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Abstract

Aside from modeling geometric shape, three-dimensional (3D) urban procedural modeling has

shown its value in understanding, predicting and/or controlling effects of shape on design and

urban planning. In this paper, instead of the construction of flood resistant measures, we create a

procedural generation system for designing urban layouts that passively reduce water depth

during a flooding scenario. Our tool enables exploring designs that passively lower flood depth

everywhere or mostly in chosen key areas. Our approach tightly integrates a hydraulic model and

a parameterized urban generation system with an optimization engine so as to find the least cost

modification to an initial urban layout design. Further, due to the computational cost of a fluid

simulation, we train neural networks to assist with accelerating the design process. We have

applied our system to several real-world locations and have obtained improved 3D urban models

in just a few seconds.
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Introduction

Three-dimensional (3D) urban modeling has gained more and more research attention in
last decades. Besides modeling geometric shape, urban modeling has shown its research
value in understanding, predicting and/or controlling effects of shape on many urban con-
cerns such as urban planning (e.g. Vanegas et al., 2012; Weber et al., 2009), urban vehicular
traffic (e.g. Garcia-Dorado et al., 2014; Sewall et al., 2011), crowd simulation (e.g. Feng
et al., 2016), urban weather simulation (e.g. Garcia-Dorado et al., 2017) and water/fluid
simulations (e.g. Bridson, 2015; Enright et al., 2002). In this paper, we establish a link
between geometric urban layout design and urban flooding, assist in designing improved
flood-sensitive cities, and generate more realistic simulations of flooding in an urban
environment.

For several decades, structural flood protection measures such as levees, dams and dikes
have been widely used to control floods. These measures have been criticized because they
often interrupt natural flooding processes by removing natural land cover, reduce natural
water storage capacity and disrupt water flow paths (Lennon et al., 2014; O’Neill, 2013).
In the recent years, there is a shift in focus from hard flood controls towards a more strategic
approach characterized by mitigating flood risk and increasing resilience during the urban
design process (Lennon et al., 2014; White, 2008). In particular, several soft solutions have
been introduced at different spatial scales ranging from regional scale to building scale. For
example, storing water in farmland, where the land remains property of the farmer and is
used for temporary water storage in extreme flooding (Fokkens, 2006). Other case-studies
relocate the most sensitive land-use types; e.g. suggest moving residential areas to zones with
a lower flood risk (Satterthwaite, 2007). However, the natural advantages of the floodplain
and the trend towards urban densification and expansions has fomented that floodplain
development continued apace, regardless of potential planning policies to control these
factors (Moel and Aerts, 2010; Mustafa et al., 2018; White, 2008). Consequently, the poten-
tial damages as a result of floods will continue to rise. Within this context, digitally enhanced
urban design has the potential to construct flood resistant urban patterns.

Within computer graphics and geometric modeling, existing tools model either fluid
simulation, which has a long history in computer graphics (e.g. Bridson, 2015; Enright
et al., 2002; Losasso et al., 2004) or geometric modeling (e.g., forward procedural modeling
(Müller et al., 2006; Vanegas et al., 2009), and inverse procedural modeling (Demir et al.,
2015; Vanegas et al., 2012)).

Our key motivation is to create a procedural generation system that automatically gen-
erates 3D urban layouts that consider the influence of geometric urban characteristics (e.g.
road width, orientation, curvature, etc.) on flow properties during flood water simulations
(and in reality) (Figure 1). The urban model layout influences the distribution of water
discharges between roads as well as the flow depths and velocities. In a sense, we explore
urban geometric grammars that help reduce flooding: i.e. what urban design rules produce a
passive barrier against natural floods? Our methodology is concerned with accommodating
the unavoidability of floods by pre-emptive modifications to urban design. Designing and
evaluating different urban layouts in terms of flood damage requires considerable time and
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resources. Any effort to reduce the design time or required resources is a profitable invest-

ment. Visual computing design tools, such as ours, can greatly help urban designers and

architects assess the implications of different design decisions on expected flood damage,

reduce design time, and produce practical urban patterns.
Our proposed interactive and automatic approach consists of four components

(Figure 2). First, we represent an urban area by dividing it into representative cells, typically

