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An approximate arrangement algorithm for
semi-algebraic curves

Victor Milenkovic
University of Miami

Abstract

Elisha Sacks
Purdue University

An arrangement algorithm is presented for plane curves. The inputs are I) continuous,
compact ;r-monotone curves and 2) a module that computes approximate crossing points of
these curves. The module output is E accurate but can be inconsistent, meaning that three
curves are in cyclic y order over an x interval. The algorithm sweeps the curves with a vertical
line using the crossing module to compute and process sweep events. When the sweep detects

an inconsistency, the algorithm breaks the cycle to obtain a linear order. The algorithm is
correct for any input with no special treatment of degeneracies. The number of vertices in the

output is V = 217 + N + min(3kn, 17
2 /2) and the running time is OW log TI) for 17 curves

with jV crossings and k inconsistencies. The output arrangement is realizable by curves that
are OlE + k2 E) close to the input curves, except in k2Eneighborhoods of the curve tails. An
implementation is described for semi-algebraic curves based on a numerical equation solver.
This implementation is fast and accurate even on high degree inputs with many degeneracies.
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Figure 1: Inconsistency: (a) true geometry; (b) computed order depicted with vertical arrows.

1 Introduction

We present an arrangement algorithm for plane curves based on approximate computation of curve
crossing points. The arrangement of 77 curves with N crossings can be computed in O( (71 +
N) log 71) time by sweeping. The analysis assigns unit cost to geometric operations, such as par
titioning a curve into x-monotone segments, intersecting two curves, and sorting vertices along
an axis. For semi-algebraic curves, the operations reduce to constructing algebraic numbers and
computing the signs of polynomials at these numbers. The classical techniques for manipulating
algebraic numbers incur a computational cost that grows rapidly with degree and bit complexity.
The same problem arises in incremental insertion or in any other arrangement algorithm.

The mainstream approach to this problem is to accelerate the geometric computations via cus
tom algorithms, constructive root bounds, and floating point filters. This approach has led to
arrangement algorithms for lines, circles, conics, and cubics. We present an alternate research
direction that constructs arrangements using approximate geometric computation via numerical
equation solving. The motivation is that numerical solvers are highly accurate and are orders of
magnitude faster than algebraic computation. The entire scientific computing community relies on
numerical computation,so it should be applicable to computational geometry.

The first issue is that numerical solvers lack rigorous running time and error bounds, although
their qualitative behavior is well understood. We take the computer science approach to this issue:
define a computational model, verify it experimentally, and analyze algorithms in it. We encap
sulate the numerics in a crossing module that computes the x values where a pair of curves cross
and their y order between crossings. We specify that its running time is constant and that its output
is f accurate. This is a bound on the backward error: the distance between the input curves and
realization curves for which the output is correct. The arrangement algorithm performs all geo
metric computations with the crossing module. We analyze the algorithm in terms of the module
specifications, whereas we experimentally verify the module implementation.

The challenge is to reconcile the approximate nature of numerical computation with Euclidean
geometry. Approximate geometric computations can violate the laws of geometry, just as floating
point operations can violate the laws of algebra. In our computational model, this problem arises
when the crossing module assigns three curves an inconsistent, cyclic vertical order. The canonical
example (Figure I) is curves a, b. c that form a triangle whose diameter is less than E. The crossing
module computes the vertices p, q. r with E accuracy, incorrectly places q to the left of p, and
conectly places r to the right of p. The curves are in cyclic order on (gx, P:c): a is below b from the
alb output, b is below c from the blc output, and c is below a from the alc output.
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We construct arrangements with a sweep algorithm that handles inconsistencies. The curves are
swept with a vertical line using the crossing module to compute and process sweep events. When
the sweep detects an inconsistency, it breaks the cycle to obtain a linear order. The algorithm is
correct for any input with no special treatment of degeneracies. The number of vertices in the
output is V = 2n + N + min(3kn, 71

2 /2) and the running time is O(V log n) for 71 curves with N
crossings and k: inconsistencies. The output arrangement is realizable by curves that are O( f+k2 f)
close to the input curves. As in any backward error analysis, the realization curves are proved to
exist, but are not constructed.

The algorithm suffers from two weaknesses that reflect the gap between our computational
model and the empirical reality of numerical computing. The running time and the error bound
depend on k, which is O( 71:

3
). In practice, k is constant for generic input and is O( N) for degenerate

input. The error bound does not apply in a k2
f neighborhood of the curve tails. We can fix this

by extending each curve to the left by a short horizontal line segment, called a telomere, but the
telomeres can cause 0(71

2
) extra crossings. In practice, the error bound holds at tails without

telomeres, and using telomeres speeds up the arrangement calculation.
We implement the arrangement algorithm for semi-algebraic curves. We use the eigenvector

method [20] to compute the complex roots of systems of two polynomials. Root finding in the only
numerical operation that we need to implement the crossing module. The mean/max f values are
10-16/10- 12 for curves of degree I to 10. Finding the roots of two polynomials of degree d takes
cd4 time with c = 18 microseconds on a 3GHz Pentium. The running time and the error bound are
independent of the number of inconsistencies k across a range of inputs.

We validate the software on the core operations of curve fitting and curve intersection. Any sys
tem that models with planar curves needs these operations. Exact methods are impractical because
iteration generates points and curves of unbounded bit complexity: fit curves to points, intersect
these curves to generate new points, fit curves to these points, and so on. The operations are chal
lenging for approximate methods because degeneracy is common. One source of degeneracy is
three curves that meet at a point by design, whereas three random curves meet with probability
zero. Another source is nearly identical curves. It is easy to generate a copy of a curve by fitting a
second curve to a set of its points. The two curves can differ slightly because of rounding error in
the fitting algorithm. We show that our software handles both types of degeneracy.

The rest of the paper is organized as follows. Section 2 surveys prior work on arrangement
algorithms. Section 3 specifies the input to our algorithm. Section 4 presents and analyzes the
algorithm. Section 5 describes the implementation for semi-algebraic curves and its empirical
validation. Section 6 discusses our results.

2 Prior work

We discuss prior work on arrangement algorithms that employ exact geometry, perturbation, and
numerical approximation. Halperin [9] surveys arrangements with a focus on linear objects.

Exact Methods Exact Computational Geometry employs custom geometric algorithms, con
structive root bounds, and floating point filters to compute correct combinatorial structures. Yap
[23] surveys the approach. The main results are as follows.
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Figure 2: Collapsing triangle abc: (a) actual curves; (b) realization.

Keyser et al [12] compute arrangements of non-degenerate rational parametric curves with an
0(n2 ) algorithm. Arranging 12 curves of degree at most 4 with 80 bit coefficients takes 1142
seconds on a 400MHz Pentium 2.

