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Abstract
We present a system to generate a procedural environment that produces a desired crowd behaviour. Instead of altering the
behavioural parameters of the crowd itself, we automatically alter the environment to yield such desired crowd behaviour. This
novel inverse approach is useful both to crowd simulation in virtual environments and to urban crowd planning applications. Our
approach tightly integrates and extends a space discretization crowd simulator with inverse procedural modelling. We extend
crowd simulation by goal exploration (i.e. agents are initially unaware of the goal locations), variable-appealing sign usage
and several acceleration schemes. We use Markov chain Monte Carlo to quickly explore the solution space and yield interactive
design. We have applied our method to a variety of virtual and real-world locations, yielding one order of magnitude faster
crowd simulation performance over related methods and several fold improvement of crowd indicators.
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1. Introduction

Urban modelling is becoming increasingly popular in computer
graphics and urban planning applications. One important aspect for
urban spaces is designing and optimizing the environment for the
walkability of pedestrians [Sou05, ADLN12]. Indeed, walkable
cities have been linked with a healthier life, spending less time in
traffic and having more time for recreational activities. This paper
provides a tool where environment characteristics can be altered in
order to provide a near-optimal configuration for a desired crowd
behaviour.

Previously, researchers have investigated urban procedural mod-
elling and crowd simulation. On the one hand, procedural mod-
elling has become popular because it enables generating complex
environments from a compact set of rules and parameters [PM01,
WWSR03, VAW*09]. On the other hand, crowd simulation seeks
recreating realistic crowds by modelling the behaviour of the
individuals [PAKB17, vdBLM08, dLBRM*12, TM13, BPA16,
KPAB15]. However, crowd simulation usually assumes that peo-
ple know the location of their goals (or destinations). Also, the

configuration of the environment is fixed and people generally do
not react to elements in the environment, except to a few concepts
such as density [Hug02, TCP06, BNCM14].

In contrast, our approach consists of three main components.
First, we propose a parameterized procedural representation of a
walkable environment, which includes:

� a network of generated virtual walkways, or even walkways ob-
tained from a real-world location,

� walkway widths,
� a flexible representation for visual stimuli, i.e. signs and
� a set of goals.

Each sign present in the environment has a level of appeal (e.g.
size, clarity, etc.), and information about a set of goals also located
within the environment. Our concept of signs is kept general and
refers to stimuli that influence an agent towards one or more goals.

Second, we extend an existing crowd simulation framework [dL-
BRM*12] to support an exploratory behaviour, where pedestrians
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are able to explore the environment while not necessarily knowing
the location of their goals; i.e. agents can reach their desired goals
by chance or by getting stimulated by signs along the way to learn
its location. The signs are readable by agents at a prescribed maxi-
mum distance and they affect them based on a function defining the
interaction. As a consequence, agents can react (or not) to the sign’s
information. Further, the simulation supports changing the pedes-
trian walkway network and includes several acceleration schemes
to yield fast performance.

Third, we provide an inverse procedural modelling framework,
using an efficient large-scale optimization scheme, to explore the
model design space and arrive at a solution having desired indicator
values. Our indicators support urban walkability design concepts
[MCG17, GJBP96] and include measures of time taken, distance
walked, walkway cost and interpersonal distance [HAL63].

Succinctly, our main contributions include:

� a procedural model of urban space (based on realistic-world data
or a virtual space) that is parameterized by sign locations and
appeals, goal locations, walkway widths and walkway geometry
(e.g. intersection locations, topology);

� a fast simulation tool for modelling how crowds explore unknown
urban pedestrian areas that builds upon a space-discretization
crowd simulator and uses urban signs and a contagion concept to
model how people navigate to their destinations and (potentially)
change their intentions and

� an optimization-based inverse-modelling engine that discovers
an instance of the procedural model that yields a desired crowd
behaviour.

We have used our approach to design and alter various real-world
and virtual urban spaces. For existing locations, our tool provides
what-if scenario exploration (e.g. seeking the smallest/lowest-cost
changes that would improve the crowd flow as desired). For virtual
urban spaces, our tool permits carte blanche design of novel spaces.
Altogether, our environments range up to several hundred thou-
sand square metres and include the simulation of several thousand
people, yielding typical crowd behaviours. Our optimized designs
are able to produce a several-fold decrease, or increase, in travel
time or distance walked, for example. Moreover, using our inter-
active inverse design system, users can obtain a design in under a
minute to a few minutes on a desktop PC using our acceleration
schemes and a multi-core implementation.

2. Related Work

Our work builds upon procedural modelling and crowd simula-
tion. On the one hand, urban procedural modelling has become
extremely versatile and widespread [VAW*09]. The seminal work
of Parish and Mueller [PM01] and subsequent improvements have
addressed building design [WWSR03, MZWVG07], parcel design
[LSWW11, VKW*12], road design [CEW*08, NGDA15], traffic
design [SWL11] and recently weather design [GDAB*17]. Never-
theless, the Achilles’ heel of procedural modelling is preemptively
obtaining an urban configuration that yields a desired result. Towards
this goal, inverse procedural modelling attempts to determine a pro-
cedure (e.g. the rule set, its application sequence or both) yielding a

desired output. For example, Stava et al. [SBM*10] discovered pro-
cedural description of 2D vector geometry, Bokeloh et al. [BWS10]
and Demir et al. [DAB15, DAB16] discovered symmetries and
repetition to find a procedural description of a 3D urban model,
Talton et al. [TLL*11] stochastically drive a procedural model so
as to obtain an output following a desired global shape, Vanegas
et al. [VGDA*12] altered the shape of a city to obtain desired ur-
ban indicator values, Garcia-Dorado et al. [GDGAVU14] changed
the road network so as to obtain a desired vehicular traffic pattern
over time and Nishida et al. [NGDA*16] inversely find a procedu-
ral grammar that yields the interactively drawn digital sketch of a
building.

