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Fig. 1. Starting from a noisy and incomplete set of unstructured points from a raw scan (a), we proposeTreePartNetto find branching structures and create a
cylindrical decomposition (b). The geometry of the tree is represented by generalized cylinders and smooth branching points (c). Eventually, textures and
leaves can be added to enhance visual appeal (d). In (e), we show a rendered version from a di�erent viewpoint.

We presentTreePartNet, a neural network aimed at reconstructing tree
geometry from point clouds obtained by scanning real trees. Our key idea
is to learn a naturalneural decompositionexploiting the assumption that
a tree comprises locally cylindrical shapes. In particular, reconstruction
is a two-step process. First, two networks are used to detect priors from
the point clouds. One detects semantic branching points, and the other
network is trained to learn a cylindrical representation of the branches. In
the second step, we apply a neural merging module to reduce the cylindrical
representation to a �nal set of generalized cylinders combined by branches.
We demonstrate results of reconstructing realistic tree geometry for a variety
of input models and with varying input point quality, e.g., noise, outliers, and
incompleteness. We evaluate our approach extensively by using data from
both synthetic and real trees and comparing it with alternative methods.
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1 INTRODUCTION
Trees are beautiful and complex living organisms that are ubiquitous
in nature and urban environments [Wohlleben 2016]. Vegetation
modeling can bring their more profound understanding, and it has
attracted considerable research attention from both the computer
graphics and biology community.

E�ciently and accurately representing, generating, and recon-
structing tree geometry is still an open problem due to the com-
plexity and the diversity of branching patterns and the intricate
underlying growth mechanisms. A forward approach is to use an
expert's insight and build a model from scratch, for example, by
writing an L-system model [Prusinkiewicz and Lindenmayer 1990],
or by tuning parameters of a simulation [Palubicki et al. 2009; Stava
et al. 2010]. However, forward simulations are di�cult to control.
An alternative to obtaining 3D vegetation models is their scanning
and reconstruction. While reconstruction from photographs is an
ill-posed problem, a more common approach is to use unstructured
point clouds. A common approach to reconstruction is to use a
proxy geometry, for example, the tree skeleton, which is typically
a set of generalized cylinders [Du et al. 2019; Livny et al. 2010].
However, since the input point cloud includes samples from the
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branch surface, the skeletonization is not accurate, especially for in-
complete and noisy inputs. Even more complicated is the detection
and reconstruction of the branch junctions.

We present an algorithm for the automatic reconstruction of con-
cise geometries of biological trees from point clouds. Our approach
constructs a generalized cylindrical representation based on the
core idea of learning aneural decompositionwith branching and
joint semantics, where joint elements can connect the branches.
Furthermore, our approach is based on the assumption that the local
shape of branches is naturally cylindrical. Thus, we can partition
the input point cloud into clusters that can be approximated by the
generalized, parameterized cylinders.

While this problem could be formulated as unsupervised cluster-
ing, the uncertainty of the number of clusters makes it challenging
to obtain accurate clustering for both traditional approaches (such
ask-means [Yan et al. 2009]) and end-to-end deep neural networks
where the number of the clusters should be given [Aljalbout et al.
2018; Xie et al. 2016]. We �rst exploit a semantic segmentation
neural network to predict whether a point is located in a junction
region because the joint semantics indicate important topological
information. We then perform a deep, re�ned clustering with a �xed
cluster number to partition the point cloud into an over-complete
set of branches. After that, we design apairwise a�nity network to
construct a symmetric a�nity matrix, where each element predicts
the probability that two clusters can be merged. The three networks
are tightly coupled, and they are trained simultaneously and e�-
ciently. In the last step, we �t a generalized cylinder for each cluster
to reconstruct the underlying shape. The cylindrical representation
then naturally resolves the noise and density non-uniformity, i.e.,
dense and thick areas due to repeating scanning and misalignment
and sparse areas due to occlusions. Finally, we connect the recon-
structed branches by considering joint regions to obtain a complete
skeletal structure and a polygonal surface mesh.

