
Table Based Detection of Degenerate Predicates
in Free Space Construction
Victor Milenkovic1

Department of Computer Science, University of Miami
Coral Gables, FL 33124-4245, USA
vjm@cs.miami.edu

Elisha Sacks2

Computer Science Department, Purdue University
West Lafayette, IN 47907-2066, USA
eps@purdue.edu

Nabeel Butt
Facebook
1 Hacker Way, Menlo Park, CA 94025, USA
nfb@fb.com

Abstract
The key to a robust and efficient implementation of a computational geometry algorithm is
an efficient algorithm for detecting degenerate predicates. We study degeneracy detection in
constructing the free space of a polyhedron that rotates around a fixed axis and translates freely
relative to another polyhedron. The structure of the free space is determined by the signs
of univariate polynomials, called angle polynomials, whose coefficients are polynomials in the
coordinates of the vertices of the polyhedra. Every predicate is expressible as the sign of an
angle polynomial f evaluated at a zero t of an angle polynomial g. A predicate is degenerate
(the sign is zero) when t is a zero of a common factor of f and g. We present an efficient
degeneracy detection algorithm based on a one-time factoring of every possible angle polynomial.
Our algorithm is 3500 times faster than the standard algorithm based on greatest common divisor
computation. It reduces the share of degeneracy detection in our free space computations from
90% to 0.5% of the running time.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases free space construction, degenerate predicates, robustness

Digital Object Identifier 10.4230/LIPIcs.SoCG.2018.61

Related Version A full version of this paper is available at http://arxiv.org/abs/1803.06908.

1 Introduction

An implementation of a computational geometry algorithm is robust if for every input the
combinatorial output is correct and the numerical output is accurate. The challenge is
to implement the predicates in the algorithms: the signs of algebraic expressions whose
variables are input parameters. A predicate is degenerate if its sign is zero. A nondegenerate
predicate can usually be evaluated quickly, using machine arithmetic. However, detecting
that a predicate is degenerate requires more costly computation.

1 Supported by NSF CCF-1526335.
2 Sacks and Butt supported by NSF CCF-1524455.

© Victor Milenkovic, Elisha Sacks, and Nabeel Butt;
licensed under Creative Commons License CC-BY

34th International Symposium on Computational Geometry (SoCG 2018).
Editors: Bettina Speckmann and Csaba D. Tóth; Article No. 61; pp. 61:1–61:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vjm@cs.miami.edu
mailto:eps@purdue.edu
mailto:nfb@fb.com
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.61
http://arxiv.org/abs/1803.06908
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

61:2 Table Based Detection of Degenerate Predicates in Free Space Construction

d e
c

g

ab

fh

p
6 p

5

p
1

p
2

p
3 p

4

c

g

p
6 p

5

p
1

p
2

p
3 p

4

c

p
6 p

5

p
1

p
4

(a) (b) (c)

Figure 1 (a) Polygons, (b) intersection, and (c) convex hull.

We present research in degeneracy detection. Prior research mainly addresses degeneracy
due to nongeneric input, such as the signed area of a triangle with collinear vertices. Such
degeneracy is easily eliminated by input perturbation [3]. We address predicates, which we
call identities, that are degenerate for all choices of the input parameters. One example
is the signed area of a triangle pab with p the intersection point of line segments ab and
cd, which is identical to zero when p is replaced by its definition in terms of the input.
This identity occurs when constructing the convex hull of the intersection of two polygons.
Figure 1 shows generic polygons abc and defgh that intersect at points {p1, . . . , p6}. The
convex hull algorithm encounters an identity when it evaluates the signed area of any three
of {p1, p2, p3, p4}. Triangulating the intersection of two polygons involves similar identities.

Identities are common when the output of one algorithm is the input to another. The
second algorithm evaluates polynomials (the signed area in our example) on arguments (the
pi in our example) that are derived from input parameters by the first algorithm. When
these algebraic expressions are rational, the identities are amenable to polynomial identity
detection [9]. We are interested in identities involving more general algebraic expressions.

There are two general approaches to identity detection (Sec. 2). One [1] uses software
integer arithmetic, computer algebra, and root separation bounds to detect all degenerate
predicates, including identities. The second adds identity detection logic to computational
geometry algorithms. In the convex hull example, this logic checks if three points lie on
a single input segment. The first approach can greatly increase the running time of the
software and the second approach can greatly increase the software development time.

We present a new approach to identity detection that avoids the high running time of
numerical identity detection and the long development time of identity detection logic. The
approach applies to a class of computational geometry algorithms with a common set of
predicates. We write a program that enumerates and analyzes the predicates. The predicates
are represented by algebraic expressions with canonical variables. The hull example requires
24 canonical variables for the coordinates of the at most 12 input points that define the three
arguments of the signed area. When implementing the algorithms, we match their arguments
against the canonical variables and use the stored analysis to detect identities.

We apply this approach in constructing the free space of a polyhedron R that rotates
around a fixed axis and translates freely relative to a polyhedron O (Secs. 3 and 8). For
example, R models a drone helicopter and O models a warehouse. The configuration of
R is specified by its position and its rotation angle. The configuration space is the set of
configurations. The free space is the subset of the configuration space where the interiors of
R and O are disjoint. Robust and efficient free space construction software would advance
motion planning, part layout, assembly planning, and mechanical design.

