
October 22, 2019 16:54 110-IJCGA 1950006

International Journal of Computational Geometry
& Applications

Vol. 29, No. 3 (2019) 219–237
c© World Scientific Publishing Company

DOI: 10.1142/S0218195919500067

Fast Detection of Degenerate Predicates

in Free Space Construction

Victor Milenkovic∗

Department of Computer Science, University of Miami

Coral Gables, Florida 33124-4245, USA
vjm@cs.miami.edu

Elisha Sacks

Computer Science Department, Purdue University
West Lafayette, Indiana 47907-2066, USA

eps@cs.purdue.edu

Nabeel Butt

Facebook, 1 Hacker Way, Menlo Park

California 94025, USA

nfb@fb.com

Received 25 September 2016
Accepted 18 December 2018

Published 25 October 2019

Communicated by M. Lin

An implementation of a computational geometry algorithm is robust if the combinatorial

output is correct for every input. Robustness is achieved by ensuring that the predicates
in the algorithm are evaluated correctly. A predicate is the sign of an algebraic expression

whose variables are input parameters. The hardest case is detecting degenerate predicates

where the value of the expression equals zero. We encounter this case in constructing the
free space of a polyhedron that rotates around a fixed axis and translates freely relative
to a stationary polyhedron. Each predicate involved in the construction is expressible as
the sign of a univariate polynomial f evaluated at a zero t of a univariate polynomial g,
where the coefficients of f and g are polynomials in the coordinates of the polyhedron
vertices. A predicate is degenerate when t is a zero of a common factor of f and g.
We present an efficient degeneracy detection algorithm based on a one-time factoring

of all the univariate polynomials over the ring of multivariate polynomials in the vertex
coordinates. Our algorithm is 3500 times faster than the standard algorithm based on
greatest common divisor computation. It reduces the share of degeneracy detection in
our free space computations from 90% to 0.5% of the running time.

Keywords: Robust computational geometry; configuration spaces; multivariate polyno-
mial factoring.

∗Corresponding author.

219

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

http://dx.doi.org/10.1142/S0218195919500067

October 22, 2019 16:54 110-IJCGA 1950006

220 V. Milenkovic, E. Sacks & N. Butt

1. Introduction

An implementation of a computational geometry algorithm is robust if the combi-

natorial output is correct for every input. Robustness is achieved by ensuring that

the predicates in the algorithm are evaluated correctly. A predicate is the sign of an

algebraic expression whose variables are input parameters. The predicate is degen-

erate when the value of the algebraic expression equals zero. Predicates must be

evaluated using computer arithmetic. Nondegenerate predicates can be evaluated

efficiently using floating point arithmetic (Sec. 2). Efficient evaluation of degenerate

predicates is a research problem.

Prior research mainly addresses degeneracy due to input in special position,

such as the signed area of a triangle with collinear vertices. Such degeneracy can be

eliminated by input perturbation.1 We address predicates that are degenerate for

all input, which we call identities. One example is the signed area of a triangle pab

with p the intersection point of line segments ab and cd. The sign is always zero

because the algebraic expression for the area in the coordinates of a, b, c, and d is

the zero polynomial. This identity can occur when constructing the convex hull of

the intersection of two polygons in general position. Figure 1 shows polygons abc

and defgh that intersect at points {p1, . . . , p6}. The convex hull algorithm encoun-

ters an identity when it evaluates the signed area of any three of {p1, p2, p3, p4}.
Triangulating the intersection of two polygons involves similar identities.

Identities are common when an algorithm evaluates predicates on arguments

that are derived by another algorithm, such as the signed areas evaluated on the

derived pi in our example. When the algebraic expressions are rational, the identities

are amenable to polynomial identity detection.2 We address irrational expressions

involving zeros of univariate polynomials.

There are two prior approaches to identity detection (Sec. 2). One uses software

arithmetic, computer algebra, and root separation bounds to detect all degenerate

predicates, including identities.3 The second adds identity detection logic to com-

putational geometry algorithms. In the convex hull example, this logic checks if

three points lie on a single input segment. The first approach can greatly increase

the running time of the software and the second approach can greatly increase the

software development time.

d e
c

g

ab

fh

p
6 p

5

p
1

p
2

p
3 p

4

c

g

p
6 p

5

p
1

p
2

p
3 p

4

c

p
6 p

5

p
1

p
4

(a) (b) (c)

Fig. 1. (a) Polygons, (b) intersection and (c) convex hull.

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

Fast Detection of Degenerate Predicates in Free Space Construction 221

We present a new approach to identity detection that avoids the high running

time of numerical identity detection and the long development time of identity

detection logic. The approach applies to a class of computational geometry algo-

rithms with a common set of predicates. We write a program that enumerates and

analyzes the predicates. The predicates are represented by algebraic expressions

with canonical variables. The hull example requires 24 canonical variables for the

coordinates of the 12 input points that define the three arguments of the signed

area. When implementing the algorithms, we match their arguments against the

canonical variables and use the stored analysis to detect identities.

We apply this approach in constructing the free space of a polyhedron R that

rotates around a fixed axis and translates freely relative to a stationary polyhedron

O (Secs. 3 and 8). For example, R models a drone helicopter and O models a ware-

house. The configuration of R is specified by four parameters: the three coordinates

of its position vector and a parameter t that represents the rotation angle. The

configuration space is the four-dimensional space of configurations. The free space

is the subset of the configuration space where the interiors of R and O are dis-

joint. Robust and efficient free space construction software would advance motion

planning, part layout, assembly planning, and mechanical design.

The structure of the free space is determined by the configurations where R

has contacts with O. A contact occurs between a feature of O and a feature of R

that together have four vertices: a vertex that is on a facet or two edges that are

tangent. The rotation parameter of a configuration with four contacts is a zero of

a univariate polynomial of degree 6, which we call an angle polynomial. The coeffi-

cients of an angle polynomial are multivariate polynomials in the 48 coordinates of

the 16 vertices of the four pairs of features in contact. Every predicate in free space

construction is expressible as the sign of an angle polynomial f evaluated at a zero

t = t0 of an angle polynomial g (Sec. 5). A predicate is degenerate when t0 is a zero

of a common factor h of f and g. A predicate is an identity when h corresponds to

a common factor of f and g considered as 49-variate polynomials in t and in the

vertex coordinates.

