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Abstract We present a new algorithm for morphing simple
polygons that is inspired by growing forms in nature. While
previous algorithms require user-assisted definition of com-
plicated correspondences between the morphing objects, our
algorithm defines the correspondence by overlapping the in-
put polygons. Once the morphing of one object into another
is defined, very little or no user interaction is necessary to
achieve intuitive results. Our algorithm is suitable namely
for growth-like morphing. We present the basic algorithm
and its three variations. One of them is suitable mainly for
convex polygons, the other two are for more complex poly-
gons, such as curved or spiral polygonal forms.
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1 Introduction

Morphing is a (non-linear) transformation of a shape into
another shape and has practical uses in computer graphics,
animation, modeling and design. This area has been thor-
oughly researched and the existing methods can be classified
into two main groups—traditional volume and image mor-
phing and boundary-based morphing. In this article we focus
on boundary-based morphing methods. The algorithms de-
signed in this area concentrate on morphing similar shapes,
where some common features can be identified. However, in
some cases it is not possible to align all the main features of
the input shapes (e.g. a head with and without horns). A nat-
ural morph usually means growth of the non-aligned part
from its aligned neighbor. In this paper, we propose a novel
approach for morphing with this “growth-like” nature.

The computation of a morph requires three inputs: two
shapes (source and destination), the definition of vertex cor-
respondences between the source and the destination, and
the definition of vertex paths together with the dynamics of
the transformation. The last input defines the way in which
the shapes are morphed in time. The morph can be linear,
it can accelerate or decelerate, or its time dependence can
be described by a user-defined mapping function. Establish-
ing the correspondence of the vertices and the vertex paths
are two independent steps, which can be solved by different
algorithms, but both usually require some user interaction.
Although there is much to achieve by a suitable vertex path
computation, the definition of the correspondence between
two shapes remains crucial. Most algorithms offer the user
the ability to influence the correspondence by adding some
constraints or manually defining corresponding vertices, but
such a definition can be complex and sometimes the user
cannot predict how the changes will influence the result, so
a trial and error technique is usually applied iteratively.
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We present an algorithm for easy-to-use and easy-to-
define morphing of polygonal objects. Our technique takes
two polygonal objects that partially overlap. Then an over-
lapping area of these two polygonal objects is formed, defin-
ing the core of the morphing. We suppose that the core con-
sists of a single simple polygon, which is a typical situa-
tion for such inputs where one would expect a growth-like
morph. The morphing simultaneously changes both poly-
gons. The input polygon is absorbed by the core, whereas
the output polygon grows out of it. The principal advan-
tage of the shape absorption and the growth is that they can
be viewed as the same process with different direction in
time. Algorithmically this means that we need to implement
only one process. Another advantage of the algorithm is that
it offers growth-like morphing. This process could not be
easily achieved using traditional algorithms as it would re-
quire manually defining many correspondences. Thanks to
its growth-like shape change, our algorithm also produces
satisfactory results for polygons that are not star-shaped.

The algorithm solves the correspondence of the two input
polygons as well as the vertex paths. The final animation is
computed by the linear interpolation between the intermedi-
ate positions in the vertex paths.

The paper is organized as follows. Section 2 describes
related work in the area of polygon morphing. Section 3
describes the method itself and discusses three morphing
strategies used. Section 4 shows the results of the algorithm
and demonstrates typical uses of the techniques described in
Sect. 3. Finally, Sect. 5 describes our conclusions and sug-
gestions for future work.

2 Related work

Digital warping and morphing has a long tradition in Com-
puter Graphics and its full exposition is outside the scope of
this paper. We refer readers to [5] for a detailed description.
Here we describe the work related to 2D polygon morphing.

Polygon morphing computation can be divided into two
parts: (1) defining the vertex-to-vertex correspondence in
the source and the destination polygons, and (2) defining
the transitions. Point out that the source and the destination
polygons are not required to have the same number of ver-
tices.

