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a b s t r a c t

Geometric rounding of a 3D triangle mesh is the task of approximating the vertex coordinates by floating
point numberswhile preserving the topology.We present a practical geometric rounding algorithmbased
on a novel strategy: (1) modify the mesh to achieve a feature separation that prevents topology changes
when the coordinates change by the rounding unit; and (2) round each vertex coordinate to the closest
floating point number. The geometric rounding algorithm allows computational geometry algorithms to
interface with numerical algorithms. Mesh feature separation is also useful on its own, for example for
enforcing minimum feature sizes in CAD models. We demonstrate a robust, efficient implementation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A common representation for a surface is a triangle mesh:
a set of triangles with shared vertices and edges. Meshes are
usually constructed from basic elements (polyhedra, triangulated
surfaces) through sequences of operations (linear transformations,
Booleans, offsets, sweeps). Although typical basic elements have
floating point vertex coordinates, mesh vertices can have much
higher precision. For example, the intersection point of three tri-
angles has thirteen times the precision of their vertices. High pre-
cision coordinates are incompatible with numerical codes that use
floating point arithmetic, such as finite element solvers. Rewriting
the software to use extended precision arithmetic would be a
huge effort andwould entail an unacceptable performance penalty.
Instead, the coordinates must be approximated by floating point
numbers.

One strategy is to construct meshes using floating point arith-
metic, so the coordinates are rounded as they are computed. This
strategy suffers from the robustness problem: software failure or
invalid output due to numerical error. The problem arises because
even a tiny numerical error can make a geometric predicate have
an incorrect value, which in turn can invalidate the entire algo-
rithm. For a controlled class of inputs, robustness can be ensured
by careful engineering of the software, but the problem tends to
recur when new domains are explored.

A solution to the robustness problem, called Exact Computa-
tional Geometry (ECG) [1], is to represent geometry exactly and
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to evaluate predicates exactly. ECG is efficient because most pred-
icates can be evaluated exactly using floating point arithmetic.
Mesh construction using ECG is common in computational geom-
etry research and plays a growing role in applications. We use
ECG to implement Booleans, linear transformations, offsets, and
Minkowski sums [2,3]; the CGAL library [4] provides many ECG
implementations.

Although ECG guarantees a correct mesh with exact vertex
coordinates, it does not provide a way to approximate the coor-
dinates in floating point. Rounding the coordinates to the nearest
floating point numbers can cause triangles to intersect. A geometric
rounding is an intersection free approximation. Prior work pro-
vides efficient geometric rounding algorithms for 2D geometry
[5–7], but not for 3D triangle meshes (Section 2).

Contribution. We present a practical geometric rounding algo-
rithm. The input and output are sets of 3D triangleswhose interiors
and edge interiors do not intersect. The input coordinates are
exact and the output coordinates are double-floats. There exists
a continuous, non-intersecting hence topology preserving, defor-
mation from the input to the output. The algorithm increases the
separation of the close featureswhile preserving the topology, then
rounds the coordinates. The separation ensures that the rounding
also preserves the topology.

The features of a mesh are its vertices, edges, and triangles.
Since the interiors of edges and triangles do not intersect, features
are disjoint if and only if they share no vertices. The separation of
a mesh is the minimum distance between disjoint features. If the
separation exceeds d, moving each vertex by a distance of at most
d/2 cannot make any features intersect, which implies that the
mesh topology is preserved. If the vertex coordinate magnitudes
are bounded by M , rounding them to the nearest floating point
numbers moves a vertex at most e =

√
3Mϵ with ϵ the rounding
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unit. Thus, the topology is preserved by increasing the separation
to 2e then rounding.

Our mesh separation algorithm increases the separation of a
mesh in three stages.Modification removes short edges and skinny
triangles by standard mesh edits (Section 3), thereby eliminating
many close pairs of features. Expansion and optimization separate
the remaining close features via locally minimum vertex displace-
ments. Expansion iteratively increases the separation of the close
features until they are separated (Section 4). Optimization takes
the separated mesh as input and minimizes the displacement of
the vertices from their original positions under the separation
constraints (Section 5).