Neither prior identity detection approach is practical. Detecting an identity as

a zero of the greatest common divisor of f and g is slow (Sec. 9). Devising identity

detection logic for every predicate is infeasible because there are over 450,000,000

predicates and 26,000 identities. We present an efficient identity detection algorithm

(Sec. 6) based on a one-time analysis of the angle polynomials (Sec. 7).

For the one-time analysis, we enumerate the angle polynomials using canonical

variables for the vertex coordinates. Working in the monomial basis is impractical

because many of the angle polynomials have over 100,000 terms. Instead, we repre-

sent angle polynomials with a data structure, called an a-poly, that is a list of lists of

vertices (Sec. 4). The enumeration yields 1,000,000 a-polys, which we reduce to the

30,000 representatives of an isomorphism that respects factorization. We construct

a table of factors for the isomorphism class representatives in one CPU-day on a

workstation.

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

222 V. Milenkovic, E. Sacks & N. Butt

We factor an angle polynomial by looking up the factors of its representative

in the table and substituting its vertex coordinates for the canonical variables. We

use the factoring algorithm to associate each zero t = t0 of an angle polynomial

g with an irreducible factor h. Before evaluating a predicate at t0, we factor its

angle polynomial f . The predicate is an identity if h is one of the factors. Our

algorithm is 3500 times faster than computing greatest common divisors. It reduces

the share of degeneracy detection in our free space computations from 90% to 0.5%

of the running time (Sec. 9). We conclude the paper with guidelines for applying

our identity detection strategy to other domains (Sec. 10).

2. Prior Work

Identity detection is the computational bottleneck in prior work by Hachenberger on

computing the Minkowski sum of two polyhedra.4 He partitions the polyhedra into

convex components and forms the union of the Minkowski sums of the components.

Neighboring components share common, collinear, or coplanar features, resulting in

many identities in the union operations. Detecting the identities via the numerical

approach (using CGAL) dominates the running time.

Mayer et al. partially compute the free space of a convex polyhedron that rotates

around a fixed axis and translates freely relative to a convex obstacle.5 They report

no identity detection problems. Identities can be detected using one rule: all poly-

nomials generated from a facet of one polyhedron and an edge of the other are the

same up to sign and hence their zeros are identical. These polynomials correspond

to our type I predicates for general polyhedra (Sec. 8).

We address identities in four prior works. We compute polyhedral Minkowski

sums orders of magnitude faster than Hachenberger by using a convolution algo-

rithm, which has fewer identities, and by detecting identities with special case logic.6

We compute free spaces of planar parts bounded by circular arcs and line segments.7

The number of identities is small, but the proof of completeness is lengthy. We com-

pute free spaces of polyhedra where R translates in the xy plane and rotates around

the z axis.8 The identity detection logic is confirmed using our new approach. There

are 816 isomorphism classes with 290 in the basis versus 30,564 and 15,306 for the

4D configuration space (Sec. 7).

Finally, we find placements for three polyhedra that translate in a box. The algo-

rithm performs a sequence of ten Minkowski sums and Boolean operations, resulting

in many identities.9 One implementation handles the identities as special cases. A

second implementation prevents identities with a polyhedron approximation algo-

rithm that rounds and perturbs the output of each step. The former is twice as fast

as the latter and is exact, but took months to develop and lacks a correctness proof.

Our prior work demonstrates efficient evaluation of nondegenerate predicates.

We implement the algorithms robustly using our Adaptive Controlled Perturba-

tion (ACP) strategy. The numeric input is a vector of the parameters of the input

geometric objects. We construct a perturbed input that is in general position by

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

Fast Detection of Degenerate Predicates in Free Space Construction 223

adding a random number in [−δ, δ] to each parameter. When we evaluate a pred-

icate, we first try floating point interval arithmetic. If the sign of its expression is

ambiguous, we increase the precision until the sign is resolved. The output is cor-

rect for the perturbed input, which is δ-close to the input in the max norm. Using

δ = 10−8, the predicate evaluation time is at most 20% of the running time in our

implementations.

3. Free Space

We study free space construction for polyhedra R and O with triangular facets.

Without loss of generality, we use the z axis as the axis of rotation. We represent the

rotation angle using a rational parameterization of the unit circle. A configuration

c of R is a rotation parameter t and a translation vector d, denoted c = (t, d). The

configuration c maps a point p to the point c(p) = d+ Θ(t)p with

Θ(t)p =

(
(1− t2)px − 2tpy

1 + t2
,

2tpx + (1− t2)py
1 + t2

, pz

)
. (1)

A point set P maps to c(P) = {c(p) | p ∈ P}. The free space is {c |O ∩ c(R) = ∅}.
The boundary of the free space consists of contact configurations c at which the

boundaries of c(R) and O intersect but not the interiors. The generic contacts are

a vertex c(rk) of c(R) on a facet ohoioj of O, a vertex oh of O on a facet c(rirjrk)

of c(R), and an edge ohoi of O intersecting an edge c(rjrk) of c(R). The boundary

has faces of dimension k = 0, . . . , 3. A face of dimension k consists of configurations

where 4− k contacts occur but the interiors of O and c(R) are disjoint.

The four vertices of the two features of a contact are coplanar, so their tetra-

hedron has zero volume. We obtain a rational expression in c by substituting the

vertices into the formula (q − p)× (u− p) · (v − p). The expressions are n · (c(rk)−
oh) with n = (oi − oj) × (oh − oj), n = Θ(t)((ri − rk) × (rj − rk)), and

n = (oh − oi)×Θ(t)(rk − rj). The first expression is zero if c(rk) lies on the plane

ohoioj or equivalently d ∈ plane(ohoioj) − θ(t)rk, where A − B = {a − b | a ∈
A and b ∈ B}. We use the notation ohoioj − rk to denote either the expression or

its zero set. We refer to the expression as a contact expression and the zero set as

a 1-contact. Similarly the expressions or 1-contacts oh − rirjrk and ohoi − rjrk.