V. Milenkovic, E. Sacks, and N. Butt 61:3

The structure of the free space is determined by the configurations where R has four
contacts with O. A contact is determined by a vertex of O and a facet of R, a facet of O and a
vertex of R, or an edge of O and an edge of R. The angle (under a rational parameterization)
of a configuration with four contacts is a zero of a univariate polynomial of degree 6, which
we call an angle polynomial, whose coefficients are polynomials in the 48 coordinates of the
16 vertices of the 4 contacts. Every predicate in free space construction is expressible as the
sign of an angle polynomial f evaluated at a zero t of an angle polynomial g (Sec. 4). A
predicate is degenerate when t is a zero of a common factor h of f and g. It is an identity
when h corresponds to a common factor of f and g considered as multivariate polynomials
in t and in the vertex coordinates.

Neither prior identity detection approach is practical. Detecting an identity as a zero of
the greatest common divisor of f and g is slow (Sec. 9). Devising identity detection logic
for every predicate is infeasible because there are over 450,000,000 predicates and 13,000
identities (Sec. 7.4). We present an efficient identity detection algorithm (Sec. 6) based on a
one-time analysis of the angle polynomials (Sec. 7).

We enumerate the angle polynomials using canonical variables for the vertex coordinates.
Working in the monomial basis is impractical because many of the angle polynomials have
over 100,000 terms. Instead, we represent angle polynomials with a data structure, called
an a-poly, that is a list of sets of vertices (Sec. 5). The enumeration yields 1,000,000 a-
polys, which we reduce to the 30,000 representatives of an equivalence relation that respects
factorization. We construct a table of factors for the equivalence class representatives in one
CPU-day on a workstation.

We factor an angle polynomial by looking up the factors of its representative in the table
and substituting its vertex coordinates for the canonical variables. We use the factoring
algorithm to associate each zero of an angle polynomial g with an irreducible factor h. Before
evaluating a predicate at t, we factor its angle polynomial f . The predicate is an identity if
h is one of the factors. Our algorithm is 3500 times faster than computing greatest common
divisors. It reduces the share of degeneracy detection in our free space computations from
90% to 0.5% of the running time (Sec. 9). Sec. 10 provides guidelines for applying table-based
identity detection to other domains.

2 Prior work

Identity detection is the computational bottleneck in prior work by Hachenberger [2] on
computing the Minkowski sum of two polyhedra. He partitions the polyhedra into convex
components and forms the union of the Minkowski sums of the components. Neighboring
components share common, collinear, or coplanar features, resulting in many identities in
the union operations. Detecting the identities via the numerical approach (using CGAL)
dominates the running time.

Mayer et al [5] partially compute the free space of a convex polyhedron that rotates
around a fixed axis and translates freely relative to a convex obstacle. They report no identity
detection problems. Identities can be detected using one rule: all polynomials generated
from a facet of one polyhedron and an edge of the other are the same up to sign and hence
their zeros are identical. These polynomials correspond to our type I predicates for general
polyhedra (Sec. 8).

We address identities in four prior works. We [4] compute polyhedral Minkowski sums
orders of magnitude faster than Hachenberger by using a convolution algorithm, which has
fewer identities, and by detecting identities with special case logic. We [6] compute free

SoCG 2018

61:4 Table Based Detection of Degenerate Predicates in Free Space Construction

spaces of planar parts bounded by circular arcs and line segments. The number of identities
is small, but the proof of completeness is lengthy. We [7] compute free spaces of polyhedra
where R translates in the xy plane and rotates around the z axis. The identity detection
logic is retrospectively confirmed using our new approach. There are 816 equivalence classes
with 290 in the basis versus 30,564 and 15,306 for the 4D configuration space (Sec. 7).

Finally, we [8] find placements for three polyhedra that translate in a box. The algorithm
performs a sequence of ten Minkowski sums and Boolean operations, resulting in many iden-
tities. One implementation handles the identities as special cases. A second implementation
prevents identities with a polyhedron approximation algorithm that rounds and perturbs the
output of each step. The former is twice as fast as the latter and is exact, but took months
to develop and lacks a completeness proof.

3 Free space

This section begins our treatment of free space construction. The polyhedra R and O

have triangular facets. Without loss of generality, we use the z axis as the axis of rotation.
We represent the rotation angle using a rational parameterization of the unit circle. A
configuration c of R is a rotation parameter t and a translation vector d, denoted c = (t, d).
It maps a point p to the point c(p) = d+ Θ(t)p with

Θ(t)p =
(

(1− t2)px − 2tpy

1 + t2
,

2tpx + (1− t2)py

1 + t2
, pz

)
. (1)

A point set P maps to c(P) = {c(p) | p ∈ P}. The free space is {c | O ∩ c(R) = ∅}.
The boundary of the free space consists of contact configurations c at which the boundaries

of c(R) and O intersect but not the interiors. The generic contacts are a vertex rk of R on a
facet ohoioj of O, a vertex oh of O on a facet rirjrk of R, and an edge ohoi of O tangent to
an edge rjrk of R. The boundary has faces of dimension k = 0 through k = 3. A face of
dimension k consists of configurations where 4− k contacts occur.

A necessary condition for contact is that the four vertices of the two features are coplanar,
so their tetrahedron has zero volume. We substitute the vertices—applying c to those from
R—into the volume formula (q − p)× (u− p) · (v − p)/6 to obtain a contact expression. We
substitute Eq. (1), multiply by 6, and clear the denominator of 1 + t2 to obtain a contact
polynomial, denoted ohoioj − rk, oh − rirjrk, or ohoi − rjrk (Table 1).

