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Figure 1: Unwrapped cube-maps produced by our network.

Abstract
We propose a framework to create projectively-correct and seam-free cube-map images using generative adversarial learning.
Deep generation of cube-maps that contain the correct projection of the environment onto its faces is not straightforward as
has been recognized in prior work. Our approach extends an existing framework, StyleGAN3, to produce cube-maps instead of
planar images. In addition to reshaping the output, we include a cube-specific volumetric initialization component, a projective
resampling component, and a modification of augmentation operations to the spherical domain. Our results demonstrate the
network’s generation capabilities trained on imagery from various 3D environments. Additionally, we show the power and
quality of our GAN design in an inversion task, combined with navigation capabilities, to perform novel view synthesis.

CCS Concepts
• Computing methodologies → Computer graphics; Rendering; Neural networks;

1. Introduction

Recently there have been vast strides in image generation us-
ing deep generative networks. Applications include content cre-
ation, dataset production, scene understanding, neural rendering,
and more. However, most works related to image-generation net-
works have focused on generating planar perspective images. In
this work, we aim to extend such a network to produce omnidirec-
tional images.

Previous works have addressed the different challenges and uses
of omnidirectional images such as scene reconstruction, super-
resolution, and novel view synthesis (see survey by [XLZC20]).
However, while image synthesis GANs have progressed signifi-
cantly, few works have centered on deep synthesis of true omnidi-
rectional images. An ideal omnidirectional image is an image sam-
pling the environment fully surrounding a viewpoint. At one de-
sign extreme, a spherical projection surface can be placed around
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the viewpoint. This surface permits uniform sampling (i.e., equi-
angular sampling) and does not inherently have any seams or ar-
tifacts. However, while some deep spherical convolution methods
have been proposed (e.g., [CGKW18; CCG18]) in general this rep-
resentation is difficult to map to a raster grid, GANs, CNNs, and
other image-based deep learning structures. At the other design ex-
treme are equirectangular projections (and related projections such
as Mercator and gnomonic) which define a rectangular projection
surface. But, this representation yields very non-uniform sampling
(especially at the "top" and "bottom" of the image) which leads
to such portions often being omitted (hence not allowing for true
omnidirectional viewing) (e.g., [LCC*19]). Between these two de-
sign extremes there is a continuum of multi-plane solutions which
include, for example, convex icosahedral, cubical, and tetrahedral
projection surfaces. Such multi-plane, or tiled, solutions, which are
the inspiration for many omnidirectional camera-cluster designs
(e.g., [LKK*16]) provide straightforward support for raster grids
and yield improved sampling uniformity, but introduce the issue
of seams between the imaging tiles. In fact, as the number of tiles
increases, sampling uniformity improves but more seams are intro-
duced. Cube-maps are one common flavor of such omnidirectional
representations as they produce exactly six square tiles, reasonable
sampling uniformity, and amity to raster processing.

However, deep generation of cube-maps that contain the correct
projection of the environment onto its faces is not straightforward
(see [EPV*19]). Some prior methods have attempted to address this
issue by constraining the generation of the content at the edge of a
face (of the cube-map) with that of the corresponding edge of an-
other face or extending the constraint to a narrow region near each
edge (e.g., [CCD*18]), but this still does not produce a geometri-
cally correct projection. In the case of GANs, the result is the un-
coordinated generation of omnidirectional cube-map content that
yields distortions and artifacts, and thus reduces the quality of the
produced image. This improper projective constraint at the bound-
ary is not only problematic for cube-maps but for any multi-plane
approximation to an omnidirectional image.

Our approach enables projectively-correct and seam-free cube-
map creation using generative adversarial learning, resulting in
better omnidirectional images. We explicitly embed the particular
characteristics of cube-map imaging into a generative adversarial
process. In particular, i) we extend the already impressive Style-
GAN framework [KAL*21] to represent a continuous spherical sig-
nal in the initial layers of the network. Then, ii) we extend the ar-
chitecture to include a component that uses a ray-casting based so-
lution to correctly re-sample the extended boundary of each cube-
map face to yield a projectively correct mapping of the pixels of the
corresponding face. Finally, iii) we alter the data augmentation pro-
cess to further encourage seam-free image generation. Collectively
these components, together with the practicality of cube-maps, pro-
duce seamless omnidirectional imagery for any viewing direction.