Figure 2 depicts a common zero c of contact expressions p1 = o0o1o2 − r1,

p2 = o1o2o3 − r1, p3 = o0 − r0r1r2, and p4 = o0 − r0r1r3. Testing if c is a

contact configuration gives rise to a typical identity. For the interiors of O and

c(R) to be disjoint, c(r0)c(r2) cannot pierce o0o1o2. Testing this uses the signs of

five other contact expressions, including o0o1o2 − r0. Because p1 = p2 = 0 at c,

c(r1) ∈ plane(o0o1o2) ∩ plane(o1o2o3) = line(o1o2). Similarly, p3 = p4 = 0 implies

o0 ∈ line(c(r0)c(r1)). Since this line shares two points with plane(o0o1o2), they are

coplanar, c(r0) ∈ plane(o0o1o2), and so o0o1o2 − r0 is identically zero at c. This

identity resembles the signed area identities in Sec. 1 in that a polynomial is eval-

uated on arguments that are derived from the input. However, we cannot apply

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

224 V. Milenkovic, E. Sacks & N. Butt

o1

o2

o0r1
0r

R

2r
O

r3

o3

Fig. 2. Identity in piercing predicate: r0 is in the plane of o0o1o2.

polynomial identity detection because the arguments are zeros of polynomials, not

rational functions of the input.2

4. Angle Polynomials

Every contact expression has the form n · d+m with n and m (vector and scalar)

functions of t (Sec. 3). Four contact expressions ni · d + mi have a common zero

(t, d) if the matrix ∣∣∣∣∣∣∣∣∣∣

n1x n1y n1z m1

n2x n2y n2z m2

n3x n3y n3z m3

n4x n4y n4z m4

∣∣∣∣∣∣∣∣∣∣
has a zero determinant and has a 3-by-3 left minor with a nonzero determinant.

We call the numerators of the determinants angle polynomials. The denominator is

a power of 1 + t2. For each zero t of the matrix angle polynomial, we find a minor

whose angle polynomial is nonzero at t using identity detection. If one is found, the

three expressions corresponding to the minor have a unique zero d at that t.

The vectors ni have the form a, Θ(t)a, or a×Θ(t)b and the scalars mi are sums

of terms of the form a · b or a · Θ(t)b with a and b constant vectors. We expand

the matrix determinant along the last column. The determinants of the minors

are n1 · (n2 × n3) etc. Using the formula u × (v × w) = (u · w)v − (u · v)w, they

reduce to sums of terms of the form a · b, a · Θ(t)b, or (a · Θ(t)b)(c · Θ(t)d).

Applying Eq. (1) and clearing the denominator reduces the mi to quadratics in t,

the minors to quartics in t, and the matrix angle polynomial to degree 6.

We define 2-contacts oioj − rk = {c | c(rk) ∈ line(oioj)} and oi − rjrk = {c | oi ∈
c(line(rjrk))} and 3-contact oi − rj = {c | c(rj) = oi}. If we introduce dummy

vertices, a 2-contact can be expressed as the intersection of two 1-contacts, e.g.

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

Fast Detection of Degenerate Predicates in Free Space Construction 225

oioj − rk = (oiojo− rk)∩ (oiojo
′ − rk) for dummies o and o′. Similarly, a 3-contact

can be expressed as the intersection of three 1-contacts.

We represent an angle polynomial with an a-poly: a list of elements of the form

LO − LR with LO and LR lists of vertices of O and of R in increasing index order.

Elements are in order of increasing |LO| + |LR|, increasing |LO|, then increasing

vertex index (lexicographically). Each list has zero to three elements. The a-poly of a

matrix polynomial is a list of k-contacts with a total k of 4. The a-poly of a minor of

1-contacts is a list of three elements that represent the vector n of its rows: ohoioj−
for a row arising from a 1-contact ohoioj−rk, −rirjrk for oh−rirjrk, and ohoi−rjrk
for ohoi−rjrk. The first two notations drop a vertex that does not contribute to the

minor. For minors involving 2-contacts and 3-contacts, the a-polys take two other

forms. The first form is (−ri1rj1 ,−ri2rj2 , oi3oj3−) or (−ri1rj1 , oi2oj2−, oi3oj3−),

equivalent to (−ri2rj2r,−ri2rj2r′, oi3oj3 − ri1rj1) or (oi2oj2o−, oi2oj2o′−, oi3oj3 −
ri1rj1) with dummies o, o′, r, r′. The second form is (oi1oj1−ri2rj2rk2) or (oi1oj1ok1−
ri2rj2), equivalent to (−ri2rj2 ,−ri2rk2

, oi1oj1−) or (−ri2rj2 , oi1oj1−, oi1ok1
−).

We calculate the polynomials of a-polys involving 2-contacts or 3-contacts

directly rather than introducing dummy vertices and calculating determinants. A

matrix angle polynomial can by defined by a 2-contact and two 1-contacts, by two

2-contacts, or by a 3-contact and a 1-contact. We compute these angle polynomials

as follows.

For a 2-contact oioj − rk, c(rk) = d + Θ(t)rk ∈ line(oioj), so d is on the line

through oi − Θ(t)rk and oj − Θ(t)rk. We intersect this line with two 1-contacts.

We express the line as λu + v with u = oj − oi and v = oj − Θ(t)rk, compute

the values λi = −(ni · v + mi)/(ni · u) where the line intersects the two planes

ni ·p+mi = 0, set λ1 = λ2, and cross multiply to obtain a quartic angle polynomial.

Similarly 2-contact oi − rjrk corresponds to a line with u = Θ(t)(rj − rk) and

v = oi − Θ(t)rj . For two 2-contacts, the contact expression is the signed volume

of the four points that define their lines, which yields a quartic angle polynomial.

For a 3-contact oi − rj , oi = d + Θ(t)rj . We substitute d = oi − Θ(t)rj into the

contact expression to obtain a quadratic angle polynomial.

The angle polynomials of minors involving 2-contacts and 3-contacts are

quadratics. The first form is zero when edges c(ri1rj1), c(ri2rj2), and oi3oj3 are

parallel to a common plane; likewise edges c(ri1rj1), oi2oj2 , and oi3oj3 . The sec-

ond form is zero when an edge oi1oj1 is parallel to a facet c(ri2rj2rk2
); likewise

an edge c(ri2rj2) and a facet oi1oj1ok1
. The angle polynomials of both forms are

obtained by applying Eq. (1) to Θ(t)((rj1 − ri1) × (rj2 − ri2)) · (oj3 − oi3) and

Θ(t)(rj1 − ri1) · ((oj2 − oi2)× (oj3 − oi3)) and clearing the denominator.

5. Predicates

Some predicates in free space construction are the sign of an angle polynomial evalu-

ated at a zero of another angle polynomial. The rest are the sign of a contact expres-

sion p evaluated at a zero c0 = (t0, d0) of four contact expressions {p1, p2, p3, p4}.

