
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Finding Intersections of Algebraic Curves in a Convex Region using
Encasement

Joseph Masterjohn∗ Victor Milenkovic† Elisha Sacks‡

Abstract

We present a subdivision based technique for finding the
intersections of two algebraic curves inside a convex re-
gion. Even though it avoids computing resultants, the
technique is guaranteed to find all intersections with
bounded backwards error. The subdivision, called an
encasement, also encodes the arrangement structure of
the curves. We implement the encasement algorithm
using adaptive precision interval arithmetic. We com-
pare its performance to the CGAL library implemen-
tation of resultant based curve intersection techniques.
We provide CPU and CPU/GPU versions of the algo-
rithm and implementation. On the CPU, encasement
generates all curve intersections, to accuracy 10−8, 10
to 30 times faster than CGAL for degrees 8 to 18, and
it handles degrees up to 20 that CGAL cannot handle.
The GPU speeds up the calculation by a factor of 3 to
4.

1 Introduction

An algebraic curve f is the zero set of a bivariate poly-
nomial f(x, y). Given a convex polygon B, we find all
intersections of curves f and g inside B. Curve inter-
section is a core geometric calculation. It is a key step
in calculating the arrangement of n curves f1, . . . , fn:
a partition of B into intersection vertices, open curve
segments, and open regions. We have in mind scien-
tific or industrial applications, which provide the poly-
nomial coefficients as floating-point numbers. Broadly
speaking, numerical programs use double-float for calcu-
lations and aim for single-float accuracy in the output.
An arrangement with accuracy δ = 10−8 would more
than satisfy the latter. Nevertheless, exact arrangement
computation is required to support CG algorithms that
manipulate arrangements. These algorithms require the
signs of predicates evaluated on the vertices of the ar-
rangement. An incorrect sign can lead to program fail-
ure or to nonsensical output. This is the robustness
problem of Computational Geometry.

∗Department of Computer Science, University of Miami,
joe@cs.miami.edu
†Department of Computer Science, University of Miami,

vjm@cs.miami.edu
‡Computer Science Department, Purdue University,

eps@cs.purdue.edu

Exact Computational Geometry (ECG) uses ex-
tended precision and algebraic algorithms to determine
the signs of primitives. This approach can be numeri-
cally expensive even when heuristics are used, such as
floating point filtering. In the case of curve arrange-
ments, an exact algorithm requires construction of resul-
tant polynomials. These have high degree and bignum
coefficients.

Numerical methods, such as subdivision and curve
tracing, are often stymied by ill-conditioned inputs.
Usually, the subdivision is by axis-parallel lines, which
can require a large number of cuts to separate features.
Curve tracing is faster but is even less reliable.

1.1 Prior Work

Algebraic methods compute the turning points and the
intersection points of bivariate polynomial curves via
resultants and other algebraic computation. For exam-
ple, the CGAL arrangement package [5, 15] implements
a sweep algorithm for plane algebraic curves using Ex-
acus [4].

Subdivision methods [7, 1] provide a faster means to
isolate the intersection points of algebraic curves and
to trace algebraic curves, but they cannot guarantee
correctness and are prone to failure on ill-conditioned
inputs. They use convex bounding polyhedra during
intersection isolation, but the outputs are axis-parallel
enclosures. They typically operate on polynomials given
in the Bernstein-Bézier basis and involve a non-robust
numerical subdivision phase followed by a robust (no
false positive) certification phase on candidate intersec-
tions [9]. They can isolate the vertices and edges of
an arrangement, but an axis-parallel enclosure requires
Ω(1/ε) cells for ε-separated curves (ε distant under the
Hausdorff metric). Other work focuses on improving
the efficiency rather than reliability of the subdivision
phase through the use of low degree approximations [3],
blending schemes for quick elimination of regions con-
taining no roots [2], and deflation techniques [13].

Wang, Chiang, and Yap [14] formalize resolution-
exact subdivision methods for motion planning, but this
work is also limited to axis-parallel enclosures.

30th Canadian Conference on Computational Geometry, 2018

Figure 1: Encasement of f (red) with respect to g
(green) and their intersections (yellow) in B (bounding
square).

