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Abstract

This paper provides a comprehensive overview of urban reconstruction. While there exists a considerable body of
literature, this topic is still under very active research. The work reviewed in this survey stems from the following
three research communities: computer graphics, computer vision, and photogrammetry and remote sensing. Our
goal is to provide a survey that will help researchers to better position their own work in the context of existing
solutions, and to help newcomers and practitioners in computer graphics to quickly gain an overview of this vast
field. Further, we would like to bring the mentioned research communities to even more interdisciplinary work,

since the reconstruction problem itself is by far not solved.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.5]: Computational Geometry
and Object Modeling—; Image Processing And Computer Vision [1.4.6]: Segmentation—; Image Processing And

Computer Vision [1.4.8]: Scene Analysis—;

1. Introduction

The documentation of the cultural heritage of our world is a
vivid task of many research areas. Also in the field of com-
putational sciences, the reconstruction of cities has obtained
a significant attention in recent years. Urban reconstruction
is an exciting area of research with several potential appli-
cations. Despite the high volume of previous work, there are
many unsolved problems, especially when it comes to the
development of fully automatic algorithms.

Urban reconstruction is a wide spread domain. Practical
fields that benefit from reconstructed three-dimensional ur-
ban models are multiple as well:

e In the entertainment industry, the storyline of several
movies and computer games takes place in real cities. In
order to make these cities believable at least some part of
the models are obtained by urban reconstruction.

e Digital mapping for mobile devices, cars, and desk-
top computers requires two-dimensional and three-
dimensional urban models. Examples of such applications
are Google Earth and Microsoft Bing Maps.

e Urban planning in a broad sense relies on urban recon-
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struction to obtain the current state of the urban environ-
ment. This forms the basis for developing future plans or
to judge new plans in the context of the existing environ-
ment.

e Applications such as emergency management, civil pro-
tection, disaster control, and security training benefit from
virtual urban worlds.

From the economical standpoint, there is an enormous ben-
efit of being able to quickly generate high-quality digital
worlds in the growing virtual consumption market.

1.1. Scope

Urban habitats consist of many objects, such as people, cars,
streets, parks, traffic signs, vegetation, and buildings. In this
paper we focus on urban reconstruction, which we consider
as the creation of 3d geometric models of urban areas, indi-
vidual buildings, facades, and even their further details.

Most papers discussed in this survey were published in
computer graphics, computer vision, and photogrammetry
and remote sensing. There are multiple other fields that con-
tain interesting publications relevant to urban reconstruction,
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e.g. machine learning, computer aided design, geo-sciences,
mobile-technology, architecture, civil engineering, and elec-
trical engineering. Our emphasis is the geometric recon-
struction and we do not discuss aspects, like the construc-
tion of hardware and sensors, details of data acquisition pro-
cesses, and particular applications of urban models.

We also exclude procedural modeling, which has been
covered in a recent survey by Vanegas et al. [VAW*10]. Pro-
cedural modeling is an elegant and fast way to generate huge,
complex and realistically looking urban sites, but due to its
generative nature it is not well suited for exact reconstruc-
tion of existing architecture. It can also be referred to as for-
ward procedural modeling. Nevertheless, in this survey we
do address its counterpart, called inverse procedural model-
ing (Section 3.3), in addition to other urban reconstruction
topics.

We also omit manual modeling, even if it is probably still
the most widely applied form of reconstruction in many ar-
chitectural and engineering bureaus. From a scientific point
of view, the manual modeling pipeline is well researched. An
interesting overview of methods for the generation of polyg-
onal 3d models from CAD-plans has been recently presented
by Yin et al. [YWRO09].

In order to allow unexperienced computer graphics re-
searchers to step in into the field of 3d reconstruction, we
provide a little more detailed description of the fundamentals
of stereo vision in Section 2. We omit concepts like trifocal
tensor or the details of multiview vision. Instead, we refer
more computer vision-versed readers to the referenced pa-
pers and textbooks, e.g., by Hartley and Zisserman [HZ04],
Moons et al. [MvGV(09], and recently by Szeliski [Szell].
Due to the enormous range of the literature, our report is
designed to provide a broad overview rather than a tutorial.

1.2. Input Data

There are various types of possible input data that is suitable
as a source for urban reconstruction algorithms. In this sur-
vey, we focus on methods which utilize imagery and LiDAR
scans (Light Detection And Ranging).

Imagery is perhaps the most obvious input source. Com-
mon images acquired from the ground have the advantage
of being very easy to obtain, to store, and to exchange.
Nowadays, estimated tens of billions of photos are taken
worldwide each year, which results in hundreds of petabytes
of data. Many are uploaded and exchanged over the In-
ternet, and furthermore, many of them depict urban sites.
In various projects this information has been recognized
as a valuable source for large scale urban reconstruction
[SSS06,1ZB07,ASSS10,FFGG™10]. Aerial and satellite im-
agery, on the other hand, for many years was restricted to the
professional sector of photogrammetry and remote sensing
community. Only in the recent decade, this kind of input data
has become more available, especially due to the advances of
Web-mapping projects, like Google Maps and Bing Maps,
and was successfully utilized for reconstruction [VAW*10].

Another type of input that is excellently suitable for urban
reconstruction is LiDAR data. It typically utilizes laser light
which is projected on surfaces and its reflected backscatter-
ing is captured, where structure is determined trough the
time-of-flight principle [CW11]. It delivers semi-dense 3d
point-clouds which are very precise, especially for long dis-
tance acquisition. Although scanning devices are expensive
and still not available for mass markets, scanning technol-
ogy is frequently used by land surveying offices or civil
engineering bureaus for documentation purposes, making
LiDAR data especially available for urban reconstruction
tasks. Many modern algorithms rely on input from LiDAR,
both terrestrial and aerial.

Airborne Imager Airborne LiDAR

J

Ground LiDAR

- J

Figure 1: Input data types. We review interactive and auto-
matic reconstruction methods which use imagery or LiDAR-
scans acquired either from the ground or from the air.

Furthermore, some approaches incorporate both data
types in order to combine their complementary strengths:
imagery is inherently a 2d source of extremely high resolu-
tion and density, but view depended and lacking depth infor-
mation. Laser-scan is inherently a 3d source of semi-regular
and semi-dense structure, but not solid, and often incomplete
and noisy. Combining both inputs promises to introduce
more insights into the reconstruction process [LCOZ*11].

Finally, both types can be acquired from the ground or
from the air (cf. Figure 1), providing a source for vary-
ing levels of detail (LOD). The photogrammetry community
proposes a predefined standard (OpenGIS) for urban rein-
struction LODs [GKCNOS8]. According to this scheme, air-
borne data is more suitable for coarse building models re-
construction (LOD1, Section 5), ground based data is more
useful for individual buildings (LOD2, Section 3), and fa-
cade details (LOD3, Section 4).

1.3. Challenges

Full Automation. The ultimate goal of most computer-
based reconstruction approaches is to provide as solutions
that are as automatic as possible. In practice, full automation
turns out to be hard to achieve. The related vision problems
quickly result in huge optimization tasks, where global pro-
cesses are based on local circumstances, and local processes
often depend on global estimates. In other words, the de-
tection of regions of interest is both context dependent (top
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Figure 2: Overview of urban reconstruction approaches. We attempt to roughly group the methods according to their outcome.
We report about interactive methods using both user input and automatic algorithms as well as about fully automatic methods.
Note that this is a schematic illustration, and in practice many solutions cannot be strictly classified into a particular bin.

down), since we expect a well-defined, underlying object,
and context free (bottom-up), since we do not know the un-
derlying object and want to estimate a model from the data.
In fact, this is a paradox and these dependencies can be gen-
erally compared to the “chicken or egg” dilemma.

There is no unique solution to this fundamental problem
of automatic systems. Most approaches try to find a balance
between these constraints, for instance, they try to combine
two or more passes over the data, or eventually to incorpo-
rate the human user in order to provide some necessary cues.

Quality and Scalability. An additional price to pay for au-
tomation is often the loss of quality. From the point of view
of interactive computer graphics, the quality of solutions of
pure computer vision algorithms is quite low, while espe-
cially for high-quality productions like the movie industry,
the expected standard of the models is very high. In such
situations, the remedy is either pure manual modeling or at
least manual quality control over the data. The downside of
this approach is its poor scalability: human interaction does
not scale well with huge amounts of input data.

For these reasons, many recent approaches employ com-
promise solutions that cast the problem in such a way that
both the user and the machine can focus on tasks which are
easy to solve for each of them. Simplified user interaction
that can be performed even by unskilled users often provides
the quantum of knowledge that is needed to break out from
the mentioned dilemma.

Acquisition Constraints. Other problems that occur in
practice are due to the limitations given during the data ac-

quisition process.
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For example, it is often difficult to acquire coherent and
complete data of urban environments. Buildings are often
located in narrow streets surrounded by other buildings and
other obstructions, thus photographs, videos or scans from
certain positions may be impossible to obtain, neither from
the ground nor from the air. The second common handicap
is the problem of unwanted objects in front of the buildings,
such as vegetation, street signs, vehicles and pedestrians. Fi-
nally, there are obstacles like glass surfaces which are prob-
lematic to acquire with laser-scans. Photographs of glass are
also difficult to process due to many reflections. Lighting
conditions, e.g., direct sunshine or shadows, influence the
acquisition as well, thus, recovery of visual information that
has been lost through such obstructions is also one of the
challenges.

A common remedy is to make multiple overlapping acqui-
sition passes and to combine or to compare them. However,
in any case post-processing is required.

1.4. Overview

It is a difficult task to classify all the existing reconstruc-
tion approaches, since they can be differentiated by several
properties, such as input data type, level of detail, amount of
automatism, or output data. Some methods are data-driven
(bottom-up), some are model-driven (bottom-up), and some
combine both approaches.

In this report we propose an output-based ordering of the
presented approaches. This ordering helps us to sequentially
explain important concepts of the field, building one on top
of another; but note that this is not always strictly possi-
ble, since many approaches combine multiple methodolo-
gies and data types.
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Another advantage of this ordering is that we can specify
the expected representation of the actual outcome for each
section. Figure 2 depicts the main categories that we handle.
In this paper, the term modeling is generally used for inter-
active methods, and the term reconstruction for automatic
ones.