1� 1 km. For each cell, we define a parameterized procedural model that can generate a

wide range of possible urban layout configurations which mimic actual real-world urban

patterns. Second, a porosity-based hydraulic model computes the water flow characteristics

of a proposed urban layout cell. Third, to yield an interactive design process, we approx-

imate the relationship between urban layout and flood flow characteristics with a trained

neural network (NN). Fourth, we provide an inverse modeling engine to suggest the best

urban layout that yields desired building coverage – the area of buildings at ground level

divided by the area of the entire cell and expressed as a percentage – and water depth.
Our major contributions include:

• a parameterized procedural urban model of the urban layout within a 1 km2 area con-

trolling road network, blocks, parcels, and buildings geometries;
• integrating our procedural urban model with a porosity-based hydraulic model that

computes the water flow characteristics based on 2D shallow-water equations; and

Figure 1. Flood-sensitive urban layouts. We introduce a procedural urban design system that reduces
flood water depth based on the geometrical characteristics of an urban layout. The user sets desired
parameter values or building coverage, then our system optimizes the initial layout to reduce flood water
depth. In this example, a layout in Frankfurt ((a) and (b)) shows an average water depth of 0.73 m and (c) is
the initial layout which produces a simulated flood water level within 0.03 m of the actual layout’s. The
optimized layout ((d) and (e)) reduces the water level by 0.19 m (26%). All layouts retain the same build-
ing coverage.

Figure 2. System pipeline.
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• an optimization-based and NN-based inverse-modeling engine that can interactively pro-
pose the optimal urban layout to satisfy a specified reduction in flood water depth while
maintaining a specified building coverage.

We have implemented our approach in many virtual urban layouts as well as three real-
world cases located in Liege (Belgium), Paris (France), and Frankfurt (Germany).

Previous work

Our work builds on flood flow modeling within urban areas as well as forward and inverse
procedural modeling. Floods claim many lives and cause major economic losses. A recent
report by the UN, entitled “Human Cost of Weather Related Disasters”, shows that 157,000
people have died as a result of floods between 1995 and 2015. Additionally, floods damages
cost US$104 billion/year globally according to the UN report “Global Assessment Report
on Disaster Risk Reduction”. The magnitude and occurrence of flooding probability in
many areas are currently increasing (Moel and Aerts, 2010; Pfister et al., 2004). Indeed,
flood risks affect the day-to-day concerns of households, economic sectors and local govern-
ments in many areas around the world. Flood depth reductions, even if mild, can have a
huge impact. For example, if the expected water height during a flood is 1.2 m referenced to
ground level, installing polymer treated lumber panels may be necessary. If inundation
water depth decreased by 20%, then at city or country-scale the resulting savings will be
very significant.

3D models have been employed for assessment and visualization of urban flood flow and
characteristics. Mioc et al. (2012) used observed data to generate 3D city models and inte-
grated them with an inundation model. This integrated model helps city managers determine
unsafe buildings and infrastructure in case of flooding. Amirebrahimi et al. (2016) proposed
an integrated framework to measure flood damage to buildings based on a detailed 3D
building information model. More related to our work is the work proposed by Christensen
(2016) who introduced a dynamic approach to understanding the effect that natural disaster
emergencies can generate in urban areas, with a particular emphasis on flooding events in
residential areas. This approach also enables the end-user to simulate multi-scenarios based
on different flood or water levels and to evaluate the impact of policy or structural inter-
ventions on reducing flood damages using an interactive interface. However, the objective
disregarded the impact of urban layout configurations on flood damage.

Prior literature on geometric urban modeling for flood-sensitive urban areas has tended
to focus on architectural design and general site layout recommendations (e.g. Lennon et al.,
2014; Watson and Adams, 2010; White, 2008). The adaptation measures presented in these
literatures include usage of wet-proofing, construction based on elevated ground, building
on stilts, using temporal flood defenses, increasing urban green areas and increasing the
distance between buildings and water bodies. Existing literature did not make a compre-
hensive analysis to identify the relationship between urban layout parameters and flood
damage such as geometrical arrangement of road network, parcels, and buildings.
Nonetheless, computational approaches such as ours can play a distinctive role in urban
geometric design and flood damage assessment.