1.2 Encasement-Based Intersection Construction

We present an algebraic curve intersection algorithm
based on convex encasement. The algorithm combines
subdivision methods with exact computational geome-
try to achieve both efficiency and guaranteed accuracy.

Algebraic curves f and g are generic (in general po-
sition) if they are nonsingular (i.e. no solution to
f(x, y) = fx(x, y) = fy(x, y) = 0) and have no tangent
intersections. A convex encasement of f with respect
to g in a convex polygonal region B is a partition of
B into convex polygonal cells such that 1) no cell con-
tains a loop of f or g or more than one segment of f ,
2) if a cell intersects both f and g, it contains a single
intersection point of f and g (Fig. 1).

An encasement isolates the components of f and the
intersections of f and g. The arrangement in B of a set
of curves F can be reduced to the encasement in B of
each pair f, g from F (Sec. 7.1).

1.2.1 Intersection Algorithm Summary

The curve intersection algorithm (Sec. 7) takes two bi-
variate polynomials as inputs, perturbs the coefficients
by δ = 2−26 ≈ 10−8, and constructs an encasement of
the corresponding generic algebraic curves f and g by
recursive subdivision of B by straight lines. If a cell
C violates the definition of encasement, for example by
containing a loop of f , the algorithm splits C by a line
L. The following summarizes the selection of L with
details in the indicated sections.

Loop splitting (Sec. 2) Construct a critical set S
for f in B: S does not intersect f and contains all local
extrema of f(x, y). Since a loop of f must surround an
extremum, it must surround a connected component of
S. If a cell C contains a connected component of S,
L is selected to intersect it and hence splits any loop
surrounding it (Fig. 2). Likewise g.

(a) (b) (c)

Figure 2: Curves f (red) and g (green) with undetected
loop not shown (a). Critical regions (b) (colors match
curves). Splitting lower middle f -region with vertical
line reveals and splits missing loop (c).

(a) (b)

Figure 3: Cell with two segments (red) of f and one
segment (green) of g (a). Segments of f separated by
splitting line (b).

(a) (b)

Figure 4: Cell (center) with non-intersecting segments
of f and g (a). Separated by splitting line (b).

Self-separation (Sec. 3) If C contains more than one
segment of f , L is selected to separate one segment from
another (Fig. 3).

Curve separation (Sec. 4) If f has a single segment
ab in C and no intersections with g, L separates f from
g (Fig. 4).

Intersection separation (Sec. 4) If ab intersects g
an even number of times inside C, L splits C between
two of the intersections (Fig. 5).

Intersection isolation and encasement (Secs. 5
and 6) If ab intersects g an odd number of times in C, we
construct an axis-parallel rectangle R ⊂ C containing a

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

(a) (b)

Figure 5: Cell with two intersections (a). Separated by
splitting line through p ∈ f in direction of ∇f(p) at a
local minimum of g(p) on f (red) (b).

(a) (b)

Figure 6: Segment g (red) blocks the intersection’s
“view” of boundary along angle bisector (a). Angle bi-
sectors reach boundary of smaller cell proving intersec-
tion is unique (b).

single intersection. This is standard zero isolation using
a 2D interval: R is not a cell. Split C by up to four
lines to encase that intersection in a cell that excludes
all other intersections (Fig. 6).

Self-separation and curve separation might not be
possible using a single split if the two segments are close
and curved. In that case, multiple splits are required.

1.2.2 Contribution

Encasement based curve intersection improves on prior
work in several ways. We ensure correctness, with ac-
curacy δ, for all inputs by perturbing polynomials to re-
move singular points and tangent intersections then em-
ploying adaptive precision interval arithmetic. Replac-
ing boxes with convex polygons reduces the space com-
plexity for ε-separated curves to Ω(1/

√
ε). The number

of splits, other than for self-separation or curve separa-
tion, is in O(d2), for d the maximum degree of f and
g. We introduce a stronger criterion for showing that a
cell contains a single intersection.