A. Point Clouds & Cameras. Image-based stereo systems
have reached a rather mature state in recent times and of-
ten serve as preprocessing stages for many other meth-
ods since they provide quite accurate camera parameters.
Many other methods, even the interactive ones which we
present in later sections, rely on this module as a starting
point for further computations. For this reason we first in-
troduce the Fundamentals of Stereo Vision in Section
2.1. Then, in Section 2.2, we provide the key concepts of
image-based automatic Structure from Motion method-
ology, and in Section 2.3, we discuss Multiview Stereo
approaches.

B. Buildings & Semantics. In this section we introduce a
number of concepts that aim at the reconstruction of in-
dividual buildings. We start in Section 3.1 with Image-
Based Modeling approaches. Here we present a variety
of concepts based on photogrammetry and adapted for au-
tomatic as well as for interactive use. In Section 3.2, we
introduce concepts of interactive LiDAR-Based Model-
ing aiming at reconstruction of buildings from laser-scan
point clouds. In Section 3.3, we describe the concept of
Inverse Procedural Modeling, which has recently re-
ceived significant attention due to its ability to compute
a compact and editable representation.

C. Facades & Images. We handle the facade topic explic-
itly because it is of particular importance in our do-
main of modeling urban areas. In Section 4.1, we han-
dle traditional Facade Image Processing, like panora-
mas and textures. In Section 4.2, we introduce automatic
Facade Parsing concepts that aim at segmentation, de-
tection of symmetry and repetitive elements, and higher-
order model fitting. In Section 4.3, we introduce concepts
which aim at interactive Facade Modeling, such as subdi-
vision into sub-elements (e.g., floors, windows, and other
domain-specific features).

D. Blocks & Cities. In this section we discuss automatic re-
construction of models of large areas or whole cities. Such
systems often use multiple input data types, like aerial im-
ages and LiDAR. We first mention methods performing
Ground Reconstruction in Section 5.1. In Section 5.2,
we focus on Aerial Reconstruction from aerial imagery,
LiDAR or hybrids, and finally, in Section 5.3, we discuss
methods which aim at automatic Massive City Recon-
struction of large urban areas.

In the remainder of this article we review those categories.

2. Point Clouds & Cameras

Generally speaking, stereo vision is a method which allows
restoring the third dimension from multiple (at least two)

distinct two-dimensional images. The underlying paradigm
is called stereopsis, which is also the way humans are able
to perceive depth from two slightly dispaired images.

2.1. Fundamentals of Stereo Vision

In computer vision, the goal is to reconstruct 3d structure
which lies in the 3d Euclidian space in front of multiple cam-
era devices, where each of them projects the scene on a 2d
plane. For the purpose of simplification and standardization,
the established common model of a camera in computer vi-
sion is the pinhole camera. This model allows expressing
the projection by means of a linear matrix equation using
the homogeneous coordinates.

Camera Model. The operation we want to carry out is a
linear central projection, thus the camera itself is defined
by an optical center C which is also the origin of the local
3d coordinate frame. Typically, in computer vision, a right-
handed coordinate system is used, where the “up-direction”
is the Y-axis and the camera “looks” along the positive Z-
axis, which is also called the principal axis as shown in Fig.
3. The scene in front of the camera is projected onto the im-
age plane, which is perpendicular to the principal axis, and
its distance to the optical center is the actual focal length f
of the camera. The principal axis pierces the image plane at
the principal point p = [px,py}T as depicted in Figure 3.

Figure 3: Camera geometry: (left) C denoted the camera
center and p the principal point. In a basic setup the center
of the first camera is centered at the origin; (right) 2d cross
section of the projection.

In practice, lenses of common cameras are quite sophisti-
cated optical devices whose projective properties are usually
not strictly linear. In order to obtain the standardized camera
from any arbitrary device, a process called camera calibra-
tion is carried out. In this process the internal camera param-
eters are determined and stored in the camera intrinsic cali-
bration matrix K. The notation of the matrix varies through-
out the literature, but a basic version can be described as:

f 0 px
K=(0 f py|, )]
0 0 1

where f denotes the focal length, and the point p = [px, py]T
is the principal point of the camera plane. This setup allows
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projecting a point X = [x, , z}T from 3d space onto a point
x on the image plane by a simple equation:

x=KX — [fx/z+px, fy/z+p]" . @

Another aspect of camera calibration is its location in
space, which is often called the extrinsic camera parameters.
In single-view vision, it is sufficient to define the origin of
the global space at the actual camera center without chang-
ing any of the mentioned equations. In multiview vision, this
is not adequate anymore, since each camera requires its own
local projective coordinate system. These cameras, as well
as the objects in the scene, can be considered as lying in a
common 3d space that can be denoted as the world space.
The pose of each particular camera can be described by a
rotation, expressed by a 3-by-3 matrix R, and the position
of its optical center C, which is a vector in 3d world space.
This leads to an extension of Equation 1 to a 3 X 4 matrix:

P=KR[I|-C], 3)

where P is referred to as homogeneous camera projection
matrix. Note that now the 3d space points have to be ex-
pressed in homogeneous coordinates X = [x,y, z, I]T. In this
way, an arbitrary point X in world space can be easily pro-
jected onto the image plane by:

x=KR[X—C] =PX. O]

Determining the extrinsic parameters is often referred to as
pose estimation or as extrinsic calibration.

For a typical hand-held camera, the mentioned parameter
sets are not known a priori. There are several ways to ob-
tain the intrinsic camera calibration [LZ98, WSBO05,JTC09],
where one of them is to take photos of predefined pat-
terns and to determine the parameters by minimizing the
error between the known pattern and the obtained projec-
tion [MvGV09]. Extrinsic parameters are of more impor-
tance in a multi-camera setup, which can be obtained au-
tomatically from a set of overlapping images with common
corresponding points [MvGV09].

Please note that the described camera model is a simpli-
fied version which does not take all aspects into account,
like the radial distortion or the aspect ratio of typical CCD-
pixels. We refer the reader to Hartley and Zisserman [HZ04]
and to Moons et al. [MvGV09] for exhaustive discussions
about calibration and self-calibration of multiview setups.

Epipolar Geometry. For a single camera, we are able to
determine only two parameters of an arbitrary 3d point pro-
jected to the image plane. In fact, the point X lies on a pro-
jecting ray as depicted in Figure 4. Obviously, it is not pos-
sible to define the actual position of the point along the ray
without further information. An additional image from a dif-
ferent position provides the needed information. Figure 4 de-
picts this relationship: The projective ray from the first cam-
era trough a 2d image point x| and a 3d point X appears as a
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line I, in the second camera, which is referred to as an epipo-
lar line. Consecutively, a corresponding point in the second
image must lie on the line and is denoted as x;. Note that
also the optical centers of each camera project onto the im-
age planes of each other, as shown in Figure 4. These points
are denoted as the epipoles e; and e;, and the line connect-
ing both camera centers is referred to as the baseline. The
plane defined by both camera centers and the 3d point X is
referred to as epipolar plane.

Stereo Correspondence and Triangulation. In a stereo
setup, the relation of two views to each other is expressed
in a 3-by-3 rank 2 matrix, referred to as the fundamental ma-
trix F, which satisfies:

XTFXQ =0, Q)

where x; and x; are two corresponding points in both im-
ages. There exist well-known algorithms to determine the
fundamental matrix from 8 (linear problem) or 7 (non-linear
problem) point correspondences [MvGV09]. When working
with known intrinsic camera settings, the relation is also of-
ten referred to as the essential matrix E, which can be deter-
mined even from the correspondences of five points [Nis04].

S 4
baseline

Figure 4: Epipolar geometry in a nutshell: points X| and X,
are corresponding projections of the 3d point X. In image 1
the point X lies on the epipolar line 1;. The epipoles e; and
e, indicate the positions where C| and Cy project respec-
tively. The point vy in image 1 is the vanishing point of the
projecting ray of X,.

Assuming full camera calibration, the problem of 3d
structure reconstruction from stereo can be reduced to two
sub-problems: (1) the one-to- one correspondence problem
across the images and (2) the intersection of the projective
rays problem. The second operation is usually referred to as
structure triangulation due to the triangle which is formed
by the camera centers C; and C,, and each consecutive point
X in 3d space. Note, that this term has a different meaning
then the triangulation of geometric domains, which is often
used interchangeably to a tessellation into triangles in com-
puter graphics literature.

One of the key inventions which advanced this research
field are robust feature-point detection algorithms, like SIFT
[Low04] and SURF [BTvG06,BETvGO0S]. These image pro-
cessing methods allow for efficient detection of character-
istic feature points which can be matched across multiple
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images. Both algorithms compute very robust descriptors
which are mostly invariant to rotation and scale, at least to
a certain degree as shown by Schweiger et al. [SZG*09].
Once the corresponding features have been established, the
extrinsic (i.e., pose in 3d space) and, under certain circum-
stances, also the intrinsic (e.g., focal length) parameters of
their cameras, as well as positions of the 3d space points can
be determined in an iterative process often called structure
from motion.

2.2. Structure from Motion

In practice, the stereo vision procedure described in the pre-
vious section can be used to register multiple images to one
another, to orient and place their cameras, and to recover 3d
structure. It is carried out incrementally in several passes,
usually starting from an initial image pair and adding con-
secutive images to the system one by one. Mutual relations
between the images are detected sequentially, new 3d points
are extracted and triangulated, and the whole 3d point cloud
is updated and optimized.

In a first stage, for each image a sparse set of feature-
points is detected, which are than matched in a high-
dimensional feature space in order to determine unique
pairs of corresponding points across multiple images. This
stage is usually approached with high-dimensional spatial
nearest-neighbor search algorithms, like the kd-tree, vp-tree
[KZNOS] or the vocabulary-tree [NS06].

In order to improve the stability of the feature match-
ing process, robust estimation algorithms (i.e,, RANSAC
[FB81,RFP08]) are employed in order to minimize the num-
ber of wrong matches across images. By utilizing the already
known parameters it is possible to “filter out” outliers which
deviate too far from an estimated mapping.

Finally, advanced bundle adjustment solvers [TMHF99,
LA09,ASSS10, WACS11] are used to compute highly accu-
rate camera parameters and a sparse 3d point cloud. Bundle
adjustment is a non-linear least-squares optimization process
which is carried out after the addition of several new images
to the system in order to suppress the propagation of an er-
ror. In addition, is is always performed at the end, after all
images have been added, in order to optimize the whole net-
work. In this process both the camera parameters (K, R, and
C) as well as the positions of the 3d points X are optimized
simultaneously, aiming at minimization of the re-projection
error:

ZZ [[xij

ji€j

X, —C; — min _, (6
R; (X, - C))|* g i o ©
where i € j indicates that the point X is visible in image j,
and x;; denotes the projection of 3d points X; onto image
Jj. Usually optimization is carried out using the non-linear
Levenberg-Marquardt minimization algorithm [HZ04].

