street and road systems.
Synthetically generated city models already exhibit a high degree
of realism. However, cities are immersed in vegetation, but only
very little attention was dedicated to the interplay of urban models
and vegetation in computer graphics. Many approaches have
considered ecosystem simulations. The prevailing algorithms use
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plant competition for resources as the main driving factor of their
evolution either on the level of entire plants [Deussen et al. 1998]
or on the level of branches [Makowski et al. 2019]. Unfortunately,
these approaches fail in urban areas because urban trees have
only limited space to compete for resources. They are heavily
affected by surrounding urban areas and human intervention.

The term urban forest refers to vegetation in urban areas [Miller
et al. 2015]. Vegetation has many practical functions: it controls
air movement, solar radiation, heat, humidity, and precipitation. It
can also block snow and diminish noise. Moreover, an essential
function of vegetation is to increase city aesthetics. Urban forests
are not planted at once but managed over time. Dead trees are re-
moved, and new trees are planted. Living trees are pruned for visi-
bility or utility services. In contrast to real cities, we face a different
situation in computer graphics. An existing algorithm generates a
city model without vegetation, and we need to find suitable loca-
tions for individual trees. Simulating urban forest evolution, i.e., by
using the algorithm by Benes et al. [2011], is time-consuming and
challenging to control.

We introduce a procedural method for the advanced placement
of vegetation to increase urban models’ overall realism. We are in-
spired by urban rules that control which trees and bushes can be
planted and how tall they can grow. These rules vary for individ-
ual areas; they are relaxed in industrial zones. People also have
more flexibility in their properties, but they are enforced in pub-
lic zones of a city and around important landmarks. Therefore, we
introduce procedural placement models (PPMs)– strategies for
generating plant positions – along with parameters to enable an au-
tomatic placement of vegetation, faithful to the characteristic fea-
tures of plant distributions within the different municipality zones
of a city. We show that placement models and parameters together
provide an efficient means of controlling urban landscapes’ inter-
active modeling.

Moreover, we can populate city models with static tree geome-
try and dynamic models of plants that can grow and change their
shape in response to environmental changes or human interven-
tion. This allows us to apply simulation models that describe how
a city or its areas would change if more or less effort could be spent
on maintaining them. Such dynamic urban ecosystems allow users
to visually predict and control gardening effects in a city and make
such models more realistic since they inhibit decay and different
order levels.

While procedural placements can be used directly to populate
urban layouts, we also show that placement models can be used
to learn plant distributions of real cities. We use satellite images
and land register data to train deep neural networks to learn trees
and other plants’ distributions in our procedural placement mod-
els’ parameter space. While placement models act as a strong prior
to regularizing finding plausible placements, learning parameter
values also enable users to efficiently author scenes through intu-
itive parameters. The example in Figure 1 shows a satellite image
(a) and the predicted coverage map (b). We use coverage maps to
identify areas where to place vegetation (c) and learn the proce-
dural models’ parameters. Once the parameters are obtained, we
can automatically populate city models with complex models of
plants (d) to increase their realism (e).

Our main contributions are: (1) we advance the state-of-the-art
in modeling vegetation in urban landscapes by introducing a
procedural modeling framework that is based on the idea to
factorize the complexity of plant placement into manageable
components; (2) we introduce a set of procedural placement
models along with their parameterization to capture a large
variety of placement patterns; (3) we use a novel pipeline for
learning plant distributions in cities from satellite data; we convert
satellite images into coverage maps and then learn the placement
parameters of our procedural models.

2 RELATED WORK

Only recently, researchers started exploring approaches to model
virtual environments with realistic traits of real urban land-
scapes [Smelik et al. 2014]. Here, we focus on the problematic as-
pects of plant and urban modeling, ecosystems, and learning-based
methods.

Urban Modeling: urban structures are often modeled proce-
durally [Watson et al. 2008]. In their seminal article, Parish, and
Müller [2001] used L-systems to model complex cities, and Wonka
et al. [2003] applied split grammars to procedurally define build-
ings that were later extended by using subdivision [Müller et al.
2006] and by more advanced operations [Schwarz and Müller
2015]. Purely procedural models of infinite cities were introduced
by Merrell and Manocha [2008; 2011], the procedural modeling of
street layouts have been described by using vector fields [Chen
et al. 2008]. Similarly, procedural approaches have been success-
fully applied to modeling façades [Müller et al. 2007]. Urban mod-
eling has been combined with urban simulation to generate vi-
able cities [Vanegas et al. 2009, 2010b], and city growth [Weber
et al. 2009]. However, most of the related work focuses solely on
urban structures and considers vegetation only as a decorative
add-on.

Inverse Procedural Modeling: our approach is related to
inverse procedural models, in that it learns plant placement from
real cities and attempts to transfer it to synthetic ones by fitting
parameters of a procedural model. An inverse procedural model
for façades has been introduced by AlHalawani et al. [2013] and
Wu et al. [2014]. Variations from a procedurally encoded single
layout can be generated by the work of Bao et al. [2013], the
layered nature of façades has been used for inverse procedural
modeling in Ilčík et al. [2015] and Li et al. [2011b], exploiting struc-
tural symmetries was done in Dang et al. [2014] and Zhang et al.
[2013]. Interactive alterations of shape grammars were utilized
in Dang et al. [2015]. Buildings can be encoded as L-systems by
using the inverse procedural approach from Vanegas et al. [2010a],
modeled by using a procedural connection of structures [Bokeloh
et al. 2010], or through binary integer programs [Kelly et al. 2017].
Finding the procedural models’ parameters from existing data
was investigated by Talton et al. [2011]. They used expressions
of L-system strings of modules to fit a generated structure to
an input. Ritchie et al. [2015] attempt to control procedural
programs and procedural models using stochastic Monte Carlo
methods. Structural patterns can be encoded by using the ap-
proach of Yeh et al. [2013] or encoded as L-systems by the work of
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Šťava et al. [2010]. Recently, trained deep neural networks have
been combined with inverse procedural modeling to allow for
the interactive design of buildings by using sketches [Nishida
et al. 2016], to find urban models from real-world images [Zeng
et al. 2018], and for large-scale reconstruction [Kelly et al. 2017].
Inverse procedural modeling has also been used to generate entire
urban layouts in Martinovic and Van Gool [2013] and Vanegas
et al. [2012]. Inverse procedural models primarily deal with
regular structures (facades, buildings, cities), and only a few focus
on stochastic problems (trees, distributions). Our approach is
inspired by previous works in that it attempts to define an inverse
procedural model (urban forest) and finds its parameters. This, in
effect, is used to augment an input urban model with vegetation.

Plant Modeling: research has long focused on defining plau-
sible branching structures based on fractals [Aono and Ku-
nii 1984; Oppenheimer 1986] or L-Systems [Lindenmayer 1968;
Prusinkiewicz 1986]. Other methods focus on rule-based model-
ing [Lintermann and Deussen 1999], inverse procedural modeling
of trees [Stava et al. 2010, 2014], and finding L-system for branch-
ing structures [Guo et al. 2020]. Moreover, sketch-based model-
ing techniques allow artists to produce plant models interactively
and in more nuanced ways [Ijiri et al. 2006; Okabe et al. 2007;
Wither et al. 2009]. Alternative approaches attempt to reconstruct
plant models automatically either from images [Li et al. 2021; Tan
et al. 2008, 2007], videos [Li et al. 2011a], or scanned 3D point
clouds [Livny et al. 2011; Xie et al. 2016]. Only just recently, sev-
eral approaches also focus on the dynamic and realistic behavior
of plant models, including growth [Longay et al. 2012; Pirk et al.
2012a], the interaction with wind or fire [Pirk et al. 2017, 2014], or
as established through realistic materials [Wang et al. 2017; Zhao
and Barbič 2013].