On the CPU, encasement generates all curve intersec-
tions, to accuracy δ, 10 to 30 times faster than CGAL
for degrees 8 to 18, and it handles degrees up to 20 that
CGAL cannot handle. The GPU speeds up the calcula-

i

∆

f

∆

f

∆

f

f< 0

f

p+ut
f

p

u

vi+1v

 >0

∆

f

∆f

∆

f

f

f f

u

p

q+tv

q+twq

v

w

(a) (b)

Figure 7: p minimizes f(p) on vivi+1, f(p) < 0, and di-
rection u decreases f(x, y). Split by p+ ut (a). p max-
imizes f(x, y) and f(p) > 0 but direction u decreases
f(x, y). If this happens for every edge, C must contain
a saddle point q. Split by q + tv and q + tw, where v
and w are the eigenvectors of the Hessian of f(x, y) at
q (b).

tion by a factor of 3 to 4.

2 Critical sets

A region S is a critical set of a curve f with respect to B
if it does not intersect f and it contains all local extrema
of f(x, y) in B. To construct a critical set, let R be the
bounding rectangle of B. If we can show that f(x, y)
is nonzero in R, return R. If we can show that one
of the partial derivatives fx(x, y) or fy(x, y) is nonzero
in R (hence R does not contain an extremum), return
∅. Otherwise, bisect R across its longer dimension, re-
curse on the two halves, and return the the union of
the results. Since f(x, y) is nonsingular, the algorithm
terminates.

We test if a polynomial is nonzero on a rectan-
gle with a generalization of Descartes’ rule of signs.
If R = [a, b] × [c, d], the rational function g(x, y) =
f(1/(x + 1/(b − a)) + a, 1/(y + 1/(d − c)) + c), takes
on the same set of values on [0,∞] × [0,∞] as f(x, y)
on R, and g(x, y) is nonzero on [0,∞] × [0,∞] (hence
f(x, y) on R) if all the coefficients of xmyng have the
same sign, where m and n are the degrees of f(x, y) in
x and y.

3 Self-separation

We can find the intersections of a curve f with the
boundary of a cell C by substituting the parametric
form vi + t(vi+1 − vi) of each edge vivi+1 into f(x, y)
and solving for the zeros of the univariate in t ∈ [0, 1]
[11]. Since f has no loops in C after loop splitting, the
number of segments of f inside C is half the number of
intersections with the boundary. If there are more than
two intersections, we split C in a manner that partially
or completely separates at least one pair of segments.

For each clockwise oriented edge vivi+1 of the bound-
ary, solve for all p such that (vi − vi+1) · ∇f(p) = 0

30th Canadian Conference on Computational Geometry, 2018

r
bf

g

a
p

p

q

p’
mf

g

a

p
b

(a) (b)

Figure 8: Chain from a (initial p) to q to r to p separates
ap from g (a). g(x, y) is decreasing at p and p′ (= b)
towards b and a, so we split at minimum m of g(x, y)
on f , separating two intersections with g (b).

(Fig. 7(a)). The vector u = s∇f(p) with s = sign((vi −
vi+1) × ∇f(p)) points inward. If sign(f(p)) = s,
|f(p + tu)|, t > 0, increases at t = 0. We split by the
line p+ tu. If there is more than one such p, we choose
the one between the closest pair of boundary intersec-
tions. If no such p exists on any edge, we claim that
∇f(p) makes at least one full counterclockwise turn as
p traverses the boundary clockwise. This claim is a spe-
cialization of the generalized Poincaré-Hopf index theo-
rem [8]. We isolate an intersection q of fx (fx(x, y) = 0)
and fy in a rectangle with the same property (Sec. 5),
which implies that q is a saddle point (Fig. 7(b)). Let v
and w be principle directions of f at q. We split by the
lines q + tv and q + tw.

4 Curve or intersection separation

If a cell C contains a single segment ab of f and
sign(g(a)) = sign(g(b)), f crosses g an even number of
times inside C. If there is a local minimum m of g(x, y)
on f , we expect that it separates two intersections, so
we split at m. Some minima may not separate pairs of
intersections, but there are at most O(d2) minima for d
the maximum total degree of f(x, y) and g(x, y). Other-
wise, we try to certify zero intersections by constructing
a splitting line that separates f from g. The details of
curve/intersection separation are complicated. We pro-
vide a summary here. Details are in a forthcoming full
paper. We discuss separating f from g in terms of con-
structing a polygonal chain, but actually we split along
the lines of the segments in the chain.