The entire process is typically called structure from mo-
tion (SfM) due to the fact that the 3d structure is recov-
ered from a set of photographs which have been taken by

a camera that was in motion. In fact, this methodology ap-
plies to video sequences as well [vGZ97], and it can also
be performed with line-feature correspondences across im-
ages [TK95, SKDO06], which is especially suitable to urban
models.

The advantage of general SfM is its conceptual simplic-
ity and robustness. Furthermore, since it is a bottom-up ap-
proach that makes only few assumptions about the input
data, it is quite general.

2.3. Multiview Stereo

The described procedure of SfM delivers networks of im-
ages that are registered to each other, including their cam-
era properties, as well as sparse point clouds of 3d structure.
However, the point clouds are usually rather sparse and do
not contain any solid geometry. The next step in order to ob-
tain more dense structure is usually called dense matching.
It is mostly used for image-based reconstruction of detailed
surfaces as shown in Figure 6. In this context, dense means
to try to capture information from all pixels in the input im-
ages — in contrast to sparse methods, where only selected
feature points are considered.

In this report we mention several dense matching meth-
ods which have been utilized for urban reconstruction. For a
more detailed overview, we refer the reader to Scharstein and
Szeliski [SS02a] for two-view stereo methods, and to Seitz
et al. [SCD*06] for multiview stereo methods (MVS).

Figure 5: A sparse point cloud generated from several thou-
sands of unordered photographs, and one photo taken from
the nearly the same viewpoint. Figure courtesy of Noah
Snavely [SSG* 10], ©2010 IEEE.

Furthermore, many multiview stereo methods often utilize
a concept called “plane-sweeping”. This process, originally
proposed by Collins [Col96], is approached with multiple to
each other registered views. The main idea is to “sweep” a
plane through the 3d space along one of the axes with rays
shot from all pixels of all cameras onto the plane. Accord-
ing to epipolar geometry, intersections of the rays with each
other at their hitpoints on the plane indicate 3d structure
points. Collins showed how to utilize a series of homogra-
phies in order to efficiently accumulate these points and to
generate reconstructions [Col96]. The main advantages of
this idea are that (1) it works with an arbitrary number n
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of images, (2) its complexity scales with O(n), and (3) all
images are treated in the same way. Thus, the method was
called by the author as true multi-image matching approach.
Plane sweeping has been successfully utilized for recovery
of dense structure and consecutively extended in order to ex-
ploit with modern programmable hardware graphics acceler-
ators [YP03] or multiple sweeping directions [GFM*07].

Both sparse and dense frameworks have been utilized in
urban reconstruction and in this section we want to review
the most important publications.

Sparse Reconstruction. There is a number of papers
which utilize sparse SfM for exploration and reconstruc-
tion of urban environments. All these methods produce, ei-
ther as the end-product or at least as an intermediate step,
sparse 3d point clouds. In a series of publications, Snavely
etal. [SSS06,5SS07,SGSS08,SSG*10] develop a system for
navigation in urban environments which is mainly based on
sparse points and structure from motion camera networks.
In this system, called “Photo Tourism” it is possible to navi-
gate through large collections of registered photographs. The
density of photographs combined with sparse point clouds
and smooth animations gives the user the impression of spa-
tial coherence. These works contributed significantly to the
maturity of the current state-of-the-art of SfM and to the use
of unstructured collections of Internet images [LWZ*08].

Further methods introduced semi-dense (quasi-dense)
StM [LL02,LQ05] and aimed at improving the performance,
scalability, and accuracy [ASS*09,FQ10,AFS*10,COSH11]
in order to deal with arbitrarily high numbers of input pho-
tographs. Recent work of Agarwal et al. demonstrates im-
pressively how to reconstruct architecture from over hundred
thousand images in less than one day [AFS*11]. They cast
the problem of matching of corresponding images as a graph
estimation problem, where each of the images is a vertex
and edges connect only images which depict the same ob-
ject. They approach this problem using multiview clustering
of scene objects [FCSS10].

Bauer et al. [BZB06] proposed a method based on plane-
sweep in order to recover sparse point-clouds of buildings.

Dense Reconstruction. Dense structure of the surface
is also computed by a multiview stereo matching algo-
rithm proposed by Pollefeys [PvGV*04]. Vergauwen and
Van Gool [VvGO06] extended this method from regular se-
quences of video frames to still images by improved feature
matching, additional internal quality checks and methods to
estimate internal camera parameters. This approach was in-
troduced as the free, public ARC3D web-service, allowing
the public to take or collect images, upload them, and get
the result as dense 3d data and camera calibration parame-
ters [TvG11]. Images of buildings are among the most often
uploaded data. Further extensions to this methodology were
presented by Akbarzadeh et al. [AFM™*06] and Pollefeys et
al. [PNF*08].
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Furukawa and Ponce [FP07, FP09] presented a different
approach for multiview stereo reconstruction. Their method
uses a structure from motion camera network as a prelim-
inary solution, but further, it is based on matching small
patches placed on the surface of the scene object which
are back-projected onto the images. First, features like Har-
ris corners [HS88] or DoG spots [Low04] are detected and
matched across images, which, projected on the object, de-
fine the locations of the patches. These are defined in such
a way that their re-projected footprints cover the actual im-
ages. They are then optimized such that a photometric dis-
crepancy function across the re-projected patches is mini-
mized. The results are semi-dense clouds of small patches
which serve as a basis for denser structure triangulation and,
finally, for polygonal surface extraction. To achieve this,
they employ the Poisson surface reconstruction algorithm
[KBHO06], as well as an iteratively refined visual hull method
[FPOS8]. Also this 3d reconstruction idea is very generic, but
it has since been extended and applied to 3d urban recon-
struction as well [FCSS09a, FCSS10].

Another approach for the reconstruction of dense struc-
tures is to perform pairwise dense matching [SS02a] of any
two registered views and then to combine the computed
depth maps with each other. Usually this approach is de-
noted as depth map fusion. There are several ideas how to
perform this, such as from Goesele et al. [GCS06, GSC*07],
Zach et al. [ZPB07,1ZB07], Merrell et al. [MAW*07].

Figure 6: Comparison of 3d models created by different
methods. Left: Vergauwen and van Gool [VvG06], middle:
Furukawa and Ponce [FPO7], right: Micusik and Kosecka
[MK10]. Figure courtesy of Branislav Micusik [MKI0].
(©2010 Springer:

A common problem of dense stereo methods is that the
models exhibit a relatively hight amount of noise along flat
surfaces. This is due to the nature of matching nearby points
more or less independently from each other. This, in fact, is a
major obstacle in urban reconstruction, where most models
are composed of groups of planar surfaces. Several meth-
ods try to overcome this problem by including hierarchical
models [LPK09], Manhattan-world assumptions [FCSS09a,
FCSS09b], multi-layer depth maps [GPF10], or piece-wise
planar priors [MK09, MK10, SSS09, CLP10, GFP10].

Generally, dense multiview approaches deliver quite im-
pressive results, like the large scale system presented by
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Frahm et al. [FFGG™*10]: it deals with almost 3 million im-
ages, performs image clustering, SfM, and dense map fusion
in one day on a single PC. On the downside, these systems
usually provide dense polygonal meshes without any higher-
level knowledge of the underlying scene, even though such
information is very useful in complex architectural models.
However, there exist other approaches which provide well-
defined geometric shapes and often also some semantics. We
cover such methods in Section 3.

3. Buildings & Semantics

Manually modeling architecture is a tedious and time-
consuming task, but for a long time it was the only way
to obtain 3d models of urban sites. However, in the past
two decades there has been significant research in automat-
ing this process. In this section we turn our attention to ap-
proaches which aim at reconstructing whole buildings from
various input sources, such as a set of photographs or laser-
scanned points, typically by fitting some parameterized top-
town building model.

3.1. Image-Based Modeling

In image-based modeling, a static 3d object is modeled from
of or with the help of one or more images or videos. While
this definition is very general, such methods are often also
referred to as photogrammetric modeling, especially in the
photogrammetry and remote sensing community. In this sec-
tion we restrict our review to approaches which model sin-
gle buildings mainly from ground-based or close-range pho-
tographs.

Figure 7: Interactive image-based modeling: (1) input im-
age with user-drawn edges shown in green, (2) shaded 3D
solid model, (3) geometric primitives overlaid onto the input
image, (4) final view-dependent, texture-mapped 3D model.
Figure courtesy of Paul Debevec [DTM96] (©1996 ACM.

Generally, in order to obtain true 3d properties of an ob-
ject, the input must consist of at least two or more perspec-
tive images of the scene. There are also single-image meth-
ods which usually rely on user input or knowledge of the
scene objects in order to compensate the missing informa-
tion.

Nonetheless, also multiview methods make a number of
assumptions about the underlying object in order to define

a top-down architectural model which is successively com-
pleted from cues derived from the input imagery. The out-
come usually consists of medium-detail geometric building
models, in some cases enriched with finer detail, such as as
windows. Some methods also deliver textures and more de-
tailed facade geometry, but we omit discussion of these fea-
tures in this section, and instead elaborate them in Sec. 4.

The degree of user interaction varies across the methods
as well. Generally, the tradeoff is between quality and scal-
ability. More user interaction leads to more accurate models
and semantics, but such approaches do not scale well to huge
amounts of data. Using fully automatic methods is an option,
but they are more error prone and also depend more on the
quality of the input.

ground_plane

I 8
first_storey
"
roof entrance
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Figure 8: A geometric model of a simple building (a); the
model’s hierarchical representation (b). The nodes in the
tree represent parametric primitives while the links contain
the spatial relationships between the blocks. Figure courtesy
of Paul Debevec [DTM96] (©1996 ACM

Interactive Multiview Modeling. A seminal paper in this
field was the work of Debevec et al. [DTM96]. Their sys-
tem, called “Fagade”, introduced a workflow for interactive
multiview reconstruction.

The actual model is composed of parameterized primitive
polyhedral shapes, called blocks, arranged in a hierarchical
tree structure (cf. Figure 8). Debevec et al. based their mod-
eling application on a number of observations [DTM96]:

e Most architectural scenes are well modeled by an arrange-
ment of geometric primitives.

e Blocks implicitly contain common architectural elements
such as parallel lines and right angles.

e Manipulating block primitives is convenient, since they
are at a suitably high level of abstraction; individual fea-
tures such as points and lines are less manageable.

e A surface model of the scene is readily obtained from the
blocks, so there is no need to infer surfaces from discrete
features.

e Modeling in terms of blocks and relationships greatly re-
duces the number of parameters that the reconstruction
algorithm needs to recover.