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

226 V. Milenkovic, E. Sacks & N. Butt

We convert the second form to the first form as follows. Let {pi, pj , pk} have a

nonzero left minor at t0 and let f be the angle polynomial of {pi, pj , pk, p}. We

show that f(t0) = 0 iff p(c0) = 0. If f(t0) = 0, {pi, pj , pk, p} are linearly depen-

dent in d at t = t0, so p is a linear combination of {pi, pj , pk} and p(c0) = 0.

If p(c0) = 0, {pi, pj , pk, p} must be linearly dependent in d at t = t0 because

pi(c0) = pj(c0) = pk(c0) = 0, so f(t0) = 0.

We see that every predicate is the sign of an angle polynomial f evaluated at

a zero t = t0 of an angle polynomial g. The predicate is an identity if f and g,

considered as 49-variate polynomials in t and in the vertex coordinates, have a

common factor h, and h(t0) = 0 when the coordinates have their input values. We

make identity detection fast by enumerating the polynomials, factoring them, and

storing the results in a table, as we discuss next.

6. Factoring

We factor angle polynomials represented as a-polys. Two a-polys are equivalent

if they denote the same polynomial up to sign. For example, an a-poly involving

2-contacts has an equivalent a-poly involving only 1-contacts. Two a-polys are iso-

morphic if a vertex bijection maps one to the other. For example, o0o1o2r0r1 →
o0o2o1r1r0 maps (o0o2 − r1, o0o1 − r0r1, o0o1o2 − r0) to (o0o1 − r0, o0o1 − r0r1,

o0o1o2 − r1). The bijection maps a factorization of one a-poly to a factorization of

the other. The factoring algorithm uses a table that contains the factorization of a

representative a-poly from each isomorphism class. Factor a-polys are drawn from

a minimal set of basis isomorphism classes. Since isomorphic a-polys can also be

equivalent, a factor is represented as a maximal set of equivalent a-polys from a

basis class. This representation is compact because almost all the sets are single-

tons. Table construction is explained in Sec. 7. The table is available in the web

directory http://www.cs.miami.edu/home/vjm/robust/identity.

The factoring algorithm maps an input a-poly to a unique representative of

its isomorphism class, obtains the factor sets of the representative from the table,

and applies the inverse map to obtain sets of a-polys in the vertices of the input

a-poly. It selects the lexicographical minimum from each set, using a vertex order

that we indicate by the o and r indices. Selecting the minimum ensures that the

algorithm generates a unique a-poly for each factor. Hence, the factorizations of

angle polynomials with a common factor contain the unique a-poly of that factor.

6.1. Mapping an a-poly to its representative

The mapping algorithm generates the permutations of the input a-poly such that

the elements remain increasing in |LO| + |LR| then in |LO|, but disregarding the

lexicographical order of vertex indices. For each permutation, it assigns each ver-

tex an indicator: a bit string in which a 1 in position k indicates that the vertex

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

Fast Detection of Degenerate Predicates in Free Space Construction 227

appears in the kth element. It labels a permutation with its O vertex indicators in

decreasing order followed by its R vertex indicators in decreasing order. It selects

the permutation with the largest label, replaces the ith O vertex in indicator order

by the canonical vertex oi, and likewise for the R vertices and ri. If two vertices

have the same indicator, both orders yield the same output because the indices of

an a-poly are placed in increasing order.

In the a-poly (o27 − r22r66r86, o51 − r22r66r86, o27o43 − r15r86, o27o51 −
r75r86), o27 has indicator 1011 because it appears in the first, third and fourth

element. The indicator list is 1011, 0101, 0010; 1111, 1100, 1100, 0010, 0001. The

permutations swap the first two elements and/or the last two elements. Swapping

the last two elements yields the maximal indicator list 1011, 0110, 0001; 1111,

1100, 1100, 0010, 0001, so the map is o27o51o43r86r22r66r75r15 → o0o1o2r0r1r2r3r4
and the representative is (o0 − r0r1r2, o1 − r0r1r2, o0o1 − r0r3, o0o2 − r0r4). In

the table, this representative has (singleton) factor sets {(o0o1 − r0r1r2)} and

{(−o0o1o2, o0o1− r0r3, o0o2− r0r4)}. The inverse vertex mapping yields the factors

(o27o51 − r22r66r86) and (−r22r66r86, o27o43 − r15r86, o27o51 − r75r86).

6.2. Selecting a unique a-poly factor

Figure 3 illustrates equivalent a-polys. The 1-contacts o0o1 − r0r1, o0o1 − r2r3,

and o0o1o2 − r4 determine the rotation parameter t because they are invariant

under translation parallel to o0o1. Translating R parallel to o0o1 until one element

becomes a 2-contact yields an a-poly Ci that is zero at the same t values. If r0r1
hits o0, C1 = (o0 − r0r1, o0o1 − r2r3, o0o1o2 − r4) (Fig. 3(b)) and if r2r3 hits o1,

C2 = (o1 − r2r3, o0o1 − r0r1, o0o1o2 − r4). These equivalent a-polys are isomorphic

under the map from C1 to C2 : ooo1o2r0r1r2r3r4 → o1o0o2r2r3r0r1r4. There are

also C3 and C4 where r0r1 hits o1 or r2r3 hits o0 and C5 = (o0o2 − r4, o0o1 −
r0r1, o0o1 − r2r3) and C6 = (o1o2 − r4, o0o1 − r0r1, o0o1 − r2r3) where r4 hits

o0o2 or o1o2. C5 and C6 are equivalent but not isomorphic to C1, C2, C3, and C4

because their first element has two O vertices, not one.

o1

2r
0r

r1

r3

o2

o0

r4

o1

o2

o0

2r
0r

r1

r3

r4

(a) (b)

Fig. 3. Equivalent a-polys: (a) translation parallel to o0o1 preserves circled 1-contacts o0o1−r0r1,
o0o1 − r2r3, and o0o1o2 − r4; (b) a-poly (o0 − r0r1, o0o1 − r2r3, o0o1o2 − r4).