Table 1 Contact polynomials.

denotation contact expression with
ohoioj − rk d · u + u · Θ(t)rk − u · oj u = (oi − oj) × (oh − oj)
oh − rirjrk d · Θ(t)u + u · rk − oh · Θ(t)u u = (ri − rk) × (rj − rk)
ohoi − rjrk d · (u × Θ(t)v) + u · Θ(t)w + (u × oi) · Θ(t)v u = oh − oi, v = rj − rk, w = rj × rk

Computing the common zeros of four contact polynomials is a core task in free space
construction. The polynomials have the form ki1dx + ki2dy + ki3dz + ki4 = 0 where the kij

are polynomials in t. They have a common zero at t = t0 if the determinant |kij | is zero and
the matrix [kij] has a nonzero 3-by-3 left minor. We construct the faces of the free space
boundary with a sweep algorithm whose events are zeros of these determinants (Sec. 8).
Moreover, the vertices are common zeros of contact polynomials, as we explain next.

Figure 2 depicts a zero of the contact polynomials p1 = o0o1o2 − r1, p2 = o1o2o3 − r1,
p3 = o0 − r0r1r2, and p4 = o0 − r0r1r3. For this to be a vertex, c(r0)c(r2) cannot pierce
o0o1o2 or else the interiors of O and c(R) would intersect. The edge/facet piercing test uses

V. Milenkovic, E. Sacks, and N. Butt 61:5

o1

o2

o0r1
0r

R

2r
O

r3

o3

Figure 2 Identity in free space vertex predicate: r0 is in the plane of o0o1o2.

the signs of five contact polynomials, including o0o1o2 − r0. The p1 and p2 contacts imply
that c(r1) is on the line of o1o2. The p3 and p4 contacts imply that o0 is on the line of
c(r0)c(r1). Since the line of c(r0)c(r1) shares two points with the plane of o0o1o2, they are
coplanar, c(r0) is in this plane, and so o0o1o2 − r0 is identically zero. This identity resembles
the signed area identities (Sec. 1) in that a polynomial is evaluated on arguments that are
derived from the input. However, we cannot apply polynomial identity detection [9] because
the arguments are not rational functions of the input but rather the zeros of polynomials
whose coefficients are rational functions of the input.

4 Predicates

An angle polynomial is a polynomial in t that is used in free space construction. We show
that every predicate is expressible as the sign of an angle polynomial f evaluated at a zero of
an angle polynomial g. The only exception is the sign of a contact polynomial p evaluated at
a common zero c of contact polynomials {p1, p2, p3, p4}. We express this form like the other
predicates by constructing a polynomial f such that p(c) = 0 iff f(t0) = 0 as follows.

Let f be the determinant of {pi, pj , pk, p}, with {pi, pj , pk}, 1 ≤ i < j < k ≤ 4, having a
non-zero left 3-by-3 minor at t = t0. If f(t0) = 0, {pi, pj , pk, p} are linearly dependent in d
at t = t0, so p is a linear combination of {pi, pj , pk} and p(c) = 0. If p(c) = 0, {pi, pj , pk, p}
must be linearly dependent at t = t0 because pi(c) = pj(c) = pk(c) = 0 and hence f(t0) = 0.

A degenerate predicate has a polynomial f such that f(t0) = 0 for t = t0 a zero of g. In
other words, f and g have a common factor h and h(t0) = 0. This degeneracy is an identity
if h results from a common factor of f and g considered as multivariate polynomials in t
and in the canonical vertex coordinates. We make such common factor detection fast by
enumerating the canonical polynomials, factoring them, and storing the results in a table.

5 Angle polynomials

We represent an angle polynomial with an a-poly: a list of elements of the form LO−LR with
LO and LR lists of vertices of O and of R in increasing index order. Elements are in order of
increasing |LO|+ |LR|, then increasing |LO|, then increasing vertex index (lexicographically).
There are three kinds of a-polys.

The first kind represents the angle polynomials at whose zeros four contacts can occur.
It has three types of elements. A 1-contact denotes a contact polynomial. A 2-contact
oh − rirj denotes 1-contacts oh − rirjrk and oh − rirjrl that jointly constrain oh to the line

SoCG 2018

61:6 Table Based Detection of Degenerate Predicates in Free Space Construction

rirj ; likewise ohoi − rj . A 3-contact oh − ri denotes three polynomials whose zeros are the
configurations where the two vertices coincide. A list of elements that together denote four
polynomials comprises an a-poly.

The second kind represents an angle polynomial that is zero when an edge of one
polyhedron and two edges of the other polyhedron are parallel to a common plane. It has
three elements of types oioj− and −rirj , for example (o1o2−,−r1r2,−r4r5). However, if the
two edges share a vertex, we contract (ohoi−,−rjrk,−rjrl) to (ohoi− rjrkrl), corresponding
to an edge parallel to a facet. Likewise, (ohoioj − rkrl). The third kind corresponds to the
3-by-3 left minor (Sec. 3): the d-coefficients of three contact polynomials. The d-coefficients
of oiojok − rl and oi − rirjrk do not depend on rl and oi, hence the elements are of type
oiojok−, −rirjrk, or ohoi − rjrk.

The derivation of the angle polynomials from their a-polys is as follows.

Four 1-contacts. The contact expressions (Table 1) have the form d · n+ k. The vectors n
have the form a, Θ(t)a, or a×Θ(t)b and the summands of the scalar k have the form a · b or
a ·Θ(t)b with a and b constant vectors. The angle polynomial is the numerator of∣∣∣∣∣∣∣∣

n1x n1y n1z k1
n2x n2y n2z k2
n3x n3y n3z k3
n4x n4y n4z k4

∣∣∣∣∣∣∣∣ .
Expanding in terms of minors using the last column, k1 has minor n2 · (n3 × n4). Using the
formula, u× (v ×w) = (u ·w)v − (u · v)w, each minor reduces to a sum of terms of the form
a · b, a ·Θ(t)b, or (a ·Θ(t)b)(c ·Θ(t)d). Applying equation (1) and clearing the denominator
reduces k1, k2, and k3 to quadratics in t and reduces the minors to quartics in t, so the angle
polynomial has degree 6.