Composing an architectural model from such blocks
turned out to be quite a robust task which provides very

(© The Eurographics Association 2012.
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good results (cf to Figure 8). During the modeling process,
the user interactively selects a number of photographs of the
same object and marks corresponding edges in each of them.
The correspondences allow establishing epipolar-geometric
relations between them, and the parameters of the 3d primi-
tives can be fitted automatically using a non-linear optimiza-
tion solver [TK95]. Because the number of views is kept
quite low, and because many of the blocks can be constrained
to each other — thus significantly reducing the parameter
space — the optimization problem can be solved efficiently
(e.g., up to a few minutes on the 1996 hardware).

The “Facade” system was one of the first of its kind. The
observations made in this paper turned out to be quite appro-
priate for urban scenes. Furthermore, its additional advan-
tage over other, mostly automatic approaches, was the high
quality of the obtained results.

This encouraged other researchers to invest time in the
development of interactive systems. For example, another
image-based modeling framework called ‘“Photobuilder”
was presented by Cipolla and Robertson [CR99, CRB99].
Their work introduced an interactive system for recover-
ing 3d models from few uncalibrated images of architec-
tural scenes based on vanishing points and the constraints
of projective geometry. Such constraints, like parallelism
and orthogonality, were also exploited by Liebowitz et al.
[LZ98,1.CZ99], who presented a set of methods for creating
3d models of scenes from a limited numbers of images, i.e.,
one or two, for situations where no scene coordinate mea-
surements are available.

Lee et al. introduced an interactive technique for block-
model generation from aerial imagery [LHNOO]. They ex-
tended the method further and introduced automatic inte-
gration of ground-based images with 3d models in order
to obtain high-resolution facade textures [LJINO2a, LINO2b,
LINO2c]. They also proposed an interactive system which
provides a hierarchical representation of the 3d building
models [LNO3]. In this system, information for different lev-
els of detail can be acquired from aerial and ground images.
The method requires less user interaction than the “Fagade”
system, since it uses more automatic image calibration. It
also requires at most 3 clicks for creating a 3d model and
2 model-to-image point correspondences for the pose esti-
mation. Finally, they also handled more detailed fagcade and
window reconstruction [LNO4] (cf. Section 4.3).

Also El-Hakim et al. [EhWGGO0S5, EhWGO5] proposed a
semi-automatic system for image-based modeling of archi-
tecture. Their approach allows the user to model parameter-
ized shapes which are stored in a database and can be reused
for further modeling of similar objects.

The next important advance of interactive modeling was
the combination of automatic sparse structure from motion
methods with parameterized models and user interaction.
SfM provides a network of registered cameras and a sparse
point-cloud (cf. Section 2). The goal is to fit a parameterized
model into this data.

(© The Eurographics Association 2012.

Figure 9: Interactive modeling of geometry in video. Left:
Replicating the bollard by dragging the mouse. Right: Repli-
cating a row of bollards. Figure courtesy of Anton van den
Hengel [vdHDT" 07a] (©2007 ACM.

A series of papers published by van den Hengel and col-
leagues describe building blocks of an image and video-
based reconstruction framework. Their system [vdHDT*06]
uses camera parameters and point clouds generated by a
structure from motion process (cf. Section 2) as a starting
point for developing a higher-level model of the scene. The
system relies on the user to provide a small amount of struc-
ture information from which more complex geometry is ex-
trapolated. The regularity typically present in man-made en-
vironments is used to reduce the interaction required, but
also to improve the accuracy of fit. They extend their higher-
level model [vdHDT*(7a], such that the scene is represented
as a hierarchical set of parameterized shapes, as already pro-
posed by others [DTM96,L.N03]. Relations between shapes,
such as adjacency and alignment, are specified interactively,
such that the user is asked to provide only high-level scene
information and the remaining detail is provided through ge-
ometric analysis of the images (cf. Figure 9). In a follow-up
work [vdHDT*07b], they present a video-trace system for
interactive generation of 3d models using simple 2d sketches
drawn by the user, which are constrained by 3d information
already available.

Figure 10: Results of interactive image-based modeling
method. Figure courtesy of Sudipta Sinha [SSS*08], (©2008
ACM.

Sinha et al. [SSS*08] presented an interactive system for
generating textured 3d models of architectural structures
from unordered sets of photographs. It is also based on struc-
ture from motion as the initial step. This work introduced
novel, simplified 2d interactions such as sketching of out-
lines overlaid on 2d photographs. The 3d structure is auto-
matically computed by combining the 2d interaction with the
multiview geometric information from structure from mo-
tion analysis. This system also utilizes vanishing point con-
straints [RC02], which are relatively easy to detect in archi-
tectural scenes (cf. Figure 10).
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Recently, also Larsen and Moeslund [LM11b] proposed
an interactive method for modeling buildings from sparse
StfM point-clouds. It provides simple block-models and tex-
tures. The pipeline also includes an approach for automatic
segmentation of fagades. Arikan et al. [ASW™12] proposed
a framework for generation of polyhedral models over semi-
dense unstructured point-clouds from SfM. Their system au-
tomatically extracts planar polygons which are optimized in
order to “snap” to each other to form an initial model. The
user can refine it with simple interactions, like coarse 2d
strokes. The output are accurate and well-defined polygonal
objects.

Automatic Multiview Modeling. A number of image-
based and photogrammetric approaches attempt fully au-
tomatic modeling. Buildings are especially suited to such
methods because the model can be significantly constrained
by cues typically present in architectural scenes, like par-
allelism and orthogonality. These attributes help to extract
line-features and vanishing points from the images, which
opens the door for compact algorithms [LZ98,Rot00, RC02,
KZ02] that aim at both reliable camera recovery and consec-
utive reconstruction of 3d structure.

While the mentioned papers provided well-defined tools
for multiview retrieval of general objects, others proposed
model-based systems which aim more specifically at build-
ing reconstruction. An early project for reconstructing whole
urban blocks was proposed by Teller [Tel98]. Coorg and
Teller [CT99] detected vertical building planes using the
space-sweep algorithm [Col96] and provided a projective
texture for their facade, however, their system did not yet
utilized any stronger top-down model of a building.

Werner and Zisserman [WZ02] proposed a fully auto-
matic approach inspired by the work of Debevec et al.
[DTM96]. Their method accepts a set of multiple short-
range images and it attempts to fit quite generic polyhedral
models in the first stage. In the second stage, the coarse
model is used to guide the search for fitting more detailed
polyhedral shapes, such as windows and doors. The sys-
tem employs the plane-sweep approach [Col96] for poly-
hedral shape fitting, which was also used by Schindler and
Bauer [BKS*03], who additionally introduced more specific
templates for architectural elements.

The work of Dick et al. [DTC00, DTC04] aims also at an
automatic acquisition of 3d architectural models from small
image sequences. Their model is Bayesian, which means
that it needs the formulation of a prior distribution. In other
words, the model is composed of parameterized primitives
(such as walls, doors or windows), each having assigned a
certain probabilistic distribution. The prior of a wall layout,
and the priors of the parameters of each primitive are par-
tially learned from training data, and partially added man-
ually according to the knowledge of expert architects. The
model is reconstructed using a Markov Chain Monte Carlo
(MCMC) machinery, which generates a range of possible so-

Iutions from which the user can select the best one when
the structure recovery is ambiguous. In a way this method is
loosely related to inverse procedural methods described later
in Section 3.3 because it also delivers semantic descriptions
of particular elements of the buildings.

——— Roof

Column — Window

Window — ~——— Door
Figure 11: Example of fully automatic modeling: A labeled
3d model is generated from several images of an archi-
tectural scene. Figure courtesy of Anthony Dick [DTCO04],
(©2004 Springer.

More recently, Xiao et al. [XFZ"09] provided another au-
tomatic approach to generate 3d models from images cap-
tured along the streets at ground level. Since their method
reconstructs a larger urban area than a single building, we
discuss it in Section 5.1.

Interactive Single-view Modeling. Assuming some
knowledge about the scene, it is often possible to reconstruct
it from a single image. Horri et al. [HAA97] provided an in-
teractive interface for adding perspective to a single photo-
graph, which is then subsequently exploited in order to simu-
late the impression of depth. Shum and Szeliski [SHS98] in-
troduced a system for interactive modeling of building interi-
ors from a single panoramic image. Photogrammetric tools,
e.g., a linear algorithm which computes plane rectification,
plane orientation, and camera calibration from a single im-
age [LCZ99], paved the way for further single-image ap-
proaches. For example, van den Heuvel [vdHO1] introduced
an interactive algorithm for extraction of buildings from a
single image. Oh et al. [OCDDO01] proposed a tool for inter-
active depth-map painting in a single photo, which is then
utilized for rendering.

The most recent paper in this category was presented by
Jiang et al. [JTCO9], who introduced an algorithm to cali-
brate the camera from a single image, and proposed an inter-
active method which allows for recovery of 3d points driven
by the symmetry of the scene objects. Its limitation is that it
only works for highly symmetric objects because the epipo-
lar constraints are derived from symmetries present in the
scene.

Automatic Single-view Modeling. Some fully automatic
methods have been attempted. Hoiem et al. [HEHOS] pro-
posed a method for creation of simplified “pop-up” 3d mod-

(© The Eurographics Association 2012.
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els from a single image, by using image segmentation and
depth assignments based on vanishing points [RC02,KZ02].
Kosecka and Zhang [KZ05] introduced an approach for au-
tomatic extraction of dominant rectangular structures from
a single image using a model with a high-level rectangular
hypothesis.

To summarize image-based modeling, we must say that
fully automatic modeling still suffers considerable quality
loss compared to interactive approaches, and as of today,
the best quality is still obtained by interactive multiview
methods. For this reason, due to the current demand for
high-quality models, most close-range reconstruction is ap-
proached with semi-automatic modeling.

3.2. LiDAR-Based Modeling

Another group of methods focusing on the reconstruction of
buildings utilizes laser-scan data, also referred to as LIDAR-
data (Light Detection and Ranging). Generally, there are two
main types of this class of data: those acquired by ground-
based devices (terrestrial LIDAR), and those captured from
the air (aerial LiDAR).