There are already existing models that enable urban designers to procedurally alter and
explore urban configurations. An in-depth review of urban procedural modeling can be
found in Kelly and McCabe (2017), Smelik et al. (2014), Vanegas et al. (2009), and
Watson et al. (2008). Parish and Müller (2001) introduced a system to model cities using
a procedural approach based on L-systems. Aliaga et al. (2008) proposed an interactive
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example-based approach that synthesizes urban patterns based on procedural modeling and
image-based modeling. Vanegas et al. (2009) tackled an interdisciplinary research problem
which considers modeling of behavioral and geometrical aspects of cities interactively. Yang
et al. (2013) applied an optimized hierarchical splitting method to design urban layout
automatically and interactively. Vanegas et al. (2012) proposed an inverse procedural
system to generate urban 3D models according to several high-level parameters, such as
average distance from buildings to closest parks and sun exposure, which motivate our
work. While their approach uses a black-box procedural modeling, we explicitly define a
set of parameters for our procedural modeling engine to make it suitable for training the
NNs with a constant number of output values. In addition, we use a tensor field approach
(Chen et al., 2008) to support a wide variety of road structures, which is crucial to increase
the variation of the urban layouts.

The work of Whiting et al. (2009) is one of the first examples of iterative adjusting a
procedural model’s parameters to meet some design constraints. A range of later examples
exist as well, such as the iteratively adjusted procedural model of Talton et al. (2011) who
used Markov Chain Monte Carlo (MCMC) optimization to guide a procedural model to
produce a geometric shape that conforms to a specification and, more recently, Garcia-
Dorado et al. (2017) explore how to alter an urban design so as to yield a desired local
weather pattern.

Compared to previous work, a major differentiation of our work is providing a computer
system that integrates geometric rules and water flow assessment in order to provide urban
layout designs that reduce flood water depth considering only changes to the urban geo-
metrical configuration.

Methodology

Figure 2 provides a summary of our system pipeline. The system consists of four main
modules (i) parameterized procedural urban model, (ii) a porosity-based hydraulic model
that computes the water flow characteristics, (iii) an NN that used to compute hydraulic
simulation, for a reason of speed, and (iv) an MCMC optimization-based inverse-modeling
engine that can interactively propose the optimal urban layout.

The hydraulic model is used to train an NN to accelerate performance. Our hydraulic
model focuses on river-based flooding scenarios. Although the dynamics of flooding vary
with terrain, characterized by varying degrees of slope (Kirkby et al., 2002; Meraj et al.,
2015), we do not consider slope in our current implementation. The two main reasons for
this assumption include (1) many floodplain areas across the globe are relatively flat (e.g.
Berthelot et al., 2015; Csiro, 2000) and (2) slope could lead to underestimating the effect of
urban geometry changes.

Our flooding depth simulations are performed by WOLF 2D model (Erpicum et al.,
2010). WOLF 2D is widely implemented to compute flood damages in urban areas (e.g.
Beckers et al., 2013; Bruwier et al., 2015; Ernst et al., 2010). In 2003, WOLF 2D was selected
by Wallonia (Belgium) authorities to perform all detailed 2-D flow simulations to produce
official inundation maps, including in the framework of the European Floods Directive
(Arrault et al., 2016). WOLF 2D solves the fully 2D shallow-water equations on
Cartesian grids based on a conservative finite volume scheme with a flux vector splitting
technique (Erpicum et al., 2010). To make more practical the training time of our NN, we
accelerate the computational performance of this model by using a lower resolution mesh.
Then, to compensate for the lower-resolution we include an anisotropic porosity model
(Bruwier et al., 2018) to yield more accuracy.
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Parameterized urban model

We represent an urban layout using a parameterized procedural model. While cities can

occupy hundreds of square kilometers (e.g. a typical European city is 180 km2 in area

(Eurostat, 2012)), we are only concerned with the part of a city near a river. Since the

search space of all possible urban patterns is quite large, our procedural tool (1) divides

the urban area into grid cells and provides design guidelines for each cell and (2) reduces

complexity by generating urban layouts based on a few number of rules and parameters (i.e.,

12 parameters). Our tool also enables users to import and export typical GIS data which

facilitates migrating the tool’s outcomes into a wide range of GIS software.