Figure 1 shows an example of tree reconstruction. The seman-
tic segmentation network processes the input point cloud to �nd
branching points and the �ne clustering network to learn cylin-
ders. Subsequently, the pairwise a�nity network creates a reduced
cylindrical decomposition. Based on the generated skeleton, the
tree is represented by generalized cylinders and smooth branching
points. In the last step, small twigs and leaves can be added. The
main contributions of our work include:

(1) a prior-based supervised neural decomposition to learn a
cylindrical representation of 3D trees even for incomplete or
noisy point sets,

(2) a new combined reconstruction method for tree structures
based on generalized cylinders and branching points, and

(3) a geometry-aware graph clustering method based on a pair-
wise a�nity network, which de�nes a new module, named
Scaled Cosine Distance, inspired by the Transformer.

2 RELATED WORK

2.1 3D Reconstruction of Geometric Tree Models
A signi�cant number of approaches have been presented to obtain
geometric tree models. Tree growth simulation based on branching
rules (such as L-systems [Lindenmayer 1968; Prusinkiewicz 1986],

geometric rules [Benes et al. 2009; de Re�ye et al. 1988; Honda 1971])
provide an important way to create a variety of complex trees and
landscapes. These methods have been extended in various ways
to consider the e�ects of the environment and between-branch
spaces, such as the space colonization [Runions et al. 2007] and
self-organization [Palubicki et al. 2009; Yi et al. 2018]. However,
they require expert knowledge to de�ne the model parameters and
only provide indirect means to control the tree modeling process.

In contrast to modeling, tree reconstruction generates models
from acquired data. Image-based approaches often use multi-view
images to extract visual hulls [Shlyakhter et al. 2001], volumetric
spaces [Isokane et al. 2018; Neubert et al. 2007; Reche-Martinez et al.
2004] or point clouds [Tan et al. 2007]. Then, from these di�erent
representations, they could generate complete triangular tree mod-
els with texture maps. Other attempts try to produce realistic trees
from single images [Argudo et al. 2016; Li et al. 2021; Liu et al. 2021;
Tan et al. 2008], videos [Li et al. 2011], or learn parameters for tree
modeling from scanned data [Stava et al. 2014]. Some methods re-
construct trees from laser-scanned 3D point clouds [Xu et al. 2007].
Livny et al. [2010] and Du et al. [2019] use global optimizations
for reconstructing tree skeletons by computing minimal spanning
graphs. Livny et al. [2011] also presents a lobe-based representation
to approximate geometric details of given tree data and synthesize a
full-plant model reconstructing only its main structures and �ll lobes
procedurally with prede�ned patches. Yan et al. [2009] reconstruct
complete branches by �tting cylinders to local parts of a segmented
point cloud, while Zhang et al. [2014] propose cylinder marching
algorithms that locally search cylinders to achieve an accurate tree
structure. Because of the complexity and the diversity of branching
patterns, it is challenging to learn an e�cient tree representation
from real-world data. However, to the best of our knowledge, we
are the �rst to propose a supervised cylindrical representation for
3D tree reconstruction from point clouds.

Although the reconstruction of dense foliage is an important and
interesting problem, it requires capturing foliage carefully at a �ne
scale; in addition, a non-rigid leaf �tting is usually performed [Bradley
et al. 2013; Quan et al. 2006]. However, when large-scale trees are
scanned in reality, heavy self-occlusion and small-scale leaves cause
very sparse point clouds in the foliage, many twigs are invisible.
Thus, most of the existing tree reconstruction approaches only focus
on recovering high-level branching structure and model foliage by
synthesizing leaves using botanical rules. We follow this �owchart,
but we use a classi�cation network to �rst pre-segment the foliage
and synthesize it in the �nal stage. While modeling complex leaf
geometry and appearance can enhance the realism of our results,
the topic is outside the scope of this paper.