Laser scanning is widely used in the photogrammetry
and remote sensing community for measurement and doc-
umentation purposes. In this report, we omit those methods.
Only in the recent years, the goal of further segmentation
and fitting of parameterized high-level polyhedral models
emerged, and we will focus on those approaches.

Interactive Modeling. Due to advances in laser-scanning
technology, LiDAR data has become more accessible in re-
cent time, but also the quality demands on the models has
grown due to the larger bandwidth and higher resolution dis-
plays. While laser-scans are in general dense and relatively
regular — thus perfectly suited for architectural reconstruc-
tion — on the other hand, the practical process of acquisi-
tion is difficult and the resulting data is often corrupted with
noise, outliers and incomplete coverage. In order to over-
come such problems, several methods propose to process the
data with user interaction.

Figure 12: Results of interactive fitting of “SmartBoxes” to
uncomplete LiDAR data. Figure courtesy of Liangliang Nan
[NSZ" 10], ©2010 ACM.

Bohm [B08] published a method for completion of terres-
trial laser-scan point clouds, which is done by interactively
utilizing the repetitive information typically present in ur-
ban buildings. Another approach aiming for a similar goal

(© The Eurographics Association 2012.

was introduced by Zheng et al. [ZSW*10]. It is also an in-
teractive method for consolidation which completes holes in
scans of building facades. This method exploits large-scale
repetitions and self-similarities in order to consolidate the
imperfect data, denoise it, and complete the missing parts.

Another interactive tool for assembling architectural mod-
els directly over 3d point clouds acquired from LiDAR data
was introduced by Nan et al. [NSZ*10]. In this system,
the user defines simple building blocks, so-called Smart-
Boxes, which snap to common architectural structures, like
windows or balconies. They are assembled through a dis-
crete optimization process which balances between fitting
the point-cloud data [SWKO7] and their mutual similarity.
In combination with user interaction, the system can recon-
struct complex buildings and fagades from sparse and in-
complete 3d point clouds (cf. to Figure 12).

Other approaches aim at the enhancement of LiDAR data
by fusing it with optical imagery. Some work on registra-
tion and pose estimation of ground-images with laser-scan
point clouds was done by Liu and Stamos [LS07]. The
method aims at robust registration of the camera-parameters
of the 2d images with the 3d point cloud. Recently, Li et
al. [LZS™11] introduced an interactive system for fusing 3d
point-clouds and 2d images in order to generate detailed,
layered and textured polygonal building models. The results
of this method are very impressive, of course again, at the
cost of human labor and extended processing time.

Automatic Modeling. Similar as with image-based mod-
eling, there also exist many approaches that aim at full au-
tomation. While such systems scale well with the data, they
usually require the user to set up a number of parameters.
This kind of parametrization is very common in fully auto-
matic methods and it turns out to be also an often under-
estimated obstacle, since the search for proper parameters
can be very time consuming. The benefit is that once good
parameters are found for a dataset, it can be processed auto-
matically irrespective its actual size.

Figure 13: Results of the automatic method which uses Li-
DAR segmentation. Figure courtesy of Qian-Yi Zhou [ZN10],
©2010 Springer.

In earlier works, Stamos and Allen developed a system for
reconstruction of buildings from sets of range scans com-
bined with sets of unordered photographs [SA00b, SA0Oa,
SAO01, SA02]. Their method is based on fitting planar poly-
gons into pre-clustered point-clouds. Bauer et al. [BKS*03]
also proposed an approach for the detection and partition
of planar structures in dense 3d point clouds of facades,
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like polygonal models with a considerably lower complexity
than the original data.

Pu and Vosselman [PV09b] proposed a system for seg-
menting terrestrial LIDAR data in order to fit detailed polyg-
onal facade models. Their method uses least-squares fitting
of outline polygons, convex hulls, and concave polygons,
and it combines a polyhedral building model with the ex-
tracted parts. The reconstruction method is automatic and it
aims at detailed facade reconstruction (refer to Section 4.2).

Toshev et al. [TMT10] also presented a method for de-
tecting and parsing of buildings from unorganized 3d point
clouds. Their top-down model is a simple and generic gram-
mar fitted by a dependency parsing algorithm, which also
generates a semantic description. The output is a set of parse
trees, such that each tree represents a semantic decomposi-
tion of a building. The method is very scalable and is able to
parse entire cities.

Zhou and Neumann [ZNO8] presented an approach for
automatic reconstructing building models from airborne
LiDAR data. This method features vegetation detection,
boundary extraction and a data-driven algorithm which auto-
matically learns the principal directions of roof boundaries.
The output are polygonal building models. A further exten-
sion [ZN10, ZN11] produces polygonal 2.5d models com-
posed of complex roofs and vertical walls. Their approach
generates buildings with arbitrarily shaped roofs with high
level of detail, which is comparable to that of interactively
created models (cf. Figure 13).

Figure 14: Automatic reconstruction of a building with volu-
metric models. For purposes of visual evaluation, the recon-
structed volume is superimposed over the original point set,
including noise and obstacles (left), and textured with pho-
tographs of the buildings (right). Figure courtesy of Carlos
Vanegas [VAB12], (©2012 IEEE.

Recently, Vanegas et al. [VAB12] proposed an approach
for the reconstruction of buildings from 3d point clouds
with the assumption of Manhattan World building geome-
try. Their system detects and classifies features in the data
and organizes them into a connected set of clusters from
which a volumetric model description is extracted (cf. Fig-
ure 14). The Manhattan World assumption has been suc-
cessfully used by several urban reconstruction approaches

[FCSS09a, VAW *10], since it robustly allows to identify fun-
damental shapes of most buildings.

Recently, Korah et al. [KMO11] published a method for
segmentation of aerial urban LiDAR scans in order to de-
termine individual buildings, and Shen et al. [SHFHI11]
proposed a hierarchical fagade segmentation method based
on repetitions and symmetry detection in terrestrial LIDAR
scans (cf. Section 4.2).

While LiDAR data is accessible for quite a while, and
methods which aim at robust fitting of top-down models into
it deliver good results, the whole potential of this combina-
tion is still not fully exhausted, thus, we may expect further
interesting papers on this topic in the near future.

3.3. Inverse Procedural Modeling

A new and growing area is that of inverse procedural model-
ing (IPM), where the framework of grammar-driven model
construction is not only used for synthesis, but also for
the reconstruction of existing buildings. Traditional forward
procedural urban modeling provides an elegant and fast way
to generate huge, complex and realistic looking urban sites.
A recent survey [VAW™10] presented this approach for the
synthesis of urban environments. An inverse methodology
is applicable to many types of procedural models, but such
an exploration has been quite prolific with respect to build-
ing models. The most general form of the inverse procedu-
ral modeling problem is to discover both the parameterized
grammar rules and the parameter values that, when applied
in a particular sequence, yield a pre-specified output.

Discovering both the rules and the parameter values that
result in a particular model effectively implies compressing
a 3d model down to an extremely compact and parameter-
ized form. Stava et al. proposed a technique to infer a com-
pact grammar from arbitrary 2d vector content [SBM*10].
Bokeloh et al. [BWS10] exploited partial symmetry in exist-
ing 3d models to do inverse procedural modeling. Recently,
Talton et al. [TLL*11] used a Metropolis-based approach to
steer which rules (from a known large set) and parameter
values to apply in order to obtain a 3d output resembling
a pre-defined macroscopic shape. Benes et al. [BVMMI11]
defined guided procedural modeling as a method to spatially
dividing the rules (and productions) into small guided proce-
dural models that can communicate by parameter exchange
in order to obtain a desired output.

Various methods have specialized the inverse framework
to the application of building reconstruction, often by assum-
ing that the rules are known — thus inferring only the pa-
rameter values. A very complete, yet manual solution to this
problem was presented by Aliaga et al. [ARBO7]. They inter-
actively extract a repertoire of grammars from a set of pho-
tographs of a building and utilize this information in order to
visualize a realistic and textured urban model. This approach
allows for quick modifications of the architectural structures,
like number of floors or windows in a floor. The disadvan-

(© The Eurographics Association 2012.
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Figure 15: Example of inverse procedural modeling of a
building from a photograph (top) and the application of
the grammar to generate novel building variations (bottom).
Figure or [ARBO7], (©2007 IEEE.

tage of this approach is the quite labor-intensive grammar
creation process.

Another grammar-driven method for automatic building
generation from air-borne imagery was proposed by Vane-
gas et al. [VAB10]. Their method uses a simple grammar for
building geometry that approximately follows the Manhat-
tan World assumption. This means that it expects a predomi-
nance of the three mutually orthogonal directions. The gram-
mar converts the reconstruction of a building into a sequen-
tial process of refining a coarse initial building model (e.g.,
a box), which they optimize using geometric and photomet-
ric matching across images. The system produces complete
textures polygonal models of buildings (Figure 16).

Hohmann et al. [HKHF09, HHKF10] presented a mod-
eling system which is a combination of procedural model-
ing with GML shape grammars [Hav05]. Their method is
based on interactive modeling in a top-down manner, yet it
contains high-level cues and aims at semantic enrichment
of geometric models. Mathias et al. [MMWvG11] recon-
struct complete buildings as procedural models using tem-
plate shape grammars. In the reconstruction process, they let
the grammar interpreter automatically decide on which step
to take next. The process can be seen as instantiating the
template by determining the correct grammar parameters.
Another approach where a grammar is fitted from laser-scan
data was published by Toshev et al. [TMT10].

Also in the photogrammetry community the idea of IPM
has found a wide applicability in papers aiming at recon-
struction of buildings and facades: Ripperda and Brenner
introduced a predefined facade grammar which they auto-
matically fit from images [BRO06, RipO8] and laser scans
[RBO7, RB09] using the Reversible Jump Markov Chain
Monte Carlo (RIMCMC). A similar approach was proposed
by Becker and Haala [BH07,BH09,Bec09] but in this system
they also propose to automaticaly derive a facade-grammar
from the data in a bottom-up manner.

(© The Eurographics Association 2012.

Other work aims on grammar-driven image segmentation.
For example, Han and Zhu [HZ05, HZ09] presented a sim-
ple attribute graph grammar as a generative representation
for made-made scenes and propose a top-down/bottom-up
inference algorithm for parsing image content. Is simplifies
the objects which can be detected to square boxes in order
to limit the grammar space. Nevertheless, this approach pro-
vides a good starting point for inverse procedural image seg-
mentation.

Photos and Footprint  Segmented Photos Adapted Floors

Reconstructed 30 Model

Figure 16: Results of the automatic method which uses
aerial imagery registered to maps and an inverse procedu-
ral grammar. Figure courtesy of Carlos Vanegas [VABIO0],
(©2010 IEEE.