Suppose we are at a point p ∈ f , initially p = a.
We have separated ap from g. Specifically, ap does not
intersect a segment of g with both endpoints to the right
of ab. (The left has to be handled similarly.) The sign of
∇f(p)×∇g(p) tells us that g(x, y) is increasing at p in
the direction of b. We move away from f in the direction
of ∇f(p) to q halfway to g, meaning g(q) = g(p)/2.
Next we move in a direction perpendicular to ∇f(q),
“parallel” to f . If we hit f first, that is the new position
of p. If we hit g or the boundary of C at r, we drop back
to f in the direction opposite of its gradient to the new
p on f , with ap separated from g (Fig. 8(a)). Since the

b

∆

g∆

fg

>0

g<0

ff

a

d

>0

f >0g

g<0

a
b

c

f

d
g∆

f

g<0

>0ff

b

a

g

f

c

∆

(a) (b) (c)

Figure 9: a is a positive tail of f but b is a negative
head (a), so i = −1 = sign(∇f(p) ×∇g(p)) (a). a and
d are positive tails and b and d are positive heads i = 0
(b). a and c are positive tails, b is negative head, and d
is positive head so i = −1 (c).

parallel move is off f and parallel to it, it goes far before
hitting f . Since g(x, y) is increasing in the direction of
b, g is getting farther from f in that direction so the
parallel move goes far before hitting g.

If g(x, y) is decreasing on f at p in the direction of
b, we try to work from the opposite direction, starting
with p′ = b. If g(x, y) is decreasing at both p and p′ in
the direction of b and a, g(x, y) has a local minimum on
f between p and p′. We isolate the minimum m, which
is an intersection between f and∇f(x, y)×∇g(x, y) = 0
(Sec. 5). Then we split f by a line through m in the
direction ∇f(m) (Fig. 8(b)). If there is a pair of inter-
sections with g between p and p′ and only one minimum,
this will put the two intersections in different cells. If
not, m becomes a new starting point for separations be-
cause g(x, y) is increasing on f in both directions away
from m.

5 Intersection isolation

If sign(g(a)) = −sign(g(b)), f intersects g an odd num-
ber of times inside C, and we isolate one of these inter-
sections to a rectangle R ⊂ C. Let P be the precision
of the arithmetic: initially double-float (P = 53). Iso-
lation uses two operations: subdivide(D) subdivides a
convex region D containing an intersection by the bi-
sector of its longer dimension and returns the half D′

containing an intersection (Sec. 5); and Newton(R) it-
erates 2D Interval Newton’s method [12] on a rectangle
R until it stops shrinking.

While 0 ∈ ∇f(bbox(D)) × ∇g(bbox(D)) or
Newton(bbox(D)) = bbox(D), D ← subdivide(D). Re-
turn Newton(bbox(D)). Isolation does not alter C: the
subdivisions are temporary. The output R can be made
smaller by doubling the P used to create it and return-
ing Newton(R). We speed up the method by running
ordinary Newton’s method on each cell centroid. If it
converges to a point inside the cell, we expand it to a
rectangle based on its condition.

Subdivision might result in one or both halves con-
taining more than one segment of f . We can tell which
half contains the intersection by examining the inter-

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

p

f

∆

g
f

g
4

1

23

∆

g

g
4

1

23
f

p

∆

p+rv

f

∆

(a) (b)

Figure 10: Each angle bisector of the gradient vectors
can “see” the boundary (a). Split the cell 90% of the
way to the nearest intersection (b) or boundary. Bound-
ary splits are dropped if not needed.

sections of f . A tail is a point a ∈ f ∩ ∂C such that
f > 0 in a neighborhood counterclockwise from a. If
a is on edge vivi+1 of the boundary, the condition is
equivalent to (vi+1 − vi) · ∇f(a) < 0. A head has the
opposite sign. We say a ∈ f ∩∂C is positive if g(a) > 0,
otherwise negative. A cell contains an intersection if the
intersection number i of positive heads minus positive
tails is nonzero (Fig. 9(a)). This number also equals the
winding number of (f(p), g(p)) around the origin as p
travels around the boundary: (f(p), g(p)) sweeps coun-
terclockwise through the first quadrant for each positive
head and clockwise for each positive tail. For at least
one p ∈ f ∩ g ∩C, sign(∇f(p)×∇g(p)) = sign(i). Sub-
division calculates the intersection number for each half
and selects the one whose sign is the same as the original
cell (Fig. 9(c)).