Modeling the plants’ response to its environment is of utmost
importance to obtain realistic branching structures when posi-
tioned in groups or alongside obstacles [Měch and Prusinkiewicz
1996]. Approaches exist to model this phenomenon by considering
the self-organization of plants [Palubicki et al. 2009; Runions et al.
2007], through explicitly modeling the plasticity of branches [Pirk
et al. 2012b] or through the dynamic adaptation to support struc-
tures, as can be observed for climbing plants [Benes and Millán
2002; Hädrich et al. 2017]. The growth, decay, and pruning of buds
and branches play an essential role in plant development [de Reffye
et al. 1988]; a phenomenon that is often parameterized in proce-
dural models to develop convincing branching structures [Stava
et al. 2014]. In our approach, once the location of the tree has been
established, we grow the trees in the given location and adapt their
shape by laws of competition for resources.

Ecosystems: various works focus on ecosystem simulation. The
seminal article of Deussen et al. [1998] introduced a competition
for resources on the plant level, and this approach has been re-
cently extended towards the competition of individual trees in
ecosystems [Makowski et al. 2019]. Various techniques attempt to
simulate ecosystems considering different phenomena, such as ero-
sion [Cordonnier et al. 2017] or wildfires [Hädrich et al. 2021], and
even by locally learning plant distributions and using them as inter-
active brushes [Emilien et al. 2015; Gain et al. 2017]. Closely related
to our approach is the work of Benes et al. [2011] that models urban

ecosystems by combining wild ecosystem growth from Deussen
et al. [1998] with controlled plant management. However, contrary
to our work, the initial plant placement is purely ad hoc, and their
approach does not allow for procedural plant placement that could
be connected with real cities. Our approach defines the procedural
models and learns their distributions to populate an empty urban
layout. Moreover, their approach is a simulation that seeds new
trees and eliminates others by competition for resources over time.
Our approach populates the entire city at once.

Learning-based Approaches: some works have started to ex-
plore the capabilities of learning-based methods for scene gener-
ation and object placement. While neural networks have shown
paramount performance on image classification, synthesis [Khan
et al. 2020; Wu et al. 2017], or inverse texture modeling [Guehl
et al. 2020; Hu et al. 2019] tasks, properly placing objects into mean-
ingful configurations is still a challenging problem. For arranging
scenes, methods need to coherently generate plausible and con-
tinuous poses (translation and orientation) of objects and to one
another. However, most neural network architectures only allow
operating on fix-sized in- and outputs, which makes placing arbi-
trary numbers of objects challenging. To this end, a number of ap-
proaches introduce convolutional neural networks for scene gener-
ation [Li et al. 2019; Ritchie et al. 2018; Wang et al. 2019] and Zeng
et al. [2018] learn to reconstruct buildings by learning parameters
of a procedural model. For outdoor scenes, Guerin et al. [2017] and
Kelly et al. [2018] use generative adversarial networks to author
textures for terrain and building details. While these methods only
tangentially relate to our work, they show the capabilities of neural
networks for scene generation. We also combine the advantages of
image-based learning techniques with procedural modeling as we
aim at learning the parameters of procedural models with neural
networks that place plants realistically.

3 OVERVIEW

Generating plausible vegetation models for virtual urban land-
scapes faces two significant challenges: first, plant place-
ment varies across different functional and demographic zones
(Figure 2(a))–an industrial zone may only have a small number of
non-managed plants, while residential areas not only have regu-
larly placed trees alongside roads but also in gardens and parks.
The planting rules depend on culture, habits, city rules, etc. They
are difficult to quantify. Second, plant models need to simulate
growth and interaction with their environment to generate veg-
etation with high visual fidelity. Moreover, urban trees are often
pruned or may lack resources (water or light), which hinder their
growth and affect their structure.

To address these challenges, we propose a two-stage procedural
modeling pipeline. First (Figure 2), we introduce PPMs (b) to
generate plausible plant positions based on placement strategies
and known planting rules for vegetation. A PPM can be defined
for each functional or demographic zone of a city (e.g., residential,
commercial, or industrial) and operates on single lots of land
(realty). Each PPM has a different set of rules parameterized by
structural and positional parameters to capture the various kinds
of planting patterns found in real cities. Second, once the plant
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Fig. 2. To place vegetation in urban environments we propose procedural

placement models (b) that implement placement strategies for vegetation

based on the geometry of individual lots, positional parameters, and a zone

identifier (a). After plant positions (c) have been generated we use a devel-

opmental model (e) along with structural parameters (d) to jointly grow

plants, which results in realistic 3D plant models.

positions are generated, we use a state-of-the-art developmental
model (Figure 2(e)) for growing plants. Given the plant’s location
and environment, the growth process generates unique and
realistic branching structures.

Finally, we have developed a novel learning-based pipeline for
populating models of real cities with vegetation. First, we convert
satellite images of urban landscapes to vegetation coverage maps by
using a style-transfer network (Figure 13(b)). The coverage maps
represent areas that are covered with above-ground vegetation.
Second, we learn a mapping from the coverage maps to the parame-
ters of our PPMs (Figure 13(d)). Given our pipeline and the param-
eter values obtained from real satellite images, we can generate
vegetation similar to what can be observed in the satellite images.

4 PLANTING RULES

Road networks define landscapes as administrative or functional
zones [Waddell et al. 2007], and they can be further classified into
rural, exurban, suburban, and urban areas [Miller et al. 2015]. All
the involved plants form the urban forest, an umbrella term re-
ferring to trees, shrubs, and bushes found in urban and suburban
areas.

A common way of introducing vegetation into an urban for-
est is by replacing a dead tree. Only newly created developments
have large areas directly populated by vegetation. When a new
neighborhood is built, a city will plant regularly spaced trees and
bushes parallel to roads and sidewalks by applying municipal tree
ordinances [Grey 1995] (see also [Miller et al. 2015, pg 254]). The
neighborhood is subdivided into blocks and blocks into individ-
ual lots left to the owners to plant the vegetation as needed. Typ-
ically, the city only defines specific planting rules such as the dis-
tance between individual trees should depend on the tree height,
or the distance is derived from the soil the tree requires to sur-
vive [Endreny 2018]. Trees should not obstruct views at intersec-
tions. They should have a certain distance from the curb and side-
walks [Bloniarz and Ryan 1993]. Vegetation must not block house
entrances for emergency purposes. These functional restrictions
are also combined with aesthetic constraints: vegetation should
not be planted in the proximity of windows [Miller et al. 2015].
Most of these rules are incorporated into a so-called building activ-
ity area (or building envelope) that is an extension of the building’s
2D projection by about 600 cm perpendicularly from each building
wall and 150 cm from each driveway.

At a higher level, we aim to generate vegetation for the various
types of zones procedurally. Therefore, we assume that each ur-

Fig. 3. Urban layout: satellite images (left), zone data for individual lots

(middle), and coverage maps (right) are available in public datasets. We

use zone data and lot geometry as inputs to our procedural models and

learn to predict their parameter values from the coverage maps.

ban layout, either real or synthetically generated, can be divided
into such zones. Specifically, we use a zonal layout commonly
used in urban planning [Waddell 2002; Waddell et al. 2007] and
urban simulations [Vanegas et al. 2009, 2010b; Weber et al. 2009]
and divide an urban layout into five zones: (1) residential includes
houses and buildings where people live, (2) commercial consists
of businesses such as department stores, malls, and small stores,
(3) industrial zones include factories and other production services,
(4) street zones, which describe areas next to roads. We add a cate-
gory (5) other that includes parks, non-managed areas, areas close
to railroads, unassigned regions, etc.