The problem of vertex-to-vertex correspondence was ad-
dressed by Sederberg and Greenwood in [10] by using a
physical model. The polygon edges are modeled as elastic
connections and the shape transformation involves the cal-
culation of a physical response by minimizing the energy of
the system. This algorithm is efficient for similar input poly-
gons and it can also handle cases when the initial shapes are
rotated or translated. The algorithm does not address highly
dissimilar shapes and self-intersections.

A computation of trajectories was described by Seder-
berg et al. in [9], where edge lengths or internal angles are
interpolated instead of the vertex positions. The polygons
are converted to the so-called edge–angle representation [5]
that is invariant to rigid transformations. This interpolation
scheme avoids edge collapsing and non-monotonic angle
changes. This technique was used to generate in-betweens
for animation based on keyframes. The concept of interpo-
lation of intrinsic parameters was also further used for mor-
phing of planar triangulations in [12, 13]. The intrinsic in-
terpolation avoids local self-intersections. However, it does
not solve the problem of global self-intersections which may
occur for highly dissimilar and complicated shapes.

Shapira and Rappoport [11] introduced a method that first
decomposes the source and the destination polygons into
star-shaped polygons. The skeleton is a planar graph which
joins star-points of neighboring star-shaped polygons. The
skeletons are interpolated and the intermediate shapes are re-
constructed from the interpolated skeletons. The difference
between this approach and methods described in [9, 10] is
that this approach also considers the interior of the poly-
gon and not only the boundary. The problem with this ap-
proach is that it relies on isomorphic star-shaped decompo-
sition which might be difficult to compute, especially in the
case of dissimilar shapes.

Alexa et al. introduced as-rigid-as-possible shape inter-
polation in [2]. They compute a compatible triangulation of
the input polygons. The compatible triangulation is a dissec-
tion of the source and the destination polygons so that the
triangulations are isomorphic, i.e., there is one-to-one cor-
respondence between triangles in the source and in the des-
tination. Then, an affine transformation which transforms a
source triangle to the destination triangle is computed. Inter-
polation of the affine transformation defines the morphing.
Adjacent triangles are also considered in the interpolation.
Similar approaches were also described by Surazhsky and
Gotsman in [12, 13]. The principal problem of these meth-
ods is the computation of the isomorphic triangulation of
the input shapes, as its quality influences the quality of the
morphing.

Gomez et al. introduced 2D merging [5], which is a 2D
application of the algorithm that was originally developed
for 3D meshes (see for example [1, 7]). First, the input poly-
gons are mapped to a unit disc, then both mappings are
merged. The vertices of the first polygon are mapped on
the second polygon and vice versa using inverse mapping.
This results in polygons with the same number of vertices.
A linear interpolation is used to obtain the resulting mor-
phing transition. This technique is suitable for convex, star-
shaped or slightly non-convex polygons. This algorithm is
not suitable for highly non-convex polygons, as it produces
self-intersections during the morphing transition.

Carmel and Cohen-Or [3] showed an algorithm which
combines a 2D merging and a polygon evolution. A user
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first specifies anchor points that define the correspondence
between polygons. Using the anchor points, a warp function
is computed that warps the source polygon to the destina-
tion polygon. Once the source polygon is warped, a polygon
evolution technique is used to evolve the source and the des-
tination polygon to a convex shape.

Johnstone and Wu [6] described an alternative approach
to merging polygons by morphing. The 2-to-1 morphing is
a fundamental case in the morphing between different num-
bers of polygons. The basic idea is to merge the two poly-
gons into one and then use the one-to-one polygon morph-
ing technique to morph between the merged polygon and a
destination polygon. During the merging the two polygons
are morphed towards each other until they meet at a point.
Then a curve evolution technique is used to morph the two
polygons connected at some point into a more natural shape
which is later morphed towards the destination shape.