Beyond geometric rounding, mesh separation is a novel form of
mesh improvement that is useful in computations that suffer from
close features. One application is removing ill-conditioned trian-
gles from finite element meshes. Another application is computer-
aided design, which typically requires a minimum feature size due
tomanufacturing constraints. Current software removes small fea-
tures heuristically, e.g. by merging close vertices, which can create
triangle intersections. Our algorithm provides a safe alternative.

Implementation. We implement the geometric rounding algorithm
robustly (Section 6). We use ECG for the computational geometry
tasks, such as finding close features and testing if triangles inter-
sect. We use linear programming with floating point arithmetic
and adaptive scaling in expansion and optimization. We test the
implementation on custom and random meshes (Section 7). We
conclude with a discussion (Section 8).

2. Prior work

Fortune [8] rounds a mesh of size n in a manner that increases
the mesh size to n4 and the vertex complexity by log n bits. Dev-
illers, Lazard, and Lenhart [9] round to a mesh of size n15 in time
n19 without increasing the vertex complexity. Fortune [10] gives
a practical rounding algorithm for plane-based polyhedra. We [2]
extend this algorithm to polyhedra in a mesh representation. Most
output vertices have floating point coordinates. The highest preci-
sion output vertex is an intersection point of three triangles with
floating point coordinates.

Our new algorithm improves on our prior algorithm. The input
can be any set of non-intersecting triangles. All the output vertices
have floating point coordinates. The mesh topology is preserved.
Close features are removed. Unlike all prior mesh rounding algo-
rithms, the output size is bounded by the input size. However, our
error bound is empirical.

Zhou et al. [11] present a heuristic form of geometric rounding
akin to our prior algorithm and show that it works on 99.95% of
10,000 test meshes. Our new algorithm is several times faster than
this heuristic on our test cases.

There is extensive research [12] on mesh simplification: accu-
rately approximating a mesh of small triangles by a smaller mesh
of larger triangles. The mesh edits in the modification stage of our
algorithm come from thiswork. Simplification reduces the number
of close features as a side effect of reducing the number of trian-
gles and increasing their size, but removing all the close features
is not attempted. Mesh untangling and improvement algorithms
[13,14] improve a mesh by computing vertex displacements via
optimization. Although we use a similar strategy, our objective
functions and optimization algorithms are novel. Cheng, Dey, and
Shewchuk [15] improve Delaunay meshes with algorithms that
remove some close features, notably sliver tetrahedra.

3. Modification

The modification stage of the mesh separation algorithm con-
sists of a series of mesh edits: edge contractions remove short

Fig. 1. (a) Short edge th; (b) th contraction.

Fig. 2. (a) Skinny triangle thv; (b) th flip.

edges and edge flips remove skinny triangles. We perform every
edit that satisfies its preconditions and that does not cause trian-
gles to intersect.

An edge th is short if ∥h−t∥ < d. For th to be contracted, it must
be manifold, that is incident on two triangles thv and htw (Fig. 1a).
The triangles incident on t form a surfacewhose boundary is a sim-
ple looph, v, t1, . . . , tm, w; likewise forhwith t, w, h1, . . . , hn, v. If
the ti and the hj are disjoint sets, th is contracted: it is replacedwith
a new vertex m = (t + h)/2 and the incident edges and triangles
are updated (Fig. 1b).

A triangle thv is skinny if v projects onto a point p in th and
∥p − v∥ < d (Fig. 2a). The edge th is flipped if it is incident on
triangles thv and htw, vw is not an edge of the mesh, and the
triangles vwh andwvt are not skinny. The flip replaces thwith vw,
and replaces thv and htw with vwh and wvt (Fig. 2b).

Analysis

Modification terminates because every contraction reduces the
number of edges and every flipmaintains this number and reduces
the number of skinny triangles. The computational complexity of
an edit is constant, except for intersection testing, which is linear
in the number of mesh triangles. We cannot bound the number of
edits in terms of the number of short edges and skinny triangles in
the input because edge contractions can create skinny triangles.