Our results show the improved ability of our methodology. Using
five datasets created from 3D environments, we compare to the base
StyleGAN3 network trained on equirectangular images, conduct an
ablation study of the components of our work, and demonstrate a
simple novel omnidirectional view synthesis application. We also
show and/or discuss comparisons to several alternative image gen-

eration networks, novel view synthesis (e.g., [XZX*21]) and neural
rendering. While we demonstrate our solution using the very suc-
cessful StyleGAN3, there is room for further improvement. GANs
in general often suffer from blob-shaped artifacts when trained on
diverse, multi-modal datasets (e.g., [SSG22] and Figure 6), but do
perform well on highly structured datasets such as faces [KLA19]
and with sufficient training time. Nonetheless, we anticipate our
methodology can also be adapted to other generative frameworks.

Our main contributions are:

• a generative adversarial network architecture designed to synthe-
size omnidirectional cube-maps,

• a ray-casting based method to correctly resample the boundaries
between cube-map faces during training, and

• a method for simple navigation and novel view synthesis within
a generated scene.

2. Related Work

Omnidirectional images, panoramas, and 360-degree imagery are
often used for environment mapping in video games, remote
tourism, and virtual reality (e.g., [XLZC20]). They also have ap-
plications in atmospheric and planetary sciences, astronomy, and
cartography. Recently, they have been the focus of deep learning
tasks such as reconstruction, super resolution, and image genera-
tion.

One avenue of research on omnidirectional imagery is to per-
form scene reconstruction tasks. For example, omnidirectional
video [JMK*22] and multiple depth-enhanced RGBA panoramas
[LXM*20] have been used to perform scene reconstruction and
synthesis. Other works have focused on reconstruction from a
single panorama image, such as indoor room layouts [YWP*19;
YJL*18].

Another research goal has been improving the resolution of
omnidirectional imagery to bring it closer to that of standard
planar perspective images. Solutions use adversarial learning
(e.g., [ZZL*20]) and some consider the different sampling proper-
ties at different latitudes within the image (e.g., [DWX*21; NIA21;
KKL21; You22]).

2.1. Deep Generative Models

Beginning with Goodfellow’s seminal paper [GPM*14], GANs
have become a powerful image generation tool with numerous
subsequent papers (see survey [PYY*19]). For example, Pix2Pix
[IZZE17] and CycleGAN [ZPIE17] generate impressive image-to-
image translations, BigGAN [BDS19] produces impressive high-
resolution content, and StyleGAN [KLA19] enables controlling the
output using concepts from style transfer literature.

However, most prior GAN papers have not focused on producing
projectively-correct and seam-free fully omnidirectional images,
such as cube-maps. [LCC*19] extrapolate a learned coordinate
manifold and produce seam-free extended images; they demon-
strate cylindrical projections which produce highly varying sam-
pling densities, but omit the problematic north and south pole of
the omnidirectional image content. The more recent [LCL*22] can
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generate arbitrary size images, but they do not produce omnidirec-
tional views. [Kei20] and [XZX*21] extend a single image to be
omnidirectional (e.g., equirectangular). The former does not pro-
duce good agreement at the edges of the extended image boundary
(up to about 20% misalignment) and the latter uses RGBD images,
assumes a typical indoor room geometry, and employs 13000 to
17600 images to train an image inpainting engine that assists the
synthesis task. In particular, they re-sample the single input image
to many locations and use [NNJ*19] to inpaint the re-sampled im-
ages. Then, from this collection of images, produce a NeRF-style
solution [MST*21] in order to perform the image synthesis.

In contrast, our approach embeds into the GAN-based process
projectively-correct and seam-free cube-map generation to produce
fully omnidirectional images, improving upon StyleGAN3, for ex-
ample. Moreover, our approach can be used to assist with the in-
painting component of novel view synthesis by generating plausi-
ble scene content. Our results show quantitatively and qualitatively
similar image quality to StyleGAN3, but without exhibiting seams
or polar distortions.