LEDA [13] and CGAL [5] compute arrangements of line segments via generalizations of Bent
ley's sweep algorithm that employ filtered rational arithmetic. Wein [21] extends the CGAL ar
rangement algorithm to conics. Arranging 20 random conics takes 2 seconds on a 450MHz Pen
tium 2. Berberich et al [3] extend the LEDA arrangement algorithm to conics. Arranging 60
random conics with 50 bit coefficients takes 49 seconds on a 846MHz Pentium 3. Eigenwillig et al
[4] extend the LEDA arrangement algorithm to cubics. Arranging 60/9011201250 random cubics
with 100 bit coefficients takes 20/601110/180 seconds on a 1.2GHz Pentium 3. Geismann et al [8]
compute arrangements of special quartics (used to compute arrangements of 3D quadratics) with
a sweep algorithm. Arranging 3 quartics with 30 bit coefficients takes 186 seconds on a Pentium
700. Wolpert [22] computes arrangements of nonsingular algebraic curves by an unimplemented
sweep algorithm.

Mourrain et al [18] compute arrangements of 3D quadratics by an unimplemented plane sweep
algorithm. Geismann et al [8, 19] compute arrangements of 3D quadratics. Keyser et al r11]
compute arrangements of low-degree sculpted solids without degeneracies.

Perturbation Methods Halperin and Leiserowitz [10] compute arrangements of circles by a per
turbation method that need not compute the correct combinatorial structure. They perturb the input
so that each floating point computation is guaranteed to be correct with respect to the perturbed cir
cles. Their method is useful when the perturbation is much less than the manufacturing accuracy,
although the output may be incorrect for the input circles.

Numerical Methods Fortune [7] surveys prior work on numerical methods for robustness in
computational geometry that attempts to make direct use of floating point in the spirit of numerical
analysis. He notes two m<uor approaches. One approach formalizes geometric rounding. Fortune
points out that "the generalization to complex geometric objects is not straightforward." Triangles
whose diameter is less than the floating point threshold (Figure I) can round to points. The real
ization error can be large when the triangles are long and skinny (poor aspect ratio). For example,
collapsing triangle abc in Figure 2 forces the realizations of lines d and e to intersect even though
the true lines are far apart.

We follow the other approach that Fortune outlines: "A second floating-point approach is mod
eled on the error analysis of numerical methods, particularly linear algebra. The goal is to show
that a suitably implemented algorithm provides an answer that is in some precise sense near the
mathematically correct answer. Error analysis of geometric algorithms requires consideration of
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Figure 3: Sample crossing list.

both combinatorial and numeric structure. Often it is easy to argue that an algorithm produces
combinatorially valid output. .. at least with suitably relaxed requirements. It has turned out to be
much more difficult to argue that the numerical error associated with combinatorial structure is
small. Full error analysis has been carried [out] only for a few simple algorithms." [7].

Our research distinguishes itself from prior work by expressing the running time and error in
terms of the number of inconsistencies. We consider the approximate computation as a separate
module and treat the number k of inconsistencies that it generates as an input property. We express
the running time and the error in terms of k. We demonstrate experimentally that k is small,
hence that the algorithm achieves "floating point speed with floating point accuracy." Moreover,
we handle semi-algebraic curves, whereas prior work is restricted to linear objects.

Lines vs. Pseudo-Lines In an earlier survey paper [6], Fortune explains the meaning of "suitably
relaxed requirements" for arrangements of line segments that are realized by pseudo-line segments.
These are curves for which every pair intersects at most once. A pseudo-line arrangement is not
necessarily a line arrangement. Recognizing a true line arrangement structure is equivalent to the
existential theory of the reals, which is at least NP-hard and is in PSPACE. What is hard for lines
is no easier for curves.

3 Input specification

The input to the arrangement algorithm is a set S of curves and a crossing module. A curve is a
sub-manifold of the x, y plane that is the graph of a continuous function y = f(x) : I(J) --7 lR
with I(J) a compact interval. Let minx(J) = min(I(J)) and maxx(J) = max(I(J)). The curve
endpoints are tail(J) = (minx(J), f(minx(J))) and head(J) = (maxxUl f(maxx(J))).

The crossing module takes curves 1, 9 and returns a crossing list (f, g,Tj, 1'2, ... , 1'm ) where
the 1'i approximate the roots of fCc) = g(x) at which their vertical order changes (Figure 3).
The Ti are in the interior of [xs, xe ] = I(J) n I(g). The order r 9 indicates that f(x) < g(x)
for X s :S x < 1'j; otherwise the module returns (g, f, 1'j, 1'2, .. ·, Tm ). The function next(J, g, x)
denotes the next crossing after x, the minimum element of {1'i l1'i > :1:}, and is undefined for
x 2': 1'm. The predicate f <x 9 denotes that f is below 9 at x according to the crossing list. It
is true for x E [xs,1'd U [1'2,1'3) U [1'4,1'5) U ... and is false elsewhere in [x s , x e ]. This definition

implies f <x 9 == -'g <x j.
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Curve endpoints and crossings are floating point numbers. The only operations that the sweep
algorithm performs on them are ;r < y and T = y, which are exact in floating point. We assume
that 1 <x 9 and next(f, g, T) are evaluated in constant time.

We assume that the crossing module is £ accurate according to the following definition. For the
crossing list (f, g, Tl, T2 . . " " ,Tm), define 'Wo = [;r s : 7"1-£], 'Wi = [ri+C Ti+1-£] for i = 1: ... ,m-l,
and 'Wm = [Tm + £, T e ]. If 'Wi is empty (for instance, 7"i+1 - Ti < 2£), redefine it as 'Wi = [mi. mil

with mi = 0.5(Ti + IHl)' using TO = :r s and Tm +1 = x e . If x is in some 'Wi and 1 <x g, then
1) 1(x) ::; g(x) or 2) dist((:r, 1(x)), g) ::; £ and clist((:L g(X")), f) ::; £ where clist((u, v), h) is the
distance from point (u, v) to curve h. Redefining an empty 'Wi as a zero-length interval prevents
an accurate crossing module from inserting in its output spurious pairs Ti, THI of crossings with
li+l - Ti < 2c Section 5.2 shows that £ accuracy reflects what is reasonable to expect from a
numerical solver.