One 2-contact and two 1-contacts. For a 2-contact oioj − rk, c(rk) = d + Θ(t)rk is on
the line of oioj , so d is on the line through oi −Θ(t)rk and oj −Θ(t)rk. We intersect this
line with the planes of the other two contact polynomials. We express the line as λu+ v with
u = oj − oi and v = oj −Θ(t)rk, compute the values λi = −(ni · v + ki)/(ni · u) where the
line intersects the two planes ni · p+ ki, set λ1 = λ2, and cross multiply to obtain a quartic
angle polynomial. Similarly 2-contact oi − rjrk corresponds to a line with u = Θ(t)(rj − rk)
and v = oi −Θ(t)rj .

Two 2-contacts. The expression is the signed volume of the four points that define the
lines of the 2-contacts, which yields a quartic angle polynomial. Figure 2 illustrates this
situation.

One 3-contact and one 1-contact. For a 3-contact oi− rj , oi = d+ Θ(t)rj . We substitute
d = oi −Θ(t)rj into the 1-contact polynomial to obtain a quadratic angle polynomial.

Other kinds. The second, (−ri1rj1 ,−ri2rj2 , oi3oj3−) and (−ri1rj1 , oi2oj2−, oi3oj3−), has
expressions that yield quadratic angle polynomials Θ(t)((rj1 − ri1)× (rj2 − ri2)) · (oj3 − oi3)
and Θ(t)(rj1 − ri1) · ((oj2 − oi2)× (oj3 − oi3)). The second has expression (n1×n2) ·n3, where
oiojok− has normal n = (oj−oi)×(ok−oi), −rirjrk has normal n = Θ(t)((rj−ri)×(rk−ri)),
and ohoi−rjrk has normal n = (oi−oh)×Θ(t)(rk−rj). The third has the same polynomials
as the quartic minor polynomials above in the four 1-contacts case.

V. Milenkovic, E. Sacks, and N. Butt 61:7

6 Factoring

This section gives an algorithm for factoring angle polynomials represented as a-polys.
Two a-polys are equivalent if a vertex bijection maps one to the other. The bijection
maps a factorization of one to a factorization of the other. The factoring algorithm uses
a table that contains the factorization of a representative a-poly from each equivalence
class. Sec. 7 explains how we constructed this table. It is available in the web directory
http://www.cs.miami.edu/~vjm/robust/identity.

Identity detection requires that an irreducible polynomial be denoted by a unique a-poly,
so one can detect if different a-polys have a common factor. One problem is that nonequivalent
a-polys can denote the same polynomial. We solve this problem by selecting the factors
in the table from a minimal subset of the equivalence classes that we call basis classes. A
second problem is that equivalent a-polys can denote the same polynomial. This problem is
so rare that we can record all the basis a-polys that generate a factor, called its factor set,
and select a unique one during factoring. The factoring algorithm maps an input a-poly to
the representative of its equivalence class, obtains the factor sets of the representative from
the table, and applies the inverse map to obtain sets of a-polys in the variables of the input
a-poly. To achieve uniqueness, it selects the lexicographical minimum from each set, using a
vertex order that we indicate by the o and r indices.

6.1 Mapping an a-poly to its representative
The mapping algorithm generates the permutations of the input a-poly such that the elements
remain increasing in |LO|+ |LR| then in |LO| (but disregarding the lexicographical order of
vertex indices). For each permuted contact list, it assigns each vertex an indicator: a bit
string in which a 1 in position k indicates that the vertex appears in the kth element. It
labels a permutation with its O vertex indicators in decreasing order followed by its R vertex
indicators in decreasing order. It selects the permutation with the largest label, replaces the
ith O vertex in indicator order by the canonical vertex oi, and likewise for the R vertices
and ri. If two vertices have the same indicator, both orders yield the same output because
the indices of an a-poly are placed in increasing order.

For example, in a-poly (o27 − r22r66r86, o43 − r22r66r86, o27o51 − r15r86, o27o43 − r75r86),
o27 has indicator 1011, and the indicator list is 1011,0101,0010;1111,1100,1100,0010,0001.
The permutations swap the first two and/or last two elements. Swapping the last two yields
the maximal indicator list 1011,0110,0001;1111,1100,1100,0010,0001 and the representative
(o0− r0r1r2, o1− r0r1r2, o0o1− r0r3, o0o2− r0r4). In the table, this representative has factor
sets {(o0o1− r0r1r2)} and {(−o0o1o2, o0o1− r0r3, o0o2− r0r4)}. The inverse vertex mapping
yields the factors (o27o43 − r22r66r86) and (−r22r66r86, o27o43 − r75r86, o27o51 − r15r86).

6.2 Uniqueness
Fig. 3 illustrates how a-polys can have the same polynomial. The 1-contacts o0o1 − r0r1,
o0o1 − r2r3, and o0o1o2 − r4 determine the angle parameter t because they are invariant
under translation parallel to o0o1. Translating R parallel to o0o1 until one element becomes
a 2-contact yields an a-poly Ci that is zero at the same t values. If r0r1 hits o0, C1 =
(o0 − r0r1, o0o1 − r2r3, o0o1o2 − r4) (Fig. 3b) and if r2r3 hits o1, C2 = (o1 − r2r3, o0o1 −
r0r1, o0o1o2 − r4). These a-polys are equivalent under the map from C1 to C2: o0 → o1,
o1 → o0, o2 → o2, r0 → r2, r1 → r3, r2 → r0, r3 → r1, r4 → r4. There are also C3 and
C4 where r0r1 hits o1 or r2r3 hits o0 and C5 = (o0o2 − r4, o0o1 − r0r1, o0o1 − r2r3) and

SoCG 2018

http://www.cs.miami.edu/~vjm/robust/identity
http://www.cs.miami.edu/~vjm/robust/identity

61:8 Table Based Detection of Degenerate Predicates in Free Space Construction

o1

2r
0r

r1

r3

o2

o0

r4

o1

o2

o0

2r
0r

r1

r3

r4

(a) (b)

Figure 3 Equivalent a-polys: (a) translation parallel to o0o1 preserves circled contacts o0o1 −r0r1,
o0o1 − r2r3, and o0o1o2 − r4; (b) a-poly (o0 − r0r1, o0o1 − r2r3, o0o1o2 − r4).