Recently, diffusion models have shown promising results in both
conditional and unconditional image generation settings [RDN*22;
RBL*22], in some cases surpassing GANs in terms of perceptual
quality [DN21]. Unlike GANs, these networks synthesize images
by repeated denoising operations within a Markov chain. To our
knowledge, none of these works focus specifically on omnidirec-
tional images.

Text2Light [CWL22] is another recent work that synthesizes
high dynamic range (HDR) panoramas from text descriptions, mak-
ing use of CLIP embeddings [RKH*21] and spherical positional
encoding. Despite high visual and semantic quality of their gener-
ated panoramas, we show in Figure 6 that the images are not true
equirectangular projections, and suffer from seams and polar dis-
tortions. Our method explicitly addresses both shortcomings.

3. CubeGAN

We describe our cube-map generation network based on Style-
GAN3, followed by our improvements: initialization, projective-
resampling, and augmentation.

3.1. GAN Framework

We define a GAN framework that builds upon the StyleGAN3 sys-
tem. Briefly, the original system involves a latent mapping module
consisting of a number of fully connected layers, followed by a syn-
thesis module. The mapping module M transforms the input latent
z into the mapped latent w = M(z). The synthesis module S begins
with a set of fixed input features y0. This input content is subjected
to n synthesis layer applications yk = Sk(w,yk−1) where k ∈ [1,n],
each of which performs a modulated convolution, followed by a
combined upsample, activation, and downsample operation. After-
wards, both the image dataset x and the synthetic image content yn
are subjected to an augmentations module A, producing x′ = A(x)
and y′n = A(yn), which are used to train the discriminator D.

We extend the system to support cube-map output. First, we
modify the shape of the tensors that each layer expects and outputs

Figure 2: CubeGAN architecture: we show a visual summary of
our cube-map generation modules added to a StyleGAN frame-
work.

within the synthesis module. We represent a cube-map as a stack of
six images, thus each image sample yk produced by the network is
a 4-dimensional tensor with shape [6,c,h,w], where c is the num-
ber of channels (e.g., 3), and h and w are the height and width of
a single cube face, respectively. As training occurs in batches, an
additional batch dimension is prepended to the image shape, thus
the network ultimately works with 5 dimensional tensors. Certain
operations within the network expect 4 dimensional tensors, such
as 2D convolution (i.e., the cube face index is unexpected). Prior
to such operations, we reshape the tensor from 5 dimensions to 4
dimensions by interleaving the batch indices with the cube face in-
dices. Thus, convolution is performed separately on each cube face,
as though each were a separate sample in the batch.

We specifically choose the StyleGAN3-R configuration de-
scribed in [KAL*21] to ensure rotational equivariance throughout
the network, allowing for arbitrarily oriented cube-maps. While
an equirectangular projection would allow for Y axis rotations in
a translationally equivariant network, it would not allow for any
other rotation axis, even under rotational equivariance, due to both
the extreme disparity in sampling rates near the poles and the non-
linear mapping of spherical content to the image plane. In other
words, a 3D rotation of an omnidirectional image does not corre-
spond to a 2D rotation of its equirectangular projection. A cube-
map, on the other hand, is a piece-wise linear projection, and has
a more uniform sampling rate across the cube faces. A 3D rotation
about any axis thus more closely resembles a 2D rotation of image
features about the axis intersection with the cube. Note that un-
like for equirectangular projections, translational equivariance for
cube-maps does not permit rotations about any axis, justifying our
choice of the StyleGAN3-R configuration.

Our extensions to the StyleGAN3 framework are highlighted
with blue boxes in Figure 2. We modify the input features to
produce a projectively-correct and seamless initial image. Then,
a projective-resampling module is executed during each synthesis
layer application. Outputs from our cube-map specific augmenta-
tions module are used to train the discriminator. The final output is
a 6-stack of images representing a cube-map.
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Figure 3: Input features. Left: examples of planar Fourier features,
from StyleGAN3. Top right: an example of our spherical Fourier
features, projected onto a cube map whose faces include padding
regions. The areas within the white squares denote the visible re-
gions of each cube face. To the right is the cropped cube map show-
ing only the visible regions, where the signal is continuous. Bottom
right: more examples of cropped spherical Fourier features.