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

228 V. Milenkovic, E. Sacks & N. Butt

The a-poly (o1 − r0r1r2, o0o1 − r3r4, o0o1 − r5r6, ooo1o2 − r7) maps to the

representative (o0 − r0r1r2, o0o1 − r3r4, o0o1 − r5r6, ooo1o2 − r7) with factor sets

{(o0o1 − r0r1r2)} and

{(o0 − r3r4, o0o1 − r5r6, o0o1o2 − r7), (o0 − r5r6, o0o1 − r3r4, o0o1o2 − r7),

(o1 − r3r4, o0o1 − r5r6, o0o1o2 − r7), (o1 − r5r6, o0o1 − r3r4, o0o1o2 − r7)}

because the second factor is isomorphic to C1, . . . , C4. Its factor set does not con-

tain a-polys isomorphic to C5 and C6 because their class is not in the basis. The

inverse map (in this case swapping o0 and o1) results in factor sets {(o0o1−r0r1r2)}
and

{(o1 − r3r4, o0o1 − r5r6, o0o1o2 − r7), (o1 − r5r6, o0o1 − r3r4, o0o1o2 − r7),

(o0 − r3r4, o0o1 − r5r6, o0o1o2 − r7), (o0 − r5r6, o0o1 − r3r4, o0o1o2 − r7)}.

The factors are (o0o1 − r0r1r2) and the (unique minimal) third element (o0 −
r3r4, o0o1 − r5r6, o0o1o2 − r7) of the second set.

7. Constructing the Table of Factors

This section shows how we enumerate the a-poly isomorphism classes (Sec. 7.1),

factor the class representatives and select a basis (Sec. 7.2), construct the table of

factors (Sec. 7.3), and verify the table (Sec. 7.4).

7.1. Isomorphism classes

We enumerate the a-poly classes as follows. Let ai, bi, ci, di, ei, and fi denote

vertices. Let si = {ai − di}, ti = {ai − diei, aibi − di}, ui = {ai − dieifi, aibi −
diei, aibici − di}, vi = {aibi − cidiei, aibici − diei}, wi = {−aibi, aibi−}, xi =

{−aibici, aibi − cidi, aibici−}. We generate the determinant a-polys with the sets

s1 × u2 (a 3-contact and a 1-contact), t1 × t2 (two 2-contacts), t1 × u2 × u3 (a

2-contact and two 1-contacts), and u1×u2×u3×u4 (four 1-contacts). We generate

the left minor a-polys with the sets v1 (edge parallel to facet), w1×w2×w3 (edges

parallel to plane), and x1×x2×x3 (minor). For each element of each set, we assign

O vertices to the ai, bi, ci in every possible manner. Starting from o0, we assign

increasing indices to the vertices of an edge or a facet. We assign R vertices to

di, ei, fi likewise.

For example, s1 × u2 = {(a1 − d1, a2 − d2e2f2), (a1 − d1, a2b2 − d2e2), (a1 −
d1, a2b2c2− d2)}. We must set a1 = o0. We can set a2 = o0 or a2 = o1 because a2 is

in a different feature, and then assign increasing indices to b2 and c2 because they

are in the same feature. Similarly for d1, d2, e2, and f2. The results are

{(o0 − r0, o0 − r0r1r2), (o0 − r0, o1 − r0r1r2), (o0 − r0, o0 − r1r2r3),

(o0 − r0, o1 − r1r2r3), (o0 − r0, o0o1 − r0r1), (o0 − r0, o1o2 − r0r1),

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

Fast Detection of Degenerate Predicates in Free Space Construction 229

(o0 − r0, o0o1 − r1r2), (o0 − r0, o1o2 − r1r2), (o0 − r0, o0o1o2 − r0),

(o0 − r0, o1o2o3 − r0), (o0 − r0, o0o1o2 − r1), (o0 − r0, o1o2o3 − r1)}.

The enumeration yields about one million a-polys. Generating their rep-

resentatives (Sec. 6) and removing duplicates yields 30,564 isomorphism class

representatives.

7.2. Basis classes

We factor the representatives probabilistically. We replace the canonical coordinates

of o0, . . . , o11 and r0, . . . , r11 with random integers, construct the resulting univariate

integer polynomials, and factor them with Mathematica. An irreducible univariate

implies that the canonical polynomial is irreducible; the converse is true with high

probability.

An a-poly depends on a vertex if its univariate changes when the coordinates

of the vertex are assigned different random integers. For example, (o0o1 − r0,

o2 − r1r2r3, o2 − r1r2r4) does not depend on r3 and r4 because o2 − r1r2r3 and

o2 − r1r2r4 can be replaced by o2 − r1r2: o2 in contact with r1r2r3 and r1r2r4 is

equivalent to o2 in contact with r1r2. An a-poly is complete if it depends on all of

its vertices.

We select a set B of complete and irreducible class representatives, define their

classes as the basis, and construct a map I from the univariate of each element of

B and its permutations to the set of equivalent isomorphic a-polys. Starting with

empty B and I, we visit each representative ρ. If ρ is complete, its univariate p is

irreducible, and I(p) = ∅, we add ρ to B, permute its vertices in every way, calculate

the univariate u for each resulting a-poly a, and add a to the set I(u).

In the Sec. 6.2 example, C1 is in B. Permutations C2, C3, and C4 generate

the same univariate p as C1, so I(p) = {C1, C2, C3, C4}. C5 and C6 also generate

p, but their representative ρ = (o0o1 − r0, o0o2 − r1r2, o0o2 − r3r4) generates the

same polynomial q as C1 permuted by the permutation that takes C5 to ρ. Since

I(q) is not empty when ρ is considered, ρ is not added to B. Thus the basis does

not contain more than one class that generates the same polynomial and I(p) does

not contain C5 and C6.

7.3. Factor table

The factor table provides a list of factor sets for each representative. For ρ ∈ B with

univariate p, the list is 〈I(p)〉. If ρ 6∈ B, we process each factor f of p as follows.

(1) Determine which vertices f depends on. Assign the coordinates of a vertex of

ρ different random integers, generate the new univariate, and factor it. If f is

not a factor, it depends on the vertex.

(2) Rename the vertices of ρ to obtain a ρ′ for which the factor f ′ that corre-

sponds to f depends on o0, o1, . . . , om and r0, r1, . . . , rn for some m and n. Let f

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

230 V. Milenkovic, E. Sacks & N. Butt

depend on oi0 , oi1 , . . . , oim and rj0 , rj1 , . . . , rjn but not on oim+1
, oim+2

, . . . , oim
and rjn+1

, rjn+2
, . . . , rjn . Substitute oik → ok for k = 1, . . . ,m and rik → rk for

k = 1, . . . , n.