On the other hand, many different methods exist for crowd sim-
ulation [PAKB17, TM13]. Crowd models may be characterized as
microscopic (agent-based) or macroscopic (aiming to capture sta-
tistical properties such as crowd density and flow at a global level).
In an agent model, each individual perceives and reacts to the world
according to various local rules [Rey87, PAB07, GCK*09], social
forces [HFV00, TCP06, Che04], following behaviours [LJK*12] or
velocity obstacles [vdBLM08, KGM13]. Macroscopic approaches
aim to govern the global behaviour of crowds using environment
descriptions [YMC*05, PGT08], space colonization [dLBRM*12]
or continuum fluid-like flows [TCP06]. In general, in crowd simu-
lation methods, people know where they want to go and explicitly
know the goal locations besides other pre-defined information (e.g.
initial positions and fixed obstacles positions). Typically, a person’s
changing intentions while exploring a space are not a focus in crowd
simulation. However, some methods for crowd evacuation planning
have agents that react to the environment [BUH*15, COMB16,
HUB*15, HUB*16, BNCM14, HJ09].

Other recent work uses crowd simulation-based evaluation to in-
teractively provide feedback to building designers (e.g. [HUB*17]).
[LPH*17] uses neural networks to encode the environment design,
crowd distribution and steering method to predict the feasibility of
the layout design, thus avoiding running full simulations and yield-
ing faster times. [CBH*17] uses crowdsourcing to help evaluate the
design of building layouts based on a user feedback system. Varying
crowd intentions, exploration assistance using signs and walkability
criteria of city environments are not a primary focus of these recent
work.

Some authors propose methods where agents perceive and react
to signs in the virtual environment (e.g. traffic and exit signs). Hel-
bing presented emergent behaviours and also discussed the effect of
people reacting to the environment and traffic signs [HFV00, HJ09].
[TB16] presents a rule-based reasoning system to identify potential
traffic sign locations. In [Tor15], the authors introduce a frame-
work for addressing relationships between Geographic Information
Systems (GIS), models of physical and human processes and immer-
sive 3D worlds. Recently, in [NYF*15], authors discuss the influence
of safety signs in evacuation processes, since the shared information
impacts the agents’ decision during evacuation. Bode [BKWC13]
proposes that agents in the crowd choose between different exit
routes under the influence of three different types of directional
data: static information (signs), dynamic information (movement of
simulated crowd) and memorized information, as well as the com-
bined effect of these different sources of directional information. In
a recent work, [HLB*17] approaches the automatic placement of
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Figure 1: Urban walkability design: Our system takes as input (a) an urban layout (e.g. Venice), a number of agents (e.g. 1000), intentions
and goals in order to determine layout modifications that yield a desired crowd behaviour where agents are initially unaware of the goal
locations ((b) top down 2D view and (c) a 3D view with virtual humans). The system enables altering crowd behaviour (e.g. higher (d) or
lower (e) agent density) by automatically positioning signs of variable appeal, changing goal locations and/or altering walkway widths and
topology.

signs based on a two-step process. The first step finds an optimized
path using way-finding optimization, which is then followed by a
second sign placement step based on agent-based navigation.

In contrast to previous research, our goal is to discover a con-
figuration, or least cost alteration, of an urban pedestrian layout
for agents who are exploring the environment (i.e. it is initially
unknown) and we wish to yield a desired crowd behaviour. The
two most similar works are Garcia-Dorado et al. [GDGAVU14] and
Feng et al. [FYY*16]. Garcia-Dorado et al. [GDGAVU14] aim to
alter a road network and a configuration of traffic lights to yield
a desired spatio-temporal vehicular traffic behaviour. In a similar
manner, we seek a set of pedestrian walkways, signs and goal loca-
tions that yield a desired crowd behaviour. This enables passively
controlled crowd behaviour and is beneficial to both urban planning
and to design and simulation. Feng et al. [FYY*16] propose an
approach to generate mid-scale layout designs optimized by crowd
properties that assume each agent knows the locations of their des-
tinations. They use non-linear trained regressors to avoid hundreds
of long-time simulations and, given a domain like a shopping mall,
the method can find the paths and sites optimizing mobility, acces-
sibility and coziness. Even though Feng et al.’s work has several
similarities with our own, we address a different scenario whereby
agents do not know a priori their goal locations. Using the shopping
mall domain, in our system, agents may enter the building with no
knowledge about goal locations and will guide themselves using
signs and according to their intentions. Our system optimizes the
placement of signs and the topology of the walkways in order to
allow agents to reach their goals in a faster way, as well to consider
the cost of creating new walkways or adding signs.

Overall, our approach has three main differences as compared to
prior work: (i) we use the contagion concept from [BDM*15] to
model the interaction among people and urban signs and to provide
a way of simulating the sharing of visible information in an initially
unknown pedestrian environment; (ii) we use inverse modelling to
determine a parameterized procedural representation of an urban

Figure 2: System pipeline: Overview of our method including the
data flow and processes to simulate and alter environments.

walkway system and (iii) we simulate large-scale human crowds’
one order of magnitude faster than [FYY*16] and [dLBRM*12].

3. Overview

This section presents our approach to generate urban layouts that
produce a desired population behaviour. Figure 2 shows an overview
of our computational pipeline. The remainder of this section details
the urban procedural model and a summary of the user interaction
with our design tool.

3.1. Urban procedural model

Our system includes an engine to generate an urban procedural
model U consisting of a set of walkways of desired widths, signs,
goals and start locations. The walkways can be procedurally gen-
erated or imported from OpenStreetMap (OSM). In both cases,
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Figure 3: Example urban layouts: (a) mostly pedestrian area of
central Strasbourg, France, (b) Commonwealth Park in Canberra,
Australia, (c) pedestrian area of downtown Zurich, Switzerland and
(d) a snapshot of our GUI.

the walkways are represented as graphs and we support operations
such as add/remove corners and edges and generate walkway ge-
ometry in between corners. Figure 3(a) (a pedestrian part of central
Strasbourg, France), Figure 3(b) (Commonwealth Park in Canberra,
Australia) and Figure 3(c) (a mostly pedestrian area of downtown
Zurich, Switzerland) contain example areas extracted from OSM.
While highlighted that OSM notation is quite liberal and contains
a large set of tags—we only process tags relevant to walkways and
automatically extract them.