Generation

Our procedural generation tool is inspired by Parish and Müller (2001), Vanegas et al.

(2009) and CityEngine (from ESRI). Our tool first generates roads, then parcels, and finally

buildings. Roads are divided into a two-level hierarchy (i.e., major and local roads). We

adopt the tensor field approach (Chen et al., 2008) as it supports a wide variety of road

network patterns using a single set of production rules. However, the original work by Chen

et al. (2008) requires the user to specify the constraints by manually drawing the curves in

order to generate the tensor field. To make the process fully automatic, we generate the

constraints automatically from the parameters, and the tensor fields (Chen et al., 2008) are

produced based on the generated constraints. Afterward, the tensor fields guide the gener-

ation of the road network. Once the road network is generated, we take each area sur-

rounded by roads, called a block, and subdivide them into parcels, define parks, decide

where to place buildings, and instantiate 3D building envelopes.

Parameters

Altogether, our procedural model is controlled by a 12-dimensional parameter vector

P ¼ fp1; . . . ; p12g. These parameters are selected according to a literature survey of

common parameters involved in previous studies (e.g. Aliaga et al., 2013; Sarralde et al.,

2015; Vanegas et al., 2012). In the following, we describe each parameter (Figure 3):

• average road length p1– the distance between two adjacent intersections,
• road orientation p2– orientation of the initial radially outward road relative to lower-

left corner,
• road curvature p3– rotation of a road segment when it passes through an intersection,
• major road width p4, and
• minor roads width p5.

Using p2, p3, and p4 we generate two orthogonal major roads such that the orientation of

the first major road at the center of the cell is determined by p2 and the second major road is

orthogonally intersecting with the first one at the center of the cell. Next, the two major

roads are used as constraints to generate the tensor fields, and the minor roads are generated

based on the tensor fields with parameters p1, p3, and p5. This approach can generate both

the grid and radial patterns of roads by changing the road curvature p3. Furthermore, the

overall orientation and density of roads can be controlled by p2 and p1, respectively.
Parcels are defined based on a recursive subdivision of oriented bounding boxes (OBB) fit

around each city block, as in Vanegas et al. (2012). Parcels are controlled by the follow-

ing parameters:
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• average parcel area p6, and
• percentage of parcels selected as parks p7.

Buildings are generated with the following parameters:

• minimum number of floors p8,
• maximum number of floors p9; and
• front p10, rear p11, and side p12 building setbacks.

The building footprint is defined by calculating the offset from the parcel using the

setback parameters p10, p11, and p12. The height of the building is determined by a uniform

sampling between p8, and p9.
The variance of the input parameters representative of real-world locations are obtained

with the assistance of our urban planning collaborators and by inspecting the cadastral data

for 500 km2 of Wallonia (Belgium). Table 1 lists a summary of these findings.

Inverse engine

Our inverse modeling engine searches for an urban configuration similar to the initial layout

but producing a lower flooding depth. To search through the solution space we make use of

a controlled random walking optimization, an error function, and an NN-based

acceleration.

Solution searching. Our inverse modeling engine provides a Graphical User Interface (GUI)

that enables the user to interactively explore urban layout configurations that yield a desired

water depth, Figure 4. The user interactively “paints” the desired water depth or uploads an

image containing per cell values. As one option, we provide a mechanism to create such

Figure 3. Urban procedural parameters.
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images with each cell encoded by 1 (low importance), 2 (median importance), or 3 (high

importance). For example, the user may specify certain key areas to have relatively less

water depth (e.g. residential areas) and other areas may have higher water depth (e.g. parks).

Alternatively, the user could specify a desire to lower the average water depth of the entire

area but at the price of not being able to control where the reduction is lowest. Our method

also enables the user to control the tradeoff between similarity of the optimized urban model

to the initial model and the amount of water depth reduction.

MCMC-based optimization. The optimization consists of a Markov Chain Monte Carlo

(MCMC) based search through the solution space. Our optimization uses MCMC (Gilks

et al., 1995) and the Metropolis–Hasting algorithm (Hastings, 1970; Metropolis et al., 1953)

Figure 4. GUI of the inverse modeling engine.

Table 1. Input parameters for the parameterized urban model engine.