3.2. Initialization

The initial image content y0 for the synthesis module should be
a valid and continuous image. Building off the StyleGAN3 archi-
tecture, the subsequent synthesis layer applications ensure transla-
tional and rotational equivariance, and prevent aliasing from propa-
gating through the network (see [KAL*21]). As a result, the initial
input becomes a continuous bandlimited signal that can be sub-
jected to affine transformations. Such transformations are apparent
in the output synthesized images. However, in the case of a cube-
map, a naïve use of the image initialization scheme of StyleGAN3
(i.e., a set of planar frequencies sampled across the image, as in
Figure 3, left) results in discontinuities at the seams between cube
faces. Instead, the input signal must be defined to be continuous
across the multiple faces of the cube-map.

We accomplish this by replacing the 2D planar frequencies with
3D volumetric frequencies. The resulting signal is sampled across
the surface of the unit sphere, and then projected onto the cube
faces. Additionally, the cube faces are created with padding regions
in order to reduce the effects of boundary artifacts during convolu-
tion. Image content is created in these regions during synthesis, but
they are ultimately cropped from the final output and will not be
visible. Hence, each of the six input cube face images, including
these padded areas, has an effective field of view > 90 degrees.
The aforementioned signal projection accounts for this, thus the
initial image content will be correctly continuous across the visible
portions of the cube-map faces, as shown in Figure 3.

Figure 4: Effects of input features and projective resampling. The
first three channels of cropped layer outputs are visualized as RGB
colors. The first layer is consistent by construction, so no seams are
visible. By the last layer of the network, discontinuities between ad-
jacent faces become apparent in the absence of projective resam-
pling.

3.3. Projective Resampling

In order to create perspectively-correct and seam-free cube-maps,
each cube face is padded with an additional border area. This
padding enables convolution operations to sample from content be-
yond the visible boundaries of the cube face. The intent is to allow
the synthesis module to generate content in one face that matches-
up to the content in an adjacent face, thus producing a seamless im-
age transition. From the previous section, the overlapping regions
of the input feature map y0 are consistent by construction. However,
successive convolutions throughout the network cause the overlap-
ping regions to become progressively more desynchronized due to
boundary effects and different projections of the overlapping con-
tent. The effects of said desynchronization are particularly apparent
in the later layers of the network, producing visible seams between
cube faces, as shown in Figure 4. Thus, we must perform additional
operations throughout the network to enforce consistency between
the cube faces.

The naïve solution of exactly replicating one face’s visible area
into the padding regions of adjacent faces is not correct for non-
coplanar faces. Figure 5 illustrates the problem. Padding the cube
faces in this way has two consequences: the corner regions are un-
defined, and the content in the padded regions has an incorrect pro-
jection. In other words, straight lines appear to have a kink across
the face boundary. To produce the correct behavior, we must per-
form a projective resampling of the padding areas. Thus, for each
pixel in each padding area, a ray is cast from the origin through
that pixel, and intersected with the visible regions of the other
faces. The value of the padding pixel is replaced by the result of
an interpolation of the four nearest pixels surrounding the ray in-
tersection point. In our system, we assume a bilinear interpola-
tion model. This operation has the additional benefit of redirect-
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Figure 5: Projective resampling operation. Top left: naïve padding
vs. projective resampling. Replicating adjacent face pixels into
the padding regions introduces incorrect projections and unde-
fined corners. Our resampling approach addresses both issues. Top
right: visual depiction of ray-face intersection for resampling. For
clarity, the back, left, and up faces are not shown. The intersection
points are marked by circles, also shown on the individual faces
below. Bottom: cube face contents before and after resampling the
padding regions. The colors indicate from which face the pixel val-
ues originate. The inset squares outline the visible region of each
cube face. After resampling, the padding regions are colored ac-
cording to the neighboring faces that were sampled from.

ing the gradients through the visible regions of the cube faces dur-
ing back-propagation, thereby allowing adjacent faces to influence
each other.