3 The polygon morphing algorithm

Let us have an ordered set of vertices vi , i = 0, . . . ,N − 1.
An edge ei is a line segment with endpoints vi and vi+1.
A polygonal chain Q is a sequence of edges e0, e2, . . . , eN−2

with vertices v0, v1, . . . , vN−1. A polygon P is a region of
the plane bounded by a closed polygonal chain δP , i.e. a
polygonal chain where v0 = vN−1. A polygon is simple if
there is no pair of nonconsecutive edges sharing a point.

3.1 Algorithm overview

The algorithm takes as input two simple polygons (see
Fig. 1), the source polygon A and the destination polygon
B which must spatially overlap, A ∩ B �= ∅. No further con-
dition on the polygons is imposed. However, it is beneficial
if the polygon vertices are distributed equidistantly. There-
fore, an optional preprocessing step is to resample the input
polygons A,B so that their vertices are equidistantly distrib-
uted.

The overlapping area of A and B is called the core of
the morph and it is denoted by C = A ∩ B . Without loss of
generality, we suppose that the core C consists of a single
simple polygon.

Fig. 1 The description of the
polygons. A and B are the input
polygons. C is the intersection
(the core) and P and Q are
polygons that will be absorbed
and grow out of the core
respectively

The area of polygon A that is clipped out is denoted by
P = A − B and analogously the area of the polygon B that
is clipped out is denoted by Q = B − A. Note that P and
Q are not necessarily single polygons. They can be a set
of simple polygons so that P = ⋃

i Pi and Q = ⋃
j Qj . We

suppose that P �= ∅ or Q �= ∅. During the morphing process,
the parts Qj grow out from the core, while the parts Pi are
absorbed into the core. All parts of the polygons grow and
are absorbed simultaneously, which results in the effect of
morphing two simple polygons. Algorithmically, the process
of absorption is an inverse process of growing, so for now we
will concentrate only on the description of the absorption of
one part Pi .

The boundary δPi consists of two polygonal chains Cin,
Cout, where Cin is a shared polygonal chain of δC and δPi ,
Cout is the rest of δPi which remains after removing Cin

from δPi . The polygonal chains Cin, Cout are separated by
intersection vertices vI0, vI1 (Fig. 2). An intersection vertex
lies in the intersection of the closed polygonal chains δA and
δB . If Pi �= A and Pi �= B then two vertices of δPi become
intersection vertices. By morphing the polygon chain Cout

to the polygon chain Cin we achieve the effect of the part
Pi being absorbed into the core C. Hereby, we can express
the polygon morphing problem as several polygonal chain
morphing problems.

The morphing between a polygonal chain Cout and Cin

can be described in terms of a vertex path. The vertex path
of a vertex vi is a list of coordinates describing points in
E2 that the vertex passes through during the morphing se-
quence. The vertex path is computed for each vertex of the
polygonal chain Cout excluding the intersection vertices vI0

and vI1. It has at least two elements, i.e., the initial position
of the vertex at the time t = 0 and the final position of the
vertex at the time t = 1. A set of vertex transformations is
obtained by computing intermediate positions of a vertex.
The intermediate positions are computed by interpolating
the position values pk along the vertex path. Any interpo-
lation technique such as a piecewise linear interpolation, a
cubic spline interpolation or some other interpolation form
can be used.

The vertex path is computed using a concept of a topo-
logical distance. If we define a distance d(vi, vj ) between
vertices vi and vj as the minimal number of edges on the
polygon between vi and vj , the topological distance of a
vertex vi is its minimal distance to the intersection ver-
tices dmin(vi) = min(d(vi, vI0), d(vi, vI1)). Figure 2 shows
an example of topological distances—the vertices are la-
beled according to the topological distance from the inter-
section vertices vI0, vI1. The topological distance estab-
lishes the order in which the vertices will grow. The vertices
with a smaller topological distance will reach their destina-
tion sooner than the vertices with a larger topological dis-
tance. This prevents self-intersections during the morphing
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Fig. 2 A highly non-convex
polygon Pi is absorbed in the
core C (the hatched part). The
polygon Pi will be absorbed in
the core C by morphing the
polygonal chain Cout to Cin