6 Intersection encasement

The output R of intersection isolation is an adaptive-
precision 2D interval representation of an intersection
point p of f and g inside a cell C. However, C can
contain an even number of additional intersections. In-
tersection encasement uses up to four splits to isolate p
within a cell that excludes all other intersections.

Let v1, v2, v3, v4 be vectors that bisect the angle be-
tween ±∇f(p) and ±∇g(p). If g also intersects C in a
single segment and if the four rays p+ tvi, t > 0, reach
the boundary of C without intersecting f or g, the four
curve segments connecting p to the boundary of C via f
or g are isolated, and f and g have no other intersection
in C (Fig. 10(a)).

Otherwise, for each 1 ≤ i ≤ 4, compute t = ri > 0 the
minimum value at which p + tvi intersects f , g, or the
boundary of C, and split C by the line perpendicular
to vi through the point p + 0.9rivi (Fig. 10(b)). While
f or g intersects the boundary of the cell containing p
more than twice, halve each ri and split again.

7 Encasement based intersection algorithm

The encasement based algebraic curve intersection al-
gorithm takes two bivariate polynomials, f(x, y) and

g(x, y), and a desired accuracy δ as input and perturbs
their coefficients by η uniform in [−δ, δ]. When generat-
ing a splitting line, it rounds its coefficients to double-
float and perturbs them. However, if perturbation puts
the line on the wrong side of a vertex, it expresses each
coefficient as the sum of two double-floats and perturbs
the smaller one, and so forth as necessary. It uses inter-
val arithmetic, increasing precision [6] as necessary to
correctly determine signs of predicate expressions.

Separation of curves might require multiple splits, but
the separation algorithms are correct for linear curves,
and each split shrinks the. Since the curves are generic,
their deviation from linear also shrinks, ensuring termi-
nation [10].

7.1 Encasement implies arrangement

Using encasement of pairs of curves, we can construct
an arrangement of n curves inside B. Given curves
F = {f1, f2, . . . , fn}, calculate intersections of all pairs.
For each f ∈ F , calculate its intersections with the par-
tial derivatives fx and fy. Starting with B, add inter-
sections of f with other curves sequentially. First add
intersections with fx and fy. If a cell contains two in-
tersections, split it with a horizontal or vertical line.
After adding the intersections with fx and fy, apply
self-separation of f . Each cell now contains an x or
y-monotonic segment of f and hence the cell can be
split with a vertical or horizontal line without creating
a cell with more than one segment. Add the remain-
ing intersections of f with other curves, splitting ver-
tically/horizontally as appropriate. The result is the
intersection encasement I(f) of f in B with respect to
F .

An arrangement segment is a segment of f connecting
two cell boundary intersections, in a cell C ∈ I(f) not
containing an intersection, or a segment ap connecting
a boundary intersection a to a curve intersection p ∈ C
with g. To trace the boundary of an arrangement cell,
we need to take a “left turn” at p to the segment pc or
pd of g in its encasement. The choice is determined by
the the sign sign(∇f(p) × ∇g(p)), a byproduct of iso-
lating the intersection (Sec. 5). Hence the arrangement
cells can be traced using only information stored in the
intersection encasements.

7.2 GPU speedup

The GPU version subdivides B (or its bounding box if
it is not a rectangle), into rectangular cells and assigns
the task of showing f or g has no zeros on a cell C to a
thread. Cells which fail this test are subdivided. This
process stops when the number of failing cells stabilizes.
CPU based encasement is run on each resulting cell.
Details in full paper.