As shown in Figure 3, we further assume that a city layout is
organized as individual lots, where each lot represents a property
that may be occupied by a building. Given a lot and its zone type,
we then define a PPM that places vegetation individually into
each lot.

Based on the observations from municipal tree ordinances [Grey
1995; Miller et al. 2015] and previous work on urban forests [Benes
et al. 2011], we define six tree planting rules and show them in dif-
ferent real-world images in Section 5.1. Semi-Random placement
within a lot follows a Poisson-disc distribution preventing trees
from being in close proximity. Trees are often planted along lot
boundaries as a noise barrier, but can also be clustered forming
areas with grass and shade. Along streets trees often serve as a
barrier and are planted in an equidistant manner along the medial
axis of a lot. We can also observe a single tree within a lot or a
regular placement.

In addition, trees are rarely planted at once and their distribu-
tions are mostly an emergent phenomenon of growth over long pe-
riods of time. Our objective is to populate an empty urban model
at once. Thus we define the planting rules as geometrical distri-
butions that allow us to encode plant populations as procedural
models, as shown in the next section.

5 PROCEDURAL URBAN VEGETATION

Vegetation for an urban landscape is generated in two steps: first,
we apply a PPM to seed plants individually for each zone accord-
ing to their functional types. After the virtual plants have been
planted, we use a developmental model that dynamically grows
them in their locations while interacting with the surrounding
environment. This allows plant adaptation to their environment,
such as bending and shedding of branches due to the competition
for resources, resulting in vegetation with high visual fidelity.
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5.1 Procedural Placement Models - PPMs

We seek to model plant morphology and the variance of plant
placement across different municipality zones to distribute vegeta-
tion in an urban landscape realistically. Defining and parameteriz-
ing rules for obtaining plausible plant positions, while adhering to
urban features such as buildings and streets, is intractable. There-
fore, we factorize the problem into specifying placement models
for the different zones as denoted in Section 4 (industrial, commer-
cial, residential, street, and other) and for each lot.

The factorization allows us to define a manageable parameteri-
zation along with placement strategies for the different zones. Each
placement model defines a concise strategy to place vegetation into
a single lot. For example, we have models to place vegetation ran-
domly, along the edges of a lot, equidistantly, etc. Moreover, we
define the PPMs in a context-sensitive way. This means to main-
tain a global appearance, a PPM can query adjacent lots to adjust
its parameters (e.g., the distance between trees alongside a road in
one lot should be the same in the neighboring lot). A PPM is a tuple

M =
〈
Sд ,Pp ,Ps

〉
, (1)

where Sд is a function implementing a placement strategy (rules)
with д ∈ {R,B,C,E, S, I } (see Section 5.2 and Table 2), Pp is a set
of positional parameters to define the placement of plants, and Ps

is a set of structural parameters for the morphological appearance
of vegetation within the lot.

Lots and

buildings are
defined as 2D
polygons pos-
sibly concave
and with holes
(see Fig on the
right): PL = {VL ,EL }, PH = {VH ,EH }, where VL and VH denote
the vertices of a lot (L) and buildings (H ) and EL and EH the edges
of the polygon for lot and building, respectively. A lot can include
multiple buildings (or other structures): U = {P i

H
}. The polygon

P = PL−∪P i
b
,∀P i

b
∈ U , defines the area of a lot that can be covered

by vegetation; the PPM only places vegetation within the geomet-
ric shape of the polygon P . A set of plant positions for a single lot
is then generated as

X = Sд (Vp ,Vs , P ,Z ,K ), (2)

where Vp and Vs denote the parameter values for positional Pp

and structural Ps parameters, P is the polygon of a single lot, Z is
a zone identifier, and K is the context of a lot. We use Z to select
parameter values for each lot. For example, a residential and a com-
mercial lot may use the same strategy (e.g., boundary) but differ in
their parameter values (e.g., different species are used). This is illus-
trated in Figure 4. Generating vegetation with the same value forZ
produces a uniform appearance (the same settings are used for ev-
ery lot), while varying Z with the functional zones generates a di-
verse yet coherent appearance. Put differently, Z allows us to con-
trol the placement of vegetation on a global scale. Finally, we useK
to modify the input parameters according to the neighbors of a lot
to allow for consistent global appearance as detailed in Section 5.5.

Fig. 4. Given a lot, we use a placement strategy to define the placement

of vegetation. The zone identifier Z is used to select parameter values for

structural Vs and positional parameters Vp . Together, strategies and pa-

rameters allow us to generate vegetation with globally similar appearance

depending on the municipality zones within a city.

Fig. 5. Variations of positional parameters on a single lot with different

placement strategies. (a)–(c): strategy boundary with narrow (a) and wide

(b) boundary size, and less density (c). (d)–(f): strategy cluster with a single

cluster (d) and multiple clusters (e) of different sizes (f). (g)–(i): strategy

regular with no (g), medium (h), and high (i) jitter. (j)–(l): strategy semi-

random with low (j), medium (k), and high (l) density.
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Fig. 6. Semi-Random, Boundary, and Cluster placement strategies use

Variable Radii Poisson-Disk Sampling to position trees.

To summarize: a PPM defines a placement strategy and struc-
tural and positional parameters for populating single lots. Varying
these parameters’ values generate different plant positions within
the constraints of the strategy at a local scale while changing the
parameters jointly—e.g., based on zoning types—allows us to vary
vegetation at a more global scale.

5.2 Placement Strategies

A placement strategy д ∈ {R,B,C,E, S, I } (Semi-Random, Bound-
ary, Cluster, Equidistant, Single, and Individual tree) defines rules
for placing the plants and how the parameters are used.

To implement the different placement strategies, we compute
active areas within each lot that define where the vegetation can
be placed. For the strategies semi-random and single the entire lot
polygon PL is used, while for the strategies boundary and cluster

we define active areas within the polygon; i.e., we define a bound-
ary along the edge of the polygon towards its center for boundary

and a circular area around a randomly selected point within the
polygon for the cluster. For equidistant, we compute the medial
axis of the polygon and then generate equidistant plant positions
along the axis. The strategy single defines a single plant’s random
placement within the entire lot. Finally, for regular we compute
a lot-aligned lattice and place plants at the center of each cell.
Figure 5 shows four of our six placement strategies and their
parameter variations.

5.3 Positional Parameters

Semi-Random, Boundary, and Cluster: placement strategies
are parameterized by the positional parameters shown in Table 1.
We use the Variable Radii Poisson-Disk Sampling [Mitchell et al.
2012] to generate plant positions within active areas of a lot
(see Figure 6). More specifically, we are interested in generating
a set of points X with spatially varying point density. A new
position sample y is assigned a radius r (y) : Ω → N (μ,σ ), where
N denotes a normal distribution with mean μ and variance σ .
The new position sample y is accepted and added to the set if
|y − x | ≥ r (x ) + r (y)∀x ∈ X.