(3) Find the factor f ′ of ρ′ that depends on o0, . . . , om and r0, . . . , rn, and has

the same degree as f . (This factor is unique; otherwise, we would consider the

matching factors as a group.)

(4) Look up I(f ′) and invert the vertex substitution to obtain a factor set.

For example, the univariate of ρ = (o0o1 − r0r1, o2o3o4 − r2, o2o3o4 −
r3, o5o6o7 − r4) has a factor f that depends on all its vertices and a quadratic

factor g that depends on o2, o3, o4, r2, r3. The factor set of f is I(f) =

{(o2o3o4−, o5o6o7−, o0o1 − r0r1)}. To obtain the factor set of g, substitute

o2, o3, o4, o0, o1, r2, r3, r0, r1 → o0, o1, o2, o3, o4, r0, r1, r2, r3. The quadratic fac-

tor g′ of ρ′ = (o3o4 − r2r3, o0o1o2 − r0, o0o1o2 − r1, o5o6o7 − r4) depends on

o0, o1, o2, r0, r1, and I(g′) = {(o0o1o2−r0r1)}. Inverting the vertex substitution

yields the second factor set of ρ: {(o2o3o4 − r2r3)}.

To save space, if an element of B has a univariate of degree six, we do not

store the polynomials of its permutations in I. We do not need them for factoring

because they cannot be proper factors. To test if representative ρ with an irreducible

degree-6 univariate p is in the basis, we generate the permutations of ρ and their

univariates. If none has an entry in I, we add ρ to B, and we add an entry for p to

I. If the univariate p′ of a permutation has an entry in I, the sole factor set of ρ is

the result of applying the inverse permutation to I(p′).

7.4. Analysis

Out of 30,564 representatives, 15,306 are basis, 991 are constant, 3840 are irreducible

but non basis, 8263 have two factors (including 260 squares), and 2164 have three

factors (including 6 cubes). Since a predicate is an a-poly evaluated on a zero of

a basis a-poly, we list 450, 000, 000 ≈ 30564 · 15306 predicates in the introduction.

The number of identities is 26, 000 ≈ 1 · 3840 + 2 · 8263 − 1 · 260 + 3 · 2164 − 2 · 6
ways of evaluating a non basis a-poly on a zero of a basis a-poly. Of the 15306+3840

irreducible representative polynomials, 363 have two basis a-polys, 50 have three,

194 have four, and 194 have six.

The algorithm depends on the assumption that the a-poly representation is

complete under factorization. The correctness of the factorization depends on prob-

abilistic assumptions, for example that an irreducible a-poly has an irreducible

univariate polynomial for the chosen vertex coordinates. We verify that the table

is correct probabilistically. A factorization f1f2 · · · fm | f is equivalent to a polyno-

mial identity f − af1f2 · · · fm = 0 for some constant a. We verify the identities

using Schwartz’s lemma.2 We use random 20-bit values modulo a prime p. The first

substitution determines a and the rest verify the identity. We reduce the probabil-

ity of an error to below 10−1000 with 10 minutes of verification. The completeness

assumption is verified because an exception would imply an empty factor set.

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

Fast Detection of Degenerate Predicates in Free Space Construction 231

The running time for factor table construction is one CPU day, including 23

hours to generate the permutations of the degree-six irreducible a-polys to test if

they are in the basis. The worst case is four contacts between O vertices and R facets

or vice versa, which have about 11.5 billion permutations. The tests all succeed, so

perhaps we could have avoided this cost by proving a theorem.

8. Contact Set Subdivision

We continue our discussion of free space with an algorithm for constructing the

faces of its boundary. The contact set of a 1-contact is the subset for which the two

features are in contact. We construct the subdivision of a contact set induced by

the other contact sets. Each predicate used in the construction has the same zero

set as an a-poly, so identity detection applies. The remaining (and substantial) step

in free space construction is to stitch the faces into a boundary representation of

free space.

Contact sets. The contact set of ohoioj − rk is the configurations (t, d) such

that d + Θ(t)rk lies on ohoioj . Hence, d lies on a parametric triangle oh − Θ(t)rk,

oi −Θ(t)rk, oj −Θ(t)rk. Similarly, the contact set of oh − rirjrk is the parametric

triangle oh −Θ(t)ri, oh −Θ(t)rj , oh −Θ(t)rk, and the contact set of ohoi − rjrk, is

the parametric parallelogram oh −Θ(t)rj , oh −Θ(t)rk, oi −Θ(t)rj , oi −Θ(t)rk.

Contact facets. We are only interested in the portion of a contact set that is on

the boundary of the free space. A necessary condition is that the interiors of O

and c(R) are disjoint in a neighborhood of their point of contact. A contact facet

is the restriction of a contact set to the intervals of t values where the disjointness

condition holds. We express the condition in terms of the signs of a-polys (ignoring

the vertex index order rule, which might change the sign), so the intervals are

bounded by zeros of a-polys. For ohoioj − rk, (ohoioj − rkrl) must be positive for

every edge rkrl; likewise for oh − rirjrk. For ohoi − rjrk, let ohoi be incident on

the triangles ohoim1 and oiohm2, let rjrk be incident on the triangles rjrkn1 and

rkrjn2, and let sx and tx be the signs of (ohoimx − rjrk) and (ohoi − rjrknx) for

x = 1, 2. The interiors are locally disjoint if s1 = s2 = −t1 = −t2.

The parametric edges of a contact facet are called contact facet edges and are in

the zero sets of 2-contacts. The parametric vertices are called contact facet vertices

and are in the zero sets of 3-contacts.

Contact facet subdivision. At a fixed t, each contact facet (triangle or parallelo-

gram) is intersected and subdivided by other contact facets. The intersection of two

facets is called an FF-edge, and the intersection of a facet edge and a facet is called

an EF-vertex. The endpoints of an FF-edges are facet vertices or EF-vertices. Two

FF-edges intersect at an FFF-vertex, the intersection of three facets.