The crossing module is inconsistent for curves r g: h at x when they are in cyclic vertical order:
1 <x g, 9 <x h, and h <x 1. The inconsistent .r Iies in the interval [I, s) that is bounded by the
closest crossings/endpoints T ::; x and s > :r in the three lists. The curves r g: h and the interval
[I, s) comprise an inconsistency. Let k denote the number of inconsistencies among all triples of
input curves for all x values. One could compute k by invoking the crossing module on all pairs
of curves and examining the results for each triple. Thus, k = O(cn3 ) for curves with c crossings,
where c = O(d2

) for curves of algebraic degree d.
The concept of £ accuracy also covers degenerate intersections where two curves touch without

crossing or are identical over an x interval. The crossing module omits the touching points or
assigns them an arbitrary sign. It assigns either order to the identical intervals. Degeneracies and
near degeneracies are the main cause of inconsistent crossing lists. The sweep algorithm detects
and corrects them efficiently, accurately, and without symbolic perturbation.

4 Arrangement algorithm

The arrangement algorjthm is a vertical line sweep that employs two data structures.

1. a list L of curves, called the sweep list, that represents the order of the curves from lowest to
highest along a vertical sweep line. L is implemented as a red-black binary tree whose in
order traversal is the list order. The successor and predecessor of 1 in L are denoted succ(f)
and precl(f).

2. a priority queue P of events: insert(f, x), remove(f, :r), swap(f, g: x), and check(f, g, x).
Events are dequeued in increasing x order. Ties are broken arbitrarily, except that removes
come before other events and inserts come after other events. P is implemented as a heap.

For each 1 E 5, the algorithm initializes P with insert(f: minx (f) ) and remove(f, maxx(f)). It
then repeatedly dequeues an event from P and processes it as follows .

• insert(f::r): Insert 1 into L: if 1 <x 9 at node g, go left else go right. If 1 is not first in L,
enqueue check(pred(J): 1, x) into P. If 1 is not last in L, enqueue check(f: succ(J), x) .

• remove(f, x): If 1 is neither first nor last in L, enqueue check(pred(f),succ(f)). Remove
1 from L.
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• swap(f, g, :17): If 9 =I succ(f), discard the event. Otherwise, swap f and 9 in L. En
queue check(g, f, :17). If f is not last, enqueue check(f, succ(f). x). If 9 is not first, enqueue
check(pred(g) , g) .

• check(f, g, x): If 9 =I SllCC(.f) or max",(.f) :'S x or maxx(g) :'S .7:, discard the event. If
9 <x f, enqueue swap(f, g. .<:). Otherwise, if the next crossing r = next(.f, g, x) is defined,
enqueue swap(f, g, r).

Event processing presupposes that curves can be located in L. Location is performed by assigning
every curve a pointer to its tree node, and every node a pointer to its parent. The evolving sweep
list is converted to an arrangement structure using standard techniques. When P becomes empty,
the sweep ends and the arrangement is complete. Vertical line segments can be added to the output
in linear time; we omit the details.

4.1 Running Time

The sweep defines an output crossing list for each pair of curves. Let L(r) denote the state of
L immediately after the algorithm finishes processing every event in P with x :'S r. Let f <~ 9
denote that f precedes 9 in L(1'). The f,g output crossing list is (f,g,r;",.;, ... ,r~J') where the
r; are the x values where f and 9 swap in L. The 1'; are identical to the ri in the absence of
inconsistency, but differ when swaps are discarded or are added at non-crossings by check events.
Due to inconsistency, it is even possible that 9 <"'5 f yet f <~s gat Xs = max(minx(f), minx(g)):
the input crossing list is (g, f, 1'}, r2 . .... Tm ) and the output crossing list is (f. g, r~, 1';, ... ,r;",).
We have f <. 9 for x E [:17 s , r~) U [r;, <3) U [1'~, T~) U ... and 9 <~ f elsewhere in [x 8 , xe].

We show that the output crossing lists are consistent and have C = N + min(3kn, n 2 /2)
crossings. This implies that the arrangement has 11 = 2n + C vertices and that the running time is
O(Vlogn).

Lemma 4.1 The output crossing lists are consistent.

Proof. If f <~ 9 and 9 <~ h, f precedes 9 precedes h in L(x), so f precedes hand f <~ h. 0

Lemma 4.2 Immediately after insert(f, T) is processed, pred(f) <x f and f <x succ(f).

Proof. After insertion and before balancing, f is a leaf. Its successor is the nearest ancestor 9
whose left subtree contains f. The insertion went left at g, so f <x g. Balancing the tree does not
change the successor. The predecessor proof is analogous. 0

Lemma 4.3 If 9 = succ(.f) in L(x), then f <C!' g.

Proof. Let [a, b) be a maximal interval on which 9 = succ(f) in L(x). Some event at a
establishes 9 = succ(f) and enqueues check(f, g, a). There can be many establishing and dises
tablishing events at a; only the end result matters. The fact that 9 = succ(f) in L(a) implies that
f <a g. Otherwise, the check would enqueue swap(f, g, a) and 9 = succ(f) in L(a) would be
false. The value of f <x 9 next changes at r = next(f, g, a). If r < b were true, swap(f, g, r)
would be executed, which would contradict the maximality of [a, b). Hence, r ~ band f <x 9 on
[a, b). 0
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This lemma shows that adjacent curves in L(x) are in crossing list order. We generalize this
local consistency property to sublists of L(x). The list H = hI, ... ,hp is locally consistent when
hi <1: h i+ I for i < p. It is minimal when removing any of h2 , ... hp - I yields an inconsistent sublist,
which implies that hi+2 <c hi for i < p - 1. Although non-adjacent curves in L(x) need not be
in crossing list order, they can be linked by a minimal locally consistent list of length k x + 2 with
kx ::; k the number of inconsistencies at x.

Lemma 4.4 If f <~ g, there exists a minimal locally consistent list from f to 9 of length at most
k x + 2.

Proof. The list hI = r h2 = succ(hI), ... , hp = 9 is locally consistent by Lemma 4.3. If
hi <x hi+2 for some i < p - 1, delete hi+ I to obtain a locally consistent list of length p - 1. Repeat
this process as long as possible to obtain a minimal list of length l. Each of the I - 2 triples of
consecutive list elements is inconsistent at x, so I - 2 ::; kx and I :S. kx + 2. D

Lemma 4.5 If f <~ 9 and 9 <.1: f, then f, h2 , h3 are inconsistent at x for some h2 , h3 E S.

Proof. Form the minimal locally consistent list from hI = f to hi = g. We have I > 2 because
9 <x f, so hI = r h 2 , h:3 are inconsistent at x. D

Lemma 4.6 The algorithm executes at most C = N + min(3kn, n 2 /2) swap events.