C6 = (o1o2 − r4, o0o1 − r0r1, o0o1 − r2r3) where r4 hits o0o2 or o1o2. C5 and C6 are not
equivalent to C1, C2, C3, and C4 because their first element has two O vertices, not one.

The a-poly (o1 − r0r1r2, o0o1 − r3r4, o0o1 − r5r6, ooo1o2 − r7) maps to the representative
(o0 − r0r1r2, o0o1 − r3r4, o0o1 − r5r6, ooo1o2 − r7) with factor sets {(o0o1 − r0r1r2)} and

{(o0 − r3r4, o0o1 − r5r6, o0o1o2 − r7), (o0 − r5r6, o0o1 − r3r4, o0o1o2 − r7),
(o1 − r3r4, o0o1 − r5r6, o0o1o2 − r7), (o1 − r5r6, o0o1 − r3r4, o0o1o2 − r7)}

because the second factor is equivalent to C1, . . . , C4. Its factor set does not contain a-polys
equivalent to C5 and C6 because their class is not in the basis. The inverse map (in this case
swapping o0 and o1) results in factor sets {(o0o1 − r0r1r2)} and

{(o1 − r3r4, o0o1 − r5r6, o0o1o2 − r7), (o1 − r5r6, o0o1 − r3r4, o0o1o2 − r7),
(o0 − r3r4, o0o1 − r5r6, o0o1o2 − r7), (o0 − r5r6, o0o1 − r3r4, o0o1o2 − r7)}.

The algorithm selects the (minimal) third element (o0 − r3r4, o0o1 − r5r6, o0o1o2 − r7) of the
second set as the second factor.

7 Constructing the table of factors

This section explains how we enumerate the a-poly equivalence classes (Sec. 7.1), factor the
class representatives and select a basis (Sec. 7.2), and construct the table of factors (Sec. 7.3).
The factoring algorithm is probabilistic and depends on the completeness assumption that
the factors of a-polys are a-polys. If this assumption were false, the algorithm would have
failed. We verify the table to a high degree of certainty using standard techniques for testing
polynomial identities (Sec. 7.4).

7.1 Equivalence classes
We enumerate the a-poly classes as follows. Let ai, bi, ci, di, ei, and fi denote vertices and
define si = {ai − di}, ti = {ai − diei, aibi − di}, ui = {ai − dieifi, aibi − diei, aibici − di},
vi = {aibi − cidiei, aibici − diei}, wi = {−aibi, aibi−}, xi = {−aibici, aibi − cidi, aibici−}.
We generate the a-polys that are lists of k-contacts with the sets s1 × u2 (a 3-contact and
a 1-contact), t1 × t2 (two 2-contacts), t1 × u2 × u3 (a 2-contact and two 1-contacts), and
u1 × u2 × u3 × u4 (four 1-contacts). We generate the other kinds of a-polys with the sets v1
(edge parallel to facet), w1 ×w2 ×w3 (edges parallel to plane), and x1 × x2 × x3 (3-by-3 left
minor). For each element of each set, we assign O vertices to the ai, bi, ci in every possible

V. Milenkovic, E. Sacks, and N. Butt 61:9

manner. Starting from o0, we assign increasing indices to the vertices of an edge or a facet.
We assign R vertices to di, ei, fi likewise. The highest index is 11.

For example, s1×u2 = {(a1−d1, a2−d2e2f2), (a1−d1, a2b2−d2e2), (a1−d1, a2b2c2−d2)}.
We must set a1 = o0. We can set a2 = o0 or a2 = o1 because a2 is in a different feature, and
then assign increasing indices to b2 and c2. Similarly for d1, d2, e2, and f2. The results are
{(o0 − r0, o0 − r0r1r2), (o0 − r0, o1 − r0r1r2), (o0 − r0, o0 − r1r2r3), (o0 − r0, o1 − r1r2r3),
(o0 − r0, o0o1 − r0r1), (o0 − r0, o1o2 − r0r1), (o0 − r0, o0o1 − r1r2), (o0 − r0, o1o2 − r1r2),
(o0 − r0, o0o1o2 − r0), (o0 − r0, o1o2o3 − r0), (o0 − r0, o0o1o2 − r1), (o0 − r0, o1o2o3 − r1)}.

The enumeration yields about one million a-polys. Generating their representatives
(Sec. 6) and removing duplicates yields 30,564 equivalence class representatives.

7.2 Basis classes

We factor the representatives probabilistically. We replace the canonical coordinates of
o0, . . . , o11 and r0, . . . , r11 with random integers, construct the resulting univariate integer
polynomials, and factor them with Mathematica. An irreducible univariate implies that the
canonical polynomial is irreducible; the converse is true with high probability.