For the StyleGAN3-R configuration, we only need to perform
the projective resampling in certain places throughout the pipeline.
The learned kernel for the modulated convolution operations has
size 1x1, thus this operation will not introduce any inconsistency
between the overlapping regions, and we do not need to apply pro-
jective resampling afterwards. However, the upsampling and down-
sampling operations use filters with a larger receptive field, and as
such are susceptible to desynchronization. We note however that
bilinear interpolation introduces arbitrarily high frequencies, which
we want to avoid for the bandlimited signal of each synthesis layer
application. Therefore, we only apply projective resampling on the
higher resolution image after the upsample operation. The subse-
quent downsample operation removes any high frequencies intro-
duced by the resampling.

3.4. Spherical Augmentations

During training, adaptive augmentation is in general beneficial to
improve image quality. The initial network employs the adaptive
augmentation scheme of Karras et al. [KAH*20]. However, the ge-

ometric transformations are designed for planar images. We extend
the geometric augmentations to the spherical domain by enabling
anisotropic scaling in three dimensions as well as rotation about
an arbitrary axis. Since the spherical image content is mapped to a
cube centered at the origin, isotropic scaling has no effect, so it is
disabled. Similar adaptations are made to the pixel blitting opera-
tions: 90 degree rotations about X, Y, and Z are supported, as well
as mirroring, via flipping, transposing, and swapping the individual
cube face images. Integer pixel translations are omitted since they
would require re-sampling adjacent faces.

Dataset augmentations, as opposed to adaptive augmentations,
are applied once to the dataset at the start of training to inflate the
number of samples to train with. For the initial (planar) network,
horizontal flips are implemented, resulting in a 2x dataset size in-
crease. Vertical flips are not typically used when training on, e.g. a
faces dataset, since the network should not learn to generate verti-
cally flipped faces. For our network, we extend these dataset aug-
mentations for cube maps. In addition to mirroring, we also enable
90 degree rotations, but constrained to the Y axis only, because
most omnidirectional images have a clearly defined Y axis (e.g.,
sky vs. ground), whereas the orientation about the Y axis is typi-
cally arbitrary. Having both mirrors and rotations enabled results in
an 8x dataset size increase. Note that these dataset augmentations
are disabled when training on a single 3D scene, as in Section 4.4,
since the orientation is fixed and learned by the network.

4. Results and Evaluation

4.1. Datasets and Training

We have trained our model on the Pano3D dataset [AZD*21], us-
ing both the Matterport3D [CDF*17] and GibsonV2 [XRH*18]
splits, converted from equirectangular projections to cube maps,
with a cube face resolution of 128× 128. Additionally, we trained
on four static scene datasets created from 3D models obtained
from Sketchfab [Ske22], specifically St. Thomas [art21], St. Giles
[art19], Khayiminga Temple [Ban18], and Bedroom [fhe17]. Each
scene dataset consists of 10,000 cube maps rendered at randomly
selected viewpoints throughout the scene, with each cube face hav-
ing a resolution of 128× 128. The orientation is fixed for all cube
maps in the dataset, i.e. the front face always faces the -Z axis, etc.
We used default configuration values from StyleGAN3, with the ex-
ception of the number of channels per layer, which was reduced to
accommodate the increased number of pixels per sample. We also
tuned the R1 regularization weight on a per-dataset basis, as recom-
mended by the authors. The models trained at an average speed of
185 seconds per 1000 images (kimgs), on a compute cluster with a
variety of A100 and A30 NVIDIA GPUs. Hand-picked perspective
renderings of our outputs trained on Pano3D and Sketchfab datasets
can be seen in Figures 10 and 11 respectively, and uncurated cube-
maps trained on Pano3D are shown in Figure 12.

4.2. Comparisons

We evaluate our network’s improvements towards omnidirectional
image generation by comparing to the base StyleGAN3 network
[KAL*21]. The Pano3D dataset is used for both networks, with
our CubeGAN trained on cube maps, and StyleGAN3 trained on
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Figure 6: Example outputs from StyleGAN3, StyleGAN3 with Y-rotational augmentations, InfinityGAN trained on Pano3D, Text2Light, and
our method (reprojected to equirectangular images). The left three columns are rotated by 180 degrees such that the seams are visible. The
right-most column is a perspective projection facing the south pole where polar distortions are clearly visible. Our method shows neither
seams nor polar distortions.