Proof. Let the crossing list for r 9 E S be (f, g, T'I,···, T'm!, so f <x 9 is constant on the
Tn + 1 intervals (-00, T'I), h, 1'2), ['1""2,1'3), ... , [T'm-I' T'm), [1'm, 00). The only time swap(f, g, x)
is executed is when 9 = succ(f) and 9 <x f. This makes 9 = succ(f) false, so no further swaps
are enqueued in the current interval. Therefore, at most one swap is executed in each of the Tn + 1
intervals.

If a swap is executed at Q < 1'I, it is swap(g, f, a), since f <0 g, and 9 precedes f in L before
the swap. Suppose f is inserted later than 9 and let b = minx(f). If b = a, Lemma 4.2 implies that
f cannot be inserted as succ(g). Inserts are processed after deletes and swaps, so the intervening
curves persist in L(a) and r 9 cannot swap at a. We conclude that b < a, 9 <~ f, and f belongs
to an inconsistency according to Lemma 4.5. Charge the extra crossing to this inconsistency. Each
curve can have n - 1 crossing lists, hence n - 1 extra crossings, and each inconsistency involves 3
curves. The k inconsistencies are charged at most 3k(n - 1) times. Also, there can be at most one
extra crossing for each of the n(n - 1) /2 pairs of curves. D

Theorem 4.7 The arrangement has at most V = 2n + C vertices and the sweep has running time
O(Vlogn).

Proof. Swaps generate at most C vertices by Lemma 4.6, insertions and deletions generate
2n vertices, and checks generate no vertices. This proves the vertex bound of V. Each insert,
remove, and executed swap enqueues up to three checks. Each check enqueues at most one swap.
Therefore, the total number of events is a constant times the number of insert, remove, and executed
swaps, which is bounded by V. An event is processed by updating Land Pin O(log n) time. D
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4.2 Realizability

The sweep algorithm constructs a combinatorial arrangement with one vertex per insert, remove,
and executed swap. It determines the vertex x coordinates, but not their y coordinates. We prove
that this combinatorial structure is realized by curves that are close to the input. The proof consists
of three steps: (I) define offset curves that realize the sweep output; (2) show that the realization is
5 accurate when the output crossing lists are 5 realizable; and (3) prove 5 realizability. A separate
paper shows how to construct a generic embedding that realizes the endpoint y coordinates.

Lemma 4.8 For every x E 1(1), dist( (:1:, y), J) is unimodal in y.

Proof. The distance is zero at y = f( x) and is positive elsewhere. Let p and q be points such
that Px = qx and py > qy > f (p,,;). It suffices to show that dist( q, J) < dist(p, J). Let p' be a point
of f nearest to p. If P~ :::; qy, then dist(q, J) .s Iqp'l < Ipp'l = dist(p, J). If P~ > qy, we know
f(px) < qy and f(p~.) = P~ > qy. By the intermediate value theorem, there exists x E (Px, p~)
such that f(x) = qy. Let q' = (x, f(x)). Hence, dist(q, J) .s Iqq'l = Iqx - q~1 < Iqx - p~1 =
Ipx - p~1 .s Ipp'l = dist(p, J). 0

Lemma 4.8 proves the existence of curves y = f+i5(x) and y = f-i5(x) at distance 5 > 0 above
and below f for:1: E 1(1). Using them, we realize each curve f E 5 with

j(x) = max e_i5(x).
e <~ f

The condition e <~ f is shorthand for e E 5, x E 1(e), and e <~ f. We define f <~ f for
x E 1(1), so f-i5(x) is included in the maximum. The function j(x) is possibly discontinuous
when {e Ie <~, .n changes, which can only happen at f crossings. We define .f to be the continuous
curve that results from filling in the discontinuities with vertical line segments.

Figure 4 shows the realization of line segments f and 9 near crossing T. The segments f-o
and 9-0 are parallel to f and 9. The realization curve j (shown with bold dashes) consists of
four line segments. In segment 1, j(x) = f-i5(x) because f <~ 9. In segments 3 and 4, j(x) =
max{f_i5(x), 9-i5(X) because 9 <~ f. The crossing T causes th~ discontinuity in j that is bridged
by segment 2. The realization curve 9 is 9-15.

Lemma 4.9 f <~ 9 implies j(x) .s g(x).
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Proof. By Lemma 4.1, e <~ f and f <~ 9 imply e <~ g. Therefore j(x) is the maximum of a
subset of the elements of g(x) and j(;r) :s; g(:r). 0

Lemma 4.9 shows that vertical order of f and 9 equals the output crossing list order. The
domain of j equals that of f. Thus, the j realize the output crossing lists. The vertical segments
are a consequence of the discontinuity in f <~ 9 at output crossings. They can be eliminated by a
local perturbation to obtain realization functions that equal zero at crossings.

Definition 4.1 The 1, 9 output crossing list is 8 realizable at x if f <~ 9 implies f -0 (:r) :s; g+o (x).

Lemma 4.10 If all output crossing lists are 8 realizable at:r, then f -0 (x) :s; j (x) :s; f +0 (x ).

Proof. Since f -0 (x) is one of the elements in the definition of j, f -0 (x) :s; j (x). For each e
satisfying e <~ f, e_o(x) :s; f+o(x) by 8 realizability, so j(x) :s; f+8(x). 0

It remains to prove that each f, 9 output crossing list is 8 realizable, except near XS • Let Xo
be a value such that f <~o g. Select a minimal locally consistent list (MLCL) from f to 9 at :ro
(as defined prior to Lemma 4.4). Let XI be the minimal value such that this list is an LCL for
x E [XI, xo]. If f and 9 do not swap or start at XI, select an MLCL at x = Xl' the largest floating
point value less than :rl' Let X2 be the minimal value such that this list is an LCL for x E [X2; XI)'

Similarly, construct X3, X4, . ... Let lj + 1 denote the length of the LCL in the interval [Xj+I' Xj).

Lemma 4.11 lj :s; k + 1 - j.

Proof. By construction, f and 9 do not start or swap at Xi, i = L 2, ... ,j. Since Xi is the
leftmost value at which the MLCL at xi_1 remains an LCL, some other segment in the LCL must
start at :ri or some pair of consecutive segments in the LCL must have a crossing at Xi. Therefore,
Xi is at or to the left of the beginning of one of the inconsistencies in the MLCL. (The left endpoint
of this inconsistency might be to the right of Xi because the LCL is not necessarily minimal at
Xi.) Since each xi is to the left of a different inconsistency, the number of inconsistencies in the
interval [xj+l: Xj) is at most k - j. The result follows from Lemma 4.4. 0

We say that an interval [xj+I,Xj) is long ifxj - Xj+1 2: 2ljE. Our strategy for analyzing the
realizability of f and 9 at Xo depends on whether there is a long interval. Lemma 4.13 (and its
helper Lemma 4.12) applies when there are no long intervals and Lemma 4.14 applies when there
is a long interval.