30th Canadian Conference on Computational Geometry, 2018

8 Results

The first set of experiments uses random curves of de-
gree d from 3 to 20. We use B = [−1, 1] × [−1, 1].
To generate a curve, we select d(d+ 1)/2− 1 points at
random in B and interpolate through them. For each
degree d, we generate a set Fd of 16 curves. The test is
to generate all the intersections of every pair of curves
in F . We compare the CGAL curve arrangement library
with the CPU and CPU/GPU versions of encasement.
For CGAL, we monotonize each curve once, compute
the arrangement of every pair, and then calculate each
vertex in double-float. For CPU encasement, we gen-
erate the critical regions for each curve once, calculate
the encasement for each pair of curves, and increase
the precision P until the interval contains at most one
double-float point. For the GPU algorithm, we use an
initial subdivision small enough to ensure that 90% of
subcells are eliminated. The CPU results use an Intel
Core i5-3570K over-clocked at 4.2GHz and 8GB RAM.
The GPU results in addition use an Nvidia GTX 780
with 4GB DRAM. Results are in Table 8.

For d > 10, the CPU version of encasement is about
30 times faster than CGAL. CGAL times out for degrees
greater than 18. For degrees up to 13, using the GPU
speeds up encasement by a factor of 3. At degree 20,
there is no benefit.

The three right columns of Table 8 help to analyze
the number of splits required for encasement. Isolating
i intersections requires at least i splits. The number of
splits is almost proportional, rising slowly from 5i up to
7.74i for d = 3 to d = 22.

For the second experiment, we tested the robustness
of encasement and the cost of encasing near degener-
ate cases. We generated pairs of curves with a tangent
intersection, which is perturbed to a near-tangency. Ta-
ble 8 shows the effect of the tangent intersection. Since
i ordinary intersections require about 5i to 7i faces to
encase, it appears that a tangency requires about 50 to
60 faces to encase. Since the perturbation is 2−26, this
is proportional to the number of bits of accuracy, which
is still a very reasonable number.

9 Conclusion

Although it uses perturbation, encasement is an exact
algorithm, hence correct. The perturbation adds a con-
trollable backwards error. The choice δ = 2−26 ≈ 10−8

randomizes half the bits of the input, which makes it
generic with high probability. For most applications, a
10−8 error is an acceptable price for a 10 to 30 times
improvement in running time. The GPU is consumer
grade, and so it has an acceptable price for an addi-
tional factor of 3 in running time.

We were hoping for more speed up from using a GPU,
but the current version uses a quadratic approximation

d CGAL CPU GPU I S S/I

3 0.05 0.01 0.14 5 25 5.0

4 0.16 0.03 0.15 11 49 4.4

5 0.33 0.07 0.17 15 65 4.3

6 0.67 0.16 0.18 16 99 6.1

7 1.56 0.38 0.23 23 179 7.7

8 8.29 0.74 0.30 30 200 6.6

9 17.06 1.56 0.41 35 267 7.6

10 32.65 1.99 0.48 47 291 6.1

11 54.62 2.68 0.89 57 432 7.5

12 119.53 3.28 1.09 59 440 7.4

13 161.72 5.01 1.66 74 542 7.3

14 178.71 8.76 2.40 76 509 6.6

15 367.97 9.35 3.72 95 727 7.6

16 418.51 13.22 5.87 100 743 7.4

17 597.84 19.76 9.00 114 951 8.3

18 881.81 28.89 15.72 135 1062 7.8

19 ∞ 33.09 17.81 130 1010 7.7

20 ∞ 43.28 38.86 151 1168 7.7

Table 1: Degree d, CGAL, CPU encasement, and
GPU/CPU encasement running times in seconds, num-
ber of intersections I, number of cell/line splits in the
resulting encasement S, and ratio of S/I.

to f(x, y), at a cost of d2, instead of expanding f(1/(x+
1/(b − a)) + a, 1/(y + 1/(d − c)) + c) (Sec. 2), which
has d3 complexity. Also, it is limited to axis-parallel
subdivision.

Another goal of this research is 3D surface intersec-
tions and arrangement. We believe subdivision by non-
axis-parallel planes will be similarly beneficial.