For the boundary placement strategy we define the boundary
size as parameter β that defines an area along the normal of the
edge of a polygon towards its center. To implement the cluster strat-
egy, we randomly sample points in a lot and define the cluster area
as a circle with a radius κ. A lot can have a variable number of clus-

Fig. 7. Left: the building envelope (blue) defines a zone where plants

cannot be planted to avoid proximity to walls and blockage of door

and windows. Right: plant placement without considering the building

envelope.

ters with the maximum number defined by π . For both strategies,
boundary, and cluster, we first compute the active regions (bound-
ary, cluster circles) before generating sample positions.
Regular and

Equidistant:

allow for semi-
regular vegeta-
tion placement.
For the regular

strategy, we
compute a
regular lattice-
based on the
bounding box
of a lot and define the size of cells with ω and their orientation
with η. We optionally jitter the positions using ψ within each
cell. To implement the equidistant strategy, we first compute the
medial axis of the lot polygon PL [Choi et al. 1997] and then
equidistantly place plants along the axis based on the distance
parameter δ . We model the density of vegetation for all placement
strategies by defining the parameter τ , which deactivates position
samples in X. A value of τ = 1 activates all samples, while a
value of τ ≤ 1 randomly deactivates them until all samples are
deactivated (τ = 0). Finally, we define the radius ξ for the context
K of a lot. The context is defined as the adjacent lots, and we use
it to model context-sensitivity (see Section 5.5).

Single: Finally,
we sample one
random position
in the lot for the
strategy single

(see right).
Building Envelope: Trees should not be too close to buildings

and should not obstruct doors and windows. We adopted the con-
cept of building envelopes [Miller et al. 2015] that defines the clear-
ance distances from the buildings. Moreover, we extend the enve-
lope in front of doors and windows to avoid their blockage (see
Figure 7).
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Table 1. Positional and Structural Parameters for PPMs

Parameters Meaning Range/Dimensions

P
o

si
ti

o
n

a
l

μ Plant envelope mean [1m–10m]

σ Plant envelope variance [0.1–2]

τ Vegetation density [0–1]

β Boundary size [0m–5m]

κ Cluster radius [1m–20m]

π Max number clusters [0–5]

ω Regularity grid size [5m–50m]

ψ Regularity jitter [0–1]

η Regularity orientation [0–180°]

δ Equidistant spacing [0m–10m]

ξ Radius of context [0m–300m]

S
tr

u
ct

u
ra

l

α Max plant age [0–100 years]

ρ Tree vs shrub ratio [0–1]

θ Species diversity [0–1]

γ Pruning factor [0–1]

λ Num. species [1–10]

Table 2. Placement Strategies and used Positional Parameters

Strategy Symbol μ σ τ β κ π ω ψ η δ ξ

Semi-Random R � � � �
Boundary B � � � � �
Cluster C � � � � � �
Equidistant E � � � � �
Single S � � � �
Regular I � � � � � � �

Table 1 summarizes the positional parameters along with their
ranges, and Table 2 shows the placement strategies and their corre-
sponding positional parameters. Examples of changing the values
of positional parameters are shown in Figure 5.

5.4 Structural Parameters

We define structural parameters to model the morphology of indi-
vidual trees as well as the plant population within a lot. Based on
the computed plant positions we define a plant seed as the tuple

T = 〈 p,α ,ϕ,γ 〉 , (3)

where p ∈ X is the plant position, α its maximum age, ϕ denotes a
species identifier, and γ is a pruning factor. To generate branching
structures we grow a plant with a developmental model (see
Section 5.6) and jointly simulate its growth with all other plants
in a lot.

We define several species (n = 10) for the whole urban landscape
by selecting parameter values for our developmental model [Palu-
bicki et al. 2009]. We then use the species identifier ϕ to associate
one of the species to a seed. We further control this selection by
using the parameter ρ, which defines the tree vs. shrub ratio in a
lot. A value of ρ = 1 assigns all seeds tall-growing species, while a
value of ρ = 0 only associates short growing ones.

To vary the number of used species in a lot, we use the pa-
rameter θ . We randomly select one of the species as the domi-
nant species in a lot and use θ as a ratio to control the number
of seeds associated with the dominant species and all other avail-

Fig. 8. Variations of structural parameters. Top row: variations of age pa-

rameter from young (left) to old (right). Middle row: changes of tree to

shrub ratio from only shrubs, to mostly trees. Bottom row: variations of

species diversity from a single species (left) to multiple species (right).

Fig. 9. Context-sensitivity: we calibrate the parameter values of a lot with

those of adjacent lots (context). Here we show two lot configurations with

regular placement strategy and variations over the parameters μ and σ .

For the lots shown in the top row context-sensitivity is turned off and plant

placement changes abruptly from one lot to another, while for the bottom

row we show context-sensitivity across lots and the resulting calibration

of parameters (context radius: ξ = 180m).

able species. A value of θ = 0.5 sets half of the available seeds to
the dominant species and the other half with randomly selected
ones.

Finally, we may prune a plant by a bounding volume for the
tree crown of a fully developed model. This allows us to generate
a more organized appearance of vegetation, e.g., along avenues or
highways. Branches that reach out of the volume are cut off. We
scale this volume byγ ; a value ofγ = 1 will leave a plant unpruned,
while a value ofγ ≤ 1 scales the bounding volume and therefore re-
sults in a pruned plant. After pruning, we again simulate the plant
growth to develop smaller branches and leaves. Figure 11 shows
an example of the pruning of trees; other variations of structural
parameters are shown in Figure 8.
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5.5 Context-Sensitive Rules

So far, lots have been treated as individual units without any mu-
tual relationship. However, each lot has its context that are its sur-
rounding roads and neighboring lots. The neighbors often share
similar planting rules provided by the applying municipal tree or-
dinances [Grey 1995; Miller et al. 2015]. To account for the context
of lots we want to adjust planting rules.

Let us recall that each PPM from Equation (1) has associated
a placement strategy Sд and two sets of parameters Pp and Ps .
Each lot has a set of parameter values from Equation (2)Vp andVs .
Moreover, it considers the context (i.e., the neighborhood)K of the
lot that is being populated with plant positions Equation (2). Fur-
ther, let us denote a particular lot L and its parameter values asVL .
In the following text, we will omit the lower index s and p because
the parameters are calculated in the same way. The context is the
set of lots within radius ξ centered on the lot L and weighted by
a 2D Gaussian. The values of the corresponding parameters (see
Table 1) of the neighbors and the lot L are weighted according to

the distance resulting in a context-updated parameter set ṼL as:

ṼL =
∑

∀VK ∈K
w
(
d (L,LK )

)
VK , (4)

wherew (d (L,LK )) is the Gaussian-weighted distance between the
center of the lot L and LK within the investigated context, and
VK are the values of the parameters of the lot LK . The updated

parameter values ṼL are then used for the PPM.
Note that this process can be considered as a diffusion of the

parameters within radius ξ . Figure 9 shows the effect of using
context-sensitivity on a regular placement of trees. The first row
shows two lots with regular tree placement with an abrupt change
to a random placement in neighboring lots that are smoothed out
into a semi-random transition when the context is used (bottom
row).

5.6 Developmental Plant Model

After generating plant positions, we jointly grow the plants in the
computed locations of a single lot. Our developmental model is
based on the work of Palubicki et al. [2009]; a tree is a modular sys-
tem (leaves, buds, stems, and internodes). An internode is a plant
stem between two or more leaves, and a tree is composed of a suc-
cession of internodes.