2.2 Shape Representations and Decomposition
Learning shapes from 3D data. 3D shapes can be represented
eitherexplicitly (e.g., as point sets, voxels, meshes) orimplicitly (e.g.,
as signed-distance functions, indicator functions), but the geometric
and topological properties vary among representations.

Several deep neural networks were recently proposed to encode
a shape into a learned feature vector. A trained decoder then trans-
forms the latent vectors into a new representation. For example,
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Fig. 2. System Overview: Starting from the input point cloudP (a), we first use a semantic segmentation module to detect the junction partsf J i g(red
points in (b)). Simultaneously, our neural network decomposes the input into a set of small-scale clustersfCi g (e), which are automatically merged into
non-overlapping branchesfB i g(d). We then extract discrete skeletal parts from the segmented branches (e). By using the joint skeletal nodes (colored in red),
we obtain a complete skeleton (f), which is represented by generalized cylinders and converted into a surface mesh (g).

Achlioptas et al. [2018] introduce a deep AutoEncoder network for
learning and producing 3D point cloud representations. These rep-
resentations are used for shape reconstruction, classi�cation, and
completion. To generate 3D information from multi-view or single
images, several neural networks decode 3D shapes as voxels [Sitz-
mann et al. 2019; Tatarchenko et al. 2017], point set [Fan et al. 2017;
Lin et al. 2018; Lun et al. 2017], or meshes [Kanazawa et al. 2018;
Tang et al. 2019; Wang et al. 2018c]. Other approaches represent
shapes by learned implicit functions and apply them for various
geometric processing tasks, such as surface reconstruction [Gen-
ova et al. 2020; Mescheder et al. 2019; Park et al. 2019], shape ab-
straction [Genova et al. 2019; Tulsiani et al. 2017], and generative
shape modeling [Chen and Zhang 2019]. However, none of these
approaches can encode 3D data into a compact representation.
Shape decomposition. To reveal the higher-level structure of a
shape for its better approximation, reconstruction, and manipula-
tion, a variety of techniques were presented to decompose shapes
into simple geometric primitives [Kaiser et al.2019], polycubes [Livesu
et al. 2013], bounding proxies [Calderon and Boubekeur 2017], or
branching elements [Guo et al. 2020]. Close to our work are ap-
proaches that decompose data into generalized cylinders (GCs). Li
et al. [2001] adopt the idea of space sweeping to decompose an ob-
ject automatically, where they extract components by sweeping the
object along the approximate curve skeletons in search of critical
points. Taking triangular meshes as input, both Goyal et al. [2012]
and Zhou et al. [2015] obtain a GC-based decomposition. The for-
mer method extracts a set of locally prominent cross-sections. It
then performs an a�nity propagation clustering of the local cross-
sections to form di�erent sweep components, while [Zhou et al.
2015] solves the exact cover problem from an over-complete set of
local cylinders to obtain an optimal decomposition. Based on the
same idea, Jayadevan et al. [2019] use translational symmetry to
extract parts and curve skeletons from unorganized point clouds.
Our approach also falls into this type of GC-based decomposition,
but we utilize deep clustering to adaptively decompose tree shapes
with a small number of parts that are more robust to noise.

So far, learnable shape decomposition has not been well-studied.
The CvxNet [Deng et al. 2020] represents shapes as a convex com-
bination of half-spaces. Each convex can be interpreted into an

explicit or implicit representation. Chen et al. [2020] present an un-
supervised BSP-Net, which is trained to reconstruct a shape using
a set of convexes obtained from a BSP-tree built on a set of planes.
Recently, approximate convex decomposition has been used in self-
supervision to alleviate the expensive labeling of shapes [Gadelha
et al. 2020]. This method is shown to be e�ective across multi-
ple datasets and downstream tasks. We follow these lines, but our
approach can reconstruct GC-based representations of branching
structures even for incomplete or noisy point sets.