Lemma 4.12 Let p = (X,YI) and q = (X,Y2) with YI :s; Y2· Ifdist(p, 1) :s; 8 and dist(q,g) :s; 8,
then f-o(x) :s; g+o(x).

Proof. By Lemma 4.8, f-o(x) :s; Pv and qy :s; g+8(x), 0

Lemma 4.13 If f <x g, then f and 9 are Ixo - xl + 2E realizable at :ro·

Proof. X either lies in or bounds an interval between crossings in which .f <x' g. By E accuracy,
even if X lies within E of a crossing, there must exist x/ with Ix' - :rl :s; E in that interval such
that f(x') :s; g(x/) or dist((x', f(x')), g) :s; E. We apply Lemma 4.12 to both cases. In the
first case, let p = (xo, f(x')) and q = (;ro. g(:r/)). Hence, py :s; qy and dist(p,1) :s; Ixo
:r/l :s; I:ro - xl + Ix - x/I :s; Ixo - :rl + E and, similarly, clist(q, g) :s; Ixo - :rl + E. In the
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second case, let (x", g(x")) be the point of 9 within E of (x', f(:r;')). We have Ix' - x"I::; E and
If(x' ) - g(:r;") I ::; E. Setp = (xo,f(x")) and q = (xo,g(x")). Hencepy ::; qy and dist(p,j) ::;
Ip - (x', f(x'))1 ::; Ixo - x'I + Ig(x") - f(x')1 ::; Ixo - xl + Ix - x'I + E ::; Ixo - xl + 2E and
dist(q, g) ::; Iq - (xl,g(x"))1 = I:r;o - x"I::; Ixo - xl + Ix - x'I + Ix' - x"I::; Ixo - xl + 2E. 0

Lemma 4.14 If [Xj+1 , Xj) is long, then f and 9 are (xo - xJ) + 21j Erealizable at Xo.

Proof. Set x = Xj -ljf.. Since Xj - :r;j+1 2: 21 jE, [x -ljE, X+ lpo] ~ [Xj+l' Xj]. Let ho, ... , h lj

be the MLCL from f to 9 selected at xj. Set pO = (x, ho(x)) = (x, f(x )). Since p~ = x is at least
ljE distant from an ho, hI crossing, either ho(p~) ::; hl(P~) or dist(pO, hI) ::; E by definition of E
accuracy. If the former, set pI = (p~, hI (p~)). If the latter, set pI to the point on hI within Eof pO.

In either case, Ip~ - p~1 ::; E, and therefore p~ lies at least (IJ - I)E distant from an hI, h2

crossing. Similarly, we define p2 from p1, p3 from p2, until we reach plj on hlj = g. Each step
in the sequence pO, pI , ... ,plj is either straight up in y or no more than E in distance. Therefore,

either P~ ::; p? or Ipl) - pOI::; ljE. In any case, Ip~ - p~1 ::; ljf..

If P~ ::; p~, set p = (.TO'p~) and q = (xo,p~). It follows that Py ::; qy and dist(p, j) ::;
Ip - pOI = Xo - x = (xo - Xj) + ljE and dist(q, g) = lq - pljl = Xo - p~ = (xo - Xj) + (Xj

x) + Ix - p~1 = (xo - Xj) + ljE + Ip~ - p~1 ::; (xo - Xj) + 21j f..
If Iply - pOI::; lJE, the remaining analysis is the same as Lemma 4.13 with Xj taking the role of

x, p~ taking the role of x', p~ taking the role of x", and and ljE taking the role of E. 0

Theorem 4.15 Ifxo 2: max(minx(J), minx(g)) + K E, then f and 9 are (K + 2)E realizable at Xo
for K = min(k(k + 3),2 min(k + 1, n - 1) min(k, n + N)).

Proof. Consider the sequence Xo. Xl, ... ,Xm such that m ::; k: the sequence might be longer,
but we stop at m = k. If the sequence has no long intervals, then Xo - Xm < 210 E+ 21 l E+ ... +
21k- IE::; 2( (k + 1) + k + ... + 2) = k(k + 3)E. On the other hand, an MLCL can have at most n

elements and hence lj ::; min (k + 1, n -1). Each xj is to the left of the left end of an inconsistency
which is either a segment left endpoint or crossing and there are min(k, n + N) of those. Since
:(;j - Xj+1 < 21 j , Xo - Xm < 2min(k + l,n -1)min(k,N). Hence, Xo - Xm < KE, and since
Xo 2: max( minx (J), minx (g)) + K E, neither segment starts at ;(; = Xm and f <~;;. 9 is defined.

If f <~- 9 is true, m = k (otherwise we would not have stopped at m) and 1m ::; k - m + 1 =

1. Th~;~fore, 1m = 1, f <x 9 for x E [:(;m+l, x m ), and f <Xm g. If 9 <~- f, the arrangement
algorithm must have swapped f and 9 at x = xm . But a post-condition of a'swap is f <''l:m g. By
Lemma 4.13, f and 9 are 1:(;0 - X m I+ 2E ::; K E+ 2E = (K + 2)E realizable at ;(;0'

If the sequence has a long interval, let [Xj+I' Xj) be the long interval nearest to Xo (smallest j).
All intervals to the right of ;(;j must be short and therefore Ixo - Xj I ::; 210 E+ 21 1E+ ... + 21j_1E.

By Lemma 4.14, f and 9 are Ixo - :(;jl + 21 jE ::; Ixo - Xjl ::; 210E+ 21 IE+ ... + 21j- I E+ 21j E
realizable at Xo. Since j < m, j ::; k - 1 and the argument of the previous paragraph bounds this
sum by KE. 0

Trimming K E off the left end of each segment f means restricting its domain to [minx(J) +
K E. maxx(J)]. Let r denote the trimmed segment. The following corollary underlies our practical
solution to the lack of an error bound near curve tails. We add a short horizontal "telomere" line
segment to the tail of each segment, calculate the arrangement, and then trim off the telomeres. In
cell biology, a telomere at the end of a strand of DNA loses a few base pairs every time the cell
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divides. The telomere does not encode any genes: it merely acts to protect the genes from loss of
information. Analogously, our telomere segments protect the input segments from insertion error
in the arrangement algorithm.

Corollary 4.16 Ifeach segment j is constant (horizontal)for x E [minx(J), minx(J) + K E] and if
K Eis trimmed offeach segment, then for all x such that P <~ l, P and gt are (K + 2)E realizable
at x.