Parameter Min value Max value

Average street length 40 m 400 m

Road orientation 0� 180�

Road curvature 0 rad. 0.42 rad.

Major road width 16 m 34 m

Minor road width 8 m 16 m

Park coverage 5% 40%

Average parcel area 300 m2 1100 m2

Building front setback 0 m 5 m

Building rear setback 0 m 5 m

Building side setback 0 m 5 m
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to seek a parameter vector P� that yields desired spatially varying water depth values W�.
The vector W� corresponds to desired water depth measurements over the G grid cells of the
simulation area.

This optimization seeks P� by attempting n state changes from s different initial seeds. Each
initial seed is chosen by a sampling process based on the initial model defined by parameter
vector P0. Given a current parameter vector Pt, for t 2 ½1; n�, a candidate state change Pt’ is
computed by sampling for each parameter pi a value from a Gaussian distribution whose
mean and standard deviation are estimated from Table 1. Since the distribution of proposed
moves is symmetric (i.e., it consists of a sum of weighted Gaussians – thus, the probability of
moving from state t to tþ 1 is the same as from state t þ 1 to t), the acceptance probability
a of a move from a current state Pt to a new state Ptþ1 is given by the Metropolis ratio. Hence,
the new state Ptþ1 ¼ Pt’ with probability a and Ptþ1 ¼ Pt with probability 1� a.

Error function. The optimization error function is a weighted sum of three objectives: main-
taining a similar building coverage between the initial model and the optimized urban
layout, achieving the desired water depth values in the optimized urban layout, and keeping
the optimized parameter vector as similar as desired to the initial one. The use of building
coverage is to ensure the new configuration can house the same number of people (note: we
set number of floors at 4 so the gross floor area of all buildings is maintained in all test-cases
presented in this paper); simply removing buildings will decrease flood level but of course
leave no space for people.

The optimization error function E can be written as

Et ¼ a
kBt � B0k

B0
þ b

1

G

XG
i¼1

wit � w�
i

wd

� �2

þ c
kPt � P0k

kP0k

where the variables

• B0 and Bt correspond to the initial model’s and current model’s building coverage,
• wit and w�

i correspond to the current model’s water depth for cell i and to the desired
water depth for cell i,

• wd corresponds to a tolerance value which is used to balance the small values in the water
depth part; if wd is too small, it will take much weight in the total optimization
error function,

• a; b and c correspond to the weight for building coverage, water depth, and layout
similarity such that aþ bþ c ¼ 1:0, and

• G is the number of total outputs.

The layout similarity level is calculated as follows

1

N

XN
i¼1

jpi � pti j
pti

where

• pi: The values of the current parameter vector.
• pti: The values of the original parameter vector.
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Acceleration. To accelerate produce an interactive system, we make use of two trained
neural networks (NNs). First, during each step of the optimization, a hydraulic simulation
must be computed which can quickly lead to a very time consuming process. A
typical hydraulic simulation run requires about two to three hours on a desktop PC. We

accelerate performance significantly by using an NN. The hydraulic model is used to train
the NN.

Figure 5. Real-world layouts versus procedural urban generator layouts.
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With the Caffe framework (Jia et al., 2014), we build a single-layer fully connected
NN (including Dropout layer and ReLU Activation layer) and train it to predict a grid
of water depth values W given the parameter vector P. Our training dataset consists of
7000 hydraulic simulations performed offline. Each simulation uses a random parameter
vector P with values sampled within the ranges shown in Table 1. We used 10 desktop
computers with multiple cores to train the NN. Therefore, we ran 39 simulations
simultaneously. The hydraulic computations of the 7000 configurations lasted in
about three weeks. The loss function in the loss layer, which is used to measure the
error between an NN’s output and the actual output, is EuclideanLoss. It is a standard
function in the loss layer in Caffe framework and computes the sum of squares of
differences between its two inputs. A second similar NN is used to predict the building
coverage resulting from a parameter vector P. While generating urban layouts is sig-
nificantly fast (e.g. approximately 0.5 seconds) it still prohibits an interactive system
when needing many MCMC iterations. Thus another dedicated NN is trained for this
objective. For the first NN, we trained 5000 iterations. For the second NN, we trained
20,000 iterations. The results section contains additional information and evaluation of
our methods.