Edits preserve the intrinsic topology of the mesh because they
replace a topological disk by another topological disk with the
same boundary. The boundary is t1, . . . , tm, w, h1, . . . , hn, v for a
short edge and is vtwh for a skinny triangle. If the pair of disks
surrounds a subset of the mesh, such as a small separate compo-
nent, the edit is rejected because it cannot be accomplished by a
continuous deformation. This property and the rejection of edits
that cause intersections jointly preserve the embedded topology
of the mesh.

We measure error by the distance between the input and the
output meshes. An edit deforms its topological disk by at most d,
so the error due to modification is bounded by d times the number
of edits. Althoughwe lack a bound in terms of the input, themedian
error is only 0.5d in our tests (Section 7).
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Fig. 3. Features A and B with closest points p and q: (a) two edges, (b) vertex and
triangle.

4. Expansion

The expansion algorithm (below) repeatedly increases the sep-
aration until it exceeds d. Each step assigns every vertex a dis-
placement that is added to its position to obtain its new position.
The displacements are computed by linear programs that approxi-
mate the distances between the features by linear functions of the
displacements and that bound the displacements by ∆ = d to
control the truncation error. If triangles intersect or the separation
of the mesh increases, the truncation error is reduced by halving
∆ and the displacements are recomputed. Otherwise, the vertices
are updated and the step ends.

Expansion Algorithm
While the separation of the mesh is less than d:

1. Formulate linear separation constraints.
2. Set ∆ = d.
3. Bound the vertex coordinate displacements by ∆.
4. Compute vertex displacements subject to 1 and 3.
5. If triangles intersect or the separation increases, set ∆ =

∆/2 and go to step 3.
6. . Update the vertices.

The separation of a mesh equals the minimum distance be-
tween a vertex and a triangle or between two edges. The distance
between features A and B is the maximum over unit vectors u of
the minimum of u · (b − a) over the vertices a ∈ A and b ∈ B. The
optimal u is parallel to q − p with p and q the closest points of A
and B, which need not be vertices (Fig. 3).

We assign each vertex a a displacement a′ and approximate the
distance between the displaced features by a linear function of the
displacements. The first order displacement of u is expressible as
lv + mw with u, v, and w orthonormal vectors. We obtain the first
order distance

min
a∈A,b∈B

u · (b − a) + u · (b′
− a′) + (lv + mw) · (b − a)

by substituting the displaced values into u · (b − a) and dropping
the quadratic terms.

We compute approximately optimal displacements subject to
constraints on the first order distances between features. It would
be wasteful to constrain every pair of features because most fea-
tures are too far apart to be affected by displacements of size d.
On the other hand, we must constrain the pairs that the optimizer
might otherwise cause to intersect. A vertex can be displaced
by a distance of at most

√
3d because we bound the coordinate

displacements by ∆ ≤ d. Hence, we need only constrain the pairs
of triangles that are at most 2

√
3d apart.

We compute the displacements by solving two linear pro-
grams (LPs). A vertex displacement a′ is represented by variables
a′
x, a

′
y, a

′
z , abbreviated as a′

x,y,z . We model the quantities l and m
in the first order distance estimates as LP variables, rather than

expressing them in terms of the vertex positions. We omit the
lengthy proof that the LPs compute their correct values.

First Expansion LP
Constants: d,∆, the vertices, and the vectors u, v, andw for each

pair of features.
Variables: s, a′

x,y,z for each vertex a, l and m for each pair of
features.

Objective: maximize s.
Constraints: (1) 0 ≤ s ≤ 1, (2) −∆ ≤ a′

x,y,z ≤ ∆, (3)
u · (b − a) + u · (b′

− a′) + (lv + mw) · (b − a) ≥ sd.
Second Expansion LP
Constants: d, ∆, the vertices, the vectors u, v, and w for each

pair of features, sm.
Variables: a′

x,y,z and amx,y,z for each vertex a, l andm for each pair
of features.

Objective: minimize
∑

a a
m
x + amy + amz .