An a-poly depends on a vertex if its univariate changes when the coordinates of the vertex
are assigned different random integers. For example, (o0o1− r0, o2− r1r2r3, o2− r1r2r4) does
not depend on r3 and r4 because o2 − r1r2r3 and o2 − r1r2r4 can be replaced by o2 − r1r2:
o2 in contact with r1r2r3 and r1r2r4 is equivalent to o2 in contact with r1r2. An a-poly
is complete if it depends on all of its vertices. An angle polynomial is contiguous if it
depends on o0, o1, . . . , ol and r0, r1, . . . , rm for some l and m. A complete representative is
also contiguous because we assign vertices to the indicators contiguously (Sec. 6).

We select a basis of complete, contiguous, and irreducible a-polys, represented by the
representatives of their classes. (We prove that such a basis exists by verifying the table
of factors (Sec. 7.4).) We construct a map I from the univariate of each basis a-poly
to the set of basis a-polys that generate it. In the Sec. 6.2 example, C1 is in the basis
and generates a univariate p. The equivalent a-polys C2, C3, and C4 also generate p, so
I(p) = {C1, C2, C3, C4}. Although C5 and C6 also generate p, they are not in I(p) because
they belong to another (necessarily non-basis) equivalence class.

The algorithm visits each representative ρ. If ρ is complete and its univariate p is
irreducible but I(p) = ∅, the algorithm adds ρ to the basis representatives, permutes its
vertices in every way, calculates the univariate u for each resulting a-poly a, and adds a to
the set I(u).

The condition I(p) = ∅ prevents adding an a-poly to the basis whose univariate is already
generated by a member of a basis class. For example, ρ1 = (−r0r1r2,−r0r3r4, o0o1 − r0r5)
is assigned to the basis. Later, ρ2 = (o0 − r0r1, o0 − r2r3r4, o0o1 − r2r5) is complete and
has an irreducible univariate that is generated by (−r0r1r2,−r2r3r4, o0o1 − r2r5), which is a
permutation of ρ1. Since every permutation of ρ1 is in I, ρ2 is not assigned to the basis.

7.3 Factor table

The factor table provides a list of factor sets for each representative. For a basis representative
ρ with univariate p, the list is 〈I(p)〉. If ρ is not in the basis, we process each factor f of p as
follows.
(1) Determine which vertices f depends on. Randomly change a vertex of ρ, generate the

new univariate, and factor it. If f is not a factor, it depends on the vertex.

SoCG 2018

61:10 Table Based Detection of Degenerate Predicates in Free Space Construction

(2) Rename the vertices of ρ to obtain a ρ′ for which the factor f ′ that corresponds to
f is contiguous. Let f depend on oi0 , oi1 , . . . , oim′ and rj0 , rj1 , . . . , rjn′ but not on
oim′+1 , oim′+2 , . . . , oim

and rjn′+1 , rjn′+2 , . . . , rjn
. Substitute oik

→ ok for k = 1, . . . ,m
and rik

→ rk for k = 1, . . . , n.
(3) Find the factor f ′ of ρ′ that depends on o0, . . . , om′ and r0, . . . , rn′ , and has the same

degree as f . (This factor is unique; otherwise, we would consider every match.)
(4) Look up I(f ′) and invert the vertex substitution to obtain a factor set.
For example, the univariate of ρ = (o0o1 − r0r1, o2o3o4 − r2, o2o3o4 − r3, o5o6o7 − r4) has
a factor f that depends on all its variables and a quadratic factor g that depends on
o2, o3, o4, r2, r3. The factor set of f is I(f) = {(o2o3o4−, o5o6o7−, o0o1 − r0r1)}. To obtain
the factor set of g, substitute o2, o3, o4, o0, o1, r2, r3, r0, r1 → o0, o1, o2, o3, o4, r0, r1, r2, r3.
The quadratic factor g′ of ρ′ = (o3o4 − r2r3, o0o1o2 − r0, o0o1o2 − r1, o5o6o7 − r4) depends
on o0o1o2 and r0r1, and I(g′) = {(o0o1o2 − r0r1)}. Inverting the vertex substitution yields
the second factor set of ρ: {(o2o3o4 − r2r3)}.

To save space, we do not add entries to I corresponding to permutations of basis
representatives with degree-6 univariates because they cannot be proper factors. To test if ρ
with irreducible degree-6 univariate p is in the basis, we generate the permutations of ρ and
their univariates. If none has an entry in I, ρ is in the basis, and we add an entry for p to I.
If the univariate p′ of a permutation has an entry in I, the sole factor set of ρ is the result of
applying the inverse of the permutation to I(p′).

7.4 Analysis
Out of 30,564 representatives, 15,306 are basis, 991 are constant, 3840 are irreducible but non-
basis, 8263 have two factors (including 260 squares), and 2164 have three factors (including
6 cubes). Since a predicate is an a-poly evaluated on a zero of a basis polynomial, we listed
450, 000, 000 ≈ 30, 564 ·15, 306 predicates in the introduction. Likewise, we stated the number
of identities as 13, 000 ≈ 1 ·3840+2 ·8263+3 ·2164 ways of evaluating a non-basis polynomial
on the zero of a factor. Of the irreducible representative polynomials, 363 have two basis
a-polys, 50 have three, 194 have four, and 194 have six.

Each factorization f1f2 · · · fm|f is equivalent to a polynomial identity f−af1f2 · · · fm = 0
for some constant a. Instead of analyzing the probability of failure of the algorithm, we
verify the identities probabilistically using Schwartz’s lemma [9]. We use random 20-bit
values modulo a prime p. The first substitution determines a and the rest verify the identity.
Verifying all 15,258 factorizations once takes 2 seconds and 10 minutes of verification reduces
the probability of an error to below 10−1000. This also constitutes a probabilistic proof of
the completeness assumption.