Figure 6. Water depth resulted maps from hydro model and NN for 400 outputs. Each cell represents
average water depth for 50 m2 area.
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Results and discussion

We implement our system in Cþþ, using Qt and OpenCV, and running on a desktop
computer clocked at 3.20 GHz with an NVIDIA GTX780 graphics card and 24.0 GB
RAM. This section shows several analysis and case-study results. Although some urban
patterns might not be represented accurately, our urban generation system supports a wide
variety of typical urban patterns, which enables us to effectively find a desired pattern from
an otherwise huge search space (Figure 5).

Flooding simulation: Our porosity WOLF 2D model runs for an average of 2.5 hours to
calculate the water for each urban layout versus about 10 days using the classical WOLF 2D
model. The relative average water depths errors between the classical WOLF 2D and poros-
ity WOLF 2D for three test cases is less than 1% (�1 cm). However, the optimization
process may last for several days to find the optimal urban layout using porosity WOLF
2D model – thus we train an NN.

Neural networks: We train a hydraulic-model NN and a building coverage NN. The
hydraulic-model NN is trained using our dataset of 7000 precomputed flood depth solutions
for a random set of urban configurations. After training, we compare the output of the NN

Figure 7. Water depth error plots for 300 test cases considering several outputs. X-axis represents
number of output and Y-axis represents number of test cases. (a) corresponds to 3%, (b) corresponds to 4%
and (c) corresponds to 5% relative error.
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Figure 8. (a) learning curves presents loss (x-axis) versus iterations (y-axis) for training and validation
datasets, and (b) the absolute error for a number of test cases (out of 1000) that occur between a range of
absolute errors.

Figure 9. Three-dimensional simulations of the three test cases.
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to that produced by the porosity WOLF 2D model for two layouts (Figure 6). In this

comparison, we use an NN trained to produce 20� 20 water depth values, or 400 outputs.

The comparison demonstrates that the average water depth of the trained NN closely

resembles the ones produced by the porosity WOLF 2D model.
We also compare the performance of our hydraulic-model NN to the use of a standard

nearest neighbor linear interpolation (Figure 7). The multiple graphs show the number of

test cases for different relative error rates (3%, 4%, and 5%) and for different output spatial

resolutions – for example, 1 corresponds to obtaining a single depth value for the entire

urban layout, 16 corresponds to obtaining 4� 4 depth values, 100 corresponds to obtaining

10� 10 depth values, and so forth. Overall, the NN performs much better than k-nearest

neighbor (KNN) interpolation implying that the NN is able to “learn” the function well. We

choose the 20� 20 output resolution for most of our results because it yields a good balance

between spatial resolution and accuracy.
Figure 8 shows the error rate and validation of our building coverage NN. This NN is

trained using 80,000 randomly sampled procedural models; overall the network yields very

good results.

Figure 10. The convergence curve for case 3.

Figure 11. Water reduction (m) referenced to the original layouts.
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Urban layouts: In order to find the optimal layout that reduces water depth for an initial
urban layout, we use our MCMC-based optimizer (Figure 4). The optimizer allows users to
set initial parameter values and/or desired building coverage ratio. It also allows us to set the
number of iterations, threads, and weights for similarity to the initial parameter values,
reducing the average water depth, and building coverage weight. If the user does not explic-
itly provide a per-cell desired water depth, then with our GUI the user can define three levels
of water-depth priority (i.e., low (L), medium (M), or high (H)) which can be defined for one
or more target zones.

We tested our system on three different synthetic urban layouts. To set the initial param-
eter values (i.e., original layouts), we randomly selected scenarios from the urban generator.
For all layouts, the system runs for about one minute to find the optimal layout that meets
desired configurations (using a single core and without GPU acceleration). Our optimizer
generates layouts that reduce the average water depth by up to 19%, 25% and 22% for cases
1, 2 and 3 respectively. Figure 9 shows original layouts and optimized layouts using a value
for c so as to obtain layouts with medium-level similarity to the original. Figure 10 presents
the convergence curve of the objective function of our MCMC-based optimizer for case 3 as
an example. The figure reveals that the optimizer convergences faster when we increase the
number of threads.