The primary plant development is controlled by the expansion
of buds that are either apical (terminal) or lateral (axial). Branches
expand at their tips by expanding their apical buds or on sides by
growing lateral buds. Buds use signaling by the growth hormone
Auxin to prevent overgrowth and to control apical dominance [Ke-
brom 2017]. Secondary plant development (cambial growth) is the
thickening of a tree trunk and branches [Kratt et al. 2015] simu-
lated by expanding their radii using da Vinci’s rule (see Minamino
and Tateno [2014] for a discussion).

Trees compete for space by seeking light (phototropism) and
avoiding collisions and overcrowding. Many different algorithms
have been implemented to capture plant competition for resources
(see Měch and Prusinkiewicz [1996], Runions et al. [2007], and Pirk
et al. [2016] for an overview). We use the space occupation ap-
proach of Palubicki et al. [2009] and Runions et al. [2007], which

Fig. 10. Top row: trees grown in different environmental conditions. From

left to right: two trees close to each other, close to a set of buildings, and

underneath a balcony. Bottom row: the growth response of a group of

trees in an urban environment generates complex and unique branching

structures.

Fig. 11. Branch pruning allows for the adjustment and organization of

tree form. Here trees along a street are severely pruned to form a hedge

(γ = 0.7).

controls the growth by randomly scattered particles that attract
growing branches. We also simulate phototropism by computing
buds’ illumination and bending the growth direction towards the
brightest spot visible from a bud. Apical control and branching
parameters are simulated by using the growth model from [Stava
et al. 2010] with the set of parameters.

6 LEARNING VEGETATION PLACEMENT

Learning plant positions directly from image data is a challenging
problem that cannot be easily addressed by existing neural net-
work architectures or other methods. To obtain plant positions in
an end-to-end manner, a network would have to either output a
variable number of plant positions or operate on a fixed size do-
main, such as an image. The latter requires obtaining plant posi-
tions as a post-processing step, which is error-prone. Furthermore,
generating ground truth data pairs of satellite images and plant
positions (e.g., GPS coordinates) for training a neural network is
challenging (see Section 8.3 for a discussion). Moreover, an end-
to-end deep learning-based system would sacrifice an in-depth un-
derstanding of the underlying mechanisms. It would not allow for
low-level control that is needed in interactive editing.

Therefore, to recover the placement and appearance of natural
urban landscapes, we aim to learn plant distributions in our param-
eter space of positional parameters. This has the advantage that
our above-defined PPMs act as a prior, which helps to regularize
the training of our network and, in turn, to generate plausible plant
positions. Furthermore, learning the procedural model parameters
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maps images to comprehensible and intuitive parameters, provid-
ing an efficient way to further edit plant placements.

6.1 Learning Plant Placements

We use a two-stage neural network pipeline to learn the param-
eters of our PPMs: first, we translate satellite images to seman-
tic maps that describe vegetation coverage (Figure 13(a–c)). Sec-
ond, we learn the positional parameters from coverage maps with
a lightweight convolutional neural network (Figure 13(d) and (e)).
This pipeline has the advantage that we do not need to rely on pairs
of satellite images and positional parameters for training, but in-
stead on pairs of coverage maps and positional parameters, which
can be generated synthetically with our PPMs.

To translate satellite images to coverage maps, we used a style-
transfer deep neural network [Isola et al. 2016]. A coverage map is
an flat-colored image where every pixel color is based on whether
the corresponding pixel in a satellite image represents vegetation.
Coverage maps have less complex visual traits and are similar to
real and synthetic data. Therefore, the network can learn this trans-
fer. We used pairs of satellite images and coverage maps publicly
available for some cities [NYCOpenData 2019] to train the style-
transfer network to learn coverage maps from satellite images.
This allows us to obtain coverage maps of cities for which cov-
erage data does not exist. Figure 23 (Appendix B) shows examples
of training data and generated coverage maps.

We then train a neural network to obtain positional parameter
values (μ,σ ,τ , β,κ,π , see Table 1) from the coverage maps. Train-
ing is done on synthetically generated pairs of coverage maps and
positional parameters obtained from our PPMs. Specifically, we de-
fine the generated coverage maps as q ∈ Q for which we know the
corresponding positional parameters Pp ∈ U . The network can
thus be defined as

f (q) : Q → U .
To summarize: stage one of our pipeline learns coverage maps

from satellite images, which—in stage two—enables us to obtain
the positional parameters of our PPMs. Together this allows us to
generate vegetation positions for individual lots with similar char-
acteristics as observed in the satellite imagery (e.g., plant distance,
density, etc.). Once the parameters are generated, we stencil the
coverage map with each lot’s geometry and identify areas to place
vegetation for a reconstruction. We convert the regions into poly-
gons and then use our semi-random placement strategy to gener-
ate plant positions within the covered areas of a lot (Figure 12).
Please note that the semi-random strategy is regularized by the po-
sitional parameters values (Table 1) learned by the CNN neural
network (see Figure 13(d) and (e)). As a coverage map defines the
areas where vegetation should be placed within a lot, it is sufficient
to only rely on a semi-random placement here.

6.2 Data and Training

For training the Pix2Pix style-transfer network, we rely on the pub-
licly available implementation of the original model implemented
in Python. We train the network on 20 K pairs of satellite images
and coverage maps. This data is generated in three steps: first,
we obtain satellite images from Google maps with a resolution of
256 × 256 pixels per image. The images correspond to the lowest

Fig. 12. Vegetation placement based on real data: we use vegetation

cover-age maps (middle) to identify active regions for individual lots and

populate them with our PPMs. This allows us to generate plant distribu-

tions (right) similar to what can be observed in satellite images (left).

Fig. 13. Neural network pipeline: we use a style-transfer network (b)

trained on data pairs from NYCOpenData [2019] to convert satellite im-

ages (a) to coverage maps (c). To learn parameter values for our PPMs (for

which no ground truth data for satellite images exist) we generate pairs

of coverage maps and parameter values with the PPMs of our framework.

We then train a CNN (d) to obtain parameter values (e) for the estimated

coverage maps of the real satellite images.

level of the tile graph. Second, we use the vector data of streets,
buildings, and lots from NYCOpenData [2019] and render them
into image tiles of resolution 256 × 256. Third, we generate cov-
erage maps by converting the vegetation coverage data provided
by NYCOpenData (total rasterized resolution of 316 K × 312 K pix-
els) by reprojecting the data—provided in the geospatial data for-
mat: EPSG:2263—NAD83 / New York Long Island—for each tile to
match the Mercator projection used by Google Maps. We use the
default hyperparameter settings for Pix2Pix [Isola et al. 2016]; the
network converged after training for 200 epochs. We then use the
network to convert satellite images of urban landscapes to cover-
age maps. The geometry of single lots is also obtained from the
NYC Open Data. Our urban modeling framework operates on lon-
gitudinal and latitudinal coordinates, which allows us to register
satellite images, lot data, and coverage maps, enabling us to ren-
der satellite images and publicly available maps (e.g., Open Street
Maps) in the same framework. Our regression CNN consists of five
convolutional layers (32 units) followed by two dense layers (64
units) with relu activations for all except the last layer. We use
our PPMs to synthetically generate 21 K pairs of (coverage map,
positional parameter value)-pairs to train the network. To regress
the positional parameters, we use mean squared error as a loss
function and can achieve 95% accuracy for predicting the valida-
tion data’s parameters. We use an 80% – 20% split for training and
testing data. All results shown in the article are generated from
validation data.

7 IMPLEMENTATION AND RESULTS

Our interactive framework for modeling and rendering urban land-
scapes was implemented in C++ and OpenGL. All results have been
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Fig. 14. A user can interactively sketch placement zones with a brush

tool (left). Each placement zone is converted to a polygon and assigned

a placement strategy to grow plants (right). Here we show the strategies

medial axis (blue), single (yellow), and semi-random (red).