The running time for factor table construction was one CPU day. All but one CPU hour
was spent generating the permutations of the degree-six irreducible polynomials to test if
they are in the basis. The worst case is four contacts between O vertices and R facets or
vice versa, which have about 70 billion permutations. The tests all succeeded, so perhaps we
could have avoided this cost by proving a theorem.

8 Contact set subdivision

We summarize the portion of the freespace construction used to measure the effect of
identity detection. The details appear in the full version of the paper. The contact facet
of a vertex oh of O and a facet rirjrk of R is the set of configurations c such that oh

is tangent to c(rirjrk), disregarding overlap of O and c(R) elsewhere. We denote this

V. Milenkovic, E. Sacks, and N. Butt 61:11

contact facet as oh − rirjrk because of its close relation to that a-poly. For fixed t, d
lies on the triangle oh − Θ(t)ri, oh − Θ(t)rj , oh − Θ(t)rk. Likewise ohoioj − rk (triangle)
and ohoi − rjrk (parallelogram). Contact facet oh − rirjrk has contact edge oh − rirj ,
d ∈ oh −Θ(t)ri, oh −Θ(t)rj , contact vertex oh − ri, d = oh −Θ(t)ri, and so forth. We use
F, E, and V as shorthand for contact face, edge, and vertex. An EF is the intersection of
a contact edge and contact facet, and likewise an FF and an FFF. The algorithm creates
a-polys from the denotations. For example, (E,F,F) would be the a-poly with one 2-contact
and two 1-contacts resulting from listing the denotations of a contact edge and two contact
facets.

We trace the evolution of the arrangment of EFs, FFs, and FFFs on a single contact facet
as t ranges over the interval it exists. The events have four types (below). After each event,
we update the list of EFs on its contact edges, and the list of FFFs on each FF. Ordering
two EFs on an E can be expressed as a-poly (E,F,F). Checking if an EF lies on an E uses
two (V,F) a-polys. Ordering two FFFs on an FF has a-poly (F,F,F,F).

Type I: An F and its induced EFs, FFs, and FFFs appear or disappear at the zero of a
parallel edge/facet a-poly. Type II: an FF and its induced EFs and FFFs appear or disappear
at a (V,F) or (E,E) a-poly zero. Type III: an FFF appears or disappears on an FF and two
EFs swap on an E at an (E,F,F) zero. Type IV: FFFs swap on FFs at an (F,F,F,F) zero.

Before evaluating a predicate at an event angle, we check for identity. An identity results
from evaluating the predicate at a parameter t that is a zero of a k ≥ 1 repeated irreducible
factor of the a-poly of the predicate. We replace the sign of the predicate with the sign of its
kth derivative, evaluated using automatic differentiation. The derivative gives the sign of the
predicate value immediately after the event as required.

9 Results

We measure the running time of predicate evaluation using the factoring algorithm (Sec. 6) for
identity detection and compare it to using the greatest common divisor (GCD) for degeneracy
detection.

We compute the GCD with Euclid’s algorithm. The main step is polynomial division. We
compute the degree of a remainder by finding its nonzero coefficient of highest degree. If the
sign of a coefficient is ambiguous in double precision interval arithmetic, we evaluate modulo
several 32-bit primes and invoke the Chinese Remainder Theorem (CRT). The a-polys have
degree at most 9 in the input coordinates (Sec. 5). The leading coefficient is at most degree 9
in the polynomial coefficients. Hence, CRT requires d9 · 9 · 53/32e = 135 modulo evaluations.
If they are all zero, the coefficient is zero. This analysis assumes that all inputs have the
same exponent field and can be replaced by their 53-bit integer mantissas.

In our first set of tests, we selected 100,000 representatives at random and instantiated
them on a pool of 12 O vertices and 12 R vertices with random coordinates in (−1, 1). We
factored the univariates of these a-polys, isolated the zeros of the factors, and stored them in
a red-black tree.

Let th be the ith largest real zero of h, a factor of a random a-poly g. When inserting th
into the tree, it must be compared to prior zeros, such as the jth zero te of e, a factor of
f . If e = h and i = j, then th = te. To measure the running time of the identity detection
algorithm (Sec. 6), we add an unnecessary test if g(te) is an identity. This ensures identity
tests on random polynomials with both possible answers. Adding these 9,660,759 identity
tests (221,252 positive) increases the running time from 6.6 seconds to 18.1 seconds, giving
an average identity detection time of 1.2 microseconds.

SoCG 2018

61:12 Table Based Detection of Degenerate Predicates in Free Space Construction

frame: 40/96 knot: 480/992 simple: 18/32 drone: 189/374

Figure 4 Sweep Inputs and number of vertices/facets. Actual frame and knot are large enough
for simple and drone to fly through.

Table 2 Sweep algorithm: f total number of contact facets, tfac and tGCD average running time
in seconds for sweeping a facet with our identity detection and GCD-based degeneracy detection.

O R f tfac tGCD tGCD/tfac

1 frame simple 2196 0.021 0.533 25.33
2 frame drone 18812 0.148 2.093 14.13
3 knot simple 23419 0.023 0.651 27.24
4 knot drone 235789 0.037 0.857 23.26

To test the GCD approach, we drop factoring and the equality test, and replace each
polynomial f with its square-free form f/GCD(f, f ′). If the comparison of zeros tf of f and
tg of g is ambiguous in double precision, we run the following degeneracy test on g(tf). Set
h← GCD(f, g) and e = f/h. If e(tf) is unambiguously nonzero, g(tf) must be zero. If e(tf)
and g(tf) are both ambiguous, redo these steps with more precision. The additional time
was 376 seconds for 81264 degeneracy tests, for an average time of 4627 microseconds. To
be sure that tf = tg and not some other zero of g, we must check that its comparison with
other zeros is unambiguous, so the true cost of the GCD method is even higher.