Once the walkway structure is established, our system allows to
use an externally provided characterization of the virtual humans
(i.e. their start locations, ordered set of goal labels and intentions and
average speed), or we can algorithmically generate virtual humans
and its said characterization. The urban layout will have several start
locations (e.g. parking lots, bus stops) from which virtual humans
will enter the environment and a set of goal locations. Each human
will have a set of intentions with different values to visit one or more
goals. Virtual humans commence at a small random offset from their
associated start location. Further, initial locations for signs in the
environment may explicitly specified or may be automatically gen-
erated by our system (further details in Section 5.3, Sign Locations
and Appeal).

3.2. User interaction

Using our GUI (shown within Figure 3d), the user may iteratively
enable different ways of altering the environment and may specify

Figure 4: Crowd simulation: We show the multiple variables used
to simulate agents moving within a discretized space influenced by
signs. The main entities are: an agent i (ai), a goal k (gk) and a sign
j pointing to a goal k (sj,k).

different crowd behaviour objectives by giving target values for our
indicators: time taken, distance walked, walkway cost and number
of people within intimate interpersonal distance. For example, the
user may choose to fix walkway geometry and number of signs.
Then, our inverse modelling engine automatically determines the
best sign locations to accomplish a desired crowd behaviour (e.g.
reduction in total time it takes all agents to visit all their goals). Al-
ternatively, the user may wish to achieve a desired crowd behaviour
by simultaneously changing the pedestrian walkways and using a
fixed number of signs while maintaining a constant total amount of
walkways. In Section 6, we present several different optimizations
and walkway alterations. In all cases, after the optimization a 3D
procedural model of walkways or an OSM-compatible geometry
can be exported.

4. Crowd Simulation Model

To model the behaviour of our agents in unknown environments,
we extend and accelerate a crowd simulation model based on space
discretization, because it scales well and implicitly provides a guar-
anteed collision-free crowd simulation. Agents in the environment
perceive a set of markers on the ground within their observational
radius and move towards its immediate goal, following a resultant
motion vector calculated as a function of its markers (i.e. see the
markers surrounding agents i (ai) in Figure 4). More detailed infor-
mation is available in the work of Bicho [dLBRM*12]. This aspect
of our system is based on the BioCrowds simulator [dLBRM*12]
which supports some of the important emergent behaviours ex-
pected in crowd simulation (see the figures given in Section 6). In
a space discretization method, such as ours, obstacles are very easy
to represent as zones without any markers. However, we extend
such a framework by introducing the notion of goal exploration
and sign-following (with varying appeal), which influences agent
movement. In addition, we add several enhancements that yield
approximately one order of magnitude increase in simulation per-
formance over [dLBRM*12]. These improvements are vital to our
inverse modelling objectives.

4.1. Goal exploration

Firstly, a goal k is defined as gk = ( �Pk, lk), where Pk states for the
location of goal k and lk is the goal identifier. In our simulator,
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agents have to discover the location of their intended goals. In other
words, goal locations are not explicitly provided to each agent at the
beginning of the simulation; instead, they are only provided with
goal labels. This change in goal definition implies that since agents
are not aware of goal locations, they have to explore the environment
to find them. In addition, agents have a different intention associated
with each of their goal labels; i.e. a number representing how much
they want to go to each goal. More precisely, each agent i at position
�Xi has a list of ni goals where each goal is defined as gi,k = {lk, γi,k},
for k = 1, ..., ni where lk represents the id of goal k that the agent
is interested to go to. γi,k is the intention of agent i to go to goal k

and has values in the range [0; 1] (Figure 4).

4.2. Sign following

We use signs to communicate the position of the goals in the urban
layout to the virtual humans. The signs represented in this work
simulate signs transferring knowledge of the global goal location to
the virtual human, instead of simply pointing the agent in the correct
direction. While a variety of signs, such as directional boards and
elaborate maps, are possible, we focus on a single entity to represent
all types of signs. The main purpose of signs is to introduce a
mechanism that dynamically alters an agent’s intention and current
destination.

A sign j referring to a goal k (e.g. a place) is defined as
sj,k = ( �Rj , { �Pk, hj }), where �Pk is the position of the goal k and hj

is the appeal of sign j positioned at location �Rj (see Figure 4). The
appeal hj (in range [0; 1]) aims to represent a sign’s attractiveness
and visibility. We link the appeal value to a maximum observational
distance of each sign—we assume that a sign is visible by at most
20 × hj metres away. For example, an appeal hj = 1.0 could
imply a strong auditory cue (which can be heard from 20 m away),
hj = 0.5 might represent a large billboard visible at 10 m and
hj = 0.3 potentially signifies a small walkway sign visible from
6 m or less. During simulation, agents can ‘virtually see’ nearby
signs and obtain goal positions to guide their motion—conceptually
the information they obtain can be a position on a map, GPS
coordinates for smart phone usage, etc. An additional aspect of this
definition is how much each sign impacts each agent in the crowd
simulation. This is critical to our goal of wanting to simulate the
dynamic behaviour of being influenced by the environment in order
to change goals. For instance, an agent i that has an intention γi,k to
go to goal k can be influenced by the environment, i.e. after reading
a sign j , the agent can change its intention to a lower or higher
value.

Our sign interaction method is based on a contagion technique
proposed by [BDM*15]. Their work is designed to model the con-
tagion of one unspecified emotion in agents of a group. Mathemat-
ically, the authors define the emotion of an agent as a value q in the
range [0; 1] that represents the intensity of an unspecified emotion
at a given instant. According to Bosse’s model, q∗ = ωS,R , where
ωS,R = hSαS,RδR is the contagion between sender S and receiver
R of a certain emotion. In addition, hS is the expressiveness (i.e.
appeal) of S, αS,R represents the strength of the contagion and δR

is the susceptibility of R. We adapted this concept to define γi,k ,
i.e. the intention of agent i to go to goal k and how much this can
be influenced by signs in the environment. Bosse’s equations were

adapted to our method in order to compute a new intention for agent
i to go to goal k after having interacted with sign j is as follows:

γi,k∗ = γi,k + (ωi,j (1 − γi,k)), (1)

where γi,k∗ is the new intention value of agent i to go to goal
k, and ωi,j is given by ωi,j = hjαi,j , where we assume a constant
susceptibility and αi,j is defined as a function of the distance between
agent i and sign j :

αi,j = min

(
1,

1

dij

)
, (2)

where dij is the Euclidean distance between agent i and sign j .
In the original model [BDM*15], the information representing the
contagion strength among two individuals is fixed. We altered the
model so that contagion strength αi,j between the agent i and sign
j varies depending on their mutual distance.