Input: Two partially overlapping polygons A, B (Optional:
Resample the input polygons so that their vertices are equidis-
tantly distributed).
Output: A polygon R = A∪B , where each vertex of δR either
contains a vertex path determining its behavior over time, or
belongs to A ∩ B .
The algorithm:
1. Compute the core C = A ∩ B .
2. Compute the polygon sets P = A − B = ⋃

i Pi , Q =
B − A = ⋃

i Qi .
3. ∀vi ∈ δP and ∀vi ∈ δQ: compute its topological distance di .
4. Using a user-selected method (Perimeter, Midpoint, or Pro-

jection growing), compute the vertex path of each vertex vi .
5. Merge the polygon C and the polygon sets P,Q to get the

resulting polygon R

Fig. 3 Pseudocode of the algorithm

process. Moreover, we extend the concept of the topological
distance to distinguish between topological distances of ver-
tices lying on the polygonal chains Cin and Cout. The topo-
logical distance should be positive only, but we use posi-
tive distance for vertices vi ∈ δPiCin and add the negative
sign to the vertices lying on the polygonal chain Cin. Then
dmin, dmax are minimal and maximal topological distances
of the vertices from δPi .

The pseudocode of the algorithm can be seen in Fig. 3. In
step 4 of the algorithm, we use three different methods for
computing the vertex paths to morph polygonal chains Cin

and Cout and to simulate a process of absorption for poly-
gon Pi ; the Perimeter growing, the Midpoint growing and
the Projection growing. These methods will be described be-
low.

3.2 The perimeter growing method

As was described in Sect. 2, many previously introduced al-
gorithms struggle with morphing of curved objects such as
those shown in Fig. 4a, b.

We address this problem with a method that we call
Perimeter growing. The basic idea is that the vertices

Fig. 4 Cases that are suitable (a, b) and that are not suitable (c, d) for
the perimeter growing (dark gray color indicates the place where the
part meets the core, light gray represents the part that grows out, the
input polygon is indicated by a thick line)

vi ∈ Cout travel along the perimeter of the polygon Pi , mean-
ing that its vertex path contains only positions of the vertices
of δPi . When deciding about the correspondence of the ver-
tices of Cin and Cout, we need to determine at which vertex
vj with the topological distance dj is the specific vertex
path supposed to end. The vertex path of a vertex vi with
the topological distance di contains vertices with topologi-
cal distances (di−1, di−2, . . . , d0, d−1, . . . , dj ) (see Fig. 5).
We define two conditions concerning the last vertex of the
vertex path, vertex vj . First, it must belong to the polygonal
chain Cin. Second, there should be at least one vertex path
to end at each vertex that belongs to the polygonal chain
Cin (to form the shape of the other polygon). Based on these
observations, we let the vertex path of the vertex with dmax
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Fig. 5 Vertex paths (dmax = 3,
dmin = −2): (a) the vertex path
for the vertex with d = dmax
ends at the vertex with d = dmin
(b) for the vertex with
d = dmax−1 it ends at the vertex
with d = dmin+1 (c), and so on

Fig. 6 Three possible input
configurations for computing
vertex paths: (a) nin = nout,
(b) nin > nout, (c) nin < nout.
(The dark gray color represents
the core C, the grey represents
the selected part, the light grey
indicates the place where the
part meets the core; the first
polygon is indicated by a full
line and the second by a dashed
line, the vertex paths are
outlined by grey arrows)

always end at the vertex with dmin. If there is only one vertex
with dmax, we duplicate it to solve the case when there are
two vertices with dmin. The vertex path of the vertex with
dmax−1 should end at the vertex with dmin+1. Generally, a
vertex path of the vertex with dmax−i should end at the ver-
tex with dmin+i , as shown in Fig. 5.