Constraints: (1) −∆ ≤ a′
x,y,z ≤ ∆, (2) −amx,y,z ≤ a′

x,y,z ≤ amx,y,z ,
(3) u · (b − a) + u · (b′

− a′) + (lv + mw) · (b − a) ≥ smd.
The first LP maximizes the mesh separation subject to the ∆

bounds. It constrains the distances between the close features to
exceed sd with 0 ≤ s ≤ 1 a variable that it maximizes to
s = sm. Since s = 1 implies a separation of d, a larger value
would increase the error for no reason. The second LP computes
minimal displacements that achieve s = sm. The magnitude of
the displacement of a vertex a is represented by variables amx,y,z
with constraints −amx,y,z ≤ a′

x,y,z ≤ amx,y,z . The objective is to
minimize the sum over the vertices of these variables. The variable
s is replaced by the constant sm in the constraints.

Analysis

Expansion preserves the mesh topology because each step
checks that the linear motion from the initial vertex positions to
their updated positions does not cause a triangle intersection.

We prove that expansion terminates. The first LP computes a
positive sm because no triangles intersect. The displacements that
it computes are feasible for the second LP. Hence, every expansion
step succeeds for some∆. It remains to bound the number of steps.

We employ the following definitions. A ∆-displacement is a
displacement in which the coordinate displacements are bounded
by ∆. Let δ denote the minimum separation of the mesh. The
tightness τ as the minimum over all ∆-displacements of the ratio
of ∆ to the increase in δ.

Theorem 1. The number of expansion steps is bounded.

Proof. A ∆-displacement can increase the separation of a pair
by at most 2

√
3∆, so τ >

√
3/6. Let M be the maximum vertex

coordinate magnitude. The ∆-displacement a′
= ∆a/M increases

δ by ∆δ/M , so τ < ∆/(∆δ/M) = M/δ. Since scaling up the mesh
is a feasible solution yet does not increase M/δ, neither does the
optimal solution. Hence, τ < M/δ at every expansion step.

The LP maximizes S = sd for the linear separation constraints.
Let S∗ be the maximum of S for the true constraints and let T
be the maximum truncation error of the linear constraints. The
linear separations for the optimal displacement are at least S∗

− T .
Therefore, the LP solution satisfies S ≥ S∗

− T and the true
separation is at least S − T ≥ S∗

− 2T .
For a ∆-displacement with ∆ = δ/k, T < cδ/k2 for some

constant c . For k = 4cτ , the optimal ∆-step increases δ by δ/kτ =

δ/4cτ 2, so the LP increases δ by δ/4cτ 2
− 2cδ/k2 = δ/8cτ 2. Since

one step multiplies δ by 1 + 1/8cτ 2, O(τ 2 log(d/δ)) steps increase
it to d.
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5. Optimization

The optimization algorithm takes the output of expansion as
input and locally minimizes the displacement of the vertices from
their original positions. We apply a gradient descent strategy to
the semi-algebraic set of vertex values for which the mesh is d-
separated. We compute the direction in which the displacement
decreasesmost rapidly subject to the linear separation constraints.
We take a step of size β = d in this direction and use the expansion
algorithm to correct for the linearization error and return to the d-
separated space. If the displacement increases, we divide β by 2
and retry the step. If four consecutive steps succeed, we double β .
The stopping criterion is that the displacement decreases by less
than 0.01d.

We compute the descent direction by solving an LP. We rep-
resent the pre-expansion value of a vertex a by constants a0x,y,z
and represent its displacement by variables adx,y,z with constraints
−adx,y,z ≤ ax,y,z + a′

x,y,z − a0x,y,z ≤ adx,y,z and −β ≤ a′
x,y,z ≤ β . The

objective is tominimize the sumover the vertices of adx,y,z . We drop
s from the constraints because they are feasible with s = 1 due to
expansion.

Optimization LP
Constants: β , d, the vertices, the pre-expansion vertices a0, the

vectors u, v, w.
Variables: the a′

x,y,z , l, m, and adx,y,z .
Objective:minimize

∑
a a

d
x + ady + adz .

Constraints: (1) −β ≤ a′
x,y,z ≤ β ,

(2) −adx,y,z ≤ ax,y,z + a′
x,y,z − a0x,y,z ≤ adx,y,z ,

(3) u · (b − a) + u · (b′
− a′) + (lv + mw) · (b − a) ≥ d.