2.3 Point set learning
Recently, several methods focused on designing neural networks
for direct point cloud processing. The pioneering work PointNet [Qi
et al. 2017a] and its extension PointNet++ [Qi et al. 2017b] are
general frameworks for mapping unorganized points into high-
dimensional spaces through feature transformation and aggregation.
Guerrero et al. [2018] propose a patch-based learning method, called
PCPNet, as a multi-scale variant well-adapted for estimating local
shape properties from raw point clouds. Li et al. [2018] introduce
PointCNN to learn an X-transformation for simultaneously weight-
ing and permuting input features, while PCNN [Atzmon et al. 2018]
uses an extension operator to de�ne convolutions on point clouds.
MCCNN [Hermosilla et al. 2018] introduces Monte Carlo convo-
lution and demonstrates a better performance when learning on
non-uniformly sampled point clouds. Similarly, PointConv [Wu et al.
2019] performs 3D convolution through Monte Carlo estimation
and constructs convolution weights based on the input coordinates.
DGCNN [Wang et al. 2018a] presents a novel operation EdgeConv
that acts on dynamic graphs to capture local geometric features
of point clouds better while still maintaining permutation invari-
ance. General-purpose point-set transforms have been proposed for
shapes from paired [Yin et al. 2018] or unpaired [Yin et al. 2019]
domains. Targeting surface reconstructions of general objects, dif-
ferent from traditional Poisson reconstruction [Kazhdan et al. 2006;
Kazhdan and Hoppe 2013], many deep neural networks were pro-
posed to learn shapes directly from raw data, such as SAL [Atzmon
and Lipman 2020], Point2Mesh [Hanocka et al. 2020], Point2Surf [Er-
ler et al. 2020], etc. Furthermore, deep learning frameworks for 3D
point cloud instance segmentation exist [Pham et al. 2019; Wang
et al. 2018b], which learn a similarity matrix indicating whether
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Fig. 3. Network architecture for neural decomposition: The top branch of our network (indicated by green arrows) represents thesemantic segmentation
module, which learns the multi-scale per-point features to detect junction parts. The other two branches (indicated by orange and blue arrows) are thefine
clustering moduleandpairwise a�inity module. The former concatenates local contextual features with point-wise feature vectors to decompose the input into
a set of local cylindrical patches, while the la�er module merges the patches by learning an a�inity matrix.

any given pair of points belong to the same object instance. This
is similar to our idea of using an a�nity matrix. In contrast, we
construct an a�nity matrix between branches using a self-attention
mechanism.

Recently, self-attention mechanism and Transformer has been
employed in point cloud processing, including PointASNL [Yan et al.
2020], PointGMM [Hertz et al. 2020], PCT [Guo et al. 2021], Point
Transformer [Zhao et al. 2020]. We borrow from both 3D point
feature learning and Transformer. We extend PointNet++ to achieve
a novel method that robustly reconstructs 3D branching structures
by generalized cylinders and branch joints.

3 PROBLEM STATEMENT AND OVERVIEW
Our goal is to obtain 3D tree reconstruction from an unstructured
point cloud. The point cloud is assumed to be a scan of a tree surface,
and we use both real and synthetic trees in this paper. The input data
may be noisy, incomplete, and with non-uniform density distribu-
tion. We also assume the normal vectors are not provided. The core
idea of our algorithm is to decompose the point cloud into foliage,
non-overlapping sets of branchfB i g and junction partsfJ i g by
using deep neural networks. Each part of a branch is then recon-
structed as a surface mesh patch. Finally, we merge the branch parts
by linking to the critical joint points located in the junction regions.