4.3. Agent movement

During the simulation, agents attempt to satisfy their intention list.
Initially, each agent i is endowed with a list of ni goals k (fixed) and
per-goal intention values γi,k (can change during the simulation)
in the range [0; T ). In experiments, we assign a starting intention
based on X ∼ N (0.5, 0.12). The intention values associated with
goals for each agent are ordered from highest to lowest value. One
innate behaviour, called Looking_for, is instantiated to each agent
and aims to provide a random motion in the urban layout, while
γi,k < T for all k goals in the agent i list. The goal of this innate
behaviour is to apply the exploratory behaviour, while looking for
signs to be informed. When it happens, γi,k can be updated accord-
ing to Equation (1). If γi,k ≥ T for a specific goal k, then the agent
goal-based motion is applied, causing agent i to move towards goal
k. The navigation of the agent is handled by making use of the
shortest path between the agent’s position and desired destination.
These are computed using Dijkstra’s shortest path on the procedu-
rally generated walkway graph. This resembles an efficient medial
axis navigation graph approach, as opposed to a navigation mesh
approach [vTTK*16, PF16]. The agent is given the shortest path
from its current location to the goal location (a small random offset
is added to each agent’s goal location so that multiple agents do not
intend to arrive at precisely the same goal location). Once a certain
goal is reached, it is removed from agent list. If γi,k ≥ T for more
than one place k, then the highest intention value is prioritized. In
order to avoid computing intention changes among all agents and
signs, we only consider intention changes for agents within the max-
imal observational distance of each sign. Further, to enable agents
actually ‘seeing’ their goal when near it, we include, unbeknown to
our inverse modelling optimization, a fixed sign placed at each goal
location and pointing to it.

4.4. Acceleration

We perform several enhancements to significantly accelerate the
performance of our simulator as compared to the times reported in
several other space discretization methods, including [dLBRM*12]
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and [FYY*16]. This acceleration is beneficial to the interactive
inverse modelling solutions described in the next section.

� Graph Representation. Instead of representing the walkways
with a set of 2D polygons, we describe them with a 2D spa-
tial graph and associate width values with each edge (e.g. see
the skeleton connected by vertices inside the walkway and the
width values w in Figure 4). For OSM-imported walkways, this
is a very natural representation. For curved walkways, the repre-
sentation is a bit inefficient but overall beneficial in light of the
following enhancement.

� Cached Shortest Paths: Since the walkways are discretized to a
set of nodes, we can easily calculate and cache the shortest path
routes from all nodes to all nodes. This results in significantly
fewer shortest path computations than using the dense set of
markers of the space discretization framework for shortest path
computations. At usage time, however, random offsets less than
half the width of the walkways are added to the nodes defining
the shortest path. Thus, the path computed for each agent is not
necessarily the true shortest one, but almost.

� Grid Cells: The graph is then used to create a grid of markers
(i.e. the space discretization as depicted by the grid in Figure 4).
However, agents only need to inspect markers in their grid cell or
in the neighbouring cells. This makes the system depend mostly
on the number of agents and not on the size of the simulated area
(such will be shown in Section 6).

5. Inverse Model

Our inverse model engine seeks for changes to an initial urban lay-
out U0 that yields a desired crowd behaviour. We quantify the crowd
behaviour by using an error function that considers several indica-
tors inspired by urban walkability concepts [GJBP96]. [GJBP96]
established five design criteria (the 5Cs) to enable walkability (i.e.
pedestrian friendly urban areas): connectedness, convenience, com-
fort, conspicuity and conviviality. Our indicators implement neces-
sary measures to yield a first-order quantification of the first four
of the aforementioned design criteria–we leave conviviality (i.e. the
quality of landscaping and architecture and the diversity of activ-
ities) to future work. To quantify connectedness, we measure the
time taken for agents to visit all their destinations while ensuring
that all destinations are at least accessible (e.g. connected) but offer
the ability to decrease/increase the total amount of walkways. To
measure convenience, we merge the notion of time taken to visit
all destinations with walkway width which reduces agents’ conges-
tion in a walkway and at intersections. Regarding the comfort, we
count the average number of people within the intimate interper-
sonal distance range [HAL63]. Finally, for conspicuity, we measure
the number, location and appeal of signs in the urban area.

5.1. Error function

Altogether, our optimization error function consists of a weighted
sum of the following indicators used to quantify the aforementioned
criteria:

� Time Taken T . We count the number of time steps it takes to
complete a simulation. In our system, each time step typically

corresponds to 1 s of simulated time. The time is measured
until a percentage of the agents visit all their intended goals. We
typically use 97% thus accounting for some agents being content
in not visiting all their goal locations.

� Average Walking Distance W . This value represents the average
distance walked by each agent during the simulation.

� Walkway Cost C. This metric calculates the area used up by
walkways divided by the area of the bounding box surrounding
the entire urban layout. Effectively, it measures the cost of having
walkways.

� Intimate Distance Count D. This metric calculates the average
number of people within the intimate interpersonal distance range
of each agent during the simulation period.

The fourth indicator is inspired by the concept of personal space,
or proxemics, proposed by Edward Hall [HAL63, Hal66]. Personal
space is the region surrounding a person. Most people value their
personal space and feel discomfort, anger or anxiety when their
personal space is populated. For instance, considering two individ-
uals i and j and their Euclidean distance di,j , the intimate zone
(di,j <= 0.45 m) is reserved for close friends and close family
members. Another zone (personal space, 0.45 m < di,j <= 1.2 m)
is used for conversations with friends and in-group discussions.
A further zone (social space, 1.2 m < di,j <= 3.6 m) is reserved
for strangers or newly formed groups, while a fourth zone (pub-
lic space, 3.6 m < di,j <= 7.6 m) is used for speeches and larger
audiences. Overall, the best value for this indicator is typically
achieved if few or no people are in the intimate zone. The com-
bined error function can be expressed as a linear combination
E = ktT + kwW + kcC + kdD, where kt , kw , kc and kd are con-
stants that enable giving different relative importances to the met-
rics. Normalization constants are embedded in T , W , C and D.