Figure 7: Example cube-map generated from our network (left),
projected to a perspective viewpoint facing a corner of the cube,
shown with and without a wireframe overlay. The image content
is continuous across all cube face boundaries, and produces no
visible seams.

Table 1: FID and seam measurements of our network compared to
StyleGAN3 with and without Y-rotational augmentations. FID-180
measures the FID after horizontally circular-shifting the images by
half the width.

Network FID FID-180 Seams

StyleGAN3 8.098 9.256 2.58×10−1

StyleGAN3 + YRot 6.539 7.256 2.24×10−1

CubeGAN (ours) 9.401 9.449 2.15×10−3

equirectangular images. StyleGAN requires a square aspect ratio,
thus we use 512×512 equirectangular images. This results in equal
horizontal resolution to the 128 × 128 cube maps, and twice the
vertical resolution. Each network is trained to 10,000 kimgs, and
then evaluated by measuring the Fréchet Inception Distance (FID)
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[HRU*17]. To measure the FID of our cube-map-producing gener-
ator, we first reproject all faces of the cube map onto an equirect-
angular image, for both generated and dataset cube maps, and then
measure FID as normal. Table 1 lists individual FID measurements.

An important aspect of our network is that it produces a seam-
free omnidirectional image. StyleGAN however does not have any
mechanism to prevent seams, and the equirectangular outputs in
fact contain a vertical seam at the meridian, located at the left and
right image boundary. As a result of the seam only appearing on the
boundary, the FID measurement is not affected by its presence, de-
spite it having an obvious negative impact on image quality when
viewed under rectilinear projection. In general, FID is not very sen-
sitive to the appearance of seams. Nonetheless, to help compen-
sate for this, we also compute a variant of the FID wherein the
equirectangular images are circularly shifted horizontally by half
their width, corresponding to a rotation about the Y axis of 180
degrees. As a result, the seam appears in the center of the image.
We apply this rotation to both generated and dataset images prior
to FID measurement. As reported in Table 1, the rotated FID of our
seam-free solution is very close to the standard FID (i.e., <1%),
whereas it increases by 14% and 11% of the standard FID for base
StyleGAN3 variants where a seam is clearly present.

We also consider the effect of Y-rotational adaptive augmenta-
tions on the seam presence. We modify the adaptive augmentations
of the base StyleGAN3 network to include random horizontal cir-
cular shifts, in addition to the standard planar geometric augmen-
tations. This network is trained to 10,000 kimgs, resuming from
the base StyleGAN3 model (without Y-rotational augmentations)
at 5,000 kimgs. From Table 1, we can see that the additional aug-
mentation mildly helps the overall quality of generation, but does
not completely resolve the seams as evidenced visually in Figure 6,
and numerically by the gap between FID and FID-180 measure-
ments. Our network, on the other hand, shows neither meridian
seams (bottom row of Figure 6), nor seams across the cube face
boundaries (Figure 7).

We further demonstrate our method’s lack of seams by directly
measuring pixel differences across the image boundaries, as listed
in Table 1. These values are calculated from the mean absolute
difference between pixel pairs across the seams for 50k generated
samples and the full dataset. Specifically,

s =
∣∣∣∣∥Gi −G j∥1

nG
−

∥Di −D j∥1

nD

∣∣∣∣ , (1)

where G and D are generated and dataset images, i and j represent
the sets of pixels on either side of the seam, and nG, nD are the to-
tal number of pixel pairs. For the equirectangular models we mea-
sure the seam at the left and right image boundaries, whereas for
the cube-map model we measure 12 total seams at each cube edge.
From the table, it is clear that our model results in smaller pixel dif-
ferences than the base StyleGAN3 variants, indicating continuous
image content.