The field of inverse procedural modeling is relatively new
and still not very well researched. For this reason, we expect
more exciting papers on this topic in the near future.

4. Facades & Images

In this section we focus on approaches aiming at the re-
construction and representation of facades. In recent years,
many different approaches for the extraction of facade tex-
ture, structure, facade elements, and facade geometry have
been proposed.

First, we discuss fagade image processing approaches
which aim at an image-based representation of facades. Here
we include panorama imaging and projective texturing. Sec-
ond, we continue with facade-parsing methods. These meth-
ods aim at automatic subdivision of facades into their struc-
tural elements. Third, we address the topic of interactive
facade modeling systems which aim at higher quality and
level of detail.

4.1. Facade Image Processing

Imagery is essential in urban reconstruction as both a source
of information as well as a source of realism in the final ren-
derings. Additional advantages of imagery are its, in general,
simple acquisition process, and also the fact, that there ex-
ists an enormous amount of knowledge about its processing.
It has been the subject of very active research in the recent
two decades. In this section we cover urban panorama imag-
ing as well as texture generation approaches.

Panoramas and Image Stitching. Panoramas are tradi-
tionally generated for the purpose of visualizing wide land-
scapes or similar sights, but in the context of urban recon-
struction, panoramas might already be seen as final results
of virtual models on its own.
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Figure 17: A multi-viewpoint panorama of a street in Antwerp composed from 107 photographs taken about one meter apart
with a hand-held camera. Figure courtesy of Aseem Agarwala [AAC* 06], (©2006 ACM.

In practice, panoramas are composed from several shots
taken at approximately the same location [SS02b, Sze06].
For urban environments, often the composed image is gen-
erated along a path of camera movement, referred to as
strip panorama. The goal of those methods is to gener-
ate views with more than one viewpoint in order to pro-
vide an approximation of an orthographic projection. Vari-
ants of those are pushbroom images, which are orthographic
in the direction of motion and perspective in the orthogo-
nal one [GH97, SK03], and the similar x-slit images pre-
sented by Zomet et al. [ZFPWO03]. Similar approaches for
the generation of strip-panoramic images was proposed also
by Zheng [Zhe03] and Roman et al. [RGLO04]. Agarwala et
al. [AAC*06] aim at the creation of long multiview strip
panoramas of street scenes, where each building is projected
approximately orthogonal on a proxy plane (cf. Figure 17).
Optimal source images for particular pixels are chosen using
a constrained MRF-optimization process [GG84,KZ04].

Panoramas are usually generated by stitching image con-
tent from several sources, often also referred to as photo-
mosaics. The stitching of two signals of different intensity
usually causes a visible junction between them. An early
solution to this problem were transition zones and multi-
resolution blending [BA83]. Pérez et al. [PGBO03] introduced
a powerful method for this purpose: image editing in the
gradient domain. There is a number of further papers tack-
ling, improving, accelerating and making use of this idea
[PGB03, ADA*04, Aga07, MP08]. Zomet et al. presented
an image stitching method for long images [ZLPWO06].
The foundations behind the gradient domain image editing
method are described in the aforementioned papers as well
as in the ICCV 2007 Course-Notes [AR07].

Texture Generation. Another fundamental application of
imagery is its necessity for texturing purposes. The par-
ticular problem of generating textures for the interactive
rendering of 3d urban models can be addressed by pro-
Jective texturing from perspective photographs. Most inter-
active modeling systems, like “Facade” [DTM96], allow
sampling projective textures on the reconstructed buildings.
Based on input from video [vdHDT*07c] or image collec-
tions [ARB07, SSS*08, XFT*08], they introduce projective
texture sampling as part of their modeling pipeline and they
rely on user interaction in order to improve the quality of the
results.

Others also proposed tools for texturing of existing
models, like an interactive approach by Georgiadis et
al. [GSGAOS], or an automatic by Grzeszczuk et al.
[GKVHO09]. There are further fully automatic attempts (most
of them in the photogrammetry literature) which aim at
projective texture generation for existing building mod-
els [CT99, WHO1, WTT™*02, B04, OR05, GKKP07, TLO07,
TKOO08,KZZL10].

More tools dedicated to interactive enhancement and in-
painting for architectural imagery were presented by Ko-
rah and Rasmussen [KR07b] who detected repetitive build-
ing parts to inpaint fagades, Pavic et al. [PSK06] who pro-
posed an interactive method for completion of building tex-
tures, and Musialski et al. [MWR*09] who used transla-
tional and reflective symmetry in facade-images to remove
unwanted content (cf. Figure 19). Eisenacher et al. [ELS08]
used example-based texture synthesis to generate realisti-
cally looking building walls.

Recently, some interesting tools for fagade imagery pro-
cessing have exploited the matrix factorization methodology.
Matrix factorization allows for good approximation of low-
rank matrices with a small number of certain basis functions
[Str0S]. Facade images are usually of low-rank due to many
orthogonal and repetitive patterns. The approach presented
by Ali et al. [AYRWO9] utilizes factorization for a compres-
sion algorithm in order to overcome a memory transfer bot-
tleneck and to render massive urban models directly from
a compressed representation. Another method proposed by
Liu et al. [LMWY09,LMWY 12] aims at inpainting of miss-
ing image data. Their algorithm is built on studies about ma-
trix completion using the trace norm and relaxation tech-
niques. Facades are well suited for such algorithms due to
many repetitions (cf. Figure 18).

While processing of urban imagery is basically a well re-
searched topic, it still provides some challenges. Especially
the issue of segmentation of fagades is an active research di-
rection, and we will elaborate on it in the next section.

4.2. Facade Parsing

The term facade parsing denotes methods which aim at au-
tomatic detection of structure in facade data (i.e., images or
laser scans). While recent interactive algorithms, which we
review in the next section, deliver very good results, auto-
matic facade parsing is still an error-prone problem.

In the first step, facade imagery is usually processed with

(© The Eurographics Association 2012.
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Figure 18: Facade in-painting. The left image is the original
image. Middle: the lamp and satellite dishes together with a
large set of randomly positioned squares has been selected
as missing parts (80% of the fagcade shown in white). The
right image is the result of the tensor completion algorithm
proposed in [LMWY09], (©2009 IEEE.

classic image processing methods, like edge [Can86], cor-
ner [HS88] and feature [Low04, BETvGO08] detection as ba-
sic tools to infer low-level structure. We omit low-level pro-
cessing and for details we refer to textbooks, e.g., Gonzales
and Woods [GWO08], or Sonka et al. [SHBO08].

The next step is to employ the low-level cues in order to
infer more sophisticated structure, like floors or windows.
Most earlier attempts were based on locally acting filter-
ing and splitting heuristics, but it turned out that such seg-
mentation ist not enough to reliably detect structure in com-
plex facades. The necessity of higher-order structure has
emerged, thus, many methods turned to symmetry detection,
which is widely present in architecture. These approaches
often combine the low-level cues with unsupervised cluster-
ing [HTF09], with searching and matching algorithms, as
well as with Hough transforms. Another trend of current re-
search is towards machine learning [Bis09, HTF09] in order
to fit elements in databases, or to infer facade structure with
predefined grammars or rules. In this section we provide an
overview over these various approaches.

Figure 19: The input image on the left contains a traffic light
and several cables. To the right the unwanted objects have
been successfully removed by utilizing the symmetry in the
fagade image [MWR™*09].

Heuristic Segmentation. Wang and Hanson [WHO1] and
Wang et al. [WTT*02] proposed a system which aims at the
generation of textured models and the detection of windows.
They introduced a fagade texture based on the weighted av-
erage of several source images projected on a (previously
registered) block model, which serves both for texturing and
for detection of further detail (i.e. windows). They proposed
a heuristic oriented region growing algorithm which itera-
tively enlarges and synchronizes small seed-boxes until they
best fit the windows in the texture. Another use of local
image segmentation and heuristics is presented by Tsai et
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al. [TLLHOS], who calculate a “greenness index” to iden-
tify and suppress occlusions by vegetation on facade textures
extracted from drive-by video sequences. They detect local
mirror axes of facade parts in order to cover holes left after
removing the occluding vegetation. On the cleaned textures
they also apply oriented region growing in order to detect
windows. Further extensions to their method, like process-
ing of video input, are covered in [TLH06, TCLHO6]. In both
methods the used assumptions, e.g., that windows are darker
than their surrounding facade, or the “greenness index”, are,
however, weak and often provide erroneous results.

Lee and Nevatia [LN04] proposed a segmentation method
that uses only edges. They project the edges horizontally and
vertically to get the marginal edge-pixel distributions and as-
sume that these have peaks where window-frames are lo-
cated. From the thresholded marginal distributions they con-
struct a grid which approximates a subdivision of the facade.
While the subdivisions are often quite good, on the down-
side, this approach depends very strongly on the parameters
of the edge detector.

Symmetry and Pattern Detection. Symmetry abounds in
typical architecture, which is mostly the result of econom-
ical manufacturing as well as for aesthetic reasons. In fact,
symmetry is a topic that has inspired mankind from the be-
ginning. Recent approaches try to detect the inherent sym-
metry of a facade in order to infer some information about
its structure.

In image processing, early attempts include [RWY95],
who introduced a continuous symmetry transform for im-
ages. Later, Schaffalitzky and Zisserman [SZ99] detected
groups of repeated elements in perspective images, and Tu-
rina et al. [TTvGOl, TTMvGO1] detected repetitive pat-
terns on planar surfaces, also under perspective skew, us-
ing Hough transforms. They demonstrated that their method
works well on building facades. Further, a considerable
amount of work on this topic has been done by Liu and col-
laborators [LCTO04]. They detected crystallographic groups
in repetitive image patterns using a dominant peak extraction
method from the autocorrelation surface. Other image pro-
cessing approaches utilized the detected symmetry of regu-
lar [HLELOG] and near-regular patterns [LLHO04, LBHLOS]
in order to model new images.

Further approaches specialized on detecting affine sym-
metry groups in 2d images [LHXS05,LE06] and in 3d point
clouds [MGP06, PSG*06]. Follow-ups of those methods in-
troduced data-driven modeling frameworks for symmetriza-
tion [MGPO7] and 3d lattice fitting (cf. Figure 20) in laser-
scans of architecture [PMW*08, MBB10] .