5.2. Optimization

Given an initial urban model U0 and the aforementioned error func-
tion, we use a Markov chain Monte Carlo (MCMC)-based method
[GRS95] and the Metropolis–Hasting algorithm [MRR*53, Has70]
(with an acceptance probability of 0.9) to find a new set of walkways,
signs and goals that minimize the error function (e.g. E(Ui) -> 0).
This optimization consists in simultaneously running many sets of
Markov chains over a large number of iterations and choosing the
best solution states. In particular, the optimization begins by seed-
ing s initial configurations similar to U0 and then using parallel
tempering [SW86] to attempt n state changes at each of t different
temperatures. Each of the mentioned similar initial configurations
is obtained by randomly performing one state change as described
in Section 5.3. Further, for each state change, an entire instance of
the aforementioned crowd simulation is executed prior to evaluating
the error function. In the end, the walkway configuration with the
smallest error is chosen as the solution U ∗.

The acceptance probability v of a move from a current state Ui to a
new state Ui+1 is given by the Metropolis ratio. Hence, the new state
Ui+1 = U ′

i with probability v and Ui+1 = Ui with probability 1 − v.
To improve optimization performance, we periodically prune the
explored solution chains. In particular, every m < n state changes,
the chains are pruned by keeping a percentage of the top performing
chains (e.g. top 20%) and re-initializing the rest (e.g. bottom 80%)
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Figure 5: Inverse modelling: We show possible layout changes dur-
ing inverse modelling. (a) Given agent source locations, such as bu,
signs sj∗ and/or goals gk∗ may change positions to that of unoccu-
pied nodes (i.e. the black nodes). (b) In addition, walkway widths
may be altered or the oriented bounding box of a closed loop of
walkways may be bisected to add new walkways.

with small variants of the top set. In this way, the exploration focuses
on the top solutions which most likely will lead to further improved
solutions.

For all optimization scenarios, the constants have the default
values kt = kw = kc = kd = 1.0, unless otherwise specified. We do
not vary kt = 1.0 and use this as a scaling factor to adjust other
constants. For the connectedness criteria (Section 6.2.1), we increase
kc = 2.0 to discourage more additions of roads than necessary. For
the conspicuity criteria (Section 6.2.2), all constants remain at 1.0.
For comfort (Section 6.2.3), we increase kd = 2.0 to encourage
road thickness increase to increase interpersonal distance, and we
increase kc = 2.0 to control the increase of road thickness. For the
convenience criteria (Section 6.2.4), we increase kd = 2.0.

Moreover, we implement a job queuing system so that each chain
is run on a separate core, thus yielding a parallel MCMC implemen-
tation. Typically, our solutions are run using five temperatures and
10 chains per temperature, pruning every 10th iteration and running
a total of 20–50 iterations. This implies a total of several thousand
crowd simulation executions, each simulation typically being a few
thousand time steps (or one half to a few hours of simulated time).
Our design system completes in under a minute to a few minutes,
depending on the task, using a four-core desktop PC.

5.3. State changes

During the MCMC-based optimization, one of several types of state
changes can be applied (Figure 5). The user can choose, via the GUI,
which of the following state change types are enabled. Note that if
more than one state change type is enabled, the system randomly
selects one of the state change types to perform next.

� Sign Locations and Appeal. While the number of signs in the
layout is specified by the user, the optimization determines their
optimal location. An initial set of signs can optionally be provided
in the initial urban model U0. If not specified, then sign positions
are randomly seeded at the beginning of the optimization and
are assigned in a round-robin fashion for all goals (e.g. eight
signs for four goals are set to be two signs per goal randomly
positioned). All sign positions are assumed to be at graph nodes
(e.g. at corners or at internal nodes of the edges when curved

walkways are used). This results in the reduction of search space
complexity for the optimization, at the cost of introducing a
limitation—in the real world, signs can appear in the middle of a
long walkway. Further, we do not allow for signs to be co-located
with starting locations, goal locations (note that the optimization
is unaware of the default sign associated with a goal as noted
in Section 4.3) or with other signs having the same goal (i.e.
signs for different goals can be co-located). During a potential
sign-location state change, one sign at random is repositioned
to a random new location. Sign changes do not make use of the
multiple MCMC temperature settings. Sign appeal is global and
all signs share this value. For the optimization, the sign appeal
can be included as a cost. So, a lower appeal value minimizes the
score. However, a lower appeal increases other indicators, such
as time taken. For example, sign appeal will be reduced until the
time taken increases too much.

� Goal Locations. This state change attempts to find the optimal
locations for all goals. All goals have an initial location specified
in U0 and, similar to sign locations, can only be re-located to
graph nodes (and may not be co-located with signs or other
goals). During a potential goal location state change, the goal is
randomly repositioned by a distance linearly proportional to the
chain’s temperature (e.g. a chain at temperature 2 seeks for a new
goal position at up to twice the distance from its current location
as compared to a goal move for a chain at temperature 1).

� Walkway Width. This state change type alters the width of a seg-
ment of walkway located between a pair of walkway intersection
nodes (i.e. nodes internal to an edge are ignored). For a poten-
tial walkway width state change, the optimizer follows a random
selection method to select an edge and to choose whether to per-
form a walkway width increase or decrease. The walkway width
increment (or decrement) is proportional to the chain’s temper-
ature setting. The random selection process chooses with 80%
probability a segment within the top 20% of segments sorted
by walkway utilization (e.g. average number of agents on the
segment during a prior simulation run).