Fig. 15. The placement of vegetation changes with the size of the active ar-

eas within a lot. While the used cluster strategy initially generates plants

in the entire lot, transitioning to less available space due to a larger build-

ing (white) generates more organized plant positions at the boundary of

the lot.

generated on an Intel(R) Core i7-7700 K, 8 × 4.2 GHz with 32 GB
RAM, and an NVIDIA GeForce RTX 2080 GPU with 12 GB RAM.

The most demanding online task is the generation of tree geom-
etry. We simplify this by representing trees by their skeletons that
are generated on the CPU. We further offload the mesh generation
of the branch surfaces into a geometry shader on the GPU. Simi-
larly, leaves are generated as textured quads that are also generated
on the fly. Buildings and other structures are rendered as extruded
outlines. While we cannot render large plant populations in real-
time, our framework allows us to explore placement strategies and
parameter settings. To render large scenes (e.g., Figure 22), we use
a level-of-detail scheme that successively replaces tree geometry
with billboards and point primitives according to the distance from
the camera. Appendix A (Table 4) shows parameter values for most
figures shown in the article.

7.1 Interactive Authoring

We demonstrated that PPMs can automatically place vegetation
into urban landscapes based on the lot data. The geometry of indi-
vidual lots can either be obtained from publicly available datasets
or as a part of the modeling process, for synthetically generated
layouts.

However, PPMs operate on polygons, and they were designed
with interactive authoring in mind. The user can use a brush tool
to draw an area on a map. We then convert the sketch to a poly-
gon and assign a PPM. Depending on its placement strategy, the
PPM will then generate plant positions according to the geometry
of the polygon and its associated placement strategy (Figure 14).
Furthermore, a user can directly draw the vegetation coverage for
individual lots or polygons. Like learning the coverage maps from
satellite images, sketching a coverage map replaces the placement
strategy for a lot. The PPM then places plants based on the posi-

tional and structural parameters, which provides a convenient way
for more nuanced vegetation placement.

This process also allows us to generate even more diverse zones
if necessary. For example, it is possible to define individual zones
for back and front yards, the vegetation along streets, or even parks.
Our approach’s key idea is to factorize the complexity of defin-
ing a complex procedural model into more manageable placement
strategies. A PPM only works on a single polygon and generates
plant positions for this geometry. This way, it is easy to extend our
approach by new placement strategies.

7.2 Results

Figures 1, 17, and 22 show perspective and top-down renderings
of urban landscapes along with the vegetation generated by our
framework. For these results, we used coverage maps to reproduce
vegetation placement similar to the real scenes. Figure 16 shows
results where we only used our procedural model, without addi-
tional coverage maps. For both cases, the produced plant popula-
tions show characteristic visual traits found in real vegetation dis-
tributions at the cityscale. Based on our placement strategies, we
can generate complex urban vegetation patterns in combination
with the positional and structural parameters.

Moreover, we show vegetation placements for the different
municipality zones (residential, park, commercial) in Figure 16.
Positional parameters allow us to generate planting patterns as
commonly found in these areas. At the same time, we can also
produce structural variations by selecting the number of species,
their height, and their age (Figure 8). Additionally, we can control
the pruning of plants to generate more organized plant shapes
(Figure 11). In an urban setting, buildings often shade larger areas.
Trees growing in these regions strive to grow out of the shadow
toward the light. This interaction of a tree with other trees and
close-by buildings generates complex and unique branching
structures. Figure 10 shows the modeling result of trees grown in
varying environmental conditions.

Figures 14 and 15 show the capabilities of our framework for
the interactive authoring of urban landscapes. In Figure 14, a user
drew regions for vegetation onto the ground of an urban layout;
each brush tool was assigned a different placement strategy and
set of parameter values. Our method then converted the sketched
areas to polygons and applied different PPMs. Figure 15 shows how
the placement of vegetation changes when the size of a building on
a lot of increases. While with a small building, there is more space
for random plant configurations, the placement transitions to more
organized plant positions when the building’s size increases.

Figures 21 and 22 show vegetation placement results for large
scenes generated with our framework. To generate the results
in Figure 21 we manually defined the entire park as a single lot
(middle) or generated multiple smaller lots (right). For the result
shown in Figure 22 we rely on the lot data provided by NYCOpen
Data [2019] for the vegetation placement. When lot data is pro-
vided, our framework enables the efficient generation of realistic
urban scenes.

Figure 17 shows a comparison of using different placement
strategies. Given the satellite images of different urban scenes (a),
our method is able to closely approximate the real scenes by using
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Fig. 16. Top-down renderings of plant distributions for three municipality zones generated with different placement strategies. Top row: the placement

strategies boundary, semi-random, cluster, and regular for a residential lot of buildings. Middle row: the placement strategies boundary, cluster, and regular

for the lot of a public park. Bottom row: the placement strategies cluster, boundary for a commercial lot (left) and the placement of trees with medial axis

along streets with equidistant spacing set to: δ = 13m (right).

coverage maps and PPMs (c). Additionally, we compare our results
to different variation as ablation studies. In (d) we place plants ran-
domly without any parameter regularization (fully random), but
we use the coverage maps to define areas where vegetation can
be placed. This setup does not account for the coherent parame-
terization of plants, which results in less realistic populations of
plants. Tree species and their age are not selected consistently and
plants are placed too close to buildings and to other plants. In (e)
we show the result of our semi-random placement strategy that
generates random plant positions with regularized structural pa-
rameters. The result of placing plants fully random, without a cov-
erage map, and without any regularization across the positional
and structural parameters is shown in (f). To validate our results
we also manually labeled plant positions and used their longitude
and latitude coordinates to render them at their real positions in
our framework (b). This allows us to evaluate the visual quality
of synthetically generated plant positions compared to real plant
distributions.

Finally, Figure 18 shows the result of generating a scene
by carefully fine-tuning the parameters of our PPMs (semi-
random, boundary, and cluster strategies) against a real urban
environment.

8 EVALUATION, DISCUSSION, AND LIMITATIONS

To validate point distributions generated with our placement mod-
els, we performed a user study to evaluate the perceived realism
of plant distributions generated with our PPMs and real data. Ad-
ditionally, we asked expert users to compare the usefulness of our
modeling approach for authoring plant distributions compared to

the manual placement of individual plants. Finally, we measured
the distance of generated and ground truth point sets of plant
positions.

8.1 Perceptual User Study

We generated two sets of images for the user study, one with trees
placed by our PPMs and another based on real data. It is difficult
to generate images resembling satellite photographs, because of
varying lighting, scattering, etc. To avoid this bias and to maintain
a similar appearance, we rendered real and synthetic plant distri-
butions by using our framework (see Figure 17(f)). We identified 30
lots with varying plant placements and produced plant positions
using all placement strategies for these lots and rendered them as
top-down images using our framework. We generated the real data
by manually identifying plants in satellite images of these lots and
marked their positions. We then loaded these positions into our
framework and rendered them in the same rendering style for both
categories. Furthermore, we chose top-down views for evaluating
placement strategies, as this allows us to assess the respective dis-
tributions of plants.