The work finally boiled down to the insight that the repet-
itive nature of facade elements can be exploited to segment
them. Berner et al. [BBW*08, BWM™11] and Bokeloh et
al. [BBW*09] proposed a set of methods to detect symme-
try in ground-based urban laser scans. A heuristic segmen-
tation based on detection of symmetry and repetitions was
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proposed by Shen et al. [SHFH11]. Their method segments
LiDAR scans of facades and detects concatenated grids. It
automatically partitions the fagade in an adaptive manner,
such that a hierarchical representation is generated.

Detection of repeated structures in facade images was
approached by Wenzel et al. [WDFO08], and Musialski et
al. [MRM*10], who proposed methods to detect rectilin-
ear patterns in orthographic-rectified fagade images. A sim-
ilar method was also introduced by Zhau and Quan [ZQ11].
Other detect symmetry directly in perspective images. For
example, Wu et al. [WFP10] proposed a method to detect
grid-like symmetry in fagade images under perspective skew,
which they have used to reconstruct dense 3d structure in a
follow-up work [WACS11]. Park et al. [PBCL10] introduced
a method detect translational symmetry in order to deter-
mine facades. Recently, Nianjuan et al. [NTC11] proposed
a method for detecting symmetry across multiview networks
of urban imagery. A similar setup was used by Ceylan et
al. [CML*12] in order to detect reliable symmetry across
multiple registered images, which is utilized to recover miss-
ing structure of buildings.

Figure 20: This example shows automatic symmetry detec-
tion results performed on point-clouds of architectural ob-
jects. Figure courtesy of Mark Pauly [PMW*08], (©2008
ACM.

Window Detection. Another group of methods specializes
at the detection of windows and other pre-specified struc-
tural elements. Some rely on template matching, others try
to detect more general shapes, like simple rectangles. The
advantage of template matching is that the results look very
realistic. However, the disadvantage is that the windows are
in most cases not authentic because there is no template
database that contains all possible shapes.

For example, Schindler and Bauer [SB03] matched shape
templates against dense point clouds. Also Mayer and
Reznik [MRO7] matched template images from a manually
constructed window image database against their facades.
Miiller et al. [MZWvGO07] matched the appearance of their
geometric 3d window models against fagade image-tiles.

Some approaches combine template matching with ma-
chine learning, e.g., Ali et al. [ASJ*07], who proposed to
train a classifier, or Drauschke et al. [DF08], who used Ad-
aboost [SS99]. These systems identify a high percentage of
windows even in images with perspective distortion.

Another approach, which is based on rectangles, is the
window-pane detection algorithm by Cech and Sara [CS08],

which identifies strictly axis-aligned rectangular pixel con-
figurations in a MRF. Given the fact that the majority of win-
dows and other facade elements are rectangular, a common
approach to facade reconstruction is searching for rectangles
or assuming that all windows are rectangular. Also Haugeard
et al. [HPFP(9] introduced an algorithm for inexact graph
matching, which is able to extract rectangular window as a
sub-graph of the graph of all contours of the facade image.
This serves as an basis to retrieve similar windows from a
database of images of facades.

Almost all methods discussed here somehow assume rect-
angular shapes in some stages of their algorithms, but do not
solely rely on it.

Higher-Order Knowledge Models. Here we discuss a
class of solutions that aim at knowledge-based object re-
construction, which means that they employ an a-priori top-
down model that is supposed to be fitted by cues derived
from the data. In fact, some methods utilize the concept of
inverse procedural modeling presented in Section 3.3.

Quite a number of approaches proposed grammar-based
models. For example, Alegre and Dellaert [ADO4] intro-
duced a set of rules from a stochastic context-free attribute
grammar, and a Markov Chain Monte Carlo (MCMC) solu-
tion to optimize the parameters. Mayer and Reznik [MRO5,
MRO06, MRO7] and Reznik and Mayer [RMO07] published a
series of papers in which they present a system for facade
reconstruction and window detection by fitting an implicit
shape model [LLS04], again using MCMC optimization.
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Figure 21: Comparison of the results of the automatic
method of [MZWvGO7] (left, 409 shapes, excluding windows
matched from a template library) to the interactive method
of [MWWI12] (right, 1,878 shapes). Left image courtesy of
Pascal Miiller [MZWvGO7].

A single-view approach for rule extraction from a seg-
mentation of simple regular facades was published by Miiller
et al. [MZWvGO07]. They cut the facade image into floors
and tiles in a synchronized manner in order to reduce it
to a so-called irreducible form, and subsequently fit CGA-
rules into the detected subdivision. This method is limited
to rectilinearly distributed fagades (cf. Fig. 21). Van Gool et

(© The Eurographics Association 2012.
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al. [vGZBMO7] provided an extension which detects simi-
larity chains in perspective images and a method to fit shape
grammars to these.

Korah and Rasmussen introduced a method for auto-
matic detection of grids [KR07a]. Also Tylecek and Sara
[TS10] pursued a similar approach, where both systems de-
tect grids of windows in ortho-rectified facade images using
a weak prior and MCMC optimization. Brenner and Rip-
perda [BR0O6, RB07, Rip08, RB09] developed in a series of
publications a system for detecting facade elements and es-
pecially windows from images and laser scans. In this work,
a context-free grammar for fagades is derived from a set of
facade images and fitted to new models using the Reversible
Jump Markov Chain Monte Carlo technique (RIMCMC).
Becker and Haala [BHO7, BHFOS, Bec09, BH09] presented
in a series of papers a system which attempts to automati-
cally discover a formal grammar. This system was designed
for reconstruction of fagades from a combination of LiDAR
and image data.

Pu and Vosselman proposed a higher-order knowledge-
driven system which automatically reconstructs facade mod-
els from ground laser-scan data [PVO9b]. In a further ap-
proach, they combine information from terrestrial laser point
clouds and ground images. The system establishes the gen-
eral structure of the fagade using planar features from laser
data in combination with strong lines in images [PV09a,
PV09c].

This topic is also of wide interest in the computer vi-
sion community. In an automatic approach, Koutsourakis
[KST*09] examines a rectified fagade image in order to fit
a hierarchical tree grammar. This task is formulated as a
Markov Random Field [GG84], where the tree formulation
of the facade image is converted into a shape grammar re-
sponsible for generating an inverse procedural model (cf.
Section 3.3). Teboul et al. [TSKP10] extend this work by
combining a bottom-up segmentation through superpixels
with top-down consistency checks coming from style rules.
The space of possible rules is explored efficiently. In a re-
cent follow-up they improve their method by employing re-
inforcement learning [TKS*11].

Recently, Sunkel et al. [SJW™*11] presented a user super-
vised technique that learns line features in geometrical mod-
els.

While recent approaches based on inverse procedural
modeling provide quite stable results, the quality and the
level of detail of these methods is still not good enough
for current demands. In practice, the expected quality for
production is much higher, therefore manual or interactive
methods still have wide applicability.

4.3. Facade Modeling

The previous section presented an overview of automatic
fagade-subdivision approaches. All these methods share the
property that they create models of low or intermediate level
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of detail and complexity. Interactive approaches, on the other
hand, promise better quality and higher level of detail.

An interactive image-based approach to fagade modeling
was introduced by Xiao et al. [XFT*08]. It uses images cap-
tured along streets and also relies on structure from mo-
tion as a source for camera parameters and initial 3d data.
It considers fagades as flat rectangular planes or simple de-
velopable surfaces with an associated texture. Textures are
composed from the input images by projective texturing. In
the next step, the fagades are automatically subdivided us-
ing a split heuristic based on local edge detection [LNO4].
This subdivision is then followed by an interactive bottom-
up merging process. The system also detects reflectional
symmetry and repetitive patterns in order to improve the
merging task. Nonetheless, the system requires a consider-
able amount of user interaction in order to correct misinter-
pretations of the automatic routines.

Hohmann et al. [HKHF09] proposed a system for mod-
eling of facades based based on the GML shape grammar
[Hav05]. Similar as in the work of Aliaga et al. [ARBO07],
grammar rules are determined manually on the facade im-
agery and can be used for procedural remodeling of similar
buildings.

Another interactive method for the reconstruction of

facades from terrestrial LiDAR data was proposed by Nan
etal. [NSZ*10], which is based on semi-automatic snapping
of small structural assemblies, called SmartBoxes. We men-
tion the method also in Section 3.2.

Figure 22: Results of interactive modeling with the method
of Musialski et al. [MWWI12]. The fagcade image has been
segmented into 1346 elements. (©2012 The Eurographics
Association and Blackwell Publishing Ltd.

Recently, Musialski et al. [MWW12] introduced a semi-
automatic image-based facade modeling system. Their ap-
proach incorporates the notion of coherence, which means
that facade elements that exhibit partial symmetries across
the image can be grouped and edited in a synchronized man-
ner. They also propose a modeling paradigm where the user
is in control of the modeling workflow, but is supported by
automatic modeling tools, where they utilize unsupervised
clustering in order to robustly detect significant elements in
orthographic facade images. Their method allows modeling
high detail in competitive time (cf. Figure 22).

While interactive methods seem to be too slow and not

well scalable, the advantage of the high-quality output is a
considerable value (refer to Figure 21). For this reason, we
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believe that with the plethora of research in automatic com-
puter vision algorithms, it will become equally important to
study the efficient integration of automatic processing and
user interaction in future.

5. Blocks & Cities

The problem of measuring and documenting the world is the
objective of the photogrammetry and remote sensing com-
munity. In the last two decades this problem has been also
extended to automatic reconstruction of large urban areas
or even whole urban agglomerations. Additionally, also the
computer vision and computer graphics communities started
contributing to the solutions. In this section we want to men-
tion several modern approaches which have been proposed
in this vast research field.

The common property of large-scale approaches is the de-
mand of minimal user interaction or, in the best case, no user
interaction at all, which leads to the best possible scalability
of the algorithms. There is quite a variety of methods, which
either work with aerial or ground-level input data or both. It
is difficult to compare these methods directly to each other
since they have been developed in different contexts (types
of input data, types of reconstructed buildings, level of inter-
activity, etc.). For this reason we do not attempt a compari-
son; we will merely review the mentionable approaches and
state their main contributions and ideas.

In large scale reconstruction, there is a trend towards mul-
tiple input data types. Some publications involve aerial and
ground-based input, some also combine LiDAR with im-
agery. Other methods introduce even more data sources, like
a digital elevation model (DEM), a digital terrain model
(DTM), or a digital surface model (DSM). Finally, some
methods incorporate positioning systems, like the global
positing system (GPS), or local inertial navigation systems
(INS). We omit a detailed discussion on remote sensing con-
cepts and refer to further literature [CW11]. A number of
papers up to the year 2003 have been also reviewed in a sur-
vey by Hu et al. [HYNO3].