Analysis

Our algorithm differs from standard gradient descent in that
an expansion step can undo the decrease in displacement from
the prior descent step. When this occurs, the algorithm halves
β . The error of the expansion is quadratic in β . The correcting
displacement is proportional to this error, hence is quadratic in
the descent displacement. For a small enough β , the correction no
longer undoes the progress of the descent.

6. Implementation

Computation. The input vertex coordinates are real numbers rep-
resented exactly using our ECG library [3]. The mesh separation
algorithm is implemented exactly, except for linear programming.
The inputs to the LPs are floatswhose computation is described be-
low. A vertex coordinate is updated by exact addition of its current
value and its float displacement. The output vertex coordinates are
rounded to double-float.

Modification. We accelerate the intersection tests by storing the
mesh in an octree that is updated after each edit.We performmesh
edits in an order that reduces the number of tests. Contractions
come before flips because removing a short edge also eliminates
two skinny triangles. We perform edits of the same type in order
of feature distance. When we contract an edge of length x, we
need only test for intersections between the new triangles and old
triangles within distance x/2. When we remove a skinny triangle
of size x, we need only test for intersections between the two new
triangles and old triangles within distance x. In both cases, prior
edits have eliminated most such old triangles.

Expansion. We combine the two LPs into one LP that achieves the
same results in half the time. We take the constants, variables, and
constraints from the first LP and add the am and their constraints.
We maximize s − kn

∑
a a

m
x + amy + amz with k a constant and

with n the number of vertices. Any sufficiently large k forces the
constraints that determine s = sm into the basis, thereby making
the new LP equivalent to the two LPs. We set k = 6000 and the
combined LP works well on our tests, although convergence is not
guaranteed.

Intersection test. Expansion and optimization verify that each ver-
tex update does not cause any pair of features A and B to intersect.
We express the displacement of each vertex v as a linear transform
v + v′t , so A and B become functions of t with initial and displaced
values at t = 0 and t = 1. The pair intersects if A and B are in
contact at some t ∈ [0, 1]. We first try a fast, conservative test:
there is no intersection if (u + lv + mw) · (b + b′

− a − a′) >

0 for all vertices a ∈ A and b ∈ B. Otherwise, we compute
the t values where the features are coplanar by solving a cubic,
transform the vertices by each value, and check if the transformed
features intersect.

Linear programs. We use the IBM CPLEX solver. The input size is
not a concern because the number of constraints is proportional
to the number of close features. The challenge is to formulate
a well-conditioned LP. We scale the displacement variables by
d because their values are small multiples of d. We divide the
separation constraints by d to avoid tiny coefficients.We bound the
magnitudes of l andm by 1 and scale them by a parameter α that is
initialized to 1. After solving an LP, we check if the solution violates
any of the constraints by over 10−6, meaning that the separation
is off by over 10−6d. If so, we multiply α by 10 and re-solve the
LP. This strategy trades off accuracy for number of iterations when
scaling is poor.

We do not formulate the LP in terms of the rounded vertex coor-
dinates because rounding errors could make it infeasible. Instead,
we formulate in terms of the quantities u, u · (b − a), v · (b − a),
and w · (b − a), which we calculate to floating point accuracy. The
floating point value of u · (b − a) is nonnegative because the exact
value is positive, so the LP is satisfied when all the variables are set
to zero.

The only accuracy problem that remains after scaling is that
v · (b − a) or w · (b − a) can have much larger magnitude than
u·(b−a). If that causes an inaccurate output,wedetect the resulting
constraint violation and change the value ofα, thereby dividing the
two largest coefficients by 10.

7. Testing

We tested our geometric rounding algorithm on five types of
custom meshes and on random meshes. The former validate the
algorithm on common applications and the latter strengthen the
statistical analysis of its performance. Table 1 shows the results for
severalmeshes of each type. The running times are for an Intel Core
i7-6700 CPU at 3.40 GHz with 16 GB of RAM. A statistical analysis
of the test results appears below.

(1) Isosurfaces. The meshes are isosurfaces constructed by a
marching cubes algorithm, and simplified isosurfaces (Fig. 4). The
vertices have double-float coordinates.