Proof. Given a horizontal segment ab (ax < bx and Q y = by) and a point p such that Px 2:
bx, dist(p, ab) = Ip - bl. Therefore, if j is constant for x E [minx(J), minx(J) + K E] and if
Px 2: minx(J) + K E, then the point (Xl, j(xl

)) of j closest to p must have Xl 2: minx(J) + K E.

Therefore, dist(p, 1) = dist(p, P).
By definition of trimming, p <~ l implies x ~ max(minx(J),minx(g)) + KE and hence

j and 9 are (K + 2)E realizable at x: there exists p and q such that Px = qx = x, py ::; qy,
dist(p,1) ::; (K + 2)E, and dist(q, g) ::; (K + 2)c By the previous paragraph, dist(p, f)
dist(p, P) and dist(q, g) = dist(q, gt), and hence P and l are (K + 2)E realizable at x. 0

5 Implementation

This section describes our implementation of the arrangement algorithm for semi-algebraic curves
and our validation on highly degenerate inputs.

5.1 Semi-algebraic curves

Semi-algebraic curves are defined in terms of algebraic curves. An algebraic curve is the zero set
of a polynomial F(x, y). A curve point is regular when 'V F is nonzero and is singular otherwise.
The regular points partition into 1D manifolds, called branches, that are topological circles or
lines. Two or more branches meet at a singular point. We specify an input curve as a compact,
x-monotone segment of a branch. Every compact semi-algebraic curve can be expressed as a finite
disjoint union of such curves.

Figure 5 shows two algebraic curves that cross at rand s. Curve 1 consists of three branches: a
topological circle and two topological lines (the left/right loops of a horizontal figure 8) that meet
at singular point c. Curve 2 consists of two unbounded branches. The dots mark the singular and
critical points, which delimit the allowable input curves.

5.2 Crossing module validation

We partition each input algebraic curve into monotone segments by solving F = Fy = 0 to
find singular and turning points then sweeping to compute the branch arrangement. For any x
monotone segment j of F and any value of x E [minx(J), maxx(J)], we can determine j(x) as
follows. Fix x and solve F(x, y) = 0 for y. Using the combinatorial structure of the arrangement,
choose the correct root in y. For each pair of x-monotone segments j, 9 of F, G, the j, 9 crossing
list is constructed by solving F = G = 0, assigning the crossings to the monotone segments of
each algebraic curve, and sampling midway between crossings to determine the vertical order. We
store crossing lists to avoid recomputation.
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Figure 5: Algebraic curves.

We make no theoretical claims about these algorithms, hence omit the details. For both con
structing the x-monotone segments and calculating their crossing lists, the sole numerical operation
is computing the roots of a system of one or two polynomials by the eigenvector method [20).

Accuracy The crossing module is E accurate based on extensive numerical experiments. The
accuracy of numerical root finders is relative to the root magnitude, whereas our definition of E
accuracy is size independent. Hence, the crossing module is E accurate for E = Dp where D is
the magnitude of the largest root and /1 is the floating point rounding unit (about 10- 16 for ANSI
double float). When we compute the portion of an arrangement inside a bounding circle of radius
R, we discard exterior roots to obtain E= Rfl.

The E-accuracy assumption is supported by an informal mathematical argument. Let F and G
cross at p. Numerical analysis shows that the crossing module finds an approximate crossing, q,

such that IF(q)1 < E and IG(q)1 < Eo The bound requires that the coefficients of F and G have
bounded magnitude, which we enforce by scaling. The approximation error is e = p - q and its
magnitude is CE with C the condition of the Jacobian matrix. Thus, the curves are in the correct
vertical order outside a circle ofradius CE around p.

The condition is inversely proportional to the angle between the tangent lines and the magnitude
of the gradients V F(p) and VGn(p). Generically, the angle and the magnitudes are bounded away
from zero, the condition is bounded, and the crossing module yields the correct vertical order
outside a circle of order E, hence is E accurate by clause I of the definition in Section 3. When
the gradients are near zero, the crossing point is nearly singular and the crossing module accuracy
decreases. When the angle between the tangent lines is near zero, the circle radius is unbounded
and clause I fails, but the perpendicular distance between the curves is O( E) inside the circle and
the crossing module is Eaccurate by clause 2.

We estimated E on 10,000 pairs of algebraic curves of degree d with random coefficients in
[-1,1]. We sampled the crossing lists on the bounding box -1 ~ x, y ~ 1 with uniform spacing
of 0.01 in x. For p <x q, the error at x is bounded by min(O, q(x) -p(x)). The mean/max errors are
10~16110-12 for degree 1-10. The arrangement algorithm validation provides similar Eestimates.

We expect the same accuracy for any input, except near singularities. Accuracy drops at iso
lated singularities. Intervals of singularity cannot be handled by any known numerical solver. Two
such curves are identical or share a component. Floating point computation converts these into
approximate properties. Nearly identical curves yield accurate crossing lists no matter what cross-
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ings the solver computes. Shared components defeat our program. Nearly identical curves arise
from the classical curve fitting operations, but shared components do not.

Speed We measured the running time for two curves of degree d. Theory ensures a polynomial
bound. Experiments on random and degenerate inputs yields cd4 time with c = 18 microseconds
on a 3GHz Pentium 4 running RedHat 9 Linux. Half the time goes to matrix setup in C and the
rest to eigenval ue computation with CLAPACK 3.0 [I]. A further factor of 2-4 speedup may be
possible by using BLAS in matrix setup and by optimizing the CLAPACK implementation.

Inconsistencies The crossing module generates no inconsistencies on 100,000 triples of alge
braic curves, of degree 1-10, with random coefficients in [- L 1]. We replaced each curve F(x, y)
with F(x, y) - F(O.l, 0.2), so that all the curves meet at (0.1, 0.2) except for rounding error. Inde
pendently of degree, 6% of the curve triples are inconsistent on an interval of average length 10-15

near (0.1, 0.2). We added a random constant in [0,10- 14 ] to each polynomial and obtained no
inconsistencies. The arrangement algorithm validation yields about N inconsistencies for highly
degenerate arrangements with N crossings. We conclude that inconsistencies cost nothing on
generic inputs and cost at most a factor of two.

5.3 Arrangement algorithm validation

This arrangement algorithm validation has three goals. First, the algorithm handles inputs with
many localized degeneracies: many vertices incident on many algebraic curves. Second, it handles
"evil twins": multiple versions of the same algebraic curve with slightly different coefficients.
Third, the speed and accuracy are within a factor of two of the limit imposed by the root solver.
There is no log factor here: the algorithm is within a few percent of solving the fewest polynomial
systems required to avoid missing arrangement vertices.

Section 5.3.1 describes how we generate "good" and "evil" arrangements to test the algorithm.
Section 5.3.2 analyzes a typical output to ~upport the goals of the validation. Section 5.3.3 reports
statistical evidence that the typical example is representative.