We then performed a two-alternative force check (2AFC) on
the images, for which we generated pairs of images showing real
and synthetic plant distributions. The synthetic data shows dis-
tributions generated with our placement strategies (semi-random,
boundary, cluster, regular), the reconstruction based on the cover-
age maps (reconstructed), using the planting strategy introduced
by Benes et al. [2011], and an entirely random placement (fully ran-
dom). The semi-random placement strategy places plants based on
Poisson Disk sampling, which generates random plant positions.
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Fig. 17. We seek to generate plant populations as observed in satellite images of urban scenes (a). To validate our results, we manually labeled plant positions

and used their longitude and latitude coordinates to render them at their real positions in our framework (b). This allows us to evaluate the visual quality

of synthetically generated plant positions compared to real plant distributions. By using coverage maps and PPMs (semi-random strategy) our method is

able to generate highly similar plant populations (c). Additionally, we compare our results to different variations as ablation studies. In (d) we place plants

randomly without any parameter regularization (fully random), but we use the coverage maps to define areas where vegetation can be placed. The result of

using no coverage map along with our semi-random placement strategy is shown in (e). In (f), we show the result of placing trees without a coverage map

and without any regularization of parameters (fully random). In (g), the trees have been placed using the method of [Benes et al. 2011].
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Fig. 18. Given a reference satellite image (left), we can create a similar

distribution of plants by manually choosing the strategies and the corre-

sponding parameters. Here we used the strategies semi-random, boundary,

and cluster for the different lots (right).

However, only the positions are randomly generated, and the other
parameters are selected in the same way as for the other strategies.
This allows us to create plant distributions with a similar visual
appearance. On the other hand, placing plants fully random means
that all parameter values are sampled fully randomly, which results
in incoherent and thus unrealistic plant distributions.

For fully random parameters of the PPM are not regularized at
all but instead, each parameter value is chosen randomly in its
defined range, which may result in a very unrealistic appearance
(e.g., trees may stand unrealistically close to each other). The meth-
ods for plant placement of Benes et al. [2011] are based on blocks
and not individual lots. Consequently, these placement strategies
assume a specific layout of buildings that cannot be used for indi-
vidual lots (see Appendix Figure 24) - the majority of areas selected
for the user study have a layout that reflects that limitation. In to-
tal, we have selected 30 city blocks in New York City of up to 26
lots and populated them with our strategies (see Figure 19). We
randomly shuffled their arrangement (left-right) and their order.
The image pairs (see Figure 19(a)) were shown to 107 users from
Mechanical Turk (MT), and we made sure that only MT mas-
ters (reliable users) were answering the study. We asked the users,
“Which plant distribution looks more realistic (left or right)?” The
user had to choose one image. Each PPM category and real data
received multiple rankings from every user.

The results of this evaluation are shown in Figure 20 (left plot).
The green bar shows the selection of scenes that were generated
by reconstructing vegetation based on coverage maps. The blue
bars show the selection results of placements with our pipeline,
and the red bars show the result for the baseline [Benes et al.
2011] and fully random placement. When comparing the results,
the placement with coverage maps and our semi-random PPM strat-
egy were selected to be realistic in 50% of the cases. This indicates
that our method generates plant distributions that cannot be dis-
tinguished from real distributions. Out of our PPM strategies, semi-

random was selected as the most realistic. In 53% of the cases, it
was perceived as more realistic compared to the real placement.
The strategy boundary was preferred in 44% of the cases, cluster

placement in 48%, and regular was perceived as more realistic in
30% of the cases. The fully random placement—as the lower bound
baseline, without any PPM strategy involved—was perceived as re-

Table 3. Expert users Were Asked to Rate their Experience between

1 (Strongly Disagree) to 5 (Strongly Agree) with Respect to the

Questions Above

Question

(a) I think that I would like to use this system frequently.
(b) I found the system unnecessarily complex.
(c) I thought the system was easy to use.
(d) I think the outcome of the result was easy to control.
(e) I was satisfied with the outcome of the result.†

(f) I think the results look convincing/realistic.†

(g) I think it was able to meet the constraints.†

(h) I was satisfied with the outcome of the result.‡

(i) I think the results look convincing/realistic.‡

(j) I think it was able to meet the constraints.‡

† : before showing real images.
‡ : after showing real images.

alistic only for 16% , the baseline of Benes et al. [2011] was chosen
only in 35% of the cases of the shown image pairs.

8.2 Usability for Content Creation

To validate our method’s effectiveness for content creation, we
asked expert users (five 3D artists) to compare our placement
strategies to random placement of plants. These strategies serve
as presets to generate a realistic plant placement. In contrast to
manually defining the details of every single plant (e.g., the po-
sition, species, age, size.), they automatically generate plant posi-
tions while respecting structural and positional constraints. We
created a simple GUI with two brush tools: one for the manual
placement of plants and one for the placement with PPM strate-
gies. When using the manual brush tool, users have to specify the
brush radius and the tree parameters. The user then interactively
(by clicking with the mouse) generates multiple trees in the radius
of the brush with random unconstrained positions. To precisely
place a single tree, a small radius with a single mouse click can be
used. The second brush tool uses the PPM strategies. Here a user
defines the PPM parameters and sketches an area in a lot to auto-
matically place plants with the selected and configured strategy.

We asked five experts to populate a given lot (inset figure) based
on a predefined set of requirements: (1) ensure that the trees are
not too close to the buildings; (2) populate the border of the lot
with trees in the red marked area with consistent space and width;
(3) populate the orange areas with randomly placed trees—with
high density in the right and low density in the left area; (4) pop-
ulate the green area regularly; and (5) create 2–3 clusters of trees
within the blue area. The participants first received a brief intro-
duction to the system and were then tasked to familiarize them-
selves with the UI without knowing the problem definition. After
this introductory phase, the subjects were shown the problem def-
inition and asked to solve the task once with manual placement
using the manual brush tool and another time with the PPM brush
tool. Whether to start with the manual or the PPM brush tool was
changed for each expert. We then asked the experts to rank their
experience based on several questions (Table 3). We used five-level
Likert scale (Strongly Agree, Agree, Undecided, Disagree, Strongly

Disagree. The results of this assessment are shown in Figure 20
(right plot). For each question (a–j), we show the distribution of
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Fig. 19. Examples of images shown to the participants of the user study. Random pairs of images were selected, and the participants were asked which

plant populations looks more realistic.

Fig. 20. Left: the results of a user study. Subjects were asked to select the more realistic vegetation placement based on various strategies compared to real

plant distributions. The green bar shows the selection of scenes generated by reconstructing vegetation based on coverage maps, placement based on the

PPM strategies (blue), and the baselines fully random placement and [Benes et al. 2011] (red). Right: experts’ rating of manual plant placement (red bars)

compared to using the PPM strategies (blue bars). Questions a–j are listed in Table 3.

answers as box plots for the manual placement (left, red) and the
PPM placement (right, blue).

These results show that our method provides an effective means
to populate urban scenes with vegetation efficiently, since PPMs
were rated as favorable for vegetation placement compared to man-
ual placement. In addition, we performed a qualitative study, in
which the users commented that while the manual placement pro-
vides more control to precisely place plants, it takes a much longer
time to populate larger areas. The users also stated that generating
realistic distributions is more difficult with manual placement.

Finally, we asked the ex-
perts to automatically place
trees by selecting a strat-
egy and a lot, without brush-
ing placement regions. For
this setup, the experts unani-
mously stated that this tech-
nique provides less control
but allows for fast and real-
istic vegetation placement in
large areas. They further men-
tioned that the PPM brush

tool and the automatic PPM placement produced excellent over-
all results and were preferred over manual placement to quickly
achieve realistic-looking results. They also noted that a combina-
tion of manual and PPM-based placement would be desired when
vegetation needs to be placed toward specific objectives.