(2) Tetrahedral meshes. The meshes are Delaunay tetrahedraliza-
tions of polyhedra with double-float coordinates (Fig. 5). Modifica-
tion is omitted because edge contraction destroys the tetrahedral
mesh structure.

(3) Minkowski sums. The meshes are Minkowski sums of poly-
hedra with double-float coordinates (Fig. 6). We construct the
Minkowski sums robustly using our prior algorithm [3], but with-
out perturbing the input. Themesh vertex coordinates are ratios of
degree 7 and degree 6 polynomials in the input coordinates, hence
have about 800 bit precision.



16 V. Milenkovic and E. Sacks / Computer-Aided Design 108 (2019) 12–18

Table 1
Custommesh separation: mesh type t , separation d = 10−e , f triangles, cm d-close features, vm percentage vertices displaced, am median andmm max displacement in units
of d, tm seconds running time for modification; likewise ce, ve, ae,me, te for expansion and vo, ao,mo, to for optimization.
t e f cm vm am mm tm ce ve ae me te vo ao mo to
1 6 34876 48 0.00 0.00 0.00 0.02 12 0.02 0.00 0.00 0.11 0.02 0.00 0.00 0.14

35898 48 0.00 0.00 0.00 0.03 12 0.02 0.00 0.00 0.11 0.02 0.00 0.00 0.14
123534 3 0.00 0.00 0.00 0.10 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
125394 7 0.00 0.00 0.00 0.10 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1596 185 0.37 0.56 0.65 0.01 14 0.37 0.21 0.23 0.14 0.37 0.21 0.23 0.20
2568 241 0.07 0.13 0.13 0.01 87 1.94 0.98 3.00 0.38 1.94 0.56 1.25 1.17

2 6 125986 4 0.00 0.00 0.00 0.0 4 0.07 0.83 1.00 2.28 0.08 0.71 2.83 4.10
154084 0 0.00 0.00 0.00 0.0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 6 377534 5567 0.13 0.01 0.70 0.88 94 0.01 0.63 2.14 1.37 0.01 0.47 2.12 15
407014 20675 0.54 0.02 0.83 1.34 198 0.02 0.38 1.71 3.32 0.03 0.32 1.45 7.87
436308 28848 0.23 0.33 1.02 2.66 941 0.06 0.57 3.97 57.44 0.07 0.48 3.43 297
438364 393 0.01 0.40 0.83 0.57 14 0.00 0.36 1.00 1.43 0.00 0.36 0.78 2.59
641604 313 0.00 0.53 0.70 1.32 20 0.00 0.48 0.89 1.46 0.00 0.46 0.86 2.56
667838 436 0.00 0.54 0.94 1.31 20 0.00 0.51 1.03 1.29 0.00 0.47 0.83 2.40
773236 337 0.00 0.28 0.48 0.95 10 0.00 0.43 1.00 1.89 0.00 0.36 0.98 3.27

4 6 1618 2871 6.39 0.12 0.74 0.04 108 3.44 0.91 2.04 0.46 3.44 0.61 2.00 2.77
1626 3868 7.58 0.06 0.49 0.05 104 3.42 0.69 1.99 0.21 3.54 0.50 1.03 2.21

5 15 465524 22777 0.30 0.00 0.00 2.87 758 0.16 0.00 0.00 9.27 0.00 0.00 0.00 0.00
473022 59549 0.79 0.00 0.00 5.59 2024 0.62 0.00 0.00 113.11 0.00 0.00 0.00 0.00

6 5 170936 7875 0.02 0.36 0.77 0.47 6036 0.58 0.63 3.94 17.18 0.61 0.52 3.03 120
725480 48862 0.03 4.09 7.70 2.39 41382 0.86 5.61 44.73 231.73 0.00 0.00 0.00 0.00

Fig. 4. (a) Isosurface; (b) simplified isosurface with close features in red. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 5. Polyhedron whose tetrahedral mesh has 150,000 triangles.