5.3.1 Generating Arrangements

We validate our algorithm on inputs with many degeneracies and near degeneracies, which are
the hardest cases for any algorithm. To create such an input, generate random sets of points in
the unit square lxi, Iyl < 1 and fit polynomials to them until there are 10 segments. Calculate
the arrangement of these segments. Select random sets of vertices from this arrangement and fit
polynomials to them until there are 90 more segments. Calculate the arrangement of the 10 + 90 =

100 segments. Select random sets of vertices from these arrangements and fit polynomials to them
until there are 900 more segments. Calculate the arrangement of the 10 + 90 + 900 = 1000
segments. This is the "good" arrangement. To generate an "evil" arrangement, generate only 400
instead of 900 segments in this manner. Generate the remaining 500 segments as "evil twins" of
the 100 segments in the second arrangement. To do so, select at random one of the polynomials
of the first 100 segments. From the second arrangement, select a random set of vertices that lie
on one of the segments of that polynomial. Fit an "evil twin" polynomial to those vertices. In the
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Figure 6: Input arrangements of degree 3.

absence of rounding error, the evil twin is identical to the original polynomial. However, there is
rounding error in the calculation of the vertices and in the fitting to these vertices. Therefore, the
evil twin is nearly identical to the original. Add segments from evil twins until there are 500 evil
twin segments for a total of 10 + 90 + 400 + 500 = 1000 segments.

A bivariate polynomial F(x, y) of degree d has D = (d + l)(d + 2)/2 coefficients. Since
F(:r, y) = 0 is independent of scale, there are only D - 1 degrees of freedom. Given D - 1 points,
set one coefficient to I and plug the points into the equation to generate D - 1 linear equations in
the other coefficients. To avoid stressing the linear solver, we reject sets of points with pairs nearer
than 0.01. Subdivide the algebraic curve F(x, y) = 0 into monotone segments, and then select
maximal subsegments that end at fit points or at turning points. If we detect a singularity, we reject
F. Our algorithm handles singularities, but we validate on degeneracies only.

Figure 6 shows test arrangements with 10, 100, and 1000 segments of degree 3. The following
is the histogram of incidences of algebraic curves on vertices from I to 50: 30 91044 935 455 262
14095 5855 45 50342425 24 20 17 IS II 12 107995 5 7 I 3 306 I 3 I 0 I 05 0 I 0 I 200 I
00 I. For example, 30 vertices are incident on one algebraic curve. These include turning points,
which are incident on two segments but only one curve. Most of the "91 044 vertices incident on
two curves are newly generated intersections. The evil twin arrangement (not shown) is even more
degenerate: 8041595 6029 2595 1257 668 425 290 192 ISO 108 11068 44 44 29 28 28 24 1725
22 II 17 20 13 I I 16 II I I 8 7 4 4 6 5 4 2 0 4 4 2 0 2 0 I 0 I I 0 0 0 0 I.

5.3.2 Typical Results

For the good arrangement, the estimated maximum realization error is the same as the maximum
rootlist realization error E, which in this example is 9.6194 . 10- 14 . (We describe below how we
estimate the realization error.) The total running time for the arrangement is 65 seconds, out of
which 49 seconds were devoted to solving pairs of bivariate polynomial equations and classifying
the roots. Although there were 1000 segments, there were only 359 algebraic curves (polynomial
equations) with an average 1000/371 >::::; 2.8 segments each. Only 49061 out of a possible 359 .
358/2 = 64261 pairs of algebraic curves could "see each other": the pair was adjacent in the
vertical sweep list at some point. The algorithm calculated roots for 49704 pairs, less than 2%
more than the minimum necessary.

In this example, 50354 pairs of algebraic curves meet at vertices, which is about I% more
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than the number of pairs for which the algorithm calculated roots. For this reason, we consider it
unlikely that a distribution-dependent technique, such as jacketing curves in polygons, would sep
arate many non-intersecting curves and avoid root finding. No technique can separate curves that
intersect, and the current algorithm already calculates roots for fewer pairs than intersect. However, .
if a distribution-dependent technique would help, it could be incorporated into our algorithm.

The number of pairs that see each other (49062) is about 75% of the theoretical maximum
(64261). The reason that this percentage is so high is that algebraic curves have multiple segments
and therefore more opportunities to see each other. We believe that pairs of segments meeting at
turning points (vertical tangencies) are a possible source of numerical error, so we include them in
the tests. To make sure that the algorithm is solving for the minimum number of roots even when
fewer pairs see each other, we ran a test in which one segment per algebraic curve was selected for
the final 900. This example has 109493 pairs that see each other, 113] 22 or about 3% more for
which the algorithm calculates roots, and 12402] pairs or another 3% more that intersect. There are
933 algebraic curves, and so these number are about 25% of the maximum 933·922/2 = 434778.
Again, the algorithm calculates very close to the theoretical minimum number of roots.

Each sweep event is an opportunity for incorrectly ordered segments to be properly correctly.
Pairs of segments are never swapped unless their root list indicates. For this reason, we estimate
the realization error by evaluating the error just to the left of each vertex. We evaluate the error for
each segment incident on the vertex plus the segments directly above and below the vertex. For
segments adjacent in the sweep, the maximum error is 9.6194 . 10- 14

. Since adjacent segments
are locally consistent, this error represents an estimate of the solver £ accuracy. Actually, this is an
estimate of the solver's realizability, which is up to 2£ for accuracy f. However, we will refer to
this number as £ because it is easier to measure and is what matters in practice. We then looked at
non-adjacent pairs of segments that were ordered contrary to their root list order. The maximum
error for segments two apart in the sweep list is 1.25598 . 10-14

. The maximum error of segments
three and four apart is 1.63053.10-14 and 4.92924e .10-14 . There was no error for segments farther
apart in the sweep list. Hence, the estimated realization error is f.

This experiment was run with a telomere length of 212 rounding units. We chose this length to
make it roughly comparable to the maximum £ we had seen. Telomeres do not decrease the error,
but they reduce the running time by 28%. The root solving time is the same, so the improvement is
even more dramatic. (Since the telomeres are horizontal, we calculate telomere/curve intersections
by solving a univariate polynomial equation, and so telomeres do not directly increase the number
of bivariate pairs to solve.) Paradoxically, adding telomeres makes it about twice as fast to compute
the combinatorics of the arrangement. There is also a dramatic reduction in extra crossings: from
79 without telomeres (segments that are out of crossing list order when they first see each other)
to 7 with telomeres. There are 2610 telomere/curve intersections, but these are removed when the
telomeres are trimmed from the arrangement. The algorithm detects 4584 inconsistencies.