Structure changes. The subdivision of a contact facet by other contact facets

is continuous in t, except for four types of structure changes. I. Facets appear or

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

232 V. Milenkovic, E. Sacks & N. Butt

a

b

c

d

ef

a

b

c

d

ef

v

w

(a)

a
b

c

d

ef

b

c

d

ef

v
w

(b)

Fig. 4. Type II structure changes: (a) vertex–facet and (b) edge–edge.

disappear at the bounds of their intervals. II. FF-edges appear or disappear when

a facet vertex hits a facet or when two facet edges intersect. In Fig. 4, the FF-edge

vw appears when the facet vertex a hits the facet def or when the facet edges ac

and de intersect. III. FFF-vertices appear or disappear when a facet edge e hits

an FF-edge, and two EF-vertices swap position on e. In Fig. 5, the EF-vertices j

y

x

y

p

Fig. 5. Type III structure change.

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

Fast Detection of Degenerate Predicates in Free Space Construction 233

a b

cd

p q

st

u r
i j

k

a b

cd

p q

st

u r
ij

k

Fig. 6. Type IV structure change.

IIa (a) zero distance from a facet vertex to the plane of a facet.

(b) 3-contact of vertex, 1-contact of facet.

IIb (a) zero volume of the tetrahedron defined by two facet edges.

(b) 2-contact of each edge.

III (a) zero distance from an EF-vertex to the plane of a facet.

(b) 2-contact of EF-vertex edge, 1-contact of EF-vertex facet,

1-contact of facet.

IV (a) zero distance between two FFF-vertices along an FF-edge.

(b) four 1-contacts of the facets incident on the FFF-vertices.

Fig. 7. Structure change conditions (a) and a-polys (b).

and k swap on the facet edge df when it hits the FF-edge xy, and the FFF-vertex

p appears. IV. The FFF-vertices of four facets swap position along their FF-edges

when the facets intersect at a vertex. In Fig. 6, three facets intersect abcd in FF-

edges ps, qt, and ur, FFF-vertices i and j swap on ur, j and k swap on qt, and i

and k swap on ps.

Structure change a-polys. Structure changes occur at zeros of a-polys. The

Type I facet interval a-polys are discussed above. Figure 7 describes the a-polys of

the other types.

Sweep algorithm. We construct the subdivision of a contact set by constructing

the subdivision of each contact facet at its initial t value, sweeping along its t

interval, computing the t values where the subdivision undergoes structure changes,

and updating the structure. The sweep state is the ordered list of EF-vertices along

each contact edge, the set of interior EF-vertices, the set of FF-edges, and the

ordered list of FFF-vertices along each FF-edge. The sweep events are the angles

where (1) EF-vertices and (2) FF-edges appear or disappear (at a Type I or II

structure change) (3) an internal EF-vertex hits an FF-edge (III), (4) two EF-

vertices swap on a contact edge (III), or (5) two FFF vertices swap on an FF-edge

(IV). FFF-vertices can appear and disappear at events 2, 3 or 4. Events 1 and 2 are

calculated before the sweep, event 3 is calculated at a 1 or 2 event, and events 4 and

5 are calculated when two vertices become adjacent on an edge. To calculate event

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

234 V. Milenkovic, E. Sacks & N. Butt

3, we compute the zeros of its a-poly (Fig. 7III). When sweeping through each zero,

we check if the FF-edge and EF-vertex exist at that angle and evaluate predicates

at that angle to determine if the EF-vertex hits the line of the FF-edge between its

current endpoints, and if so, where in the list of FFF-vertices the new one should

be inserted. Similarly for 4 and 5.

Handling identities. Each predicate has the same zero set as an a-poly. For exam-

ple, testing if a contact edge pierces a contact facet involves testing an (endpoint)

contact vertex and the contact facet. The associated a-poly contains the vertex 3-

contact and the facet 1-contact. Before evaluating a predicate at an event angle, we

check for identity. An identity results from evaluating the predicate at a parameter

t that is a zero of a k ≥ 1 repeated irreducible factor of the a-poly of the predicate.

We replace the sign of the predicate with the sign of its kth derivative, evaluated

using automatic differentiation. The derivative gives the sign of the predicate value

immediately after the event, as required by the sweep algorithm.

9. Results

We measure the running time of predicate evaluation using the factoring algorithm

(Sec. 6) for identity detection and compare it to using the greatest common divisor

(GCD) for degeneracy detection.

We compute the GCD with Euclid’s algorithm. The main step is polynomial

division. We compute the degree of a remainder by finding its nonzero coefficient

of highest degree. If the sign of a coefficient is ambiguous in interval arithmetic, we

evaluate modulo several 32-bit primes. By the Chinese Remainder Theorem (CRT),

if it is zero modulo a sufficient number of primes, it is zero. The a-polys have

degree at most 9 in the input coordinates (Sec. 4). The leading coefficient is at most

degree 9 in the polynomial coefficients. Hence, CRT requires d9 · 9 · 53/32e = 135

modulo evaluations. This analysis assumes that all inputs have the same exponent

field and can be replaced by their 53-bit integer mantissas.

In our first set of tests, we selected 100,000 representatives at random and instan-

tiated them on a pool of 12 O vertices and 12 R vertices with random coordinates

in (−1, 1). We factored the univariates of these a-polys, isolated the zeros of the

factors, and stored them in a red-black tree.

Let th be the ith largest zero of h, a factor of a random a-poly g. When inserting

th into the tree, it must be compared to prior zeros, such as the jth zero te of e,

a factor of f . If e = h and i = j, then th = te. To measure the running time of

the identity detection algorithm, we add an unnecessary test if g(te) is an identity.

This ensures identity tests on random polynomials with both possible answers.

Adding these 9,660,759 identity tests (221,252 positive) increases the running time

from 6.6 seconds to 18.1 seconds, giving an average identity detection time of 1.2

microseconds.

To test the GCD approach, we drop factoring and the equality test, and replace

each polynomial f with its square-free form f/GCD(f, f ′). If the comparison of zeros

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

Fast Detection of Degenerate Predicates in Free Space Construction 235

tf of f and tg of g is ambiguous in double precision, we run the following degeneracy

test on g(tf). Set h← GCD(f, g) and e = f/h. If e(tf) is unambiguously nonzero,

g(tf) must be zero. If e(tf) and g(tf) are both ambiguous, redo these steps with

more precision. The additional time was 376 seconds for 81264 degeneracy tests, for

an average time of 4627 microseconds. To be sure that tf = tg and not some other

zero of g, we must check that its comparison with other zeros is unambiguous, so

the true cost of the GCD method is even higher.