However, this situation is a special case that happens only
when Cout and Cin have the same number of vertices. For the
other cases, let us denote nin and nout the number of vertices
of Cin and Cout respectively. We can then distinguish the
following three cases:

– nin = nout (Fig. 6a).
The vertex path of each vertex of Cout ends at one vertex
of Cin.

– nin > nout (Fig. 6b).
Some vertices of Cin do not belong to any vertex path.
However, they should have a correspondence. One solu-
tion is to duplicate some vertices of Cout. We use such
vertices of Cout that have a topological distance equal to
one and duplicate them as many times as is necessary to
cover all the vertices of Cin that remain.

– nin < nout (Fig. 6c) .

Some vertices of Cout do not have any corresponding ver-
tices in Cin. In such a case their paths will end at the in-
tersection vertices.

Because the vertex path follows the perimeter of the poly-
gon, the resulting polygon will look like it is growing from
the core. The Perimeter growing method works for most of
the morphs; however, there are two problematic cases. First,
the top of the growing polygon is always a straight line con-
necting the vertices with the same topological distance. This
makes the method unsuitable for polygons, where some ver-
tices with the same topological distance are wide apart, such
as those in Fig. 4c. The second problem is that following the
shape of the polygon is not always desirable—for example,
if we have a polygon as in Fig. 4d, it will first grow from the
core and then be absorbed a bit before continuing its growth.

3.3 The midpoint growing method

The Midpoint growing attempts to make the top of the grow-
ing part less flat than does the Perimeter growing. This
method uses the midpoints of the line segments defined by
the vertices of the same polygonal chain Cout or Cin with the
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same topological distance (Fig. 7) as the vertices in the ver-
tex paths. Figure 8 shows that the method produces similar
results to the Perimeter growing method, the only difference
is that the top of the growing part, which is flat in the case of
the Perimeter growing method, but sharp for the Midpoint
growing method.

Let us denote mi the midpoint of the line segment vivj

where di = dj . The vertex path of a vertex vi with the
topological distance di contains vertices (mi−1,mi−2, . . . ,

m0, . . . ,mj−1, vj ). The vertex vj is computed according to
the rules described for the Perimeter growing method in
Sect. 3.2. The results for all three cases with a different
relationship between nin, nout are shown in Fig. 9. When
nin = nout (Fig. 9a), each vertex of Cout ends its path at one
vertex of Cin. If nin > nout (Fig. 9b), some of the vertices of
Cout need to be duplicated (those with the topological dis-
tance equal to one). If nin < nout (Fig. 9c), some vertices of
Cout cannot end their paths at the expected vertex (so they
end at the intersection vertices).

Fig. 7 Midpoints m0,m1,m2 connecting the vertices with the same
topological distance (and of the same polygonal chain)

3.4 The projection growing method

Both the Perimeter and the Midpoint growing methods can
generate undesired deformations at the top of the growing
part—the former “cuts” the top (there are always two ver-
tices connected by a straight line), the latter bends the top a
little, but none of the methods indicates the final shape of the
top of the part. Therefore, both methods produce better re-
sults for narrow and curved parts. To morph parts that are not
curved, we created a new method based on a projection and
we call it Projection growing method. This method equidis-
tantly maps the vertices onto the line segment connecting
the two intersection vertices.

The main difference of the Projection growing method
from the previously presented methods is that all vertices
of Cout have the same number of elements in their vertex
paths. Let us describe in detail how this method calculates
the vertex paths. First, the vertices of Cout are mapped (pro-
jected) onto the line segment li defined by the intersection
vertices (i.e., the vertices with a zero topological distance),
using an equidistant mapping. The line segment li is divided
into nout + 1 parts, where nout is the number of the vertices
of Cout. We assign the vertices of Cout sequentially to the
new vertices on the line segment (Fig. 10a). The next step is
to map the vertices of Cin in a similar way (Fig. 10b).