Few other methods have attempted to generate true omnidirec-
tional images in the GAN setting. COCO-GAN [LCC*19], as a
result of conditioning on image patch coordinates, has been shown
to produce seam-free cylindrical panoramas by using a horizontally
cyclic coordinate system. However, this method avoids generating

Table 2: Ablation study, displaying the FID of combinations of en-
abled network extensions, denoted by the first three columns: IF
(input features), PR (perspective resampling), and SA (spherical
augmentations). The rows marked with * include a manual orien-
tation correction before measuring FID. Recall that these models
are only partially-trained (to 1000 kimgs) and thus the final FID
measurements are large compared to our other trained models –
moreover, an example cube-map for each configuration is shown in
Figure 8.

IF PR SA FID

N N N 119.26
Y N N 111.47
N Y N 112.58
N N Y 107.18
N Y Y 93.171
Y Y Y 89.346

* N N Y 105.13
* N Y Y 82.945
* Y Y Y 74.471

content at the poles by training with equirectangular images whose
polar regions have been cropped out. When training their network
with uncropped equirectangular images, we were unable to produce
meaningful results in similar training times (e.g., several days). In-
finityGAN [LCL*22] demonstrates horizontally-extendable image
generation and can support cyclic panorama generation by inpaint-
ing content between provided end images, but it does not train
with equirectangular images and does not attempt polar content
generation. We trained InfinityGAN with the default settings on
the Pano3D dataset, but without a spherical coordinate system it
produces meridian seams and incoherent polar content. Recently,
Text2Light [CWL22] has shown impressive results in spherical
panorama generation from text input using a spherical positional
encoding. However, while the generated images have the general
appearance of equirectangular panoramas, they are not cyclic and
often exhibit severe polar distortions. Figure 6 shows equirectan-
gular outputs from both base StyleGAN3 variants, InfinityGAN,
and Text2Light, alongside our cubemap outputs after equirectan-
gular reprojection. All images are rotated by 180 degrees to clearly
show the meridian seams. The rightmost column shows a perspec-
tive projection of the south pole, equivalently the bottom face of
the cube-map, displaying polar distortions. Our cube-map genera-
tor network produces neither seams nor polar distortions.

4.3. Ablation study

We examine the effect of enabling and disabling different com-
ponents of our approach. This is done by measuring the FID of
models trained with several configurations of components: input
features (IF), projective resampling (PR), and spherical augmen-
tations (SA). Because of the many variations and large compute
times, the networks are trained on the St. Thomas dataset for only
1000 kimgs. The resulting FID values are listed in Table 2. We
note that none of the models trained without spherical augmenta-
tions converged or produced meaningful output and thus had high
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Figure 8: Example outputs from each of the network combinations in the ablation study, labeled by the enabled extensions IF (input features),
PR (perspective resampling), and SA (spherical augmentations), without any manual orientation correction applied. The right-most image
is an example from the dataset.

Table 3: FID measurements of models trained on 3D scenes, along
with the training amount (in kimgs) for each.

Dataset Training amount FID

St. Thomas 2760 54.562
St. Giles 4320 20.767
Khayiminga 5560 25.231
Bedroom 2160 22.796

FID values. Additionally, some models learned rotated orientations
with respect to the dataset, due to augmentations leaking into the
generator (described in detail in [KAH*20]). The FID values are
highly dependent on the learned orientation of the network. If the
network produces high quality images that are rotated with respect
to the dataset, the FID will be large and not representative of the im-
age quality. Thus, for such models, we display the measurements
with and without a manual rotation to correct for the orientation.
We have found that further training and tuning of the γ hyperpa-
rameter usually results in the network learning the correct orienta-
tion. Example outputs from each of the trained models are shown
in Figure 8.

4.4. View Synthesis

As another demonstration of the ability of our network, we use the
framework to produce user-controlled novel view synthesis. In par-
ticular, we train our network on several datasets of 3D interiors, de-
scribed in Section 4.1. FID measurements for each of these trained
models can be found in Table 3. GANs are typically trained on di-
verse datasets with many different examples, but in these cases all
examples in the dataset are from the same scene, thus the network
learns to generate viewpoints specific to that scene. Different input
latent codes cause the generator to produce different views of the

same interior. As a result, the latent space can serve as a proxy for
the position of the viewpoint.