� Walkway Topology. Our last state change type alters the topol-
ogy of the walkways by either adding or removing a walkway
segment. For a potential walkway topology change, the system
randomly chooses to add or remove a random walkway segment.
For segment removal, the system selects, with 80% probability,
an edge from the last 20% of segments sorted by utilization.
Removing a walkway segment is simply deleting an edge from
the walkway graph. To add a walkway segment, first our system
determines all loops (or cycles) in the walkway graph. Then, one
of the loops is picked for walkway addition, by selecting with
80% probability, an edge from the top 20% of edges. (The walk-
way edge segments are sorted by the number of virtual humans
utilizing the walkway). As the edge can be part of two loops,
the system randomly picks one. Then, the oriented bounding box
(OBB) of this selected loop is calculated, such that the area of the
OBB is maximized (note that the OBB will be aligned to one of
the edges in the loop). A walkway segment perpendicular to the
OBB’s major axis is then added to the walkway graph. Its width
is the average of the width of the walkways it intersects. We ex-
perimented with using temperatures to add or remove walkway
segments of size related to the temperature setting but did not
find a significant performance improvement.
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Table 1: Simulation performance: We show the crowd simulation perfor-
mance for different numbers of agents and in different sized environments.

No. of
agents Environment area Environment name FPS

1000 1274 × 580 m2 C.W. Park 286
5000 45
1000 480 × 340 m2 Strasbourg 500
5000 54
1000 580 × 503 m2 Venice 285
5000 50
1000 374 × 632 m2 Zurich 333
5000 45
3000 677×514 m2 Average performance in the

above environments
200

An additional feature supported by our method is specifying a
region of interest for the state changes. By default, the state changes
may occur anywhere in the urban layout. However, the user may
specify a rectangular area of the layout in which selected state
changes may occur to further reduce computational cost.

6. Results

Our system is implemented on an Intel i7 desktop PC. The simula-
tion and inverse engine are programmed in C/C++ using Windows,
Qt, OpenGL and Boost (for graph operations). We implemented and
applied our approach to several virtual urban layouts and real-world
urban layouts; in particular, the three real-world environments in
Figure 3 and a depiction of central Venice, Italy (Figure 1). For each
of these locations, we inspected OSM to determine a set of plausible
agent start locations and goal locations for typical people/agents. In
all cases, when we report simulation results, we average five runs
and present the average values. We have adopted this strategy be-
cause there is a random component in the simulation that can cause
some variance.

6.1. Simulation performance

Table 1 reports the average number of crowd simulation time steps
executed per second (i.e. FPS) for different numbers of agents and
different environments. Typically, simulations run from 2000 to
8000 time steps (representing 2000–8000 s of simulated time). As
can be observed, when a sufficient number of agents are reached, the
performance is dominated by the number of agents (and independent
of the environment size). The last row shows the overall average
performance (3000 agents at 200 fps). For comparison, a simulation
of 1000 agents in Feng et al. [FYY*16] runs at 24–60 FPS (when
not using their trained statistical approximation) and Bicho et al.
[dLBRM*12] run at 23 FPS (extrapolating performance for their
numbers at 800 agents). Our system runs at an averaged 351 FPS
for the same number of agents in our example environments (about
one order of magnitude faster performance).

6.2. Walkability criteria

We show the results of altering the walkways for different walka-
bility criteria. Typically, during solution computation, we initially

Figure 6: Connectedness: 200 agents emerge from bottom-left and
top-right green source with intentions of reaching four circular
goals in middle. Walkways are colour coded based on the number of
people who traverse each segment: (a) initial simulation result, (b)
optimized with kc = 1, (c) optimized with kc = 3 and (d) alternative
solution maintaining initial walkways but with five optimized signs.

compute a solution with 100–200 agents (e.g. for our large Common
Wealth Park example, we obtain a simulation performance of about
3300 fps) to obtain a coarse solution and then run a few iterations
with a larger number of agents. The total inverse modelling compu-
tation time for 100–200 agents typically is from under a minute to a
few minutes. Refinements using a larger number of agents sum up
to 10 min in few cases. The values for kt , kw , kc and kd are set as
described in Section 5.2.

6.2.1. Connectedness

Figure 6 shows changes to the connectedness criteria. Using the
same initial layout in Figure 6(a) with area 247 × 307 m, we use
our system to discover alternative walkway topologies ensuring
at least the two sources and four goals remain singly connected.
In Figure 6(b), we choose kc = 1 which converges to a walkway
reduction of about 50% as well as less time taken for all agents
to visit their goals. Figure 6(c) contains another solution where
kc = 3 resulting in about a 75% less walkways. As can be observed,
reducing the number of walkways actually improves performance.
This result is not unexpected and is an empirical demonstration
of Braess’ paradox (by giving agents less freedom, an overall win
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Figure 7: Conspicuity in a virtual layout. (a) Environment with
1000 agents starting from two locations (bottom left and top right
green dots), two goals and no signs. (b) Same environment but two
optimized signs requires 5626 time steps for all agents to reach their
single goal. (c) Same environment with four optimized signs reduces
time taken to 3505 time steps.

is produced despite there being less space and potentially higher
congestion for the agents). Figure 6(d) shows a different solution
whereby the original walkways are used but signs are added so as to
yield a similar amount of time needed as with removing walkways.
This shows our system’s ability to enable alternative solutions within
the same environment.

6.2.2. Conspicuity

Figure 7, Figure 8 and Table 2 show alterations to the conspicuity
criteria. In effect, we alter the usage and placement of signs. In
Figure 7, we construct a virtual layout to illustrate sign usage with
1000 agents. In all cases, the agents starting from the lower left wish
to reach the goal in the upper right and the agents starting from the
upper right wish to reach the goal in the lower right. In Figure 7(a),
we show the base case of placing no signs, resulting in greater than
10 000 time steps necessary for 97% of the crowd to reach their
single goal. Each dot corresponds to an agent at about midpoint
through the simulation. In Figure 7(b), our inverse model determined
the best location for two signs which reduced the time taken to 5626
time steps (note the proximity, as expected, of each sign to the
corresponding agent source location). Finally, in Figure 7(c), our
system determined the best locations to position four signs resulting
in only needing 3505 time steps. It also becomes clear which are
the most utilized walkways. Figure 8 shows a similar analysis for
Common Wealth park in Canberra. We report the number of time
steps for 10, 40 and 60 signs using an appeal value of 0.5. Further,
we code the sign utilization using a standard Jet colourmap (i.e.
red = ‘high utilization’). At 60 signs, it can be seen that many signs
have low usage. At 10 signs, they are almost all heavily used. Thus,

40 signs seem to closer to optimal in terms of reducing time steps
and not having an excessive number of signs. Figure 8(d) shows the
result of reducing the sign appeal value to 0.3 (i.e. making the signs
less influential on people) and still maintaining a similar solution
to the original 40 signs case. Thus, the end result has just enough
conspicuity to achieve the shown reduction in time needed for all
agents to achieve their goals.