The last step (Fig. 10c) is to sort the projected vertices of
Cin and Cout onto an ordered list in the order in which they
appear on li . We denote the list vI0 = a0, a1, a2, . . . , an−1 =
vI1, where ai is a mapped vertex that originally belongs ei-
ther to Cin or to Cout. Then we traverse this list as follows:

1. Start at vI0. Go through the list until a vertex of Cin is
reached. Add it into the vertex paths of all the vertices of
Cout that are located before this vertex.

Fig. 8 A suitable input shape for the Midpoint morphing (dark gray color indicates the place where the part meets the core, light gray represents
the part that grows out, the input polygon is marked by a thick line)

Fig. 9 Three possible inputs for
computing vertex paths:
(a) nin = nout, (b) nin > nout,
(c) nin < nout (light grey color
designates the place where the
part meets the core, and the
vertex paths are outlined by grey
arrows. . .)
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Fig. 10 Computing the vertex paths in the Projection growing method:
(a) mapping the vertices of Cout onto the line segment between the in-
tersection vertices, (b) the vertices of Cin onto the same line segment,

(c) choosing the vertices of Cin for the vertex paths of the vertices of
Cout (the mapping is marked by a dashed line, the vertex paths are
outlined by thin lines)

Fig. 11 Vertex paths (grey) for (a) projection using the auxiliary coor-
dinates in the vertex paths, (b) direct projection

2. Continue traversing the list. Each time the vertex Cout is
reached, add the recent vertex of Cin to its vertex path.

3. The traversal is completed when vI1 is reached.

The above-mentioned method produces vertex paths con-
taining only two vertices as it defines only the vertex-to-
vertex correspondence between Cout and Cin. There is a pos-
sibility of using the position on li , where vi was mapped,
in the morphing sequence—so as to include it in its path
between the two vertices. This modification brings differ-
ent results—instead of heading straight towards their cor-
responding vertices, the vertices of Cout first travel towards
their positions on li . The difference between the two strate-
gies is shown in Fig. 11. The modified Projection morph-
ing using an intermediate point is more suitable when both
Cin and Cout lie on the same side of li , whereas the direct
vertex-to-vertex morphing provides better results when Cout

and Cin lie on different sides of li .
The Projection growing method generates output that ap-

pears to be somewhere between the Perimeter (or Midpoint)
growing methods and the typical algorithms based on the
correspondence between the whole polygons. There is still
dependence of the output on the core; however, the vertex
paths are not influenced by the shape of the polygon, they
only define the correspondence of the vertices. Therefore,
the projection is not usable for curled or spiral parts, where
it has the same problems as the traditional correspondence-

Fig. 12 The Projection growing method provides intuitive results in
(a, b) but fails in the case (c) (dark gray color indicates the place where
the part meets the core, light gray represents the part that grows out,
and the input polygon is marked by a thick line)

based algorithms. This morphing method is suitable for the
cases where the shape of the part is convex or when it is
non-convex, but not curled (Fig. 12).

3.5 Merging

The last step of our algorithm (recall Fig. 3) is merging. The
polygons Pi and Qi that were clipped out by the core C

are merged into one polygon R. Moreover, each vertex in
R has its vertex path that is defined by one of the above
described morphing methods. The direction of each vertex
path depends on the direction of morphing. Vertex paths of
vertices from δQ point into the core as the polygon Q is
absorbed, whereas the vertex paths of vertices from δP point
out.

The merging process is motivated by Weiler–Atherton al-
gorithm for polygon intersection [4]. It processes each poly-
gon and makes copies of vertices with positive topological
distance to the new list of vertices, while preserving the ver-
tex order. The details of the merging process are in Fig. 13.
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Input: List of polygons S = ⋃
i Pi ∪ ⋃

i Qj , lists of vertices
of each polygon li = (v0, . . . , vN−1). The lists li are circular so
the next vertex to vN−1 is v0 and the previous vertex to v0 is
vN−1. Each polygon has a different number of vertices in its
list, but each part shares exactly two vertices with two other
polygons (the intersection vertices).
Output: One list of vertices containing such vertices vj from
the lists li that have dj ≥ 0.
The merging algorithm:
1. Choose a polygon Si from the list of input polygons. Start

from the first vertex in Si . Go through li until the first inter-
section vertex vj is found. Add vj to the resulting list (which
now contains only vj ).