The main steps of our algorithm are shown in Fig. 2. Given the
point cloud in Fig. 2 (a), we start by detecting the junction partsfJ i g
using asemantic segmentation module(Fig. 2 (b)). Then we decom-
pose the point cloud into a set of branch parts. Since a tree shape
is complex and the suitable number of components is unknown,
a �ne clustering moduleis �rst executed to get an over-complete
set of small local branches (fCi g) with a �xed number (256 in this
paper), see Fig. 2 (c). Our neural network then adaptively merges
these local branches via apairwise a�nity moduleto obtain less but
more compact branchesfB i g (Fig. 2 (d)). Finally, each branch is
represented as a generalized cylinder de�ned by sweeping a set of
cross-sectional pro�les along a skeletal curve. In Fig. 2 (e), we show
the discrete skeletons. Then, by taking the semantic junction points
(the red skeletal nodes) into account, we connect these branches
by computing a complete skeletal connectivity graph (Fig. 2 (f))
to obtain a plausible surface representation of the underlying tree
geometry (Fig. 2 (g)). The surface mesh can be directly used to make
a realistic tree model via attaching leaves and textures.

4 NEURAL DECOMPOSITION
Our neural network exploits the assumption that a tree comprises
locally cylindrical shapes, except for near-junction regions and fo-
liage. We exploit the biological knowledge that the length of branch
internodes is typically �xed. Trees grow by adding a �xed length to
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the branch apex in every growth period (apical growth), this length
is given by the tree DNA. This allows us to use �xed cylinder lengths
for our approach. An intuitive approach is to detect local cylinders
by continuously regressing their radius and orientations. However,
this is prone to failure for the following reasons: (1) Local branch
shape of trees is primarily tubular but with linearly-changing ra-
dius [West et al. 1999], thus representing it by exact cylinders will
result in approximation errors. It also introduces ambiguities in
labeling the training data (i.e., a large cylinder can be divided into
two smaller ones), leading to an unclear labeling path to determine
the appropriate number of cylinders. (2) There are many cylindrical
parts in a tree model that make it challenging to train a robust neural
network for continuous regression to achieve good accuracy and
performance.

In our approach, we �rst perform a semantic segmentation to
indicate points to belong to either a branch or a junction point used
later to combine the decomposed parts. Then, instead of directly de-
tecting cylinders, our architecture �rst computes per-point features
and then predicts the neural decomposition. Our network architec-
ture comprising of three modules is summarized in Fig. 3, where
the top row shows the detection of junctionssemantic segmenta-
tion module, and the other two processing the branches (the�ne
clustering moduleandpairwise a�nity module). Thus, we propose a
�ne-to-coarse clustering approach by leveraging the ability of deep
neural networks to learn features.

4.1 Semantic Segmentation
The input point cloud consists of 3D points which has only coordi-
natesP = f pi j pi 2 R3; i = 1; 2; � � � ; Ng. In thesemantic segmenta-
tion moduleindicated by the green arrows in Fig. 3, we �rst use the
set abstraction layers from PointNet++ [Qi et al. 2017b] to down-
sample a subset of input pointsP 0 = f p0

i j p0
i 2 R3; i = 1; 2; � � � ; N0g

by using the farthest point sampling algorithm and learn their lo-
cal contextual features. Since the radii of tree branches decrease
from the main trunk, the lower main branches are typically scanned
densely, while twig branches are sampled only sparsely. To deal
with such a non-uniformity, we propose to learn multi-scale fea-
tures in two ways. First, for each sampled point inP 0 we learn
two latent feature vectors with two neighborhood sizes. We then
concatenate them to form a multi-scale featureF1 2 RB� N 0� C1,
whereB is the batch size. Next, to capture global properties, we
increase the sampling radius to further downsampleP 0and learn
the multi-resolution featuresF2 2 RB� N 00� C2 (N00< N0). In our
implementation, we setN0 = 256 andN00= 128.

The feature propagation layers work hierarchically from theN00

subsampled points toP 0 to generate the updated featureF3 2
RB� N 0� C3. Then, we obtain per-point featuresF4 2 RB� N � C3 by
propagating fromP 0 to the original points. The feature vectors are
fed to a set of fully connected layers that predict the scoresS 2
RN , then a sigmoid function is applied to calculate the probability
whether a point is a junction point (0-trunk, 1-junction).