5.3.3 Statistics

This section describes statistics to support the typical results reported in the previous section. We
ran ]0 experiments on arrangements of algebraic degree 3 to 10. Tables ] and 2 are for good and
evil arrangements. For each pair of polynomial equations it solves, the algorithm checks if the
number of roots equals the Bezout bound. If not, it samples to detect probable missing roots. It
detected these for two good degree 10 arrangements and for one evil degree 10 arrangement. One

]6



Table I: Statistics for good arrangements.
degree 3 4 5 6 7 8 9 10
median N 108376 97431 91914 72095 62766 48257 37622 32951
maximum N 119237 113156 97867 82311 84872 54257 46680 34978
median k 9555 24148 34043 44025 18788 8188 6013 3381
maximum k 22537 30366 90591 70729 47346 13054 10561 6860
median -lg E 44 41 41 40 40 40 40 39
minimum -Ig E 42 40 37 38 39 39 38 I
total time (sec.) 112 147 167 182 191 202 227 270
root time (%) 69 72 73 74 80 86 87 85
excess pairs (%) 3.3 2.2 0.5 0.1 0.0 0.0 0.0 0.0
extra crossings 14 16 31 74 21 9 12 18
error (j E) 1.0 1.0 1.1 1.0 1.0 1.0 1.0 l.l
speedup (%) 26 31 37 33 33 32 28 24
extra cross. red. II 21 16 10 6 13 5 4
min. error ratio 1.0 1.0 1.0 0.5 1.0 1.0 0.9 1.0
max. error ratio 1.0 1.0 2.1 1.0 1.0 1.0 1.0 1.0

of these missing roots accounts for the very poor accuracy for degree lOin Table I.
The first column in Table 1 can be understood as follows. The first section describes the inputs:

N is the number of segment intersections; k is the number of inconsistencies; and E is the root list
error. For each arrangement, the worst value is determined. The median refers to the median of
the ten worst values. The second section describes the output. Calculating the roots used at least
68% of the running time. Roots were calculated for only 3.3% extra pairs of polynomials over the
minimum necessary. There were at most 11 extra segment crossings resulting from inconsistencies:
the min(3kn, n2 /2) term in the number of vertices. The error was 1.0 times c: the (1 + k2 )E term
of the error. The third section describes the effect of telomeres. They improved the running time
by 34%, reduced the number of extra crossing by at least a factor of 11, and changed the multiple
of E by factor between 1.0 and 1.0 (no change). The other columns are similar.

Root solving time always dominates. For the evil arrangements, the number of excess roots
solved is larger, up to 25% for degree 3, but not excessively so, and so the running time is still
within a small factor of the best it can be. The realization error was never more than 2E. Adding
telomeres sometimes made the realization error worse, but not by more than a factor of two. It
always improved the running time and greatly reduced the number of excess crossings.

If F(x, y) = 0 and G(x, y) = 0 have nearly identical coeficients (evil twins), we solve for the
roots of F(x, y) = 0 and F(x, y) - G(x, y) = 0 instead, with the second polynomial scaled so its
largest magnitude coefficient is unity.

6 Conclusions

We have presented a robust arrangement algorithm for plane curves based on an E accurate crossing
module. Its performance is analyzed in terms of the number k of combinatorial inconsistencies that
occur due to the approximation error. The running time and output size match those of the standard
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Table 2: Statistics for evil arrangements.
degree 3 4 5 6 7 8 9 10
median N 78726 82809 76080 67779 54833 44966 37647 29829
maximum N 91118 93843 89879 77399 74077 52696 49203 34896
median k: 48462 55682 67282 53411 32392 15447 13085 6909
maximum k 67639 69473 128594 92703 77796 22381 17617 12246
median -lg f 43 41 43 41 40 40 38 31
minimum -Ig f 42 33 38 36 32 33 28 27
total time (sec.) 104 160 195 200 220 233 277 286
root time (%) 73 77 77 77 82 88 89 92
excess pairs (%) 22.4 13.3 4.5 1.7 0.9 0.2 0.2 0.0
extra crossings 12 24 37 76 23 9 23 43
error (jf) 1.2 1.6 1.0 1.0 1.6 1.0 1.3 1.4
speedup (0/0) 28 25 29 30 27 24 22 20
extra cross. red. 56 23 20 9 8 23 15 8
min. error ratio 1.0 1.0 0.6 1.0 0.8 0.7 1.0 1.0
max. error ratio 1.0 1.0 1.0 1.0 1.0 1.0 1.6 1.0

sweep algorithm with exact, unit-cost algebraic computation, plus a kn log n term with n the input
size. The output accuracy is f + k:2f. We have presented extensive experimental evidence that
inconsistencies at most double the output size even on highly degenerate inputs. Hence, the actual
performance matches the standard sweep with floating point computation.

The only case where we found many inconsistencies is among triples of curves that almost
meet at a point. The curves form a tiny triangle with 4 inconsistent vertex orders and 2 consistent
orders. As the curve degree increases, the floating point resolution of the triangle decreases until
the vertex order becomes essentially random. Small triangles occur in some applications. For ex
ample, consider the layout problem of cutting a maximum number of clothing parts from a strip of
fabric. Every part will touch two other parts (or the strip boundary) in an optimal configuration,
which implies that three contact curves cross in every three-part configuration space. In mechan
ical design, redundancy and symmetry can generate crossing triples of contact curves. Even so,
the inconsistencies are confined to small regions. We conjecture that if the k inconsistencies are
pairwise f separated, where f is the crossing module accuracy, then the running time is linear in k
and the output accuracy is f.

Inconsistency sensitive analysis is a new computational geometry paradigm that we plan to
explore further. Our next goal is to construct and manipulate the configuration spaces of rigid
planar parts, which are key to algorithmic part layout, mechanical design, and path planning. An
other goal is solid modeling with explicit and implicit surfaces. In both cases, the computational
geometry task is to arrange surface patches of high degree.

We also plan to develop iterative algorithms that cascade geometric computations, meaning
that the output of each iteration is the input to the next iteration. Many non-geometric numerical
algorithms use cascading, for example Newton's method. We believe that geometric algorithms
would also use cascading extensively if there were an effective way to implement it. For example,
Milenkovic uses cascaded numerical geometric operations in part layout [17, 14, 16]. However,
one can construct any algebraic expression by cascading two simple geometric constructions: (1)
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join two points to form a line and (2) intersect two lines [2, 15]. This suggests that exact geometric
cascading is as hard as exact scientific computing, which is untenable. The shape modeling results
suggest that our approach can make cascading practical by replacing this exponential factor with a
small constant.
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