2. Check the vertex vj+1 if its topological distance is positive.
If so, continue forward, otherwise backward in li . Add each
visited vertex to the resulting list until the next intersection
vertex vk is added. Delete the part Si from the list of poly-
gons.

3. Because vk was the intersection vertex, either one of the
parts in the list contains it (in such a case use this part and
continue from step 2), or the list of parts is empty (vk is the
intersection vertex from step 1). In such a case, the algorithm
terminates.

Fig. 13 The merging algorithm

4 Implementation and results

In the following examples we demonstrate the different be-
haviors of the presented methods. In the examples, only one
method is used to morph all the parts, to show the behav-
ior of each method, one at a time. Our algorithm is com-
pared to the Carmel and Cohen-Or’s algorithm and Seder-
berg and Greenwod’s algorithm, which are well established
correspondence-based algorithms.

In the first example we show the morphing of a spiral
using the Perimeter growing (Fig. 14). This method provides
more intuitive results than the Midpoint and the Projection
growing. As can be seen in Fig. 14, the Perimeter growing
method produces more intuitive results than both the Carmel
and Cohen-Or algorithm and the Sedeberg and Greenwood
algorithm, where many unwanted self-intersections occur.

Although the Projection growing method produces unex-
pected results when we desire a spiral form to grow out of
the core, it can sometimes give interesting esthetic results,

especially when we fill the polygons with color (because the
overlapping parts are filled with the background color). Fig-
ure 15 shows an example of an in-between result obtained
using the Projection growing method in the case of a snail’s
shell morphing.

The second example shows the case where the Projection
growing method is more suitable for objects that are convex
or nearly convex (Fig. 16). Here, a butterfly is morphed into
an alien. The body of the butterfly is similar to that of the
alien, which makes the objects good candidates for growing
and absorption. One would expect the wings of the butterfly
to be absorbed in the body of the alien, and the eyes (at the
end of the antennae) to grow out from the antennae of the
butterfly.

The example in Fig. 17 depicts long straight parts grow-
ing and absorption from a complex polygon. When the shape
of a morphed part is long and more or less straight, the
Projection, the Perimeter, and the Midpoint growing meth-
ods can provide comparable results, whereas the projection
growing method is not suitable. The Carmel and Cohen-Or
algorithm produces comparable results as well as the Sede-
berg and Greenwood algorithm, both displaying a few self-
intersections (Fig. 17).

The case shown in this particular example is not a case
where one would naturally expect a growing behavior, be-
cause the octopus and the shark do not have any similar part.
However, the growth of the octopus’ tentacles is an aesthet-
ically pleasing way to morph from the shark’s belly into the
octopus’ tentacles without any intersections.

We have presented three examples showing the behav-
ior of the three designed methods—the Perimeter growing,
the Half-line growing and the Projection growing method.
According to the results achieved, the user should use the
Projection growing method for convex or nearly convex
parts and the Perimeter growing or the Half-line growing
for curved parts.

The examples show that our algorithm produces the ex-
pected results for the cases where some parts of one polygon
are supposed to grow out of the other polygon or be absorbed
into it. However, as we can see in the last example, the al-
gorithm can also be used in some cases where growing is

Fig. 14 The Perimeter growing
method comparison: (a) the new
Perimeter growing method,
(b) the object being morphed
using the Carmel and Cohen-Or
algorithm, and (c) using the
Sedeberg and Greenwood
algorithm
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not expected and it still produces acceptable results. An an-
imation showing the described behavior of our algorithm is
available at http://home.zcu.cz/~mmalkov/morphing.avi.