Foliage segmentation. Foliage has a very di�erent geometric
structure compared to branches. Points in the foliage are locally
sparse and do not meet the assumption of cylindrical geometry.
Thus they are almost all the time noise and outliers. An optional

neural network separates the foliage points by casting it as a binary
classi�cation. We use PointNet++ as a classi�er to �lter foliage
points (for each point: 0-foliage, 1-branch). Although many foliage
points will be on leaves instead of branches, we alleviate this by
adding more random points using small noise shifts to the original
branch points. Note that in the subsequent modeling process, we
do not discard the leaf points. We use them as 3D envelopes to
procedurally grow branchlets inside them [Livny et al. 2011].

4.2 Branch Clustering
Our method clusters the points to small branches that can be rep-
resented as generalized cylinders. The main challenge here is that
the number of branches is not known in advance for di�erent tree
shapes. Thus we cannot estimate a probability distribution over a
�xed number of clusters. To address this issue, our approach con-
sists of two modules. Initially, we learn to group the points with a
relatively large number of clusters. We then automatically merge
similar clusters by computing an a�nity matrix wherein a pair of
clusters belonging to the same branch has a higher a�nity than a
pair in di�erent branches.

Initial �ne clustering. The �ne clustering moduleis built on
the semantic segmentation network described above. Since Point-
Net++[Qi et al. 2017b] uses the farthest point sampling algorithm
and ball query to group local features, we also utilize the coordinates
of those sampling pointsP 0 to extract local cylindrical features. As
shown in Fig. 3, the sampling points are used as clustering seeds
because they uniformly cover the entire shape. For each point in the
input P, the module outputs the probability of the point belonging
to the given local cylindrical area around a point inP 0. We then ob-
tain the initial cluster labelfCi gN 0

i =1 for each input point by selecting
the highest probability.

Because the dimensions of the local contextual featuresF3 and
per-point featuresF4 are di�erent, we extend the dimension ofF3
andF4, and repeat the values to get feature spaces with the same
shape (B� N � N0� C3). We then subtract the extendedF4 from the
extendedF3 to obtain a new feature spaceF5 2 RB� N � N 0� C3. We
assume the initial clusters have a common geometrical structure
(e.g., a local cylinder). Thus the weight of per-point and local fea-
ture's consistency can be shared. To predict to which initial cluster
the per-point feature belongs to, we feed the new feature vectors in
F5 into a shared multi-layer perceptron (MLP) [LeCun and Bengio
1998] that outputs initial clustering vectorsV 2 RB� N � N 0

, which
assign each point a score for belonging to one ofN0 initial clusters.
The shared MLP is adopted because it has properties of sparse con-
nections and parameter sharing, leading to a good balance between
network performance and memory space requirements. Further-
more, using fewer weight parameters also reduces over�tting when
training the neural network.

Merging clusters. Next, from the above-obtained local �ne clus-
ters, we seek to �nd a more compact and smooth decomposition
whose number of branches is as small as possible. We propose a
geometry-awarepairwise a�nity module to construct an a�nity
matrix M by non-linearly auto-encoding the clustering seedsP 0

into a latent space, where seeds belonging to the same branch should
have similar embedded features. We take the down-sampled farthest
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pointsP 0 in Sec. 4.1 as nodes to build a fully-connected graph, then
aim to learn to choose edges to connect the nodes (e.g.,Ci andCj )
that belong to the same branch (Mi j = 1).

The core of our approach is to measure the similarity between
two clustersCi andCj accurately. We de�ne their similarity as:

Sim¹Ci ; Cj º = Dp¹Ci ; Cj º + � � Df ¹Ci ; Cj º , (1)

where � is a scalar weight initialized to� = � 10 and it will be
learned together with other network parameters in the training
process. The� is also the "scale" in the module name: scaled cosine
distance which will be introduced below. The �rst termDp encodes
the Euclidean (L2) distance between two cluster seeds because the
positions of two similar clusters should be close along one branch.
The second termDf represents the similarity in the embedded
feature space.