By interpolating through the latent space, we enable scene traver-
sal along a path in 3D. At each viewpoint along a given path, we
find an enclosing simplex of dataset images (i.e., a tetrahedron), an-
notated by their 3D positions. Each of these dataset images is pro-
jected into the intermediate latent space W following a GAN inver-
sion procedure [XZY*21] such as that of [AQW19]. The projected
latents are weighed by the path point’s barycentric coordinates with
respect to the enclosing simplex, producing an interpolated latent,
which is used to synthesize the images along the path.

We compare the produced video to the ground truth rendering by
measuring the per-frame similarity in terms of SSIM [WBSS04],
PSNR, and LPIPS [ZIE*18]. Each metric is evaluated per cube
face, and then averaged. Additionally, we perform the same mea-
surements on a video consisting of alpha-blended dataset images,
in which the weights of the blended images correspond to the
barycentric coordinates of the interpolated latent. The resulting
video follows the same path as the network-generated walkthrough,
but each frame exhibits "ghosting" artifacts due to blending view-
points that are some distance from the desired position. Examples
of such walkthroughs can be seen in the supplementary video.

We plot these metrics for walkthroughs of two different datasets
in the top row of Figure 9. While the generated paths have relatively
smooth plots, the dataset interpolated paths exhibit many spikes.
This is due to the proximity of some dataset points along the path,
which dominate the alpha-blended frames, thus increasing similar-
ity to the ground truth. The Bedroom dataset is very dense relative
to St. Thomas, so we restrict the allowed dataset points to a random
subset of 150 points. In the bottom row, we measure the windowed
variance of the St. Thomas plots using a window size of 10 frames.
The dataset interpolations exhibit much higher variation in quality,
whereas the generated walkthoughs are much more consistent.
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Figure 9: Scene navigation. Top row: per-frame evaluation of a GAN-generated walkthrough of the St. Thomas and Bedroom scenes,
compared to the ground truth rendering, versus interpolation of nearby dataset images. For the Bedroom scene, 150 randomly chosen
dataset points (out of 10,000) were used to interpolate projected latent codes along the traversed path. The St. Thomas interpolation uses all
10,000 points in the dataset. Bottom row: windowed variance of the St. Thomas walkthrough, with a window size of 10 frames.

Figure 10: Example perspective views of generated cube-maps
from the Pano3D dataset.

Figure 11: Example perspective views of generated cube-maps
from the four Sketchfab datasets.
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[XZX*21] performs novel view synthesis in similar environ-
ments. While they use one input image with RGBD data, they also
use image inpainting to complete the reprojections of the provided
input image to nearby locations. Said image completion makes use
of a dense sampling of images (13000 to 17600 images). The dense
sampling they employ is of similar spacing to three of our datasets
(i.e., Bedroom has a finer sampling). The PSNR and LPIPS ranges
they report are very similar to ours in Figure 9, while their SSIM
range is slighter better than ours. Thus, our generative method pro-
duces almost similar image quality but without the depth data re-
quirement and with slightly fewer images.

5. Conclusions

We have presented a method to generate projectively-correct and
seam-free cube-maps using GANs. Our approach includes contin-
uous spherical input features, a projective re-sampling process, and
spherical augmentations. We build upon the StyleGAN3 frame-
work, though our contributions can likely be applied to other
generative models as well. Collectively, our method produces an
improved generation process for omnidirectional content, which
results in seamless imagery without polar distortions. We test
with several datasets, perform an ablation study, and report other
analyses including comparisons to StyleGAN3, InfinityGAN, and
Text2Light. In addition, our generative ability enables us to assist
with novel view synthesis.

With regards to future work, there are several directions. Image
quality could be further improved by exploring additional improve-
ments and training as well as other generative frameworks. Another
issue is that there is no geometric knowledge involved in the gener-
ation process. Given that the domain of environment cube-maps is
large and diverse, and generally under-sampled, it is possible that
additional geometric information may assist in the generation pro-
cess. We intend to explore incorporating NeRF-like [MST*20] or
other geometric constraints into our network.

This work is supported in part by funds from the US Na-
tional Science Foundation (NSF) Grant #1835739, US NSF Grant
#1816514, US NSF Grant #2106717, and US NSF #2032770.
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Figure 12: Uncurated full cube-maps generated by our network trained on Pano3D.
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