In the second set of tests, we ran our sweep algorithm (Sec. 8) on the polyhedra

shown in Fig. 8. Table 1 shows the average running times for sweeping a facet using

factor-based identity detection and GCD degeneracy detection. We sweep all the

frame: 40 vertices and 96 facets knot: 480 vertices and 992 facets

simple: 18 vertices and 32 facets drone: 189 vertices and 374 facets

Fig. 8. Sweep Inputs. Actual frame and knot are large enough for simple and drone to fly through.

Table 1. Sweep algorithm: f total number of contact facets, tfac
and tGCD average running time in seconds for sweeping a facet
with our identity detection and GCD-based degeneracy detection.

test O R f tfac tGCD tGCD/tfac

1 frame simple 2196 0.021 0.533 25.33

2 frame drone 18812 0.148 2.093 14.13

3 knot simple 23419 0.023 0.651 27.24
4 knot drone 235789 0.037 0.857 23.26

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

236 V. Milenkovic, E. Sacks & N. Butt

facets (tests 1-3) or a large random sample over all angles (test 4). The first tests

indicate that factor-based identity detection is 3500 times faster than GCD-based

degeneracy detection. The sweep tests show that this speedup reduces the sweep

time by a factor of 14 or more. Factor-based identity detection uses less that 0.5%

of the overall running time, versus 90% for GCD-based degeneracy detection.

10. Discussion

We have shown that looking up the factors of an a-poly is much faster than polyno-

mial algebra for zero detection. As an additional advantage, factorization provides

a unique representation of each algebraic number as the ith zero of an irreducible

polynomial.

In future work, we will extend the sweep algorithm to completely construct the

subdivision of a contact set. We are missing the surfaces that bound the cells and

their nesting order. We will construct a connected component of the free space

boundary by visiting the neighboring contact facets, computing their subdivisions,

and so on. All the predicates are angle polynomials evaluated at zeros of angle

polynomials.

For efficient free space boundary construction, we must eliminate irrelevant

contact facets from consideration and must eliminate irrelevant sweep angles for

relevant contact facets. One strategy is to construct a polyhedral inner and outer

approximation of R as it sweeps through a small angle. For that angle range, the

boundary of the rotational free space lies between the boundaries of the transla-

tional free spaces of the approximations. We use our fast polyhedral Minkowski sum

software to generate approximations of the rotational free space boundary for a set

of angle intervals covering the unit circle.6,10 We see no reason that sweeping a

relevant facet should have fewer identities than sweeping an irrelevant facet, and so

fast identity detection should provide the same speedup as observed in Sec. 9.

We conclude that our identity detection algorithm is useful for the drone–

warehouse problem. But does the technique generalize to other domains? We discuss

three challenges.

Factor table construction (Sec. 7) depends on the property that the set of poly-

nomials is closed under factorization. What if this is not true for some alternate class

of polynomials? We would realize that something was missing when factor table

construction failed due to unmatched univariates. We would then analyze the failure

to uncover the missing polynomials. (This is how we discovered the first alternate

form for a minor a-poly.) The new polynomials might also have had unmatched

factors, but the process of adding missing factor polynomials must converge because

factoring reduces degree.

Representative generation (Sec. 6) depends strongly on the a-poly representa-

tion. However, the approach should generalize. A predicate has symmetries on its

inputs that leave it alone or flip its sign. Two invocations of a predicate function

(with repeated inputs) are isomorphic if one can get from one to the other by

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

October 22, 2019 16:54 110-IJCGA 1950006

Fast Detection of Degenerate Predicates in Free Space Construction 237

applying those symmetries and reindexing inputs. A representative is the isomor-

phism class member that is lexicographically minimal.

Generalizing the matching of factors to prior classes for table generation would

greatly increase the running time because it uses enumeration of permutations. In

free space construction for R with d degrees of freedom, the computational com-

plexity is (3d!)d4, which would balloon to 80,000 years for d = 6 (unconstrained

rotation and translation). We could use the “Birthday paradox” to match two poly-

nomials by generating the square root of the number of permutations for each one

and finding a collision, reducing the running time by a factor of
√

3d! to less than

a day. Moreover, these enumerations can be tested in parallel.

Greater complexity might also increase the time required to construct a repre-

sentative (Sec. 6) for identity detection, but this cost can be reduced by using a

subset of the symmetry group and increasing the size of the lookup table. For exam-

ple, if we stored all the canonical a-polys instead of just the class representatives,

the table would have 972,806 entries, which is unproblematic for current computers.

Acknowledgments

Victor Milenkovic was supported by NSF 1526335. Elisha Sacks and Nabeel Butt

were supported by NSF 1524455.

References

1. D. Halperin, Controlled perturbation for certified geometric computing with fixed-
precision arithmetic, in ICMS (2010), pp. 92–95.

2. J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities,
J. ACM 27 (1980) 701.

3. Cgal, Computational Geometry Algorithms Library, http://www.cgal.org.
4. P. Hachenberger, Exact Minkowski sums of polyhedra and exact and efficient decom-

position of polyhedra into convex pieces, Algorithmica 55 (2009) 329.
5. N. Mayer, E. Fogel and D. Halperin, Fast and robust retrieval of Minkowski sums of

rotating convex polyhedra in 3-space, Computer-Aided Design 43 (2011) 1258.
6. M.-H. Kyung, E. Sacks and V. Milenkovic, Robust polyhedral Minkowski sums with

GPU implementation, Computer-Aided Design 67–68 (2015) 48.
7. V. Milenkovic, E. Sacks and S. Trac, Robust free space computation for curved planar

bodies, IEEE Trans. Automation Sci. Engin. 10 (2013) 875.
8. E. Sacks, N. Butt and V. Milenkovic, Robust free space construction for a polyhedron

with planar motion, Computer-Aided Design 90C (2017) 18.
9. E. Sacks and V. Milenkovic, Robust cascading of operations on polyhedra, Computer-

Aided Design 46 (2014) 216.
10. C. Arluck, V. Milenkovic and E. Sacks, Approximate free space construction and

maximum clearance path planning for a four degree of freedom robot, in Proceedings
of the 30th Canadian Conference on Computational Geometry (CCCG 2018) (2018),
pp. 223–229.

In
t.

J.
 C

om
pu

t.
G

eo
m

. A
pp

l.
20

19
.2

9:
21

9-
23

7.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n
05

/0
9/

22
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