Table 2 reports in tabular form the number of time steps taken for
a crowd of 3000 agents to visit all goals for different configurations
of sign appeal and agent intentions. In particular, we choose the
Venice environment (see Figure 1) with nine fixed signs and three
goals. We vary the sign appeal levels from low (0.05), to medium
(0.1) and to a high value (1.0). Then, we randomly vary the agents
intentions to have a dominant intention for up to one goal, two goals
or three goals. Altogether this produces nine different scenarios. As
expected, the scenario with low appeal and one strongly preferred
goal per agent (though not necessarily the same goal) takes the
most time for all agents to satisfy their objectives. In contrast, when
having signs of high appeal and all agents have a strong intention
to reach all their goals results in the least time for all agents to
reach their goals. Thus, by altering appeal and intention levels, we
can represent a variety of crowd types and still use our inverse
modelling system to find walkway geometries, goal locations and
sign locations that best accomplish our desired overall behaviour.

6.2.3. Comfort

Figure 9 describes changes to the comfort criteria, in particu-
lar to the average quantity of people in the intimate distance
range. Figure 9(a) shows an initial configuration resulting in about
0.5–1 people within the intimate interpersonal distance (0.45 m)
of the inset area. Figure 9(b) contains an optimized result chang-
ing walkway widths by the smallest amount to reduce the number
of people in the intimate interpersonal distance, for the same in-
set area, to about 0–0.25 in most parts. While we observe average
count values as high as 5, the most common and interesting values
are near and under 1, so we artificially clamp counts to 1 prior to
visualization.

6.2.4. Convenience

Figure 10 shows changes to an environment so as to alter the con-
venience of the walkways in allowing agents to quickly reach all
their goals for a fixed topology and sign setup. In this case, only the
walkway width is optimized. In this figure, 1000 agents enter the
environment from bottom-left or top-right corner and each agent
wishes to reach each of the four goals. Figure 10(b) shows a re-
duction in the time taken (as a consequence of less congestion) by
using wider paths as determined by our optimization. For compari-
son, Figure 10(c) shows a naively assumed walkway width increase
(equal to that determined by our optimization but for another subset
of walkways) that should be beneficial but instead it shows a degra-
dation of conditions. This is due to the virtual crowds reaching the
thicker, wide areas and getting congested when trying to move out
of them to the thinner walkways (creating a bottleneck). We ex-
perimented with slightly reducing the expanded walkway width to
decrease chance of congestion but it only improved the performance
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Figure 8: Conspicuity in common wealth Park. Two hundred agents were initialized to go to eight goals from six locations in Common Wealth
Park: (a) 10 signs, (b) 40 signs and (c) 60 signs. Sign dots are colour-coded by their utilization (the percentage of the virtual population that
saw the sign) using a standard Jet colourmap (10 signs solution shows lots of red, i.e. most of the population saw the red signs and 60 signs
show lots of blue, i.e. a small percentage of the population saw most signs). (d) 40 signs optimized to lowest possible appeal (from 0.5 to 0.3)
yet maintaining the same time taken. Also, the circle around each sign shows its area of effect (thus circles in ‘d’ are smaller than in ‘b’ and
‘c’).

Table 2: Appeals and intentions: We show the number of time steps needed
for the crowd to satisfy their objectives for various levels of signs appeal
and agents’ intentions. This demonstrates the ability of our system to cap-
ture different crowd behaviours and to use it within our inverse modelling
framework.

Appeal level 1 dominant 2 dominant 3 dominant

0.05 (low) 42 900 23 000 10 100
0.1 (medium) 24 800 13 500 8100
1.0 (high) 6900 6000 5700

slightly. Hence, this exemplifies the need for a thorough analysis be-
fore road changes are considered.

6.3. Real-world approximations

We used our system for several real-world approximate scenarios
(Figure 13). The initial time is >10 000 time steps for all scenarios.
In the left column, iterations of an optimization is shown for adding
and removing, walkways and signs for Commonwealth Park. The
optimization eventually finds an alternative set of walkways that
reduces time taken. Note the non-axis aligned walkways added in
the bottom image of the first column (iteration #60 of CW Park)
in Figure 13. This solution shows the generality of our OBB-based
algorithm (as described in Section 5.3, Walkway Topology) to not
require axis-aligned walkways. In the middle column, we alter walk-
way width and signs for our Strasbourg area. We show segment

Figure 9: Comfort: 2000 agents are initialized at bottom left and
top right, with intentions of reaching four goals near middle. Each
walkway segment is colour-coded to represent the number of people
within every agent’s intimate distance range (0.45 m). (a) Initial
result and a zoomed 3D inset. (b) Walkway optimized to reduce
number of people in intimate distance range by altering walkway
widths, and a zoomed 3D inset.

utilization at 20 iterations and sign utilization at 40 iterations. In the
right column, we compute alternative goal locations and signs that
reduce time taken in our Zurich environment. Collectively, these
examples show how our system can be used in variety of real-world
scenarios and for various optimization objectives.
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Figure 10: Convenience: (a) 1000 agents were initialized at bottom
left and top right, with intentions of reaching four goals near middle.
This layout requires 4500 s for all agents to reach their goals. (b)
Optimized with walkway width changes to reduce time by 3650 s but
not exceed a prescribed total walkway cost. (c) As a comparison,
naive walkway width changes which increases time taken to 4760,
indicating that achieving the improvement is not trivial.

Figure 11: Crowd simulation. We show emergent phenomena being
produced by our crowd simulator in a manner similar to other crowd
frameworks. Each star represents a virtual human. Each point of the
star represents a marker that is acquired by the virtual human. The
phenomena include: (a) arc formation, (b) emergent lanes (green
and purple agents start at opposite corners and move towards the
start position of the other group) and (c) bottleneck behaviour (all
agents move from left to right). In (c), the agents squeezed to the
upper and lower corners in trying to enter the walled area show the
formation of a bottleneck.