Fig. 6. Minkowski sum with close features in red. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)

(4) Approximate 4D free spaces. The meshes jointly approximate
the 4D free space of a polyhedral robot that rotates around the
z axis and translates freely relative to a polyhedral obstacle [16].
Eachmesh is the complement of theMinkowski sumof the obstacle
with a polyhedral approximation of the volume swept by the neg-
ative of the robot as it rotates over 1/40 of the circle. We employ a
rational parameterization of the rotation matrix with parameter
t . The coordinates of a rotated vertex are ratios of polynomials
that are quadratic in t and linear in the input coordinates, for total
degree 6. The highest precision vertices of the swept volume are
intersection points of three triangles composed of rotated vertices.
The degree of their coordinates is 13 × 6 = 78 and the input has
27 bit precision, so the mesh precision is about 2100 bits.

(5) Triangulated 3D free spaces. The meshes are triangulated 3D
free spaces for a polyhedral robot that rotates around the z axis and
translates freely in the xy plane relative to a stationary polyhedron,
which we compute with our prior algorithm [17]. The free space
coordinates are (x, y, t) with t a rational parameterization of the
rotation angle. The t coordinates of the vertices are zeros of quartic
polynomials whose coefficients are polynomials in the coordinates
of the input vertices. Their algebraic degree and precision are very
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Fig. 7. Typical random tetrahedron.

high. The implementation uses a heuristic to detect degenerate
(zero) predicates involving roots of polynomials because exact
computation is too slow. It assumes that a predicate is zero if its
sign is ambiguous in 848-bit interval arithmetic. The output of the
geometric rounding algorithm is verified in exact arithmetic.

(6) Random meshes. Each mesh is the overlay of random tetrahe-
dra in the unit cube. Each tetrahedron has vertices t , t + a, t + b,
and t + c with the coordinates of t uniform in [0, 0.9] and the
coordinates of a, b, and c uniform in [0, 0.1] (Fig. 7). The random
coordinates are double-floats and the overlay vertices where three
triangles intersect have about 700 bit precision.

Results. We tested 126 custom meshes (types 1 to 5). For types 1
to 4, we use d = 10−6, which is a typical minimum feature size in
CAD software. For type 5, we use d = 10−15, which is the smallest
separation that supports geometric rounding.

The meshes have median 9200 and maximum 770,000 trian-
gles, and median 400 and maximum 88,300 close feature pairs.
Modification reduces the number of close pairs to median 18 and
maximum 2000, and displaces median 1.8% and maximum 8.6% of
the vertices with median and maximum displacements of 0.08d
and 10.7d. Expansion displaces median 2% and maximum 30% of
the vertices withmedian andmaximumdisplacements of 0.4d and
6d. Of the 110 meshes that we optimize (types 1 to 4), expansion
displaces the vertices by median 0.5d and maximum 4d, which
optimization changes to 0.45d and 6d.

We tested 100 type 6mesheswith 4000 random tetrahedra.We
used d = 10−5 to increase the number of close features hence
the difficulty. The meshes have median 168,000 and maximum
178,000 triangles. They have 13,000–14,000 connected compo-
nents, whereas the custom meshes have at most 5 components.
There are median 8800 and maximum 13,400 close feature pairs.
Modification reduces the number of close pairs to median 7400
and maximum 12,000, and displaces median 0.02% and maximum
0.04% of the vertices with median and maximum displacements of
0.4d and 0.8d. Expansion displaces median 0.65% and maximum
0.85% of the vertices with median and maximum displacements of
0.6d and 24d, which optimization changes to 0.5d and 29d.

We tested 10 meshes with 8,000 random tetrahedra, median
720,000 and maximum 740,000 triangles, and median 49,000 and
maximum 57,000 close feature pairs. Modification reduces the
close pairs to median 41,000 and maximum 49,000, and displaces
median 0.03% andmaximum0.04% of the verticeswithmedian and
maximum displacements of 0.4d and 0.8d. Expansion displaces

median 0.9% and maximum 1.0% of the vertices with median and
maximumdisplacements of 0.6d and 21d. Comparing these results
with those on the smaller random meshes shows that increasing
the input size by a factor 4.3 has little impact on the performance.