8.3 Discussion and Limitations

Our framework allows us to place and simulate vegetation in ur-
ban landscapes. To this end, our focus was on generating convinc-
ing distributions of plants for synthetic and real city models. Be-
cause defining rules for all possible variations of plants in urban
landscapes are intractable, we factorized the problem of placing
plants into several placement strategies. Each strategy provides a
concise set of rules and parameters to describe the positional and
structural properties of vegetation within individual lots. Together,
placement strategies and parameters allow us to generate realistic
distributions of plants within an urban layout’s functional zones.
Besides, we use a state-of-the-art developmental model for plants
to simulate their environmental response.

We generate distributions of vegetation that resemble what can
be observed in satellite imagery; our focus was not on precisely
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Fig. 21. Left: Google maps view of New York (Central Park). Our framework generated two variations of plant placements (middle, right) for an initially

empty city model. Middle: 54 k plant positions were generated in about 60 seconds with a random strategy. Right: a different plant population generated

with the strategy cluster (16 k plants).

Fig. 22. Our framework enables to efficiently place vegetation for large urban areas. To reconstruct vegetation for larger urban areas we predict coverage

maps and populate the detected areas with our semi-random strategy for each lot.

reconstructing every plant of a real environment. While this is ar-
guably important, it would require further analysis (e.g., through
deep learning) of satellite images and additional data sources,
such as coverage maps. To this end, we think that procedu-
rally generated vegetation can help to generate training data for
more advanced analysis pipelines. Compared to manually plac-
ing vegetation, our method provides more control and capabili-
ties for the efficient authoring of vegetation placement for city
models.

As an alternative to learning parameters with the neural net-
work pipeline from Figure 13, we experimented with learning plant
positions with Pix2Pix [Isola et al. 2016] in an end-to-end manner.
We used satellite images as input and images with plant positions
and building geometry as an output for this setup. The goal was
to obtain the plant positions from the images in a post-processing
step. Training this network was not successful for two reasons: it
is challenging to get ground truth data pairs of satellite images and
plant positions. While some datasets contain trees’ GPS positions,
they only store these positions for trees along streets, which is not
useful for learning plant positions of an entire city. Second, the re-
sults of the network produced were not satisfactory. We suspect
that the ground truth images were too sparse (i.e., too few tree po-
sitions and building geometry) to provide a meaningful training
signal.

A limitation of our current implementation is that we cannot ob-
tain structural parameters with our learning pipeline. Such param-
eters cannot be learned from coverage maps; learning them from
top-down satellite images was unsuccessful. Another limitation of
our current approach is that we focus on medium and large trees
and do not place smaller plants, such as flowers, bushes, or grass.
While fixed models of flowers could be placed with our placement
strategies (for example, by using agent-based models [Benes et al.
2003]), there exists no integrated developmental model that would
allow us to develop trees and flowers jointly. Therefore, we decided
only to simulate the growth response of trees to their environment.
Furthermore, we do not model plants that are shaped through ad-
vanced topiary. More research would be required to explore how
pruning affects growth, e.g., for hedges.

9 CONCLUSION AND FUTURE WORK

We have presented a novel framework for populating synthetic
and real urban landscapes with vegetation. To this end, we intro-
duced procedural placement models that allow us to generate plant
positions realistically and grow individual plants into individual
lots jointly. The key idea to our approach is that complex vege-
tation patterns among different zoning types of a city can be fac-
torized into a set of simple placement rules. A PPM implements
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these rules and—together with their parameterization—allows to
generate complex vegetation patterns with high visual fidelity.
Moreover, the PPMs are context-sensitive and read the immedi-
ate neighborhood, enabling us to smooth out abrupt changes in
placement.

To populate vegetation into real city models, we have used
a state-of-the-art style-transfer network to translate satellite im-
ages to vegetation coverage maps. These coverage maps allow
us to determine the distribution of vegetation within individual
lots of a city, which allows us to reconstruct vegetation similar
to what can be observed in real data. Instead of reconstructing
vegetation at city scale precisely—which is intractable—our goal
is to generate convincing and plausible details for reconstruct-
ing existing cities or populating entirely new virtual cities with
vegetation.

We see several avenues for future work. First, it would be in-
teresting to explore physical functions in an urban context af-
fected by vegetation, such as heat transfer, shading, wind, and
sound barriers. Second, further exploring how neural networks
can generalize to more diverse urban data and use them to learn
parameters for scene generation seems like a promising direction
for future research. Tree position detection in a satellite image is
an open problem. If we could detect the tree position, we could
automatically detect what kind of procedural model should be ap-
plied to a lot. Our user study focused on validating the placement
strategies. Another study should focus on aesthetic criteria, such
as the building envelope and window visibility. Finally, we want
to explore enhanced placement strategies to capture more of the
variation of vegetation placements that can be observed in real
cities.

APPENDICES

A PARAMETERS

Table 4. Parameter Values we used to Generate the Figures in the

Article

Figure Strategy μ σ τ β κ π ω ψ η α ρ θ λ
5 a B 3.13 0.35 1.0 4.0
5 b B 3.13 0.35 0.8 10.0
5 c B 3.13 0.35 0.4 10.0
5 d C 3.13 0.35 1.0 10.0 1
5 e C 3.13 0.35 1.0 10.0 3
5 f C 3.13 0.35 1.0 15.0 3
5 g I 3.13 0.00 1.0 9.0 0.00 30°
5 h I 3.13 0.00 1.0 9.0 0.30 30°
5 i I 3.13 0.00 1.0 9.0 0.55 30°
5 j R 3.13 0.35 0.2
5 k R 3.13 0.35 0.4
5 l R 3.13 0.35 1.0
8 a R 3.4 0.15 0.2 14 0.0 0.0 4
8 b R 3.4 0.15 0.2 20 0.0 0.0 4
8 c R 3.4 0.15 0.2 30 0.0 0.0 4
8 d B 2.2 0.0 0.9 10 20 1.0 0.0 4
8 e B 2.2 0.0 0.9 10 20 0.7 0.0
8 f B 2.2 0.0 0.9 10 20 0.5 0.0 4
8 g C 3.2 0.25 1.0 10.0 3 16 0.0 0.0 4
8 h C 3.2 0.25 1.0 10.0 3 16 0.1 0.3 4
8 i C 3.2 0.25 1.0 10.0 3 16 0.2 0.4 4
15 C 3.5 0.35 1.0 20.0 18 16 0.0 0.0 1

B SATELLITE AND COVERAGE MAP DATA

Fig. 23. Learning of coverage maps: we use satellite images (top) and

ground truth coverage maps (middle) from NYC Open Data to train a neu-

ral network for style-transfer. After training the network is able to predict

coverage maps (bottom) from satellite images.

C PLACEMENT WITH [BENES ET AL. 2011]

Fig. 24. The method presented in [Benes et al. 2011] places the trees ac-

cording to procedural rules by using a single strategy for a whole block.

Managed ecosystem simulation then makes the trees grow, seed, and die

by competition leading to semi-random distributions. Our method works

on individual lots, places all plants at once and does not require simulation

to populate the urban model. (a) With the method of [Benes et al. 2011]

trees planted at the front and back of the block and along its main axis. (b)

An overlay of the same block with the actual lots of individual properties.

This indicates that the method does not consider lot boundaries. (c) When

the method of [Benes et al. 2011] is used for a single lot plants are placed

in an unrealistic manner as buildings and other lot features (e.g. lot shape)

are not considered.
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