Acknowledgments

Masterjohn and Milenkovic are supported by NSF grant
CCF-1526335. Sacks is supported by NSF grant CCF-
1524455.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

d time I S S/I

3 0.02 3 67 22.3

4 0.03 4 70 17.5

5 0.05 4 61 15.3

6 0.09 1 51 51.0

7 0.16 2 54 27.0

8 0.31 3 84 28.0

9 0.48 2 73 36.5

10 0.86 6 82 13.7

11 1.47 7 118 16.9

12 1.75 8 152 19.0

13 2.23 2 81 40.5

14 2.84 8 161 20.1

15 4.64 6 127 21.2

16 5.26 6 133 22.2

17 6.85 4 143 35.8

18 9.36 6 127 21.2

19 11.7 10 93 9.3

20 16.2 9 128 14.2

Table 2: Degree d, encasement running time for tangen-
tially intersecting curves.

References

[1] M. Barton, G. Elber, and I. Hanniel. Topolog-
ically guaranteed univariate solutions of under-
constrained polynomial systems via no-loop and
single component tests. Computer-Aided Design,
43(8):10351044, 2011.

[2] Michael Bartoň. Solving polynomial systems using
no-root elimination blending schemes. Computer-
Aided Design, 43(12):1870–1878, 2011.

[3] Michael Bartoň and Bert Jüttler. Computing roots
of polynomials by quadratic clipping. Computer
Aided Geometric Design, 24(3):125–141, 2007.

[4] Eric Berberich, Arno Eigenwillig, Michael Hem-
mer, Susan Hert, Lutz Kettner, Kurt Mehlhorn,
Joachim Reichel, Susanne Schmitt, Elmar
Schömer, and Nicola Wolpert. Exacus: Efficient
and exact algorithms for curves and surfaces.
In European Symposium on Algorithms, pages
155–166. Springer, 2005.

[5] Efi Fogel, Dan Halperin, and Ron Wein. CGAL
Arrangements and Their Applications: A Step-by-
Step Guide. Springer, 2012.

[6] Laurent Fousse, Guillaume Hanrot, Vincent
Lefèvre, Patrick Pélissier, and Paul Zimmermann.
MPFR: A multiple precision binary floating point
library with correct rounding. ACM Transactions
on Mathematical Software, 33:13, 2007.

[7] I. Hanniel and G. Elber. Subdivision termination
criteria in subdivision multivariate solvers using
dual hyperplanes representations. Computer Aided
Design, 39:36978, 2007.

[8] Benoit Jubin. A generalized Poincare-Hopf in-
dex theorem. http://arxiv.org/abs/0903.0697,
2009.

[9] Bert Jüttler and Brian Moore. A quadratic clip-
ping step with superquadratic convergence for bi-
variate polynomial systems. Mathematics in Com-
puter Science, 5(2):223–235, 2011.

[10] Joseph Masterjohn. Encasement: A ro-
bust method for finding intersections of semi-
algebraic curves. Open Access Theses, 699,
2017. https://scholarlyrepository.miami.

edu/oa_theses/699.

[11] Kurt Mehlhorn and Michael Sagraloff. A deter-
ministic algorithm for isolating the real roots of a
real polynomial. Journal of Symbolic Computation,
46:70–90, 2011.

[12] Ramon E. Moore. Methods and Applications of In-
terval Analysis. SIAM Studies in Applied Mathe-
matics. SIAM, Philadelphia, 1979.

[13] Bernard Mourrain and Jean Pascal Pavone. Sub-
division methods for solving polynomial equations.
Journal of Symbolic Computation, 44(3):292–306,
2009.

[14] Cong Wang, Yi-Jen Chiang, and Chee Yap. On soft
predicates in subdivision motion planning. Com-
putational Geometry: Theory and Applications,
48(8):589–605, 2015.

[15] Ron Wein, Eric Berberich, Efi Fogel, Dan Halperin,
Michael Hemmer, Oren Salzman, and Baruch Zuk-
erman. 2D arrangements. In CGAL User and Ref-
erence Manual. CGAL Editorial Board, 4.11 edi-
tion, 2017.

http://arxiv.org/abs/0903.0697
https://scholarlyrepository.miami.edu/oa_theses/699
https://scholarlyrepository.miami.edu/oa_theses/699

	Introduction
	Prior Work
	Encasement-Based Intersection Construction
	Intersection Algorithm Summary
	Contribution

	Critical sets
	Self-separation
	Curve or intersection separation
	Intersection isolation
	Intersection encasement
	Encasement based intersection algorithm
	Encasement implies arrangement
	GPU speedup

	Results
	Conclusion