The running time of mesh separation on the random meshes
is approximately linear in the number of close features c with
median and maximum ratios of 0.02 and 0.06. The running time
is similar on most of the custom meshes, but there are a few
outliers where it is quadratic in c . The running time of geometric
rounding equals that ofmesh separation plus the time to round the
vertex coordinates to double-float. The latter is independent of the
geometric rounding algorithm. It is under 10% of the total running
time in our tests.

Standard datasets. We tested the mesh separation algorithm on a
few meshes from the ShapeNet [18] and Thingi10K [19] datasets.
There is no need for geometric rounding because the coordinates
are floating point numbers. The test meshes have few close fea-
tures, so the algorithm is fast and accurate. We did not test the
datasets exhaustively because many of the meshes self-intersect,
which is hard to detect and correct. We advocate the alternate
strategy of constructing correct meshes using exact computational
geometry then performing geometric rounding.

8. Discussion

The mesh separation algorithm performs well on the tests. The
median vertex displacement is under 0.5d. The ratio of displaced
vertices to close feature pairs is nearly constant: median 0.03
and maximum 3.0 for the custom meshes and median 0.04 and
maximum 0.05 for the random meshes. The median number of
expansion iterations is 1 for the custom meshes, 4 for the small
randommeshes, 5 for the large randommeshes, andmaximum 11.
The ratio of running time to close feature pairs is close to linear.
We observe no difference in performance as d varies from 10−5 to
10−15.

This performance corresponds to the assumption that every
pair of close features is far from every other pair. The complexity
of modification is linear in the number of short edges and skinny
triangles becausemesh edits do not create close features. The error
is bounded by d because a vertex is displaced at most once. The
expansion LP achieves the optimal displacement with ∆ = d
because the truncation error is negligible. Thus, the number of
steps is constant. Optimization converges in a few steps because
the initial displacement is close to d.

Amore realistic assumption is that every pair of close features is
close to a bounded number of close feature pairs. An analysis under
this assumption is a topic for future work.

We tested the benefit of modification by performing mesh
separation via expansion alone. The median vertex displacement
increases slightly, the mesh size increases proportionally to the
number of short edges, and the running time increases sharply.
To understand the small change in displacement, consider two
vertices that are e apart.Modification displaces themby e/2, versus
(d− e)/2 for expansion. Assuming e uniform on [0, d], the average
displacement is the same. The running time increases because
mesh edits take constant time, whereas expansion is quadratic in
the number of close feature pairs.

We could contract non-manifold edges subject to a more com-
plicated precondition. We have found no application where this
is worthwhile. Closed surfaces have no non-manifold edges and
open surfaces have few. Tetrahedral meshes have mostly non-
manifold edges, but they cannot be contracted because doing so
would destroy the tetrahedral structure.

Expansion has the potential to increase the volume of the mesh
unboundedly, which is why we cannot prove a useful bound on
the number of iterations or the mesh displacement. We estimate
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the expansion in our tests as the ratio of the volumes of the mesh
bounding boxes before and after expansion. The largest increase is
0.001%, including the tests without modification where expansion
movesmanymore vertices. This result helps explainwhy the num-
ber of iterations and the mesh displacement are small in practice.

The standard linear distance function, inwhich l andm are func-
tions of the vertex coordinates, is much slower than our version, in
which l andm are LP variables boundedby1. If the bound is reduced
to 0.001, the running time drops and the error grows. If it is set to
zero, the running time drops further, but in rare cases expansion
does not converge.

Geometric rounding can be sped up by skipping optimization
when modification plus expansion achieve mesh separation with
a small displacement. This is the case for the custom and random
meshes. The median error after expansion is well under d, and
optimization reduces it by 10% and 16%, and takes 70% and 88%
of the running time.

The results on tetrahedral meshes suggest that mesh sepa-
ration can play a role in mesh improvement. It simultaneously
improves the close features by displacing multiple vertices in a
locally optimal manner, whereas prior work optimizes one vertex
at a time. The tests show that the simultaneous approach is fast and
effective. It readily extends to control other aspects of the mesh,
such as triangle normals. Applying the approach to other mesh
improvement tasks is a topic for future work.
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