6.4. Evaluation and comparison

To evaluate our crowd simulator, we demonstrate the occurrence
of emergent phenomena typically desired in crowd simulation
(Figure 11) and compare our system to prior crowd simulators
and exploration methods (Figure 12). In particular, as shown in
Figure 11, we observe naturally occurring arc formation, emergent
lanes and bottlenecks similar to Figures 6(b), 3(b) and 6(a) in [dL-
BRM*12], respectively.

Figure 12: Comparison. We compare our method to
BioCrowds [dLBRM*12], ORCA [vdBLM08] and a graph-
based method (GBM) having some randomization and agent
memory. We show times for both known and unknown goal
locations in the environment. Our method (right three cases) shows
that we can be similar with BioCrowds/ORCA times for known goal
locations despite assuming initially unknown goal locations and
map. When we compare with a GBM that utilizes randomization
and memory (when visiting multiple goals), we see that as we
increase signs in our method, it still performs better. We varied the
number of signs used in our method (4, 12 and 35) to show the
impact in total time to achieve goals.

In Figure 12, we compare our system to others. This comparison
is to provide a benchmark for when agents are unaware of goal loca-
tions but the environment has signs and other design improvements.
We compare with three different situations: known goal locations,
unknown goal locations using graph search and memory to progres-
sively explore the map and random movement. As expected, when
agents know goal locations, the overall time needed to reach all
goals is significantly lower than when goal locations are not known.
However, with our system, we can design an environment that uses
signs and our other design improvements to yield goal finding time
that is similar to when all goal locations are known a priori.

Our comparison makes uses of several configurations of
BioCrowds [dLBRM*12], ORCA [vdBLM08] and a graph-based
method (GBM). We obtained implementations of BioCrowds and
ORCA from the corresponding authors. In the space of autonomous
agent navigation, many classical (graph search, potential fields, cell,
etc.) and heuristic methods (neural networks, genetic algorithms,
etc.) exist to explore a space [MCTK16]. To provide a basic com-
parison to these methodologies, we implemented a GBM by extend-
ing depth first search. At each intersection (i.e. node in the graph
to explore), the visit order of the adjacent walkways (i.e. edges)
is randomized. In addition, each agent remembers goal locations it
passes by. Then, if an agent wishes to visit a previously seen goal,
it simply takes the shortest path to this goal.

All the aforementioned systems are deployed in the environment
shown in Figure 6. Further, each agent desires to reach each of four
goals in a random order and moves at a speed of 1.2 m/s. We use the
systems (i.e. BioCrowds, ORCA, GBM, our method) in simulation
runs with 50, 100, 200 and 400 agents and in the three scenarios
explained below.
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Figure 13: Example applications. These three sequences (CW Park with 400 agents, Strousberg with 1200 agents and Zurich with 2000
agents) show how our system can be used in variety of real-world scenarios and for various optimization objectives (‘time’ refers to time
taken, ‘cost’ refers to walkway area and ‘PID’ to the number of people within the intimate distance). See main text for more details.

In a first scenario, we assume that agents know the location of all
goals, as well as having a full map of the environment. This enables
agents to compute the shortest path to all goals—this is the typical
scenario for BioCrowds and ORCA. The time needed varies from
270 to 419 s. These are the times we seek to match but without the
assumption that all agents know the location of all goals as well as
the map.

In a second scenario, we assume that agents from BioCrowds
and ORCA do not know the location of the goals, i.e. they move
randomly until they achieve their goals. In this case, both methods
show a high total time needed for all agents to visit their goals
(from 1497 to 3002 s). We included this second scenario to have a
reference point for when agents are unaware of goal locations and
in addition, the environment is not informed with signs nor has our
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other improvements. Our method should never be worse than this
scenario.

In the third scenario, we use our GBM which essentially provides
a middle ground solution. As agents explore and see goals, they
effectively learn goal locations and the map. In this case, agents
find all their goal locations faster (963–1187 s) than random search
(1497–3002 s) but slower than when all goals are known a priori
(270–419 s).

In contrast, our system is precisely for assisting, and modelling,
agents exploring unknown environments. In this test environment,
our system determines that with 12 or more signs, we obtain only a
slightly longer time for all agents to reach their goals as compared
to BioCrowds and ORCA using known goal locations (574–1056
s) and shorter times as compared to GBM (963–1187 s). With only
four signs, our system predicts that it will take 960–1619 s, which
is still less than the times predicted for the unknown environment
as per BioCrowds and ORCA but more than with our GBM. These
results show a progressive assistance by our method as the number
of signs increases (in addition to our other improvements) and thus
at least partially corroborates the correctness of our solution.

6.5. Limitations

Our system does have some limitations in its current state. First, we
do not support external influences that may alter crowd behaviour
(e.g. weather, emergencies or scenario-specific special information).
Second, our framework is currently not well suited to accommodate
long-term simulations which may exhibit complex agent behaviours
(e.g. day long schedules, clustering of agents into groups/families
or a cluster of agents getting delayed or faster based on the actions
of a single group member). Third, our approach is heuristic-driven
and thus may not find the globally best solution. Fourth, our sys-
tem does not account for agent–agent interactions (beyond collision
avoidance).

7. Conclusion and Future Work

We have described an interactive system that enables a user to in-
spect modifications to a set of walkways so as to alter the behaviour
of a crowd exploring an unknown environment. We anticipate that
our tool is useful for the animation of large crowds, whereby a sim-
ple set of rules is desired to simulate a large crowd but yet certain
realistic global behaviours are desired. Indeed, our tool is also of
interest to the urban planners we have contacted as an initial ex-
ploratory method to design, or alter, an urban layout for improved
walkability. Our accelerated simulator and multi-core MCMC op-
timization makes the tool fast enough to provide an on-the-spot
interactive analysis of the complex solution space.

As future work, we are interested in pursuing several items. First,
our framework only has a small and limited set of crowd behaviour
indicators and we would like to extend such indicators. Second, our
system is limited to single-floor environments and thus we would
like to extend to support multi-floor (indoor) locations. Third, agents
within a crowd may behave differently based on background, cul-
ture and social function. It would be an interesting exploration to

investigate how to alter an environment for such a diverse crowd of
agents.
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