Figure 11 presents water depth reduction for different layout similarity levels.
As expected, decreasing similarity will reduce water depth as the optimizer can

Figure 12. Water reduction in meters (x-axis) for various layout similarities (y-axis) considering different
priority zones referenced to the original layouts.
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Figure 13. Resulted layouts from our system considering different similarity levels. It also shows low
similarity layouts for importance zones, the bottom row, considering three zones: low importance (back-
ground), med importance (yellow zone) and high importance (red zone).
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search within a larger space of parameter combinations. It is also worth noting that
case 2 shows the highest water reduction. Since this case has a relatively lower
building coverage, the optimizer has more freedom to re-locate buildings so as to reduce
flood levels.

For the same test cases, we set three priority (or importance) zones with regards to
desired water level. Figure 12 gives all results for different zones. It is clear that the ability
to reduce water depth for each zone depends on the test case. However, our system is still
able to reduce water depth in a specific area. For instance, the water depth reductions for
low similarity case within the high importance zone are 20%, 24% and 29% for cases 1, 2
and 3 respectively.

Figure 13 contains the layouts used in Figures 11 and 12. Specifically, the top row shows
the original synthetic urban layouts. The next nine scenarios correspond to the three dif-
ferent layout similarities for three test cases shown in Figure 9. The bottom row of scenarios
in Figure 13 corresponds to the low-similarity solutions, each at three water depth priority
levels, shown in Figure 12. The bottom two rows visually show the zones at the various
selected priority levels.

Table 2 lists the water depth and layout similarities for three test cases shown in
Figures 9 to 13.

We test three real-world layouts located in Liege, Paris and Frankfurt. All three cities are
subject to riverine floods. Figure 14 presents the real-world, initial and optimized layouts.
Table 3 compares the average water depth for each case calculated by the porosity WOLF
2D model and our trained NN.

Our system cannot automatically extract parameter values from existing layouts;
therefore, we manually determine such parameter values to get layouts as close as
possible to reality. Thereafter, the system automatically searches for the opti-
mal layouts.

In general, our system keeps almost the same building coverage as in the original layout,
and tends to increase parcel area and road width, and decreases road length and rear setback
in order to achieve the optimal solutions. Road curvature and orientation do not play an
important role. The optimal solutions always show larger parcel area; however, parcels can
be subdivided into several buildings in the reality.

Table 2. Average water depth for each case in Figures 9 and 13.

Average water depth Building similarity level

Case 1 Original 0.72 –

High similarity 0.66 0.26

Med similarity 0.64 0.47

Low similarity 0.59 0.87

Case 2 Original 0.63 –

High similarity 0.59 0.23

Med similarity 0.53 0.50

Low similarity 0.48 0.72

Case 3 Original 0.64 –

High similarity 0.59 0.28

Med similarity 0.55 0.31

Low similarity 0.50 0.47
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Figure 14. Real-world test cases.
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Conclusions and future work

We have coupled an automatic design approach for urban procedural modeling with a
hydraulic model. Further, to achieve interactive feedback, our approach has employed
NN and MCMC so that we get results in a few seconds. Based on several case studies,
our findings highlighted that the impact of geometric characteristics of urban patterns (e.g.
street width, park ratio, etc.) on flow properties during urban floods is significant. This is
especially important for accurate flood/water simulations and for city planners concerned
with flooding. Our approach can reduce water depth during the design phase of an urban
layout and without other flood-mitigation costs.

There are some open problems remaining for future exploration. While our approach
enables the user to design a flood-resistant urban area, the output controllability is limited.
Recently, several interactive sketching frameworks for 3D modeling are proposed in com-
puter graphics literature (e.g. Nishida et al., 2016, Guerin et al., 2017). Their approaches
offer more controllability for the output 3D model by sketching. It would be interesting to
add an interactive sketching interface to our framework. Another important next step in the
research is the analysis of real-world case studies, which would showcase the operationality
of the system and hence increase the impact of this assessment tool for urban planning
practice. Specifically, the use of a deep learning network should be explored to directly take
a real-world urban layout as input and produce estimated flood depth values. In addition,
we would like to process larger geographic areas as well as consider other flooding scenarios
(e.g. coastal floods, flash floods, etc.).
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