In the second set of tests, we ran a sweep algorithm (Sec. 8) on the polyhedra shown
in Fig. 4. Table 2 shows the average running times for sweeping a facet using factor-based
identity detection and GCD degeneracy detection. We sweep either all the facets (tests 1-3)
or a large random sample over all angles (test 4).

The first tests indicate that factor-based identity detection is 3500 times faster than
GCD-based degeneracy detection. The sweep tests show that the effect of this improvement
entails a factor of 14 speedup in sweep time. Since identity detection is sped up by 3500,
factor-based identity detection uses less that 0.5% of the overall running time, versus 90%
for GCD-based degeneracy detection.

10 Discussion

We have shown that looking up the factors of an a-poly is much faster than polynomial
algebra for zero detection. As an additional advantage, factorization provides a unique
representation of each algebraic number as the ith zero of an irreducible polynomial.

In future work, we will extend the sweep algorithm to completely construct the subdivision
of a contact set. We are missing the surfaces that bound the cells and their nesting order. We
will construct a connected component of the free space boundary by visiting the neighboring
contact facets, computing their subdivisions, and so on. All the predicates are angle
polynomials evaluated at zeros of angle polynomials.

V. Milenkovic, E. Sacks, and N. Butt 61:13

For efficient free space boundary construction, we must eliminate irrelevant contact facets
from consideration and must eliminate irrelevant sweep angles for relevant contact facets.
One strategy is to construct a polyhedral inner and outer approximation of R as it sweeps
through a small angle. For that angle range, the boundary of the rotational free space lies
between the boundaries of the translational free spaces of the approximations. We can use
our fast polyhedral Minkowski sum software [4] to generate approximations of the rotational
free space boundary for a set of angle intervals covering the unit circle. We see no reason
that sweeping a relevant facet should have fewer identities than sweeping an irrelevant facet,
and so fast identity detection should provide the same speedup as observed in Sec. 9.

We conclude that our identity detection algorithm is useful for the drone–warehouse
problem. But does the technique generalize to other domains? We discuss three challenges.

Factor table construction (Sec. 7) depends on the property that the set of polynomials is
closed under factorization. What if this is not true for some alternate class of polynomials?
We would realize that something was missing when factor table construction failed due to
unmatched univariates. We would then analyze the failure to uncover the missing polynomials.
(This is how we discovered the three-edge parallel-feature a-polys.) The new polynomials
might also have had unmatched factors. However, the process of adding missing factor
polynomials must converge because factoring reduces degree.

Representative generation (Sec. 6) depends strongly on the a-poly representation. However,
the approach should generalize. A predicate has symmetries on its inputs that leave it alone
or flip its sign. Two invocations of a predicate function (with repeated inputs) are isomorphic
if one can get from one to the other by applying those symmetries and reindexing inputs. A
representative is the isomorphism class member that is lexicographically minimal.

Generalizing the matching of factors to prior classes for table generation would greatly
increase the running time because it uses enumeration of permutations. In free space
construction for R with d degrees of freedom, the computational complexity is (3d!)d2, which
would balloon to 80,000 years for d = 6 (unconstrained rotation and translation). We could
use the “Birthday paradox” to match two polynomials by generating the square root of the
number of permutations for each one and finding a collision, reducing the running time by a
factor of

√
3d! to less than a day. Moreover, these enumerations can be tested in parallel.

Greater complexity might also increase the time required to construct a representative
(Sec. 6) for identity detection, but this cost can be reduced by using a subset of the symmetry
group and increasing the size of the lookup table. For example, if we did not reorder the
elements, the table size would be 134,082, and if we did not reorder the left and right columns
either, it would be 972,806. These tables are easy to generate from the minimal table, and
both are reasonable for current RAM sizes.

References

1 Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.
2 Peter Hachenberger. Exact Minkowski sums of polyhedra and exact and efficient decompo-

sition of polyhedra into convex pieces. Algorithmica, 55:329–345, 2009.
3 Dan Halperin. Controlled perturbation for certified geometric computing with fixed-

precision arithmetic. In ICMS, pages 92–95, 2010.
4 Min-Ho Kyung, Elisha Sacks, and Victor Milenkovic. Robust polyhedral Minkowski sums

with GPU implementation. Computer-Aided Design, 67–68:48–57, 2015.
5 Naama Mayer, Efi Fogel, and Dan Halperin. Fast and robust retrieval of Minkowski sums

of rotating convex polyhedra in 3-space. Computer-Aided Design, 43(10):1258–1269, 2011.

SoCG 2018

61:14 Table Based Detection of Degenerate Predicates in Free Space Construction

6 Victor Milenkovic, Elisha Sacks, and Steven Trac. Robust free space computation for curved
planar bodies. IEEE Transactions on Automation Science and Engineering, 10(4):875–883,
2013.

7 Elisha Sacks, Nabeel Butt, and Victor Milenkovic. Robust free space construction for a
polyhedron with planar motion. Computer-Aided Design, 90C:18–26, 2017.

8 Elisha Sacks and Victor Milenkovic. Robust cascading of operations on polyhedra.
Computer-Aided Design, 46:216–220, 2014.

9 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Jour-
nal of the ACM, 27(4):701–717, 1980. doi:10.1145/322217.322225.

http://dx.doi.org/10.1145/322217.322225

	Introduction
	Prior work
	Free space
	Predicates
	Angle polynomials
	Factoring
	Mapping an a-poly to its representative
	Uniqueness

	Constructing the table of factors
	Equivalence classes
	Basis classes
	Factor table
	Analysis

	Contact set subdivision
	Results
	Discussion