5.1. Ground Reconstruction

One of the earlier approaches to reconstruct large urban ar-
eas was the work of Frith and Zakhor. They published a se-
ries of articles that aim at a fully automatic solution which
combines imagery with LiDAR. First they proposed an ap-
proach for automated generation of textured 3d city models
with both high detail at ground level and complete coverage
for the bird’s-eye view [FZ03]. A close-range fagade model
is acquired at the ground level by driving a vehicle equipped
with laser scanners and a digital camera under normal traf-
fic conditions on public roads. A far-range digital surface
model (DSM), containing complementary roof and terrain
shape, is created from airborne laser scans, then triangu-
lated, and finally texture-mapped with aerial imagery. The
facade models are first registered with respect to the DSM
using Monte Carlo localization, and then merged with the

DSM by removing redundant parts and filling gaps. In fur-
ther work [FZ04], they improved their method for ground-
based acquisition of large-scale 3d city models. Finally, they
provided a comprehensive framework which features a set
of data-processing algorithms for generating textured facade
meshes of cities from a series of vertical 2d surface scans
and camera images [FJZ05].

In the realm of image-based methods, Pollefeys et al.
[PvGV*04] presented an automatic system to build visual
models from images. This work is also one of the papers
which pioneers fully automatic structure from motion of ur-
ban environments. The system deals with uncalibrated image
sequences acquired with a hand-held camera and is based
on features matched across multiple views. From these both
the structure of the scene and the motion of the camera are
retrieved (cf. Section 2.2). This approach was further ex-
tended by Akbarzadeh et al. [AFM*06] as well as Pollefeys
et al. [PNF*08].

Figure 23: Examples of dense reconstruction after depth
map fusion. Figure courtesy of Arnold Irschara [IZB07],
(©2007 IEEE.

Another image-based approach ist the work of Irschara
et al. [IZB07,1ZKB12] which provides a combined sparse-
dense method for city reconstruction from unstructured
photo collections contributed by end users. Hence, the
“wiki” principle, well known from textual knowledge
databases, is transferred to the goal of incrementally build-
ing a virtual representation of a local habitat. Their approach
aims at large scale reconstruction, using a vocabulary tree
[NS06] to detect mutual correspondences among images,
and combines sparse point clouds, camera networks, and
dense matching in order to provide very detailed buildings
(cf. Figure 23).

A ground-level city modeling framework which integrates
reconstruction and object detection was presented by Cor-
nelis et al. [CLCvGO8]. It is based on a highly optimized 3d
reconstruction pipeline that can run in real-time, hence of-
fering the possibility of online processing while the survey
vehicle is recording. A compact textured 3d model of the
recorded path is already available when the survey vehicle
returns to its home base (cf. Figure 24). The second compo-
nent is an object detection pipeline, which detects static and
moving cars and localizes them in the reconstructed world
coordinate system.

(© The Eurographics Association 2012.
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Xiao et al. [XFZ*09] proposed to extend their previous
method [XFT*08] in order to provide an automatic approach
to generate street-side photo-realistic 3d models from im-
ages captured along the streets at ground level. They employ
a multiview segmentation algorithm that recognizes and seg-
ments each image at pixel level into semantically meaningful
classes, such as building, sky, ground, vegetation, etc. With
a partitioning scheme the system separates buildings into in-
dependent blocks, and for each block, it analyzes the facade
structure using priors of building regularity. The system pro-
duces visually compelling results, however it clearly suffers
quality loss when compared to their previous, interactive ap-
proach [XFT*08].

Another system introduced by Grzeszczuk et al.
[GKVHO09] aims for fully automatic texturing of large ur-
ban aerials using existing models from GIS databases and
unstructured ground-based photographs. It employs SfM to
register the images to each other in the first step, and than
the ICP algorithm [BM92] in order to align the SfM 3d point
clouds with the polygonal geometry from GIS databases. In
further steps their system automatically selects optimal im-
ages in order to provide projective textures to the building
models.

Figure 24: A collection of rendered images from the final 3d
city model taken from various vantage points. Figure cour-
tesy of Nico Cornelis [CLCvGOS8], (©2008 Springer.

In general, ground-based systems are usually limited to
relatively small areas if compared to airborne approaches. In
the other hand, these methods are the only ones to provide
small-scale details, thus, the objective is often the combina-
tion of both acquisition methods.

5.2. Aerial Reconstruction

Aerial imagery is perhaps the most often used data source for
reconstruction of urban environments, and has been explored
in the photogrammetry and remote sensing community for
many years. There has been a significant number of success-
ful approaches in the past decade, like those of Baillard et
al. [BZ99], the group of Nevatia et al. [NNO1,NP02, KN04],
or Jaynes et al. [JRHO3].

Many approaches often combine imagery with other input
data. In this section we review several systems developed in
recent years.

Wang et al. [WYNO7] combined both aerial and ground-
based imagery in a semiautomatic approach. The framework
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stitches the ground-level images into panoramas in order to
obtain a wide camera field of view. It also detects the foot-
prints of buildings in orthographic aerial images automati-
cally, and both sources are combined, where the system in-
corporates some amount of user interaction in order to cor-
rect wrong correspondences.

Another multi-input method was proposed by Zebedin
et al. [ZBKBO08]. This framework combines aerial imagery
with additional information from DEMs. They introduced an
algorithm for fully automatic building reconstruction, which
combines sparse line features and dense depth data with a
global optimization algorithm based on graph cuts [KZ04].
Their method also allows generating multiple LODs of the
geometry. Also Karantzalos and Paragios [KP10] proposed
a framework for automatic 3d building reconstruction by
combining images and DEMs. They developed a generalized
variational framework which addresses large-scale recon-
struction by utilizing hierarchical grammar-based 3d build-
ing models as a prior. They use an optimization algorithm on
the GPU to efficiently fit grammar-instance from the infor-
mation extracted from images and the DEM.

A recent method of Mastin et al. [MKFO09] introduced a
method for fusion of 3d laser data and aerial imagery. Their
work employs mutual information for registration of images
with LiDAR point clouds, which exploits the statistical de-
pendency in urban scenes. They utilize the downhill simplex
optimization to infer camera pose parameters and propose
three methods for measuring mutual information between
LiDAR and optical imagery.

Figure 25: Automatic urban area reconstruction results
from a DSMs (left): without (middle) and with textures
(right). Figure courtesy of Florent Lafarge [LDZPDI0],
(©IEEE 2010.

Another source for large-scale reconstruction is a digital
surface model (DSM), which can be obtained automatically
from aerial and satellite imagery. Lafarge et al. [LDZPD10]
proposed to use a DSM in order to extract individual build-
ing models. It treats each building as an assembly of sim-
ple 3d parametric blocks, which are placed on the DSM by
2d matching techniques, and then optimized using a MCMC
solver. The method provides individual buildings models of
urban areas (cf. Figure 25).

5.3. Massive City Reconstruction

In this section we mention several methods which employ
fully automatic methodologies and also provide reconstruc-
tions of entre urban areas. One significant factor which al-
lows for such vast reconstruction is the general technologi-
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cal progress in the data acquisition process, such as the easy
access to huge collections of images on the internet, or the
presence of many accurate and large LiDAR data sets. The
second, perhaps more important, factor is the development
of smart and scalable reconstruction algorithms. No hard-
ware advantage will compensate for exponentially scaling
approaches, thus development of such algorithms is still a
challenge.

In the image-based reconstruction domain, an impressive
system was recently presented by Frahm et al. [FFGG*10].
It is capable of delivering dense structure from unstruc-
tured Internet images within one day on a single PC. Their
framework extends to the scale of millions of images,
what they achieve by extending state-of-the-art methods for
appearance-based clustering, robust estimation, and stereo
fusion (cf. Section 2), and by parallelizing the tasks which
can be efficiently processed on multi-core CPUs and mod-
ern graphics hardware.

Poullis and You introduced a method for mas-
sive automatic reconstruction from images and LiDAR
[PY09a,PY(09b, PY09c]. Their system automatically creates
lightweight, watertight polygonal 3d models from airborne
LiDAR. The technique is based on a statistical analysis of the
geometric properties of the data and makes no particular as-
sumptions about the input. It is able to reconstruct areas con-
taining several thousand buildings, as shown in Figure 26.
Recently they extended their method for texturing [PY11].

Figure 26: Large scale reconstruction of Downtown Den-
ver and surrounding areas. The model is a polygonal mesh
generated from air-borne LiDAR data. Figure courtesy of
Charalambos Poullis [PY09a]. (©2009 IEEE.

Lafarge and Mallet [LM11a] published an approach
which aims at even more complete modeling from aerial Li-
DAR. Its advantage is that it not only reconstructs build-
ing models, but also the inherent vegetation and complex
grounds. Furthermore, it is also generalized such that it can
deal with unspecified urban environments, e.g., with busi-
ness districts as well as with small villages. Geometric 3d-
primitives such as planes, cylinders, spheres or cones are
used to describe regular roof sections, and are combined with
mesh-patches to represent irregular components. The var-
ious geometric components interact through a non-convex
optimization solver. Their system provides impressive large-
scale results as shown in Figure 27.

Also Zhou and Neumann proposed a similar approach
[ZN09,ZN11]. Generally, while the results of recent meth-
ods are very impressive, automatic large-scale reconstruc-
tion remains an open problem. With the goal of very detailed
and dense virtual urban habitats, the problem still remains a
very difficult one. The challenges lie in the management and
processing of huge amounts of data, in the developments of
robust automatic as well as fast and scalable algorithms, and
finally, in the integration of many different types of data.

Figure 27: Reconstruction of two large urban environ-
ments with closeup crops. Figure courtesy of Florent La-
farge [LM11a]. ©2011 IEEE.

6. Conclusions

Despite many contributions to urban reconstruction, we see
a number of important open problems remaining for future
work.

Many automatic algorithms rely on some assumptions
that are often not met in practice. We believe that the com-
bination of interactive techniques and automatic algorithms
can help to make significant progress towards the generation
of even higher quality models.

In computer vision and data mining, there are several ex-
cellent examples of how the analysis of large photo collec-
tions can lead to impressive results. We believe that the in-
vestigation of how to efficiently combine the effort of many
users for data collection or modeling is an area ripe for im-
portant future contributions.

Finally, if high quality urban models become available to
more researchers, we believe that the analysis of these mod-
els as well as the investigation of novel applications will be-
come more attractive to a wider audience.
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