Our algorithm has also some limitations. It is not suit-
able for morphing of objects that are only rotated or trans-
lated, because these transformations cannot be represented
as growth. Figure 18 shows how all the three algorithms be-
have for the case of a rotated fish. None of the algorithms
produces a clear rotation, but the Carmel and Cohen-Or al-
gorithm produces acceptable results with some user interac-
tion.

Fig. 15 Example of morphing for esthetic purposes

In the Carmel and Cohen-Or algorithm, the correspon-
dence can be influenced by manually defining some corre-
sponding vertices. Our algorithm offers the user an easier
way to influence the correspondence—changing the mutual
position of the polygons, while the results are easily pre-
dictable. Mostly, the best mutual position is a position where
the area of the intersection is the maximally possible. Appar-
ently two different choices of the core will lead to different
results. This is demonstrated in Fig. 19 which shows two
morphing sequences of the wings and the circle, each pro-
duced by a different mutual positions of the objects. The
automatic decision of the mutual position remains a prob-
lem, as the maximal possible intersection is not always the
best solution. But for this type of morphing problem, the
user usually has a clear idea about which part of the object
he/she wants to grow.

Figure 20 shows four morphing sequences of a circle and
a curved shape to demonstrate the behavior of our algorithm
when the overlapping area consists of more polygons. One
of the polygons is chosen as a core (filled by blue color) and

Fig. 16 Comparison of (a) the
Projection growing method,
(b) the Midpoint growing
method, (c) the Carmel and
Cohen-Or algorithm, and (d) the
Sedeberg and Greenwood
algorithm

Fig. 17 Comparison of (a) the
Projection growing method,
(b) the Midpoint growing
method, (c) the Carmel and
Cohen-Or algorithm, and (d) the
Sedeberg and Greenwood
algorithm

http://home.zcu.cz/~mmalkov/morphing.avi
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Fig. 18 Comparison of the
methods for a case of a rotated
object. (a) The Projection
growing method, (b) the Carmel
and Cohen-Or algorithm, (c) the
Sedeberg and Greenwood
algorithm, and (d) the Carmel
and Cohen-Or algorithm with
predefined four corresponding
vertices

Fig. 19 The Projection growing
method (different mutual
positions of the polygons):
(a, c) position of the polygons,
(b, d) the resulting morphing
sequence

Fig. 20 The Perimeter
(a, b) and the Projection
(c, d) growing methods: the
overlapping area consists of
(a, c) one polygon, (b, d) more
polygons—one is chosen.

the algorithm continues as if the overlapping area consisted
of only one polygon. The core is chosen randomly or by the
user. Such situation is not typical for growth-like morphing,
because we would not expect growing behavior of a part that
is connected with the core at several places.

5 Conclusions and future work

We have described a new algorithm for morphing of sim-
ple polygons which defines their correspondence by par-
tially overlapping them. Our algorithm allows us to define
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the correspondence in a more intuitive way than previously
published methods.

We have shown three different techniques for the morph
calculation, each of which is suitable for a different case of
morphing, and we have demonstrated their use in various
cases. We have also compared the results of our algorithm
with two commonly used correspondence-based morphing
methods. The experiments confirmed that our algorithm is
suitable for instances of morphing, where the user expects
some parts of the resulting polygon to grow out of or into
the intersection. Our algorithm is not suitable for similar
or nearly similar polygons with dissimilarities of the non-
growth type (such as faces with different expressions, bend-
ing or straightening of fingers and polygons which are ro-
tated, translated or scaled versions of each other), in which
case the traditional algorithms should be used.

An obvious future work would be an extension of our ap-
proach to 3D (see [8] for preliminary results). Another future
work lies in finding new strategies for the elementary growth
problem together with some guidelines (or some automatic
decision mechanism) as to which strategy to use in each dis-
tinct case of morphing. Last but not least, we would like to
describe a framework that would integrate our growth-like
morphing with the traditional approaches.
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