To computeDf , we de�ne a new module namedScaled Cosine Dis-
tance, inspired by Transformer [Vaswani et al. 2017] which achieved
success in many recent machine translation and vision tasks. Trans-
former is built solely on the self-attention mechanism, which maps
a queryQ 2 Rnk � dq and a set of known key-value pairs (K 2
Rnk � dq ;V 2 Rnk � dv ) to output featuresFat tent ion = AV, where
Q;K;V are matrices generated by linear transformations of the in-
put featuresFin . Fat tent ion is a weighted sum of values, where the
attention weightsA assigned to each value are computed by the
scaled matrix dot-product of the query with the corresponding key:

A = sof tmax¹
QKT
p

dq
º . (2)

The attention weights capture contextual information and charac-
terize the semantic a�nities between features. Speci�cally, we take
the initial local contextual features as input featuresFin = F3. Then,
we feedF3 to a multi-layer perceptron to obtain new higher dimen-
sional featuresF6 2 RB� N 0� C4 that represents both, the queryQ
and the keyK. Unlike Transformer, we do not use a value matrix
V because we only want to compute the similarity between the
clusters, i.e., the attention weights. Next, each feature vector inF6 is
scaled to unit length by usingL2-normalization. So the dot product
of each pair inF6 will be the cosine of angles between the features.
To simplify the computation, we transform the normalizedF6 and
use matrix multiplication with itself:

Df = sof tmax¹F T
6 F6º . (3)

In practice, such dot-product attention is very fast and space-
e�cient because it can be implemented using highly optimized
matrix multiplication code.

Finally, to transform the feature similarity to probability space,
we use a linear transform layer to complete the feature space map.
An a�nity loss is proposed to minimize the reconstruction error
between the predicted a�nity matrixM0and the ground-truth ma-
trix M. Fig. 4 shows a visualization of the ground truth and our
predicted a�nity matrices.

After getting the a�nity matrix, we compute the re�exive, tran-
sitive closure of values in this matrix above a value of 0.5. Each
closure will be a single cluster. This is achieved by a width-�rst
traversal by treating the a�nity matrix as the adjacent matrix in a
graph.

Fig. 4. Visualization of the ground-truth a�inity matrixM (le�) and our
predicted a�inity matrix M0 (right). X-axis and y-axis indicate the index of
each local context.Mi j = 1 if the i -th and j -th local context belong to the
same cluster. The diagonal shows that each context is always the same as
itself (Mi i = 1). Therefore, the more similar the distributions ofMi j and
M0

i j , the closer our predicted matrix is to the ground-truth.

4.3 Loss functions
Since the above-described three modules share common contextual
features, we integrate them in a uni�ed network architecture. Our
network training is supervised by an e�cient loss function contain-
ing three components: junction semantic segmentation loss, �ne
clustering loss and a�nity loss:

Loveral l = LS + LC + LA . (4)

Considering the junction semantic segmentation module outputs
zero for branch parts or one for junction parts, the semantic loss is
de�ned as a binary cross-entropy loss function:

LS =
1
N

NÕ

i =1

� yi � log� ¹si º � ¹ 1 � yi º � log¹1 � � ¹si ºº , (5)

whereyi indicates the ground-truth label,� is the sigmoid function,
andsi 2 S is the predicted score of our network.

Similar to the semantic segmentation loss, the �ne clustering
module predicts a score for each pointpi belonging to a local context.
We use the multiple label cross-entropy to measure the loss between
network prediction and the ground truth labelgi :

LC =
1
N

NÕ

i =1

8>><

>>
:

�V »i¼ »gi ¼+ log
N 0Õ

j =1

exp¹V »i¼ »j¼º

9>>=

>>
;

. (6)

We also want to use a binary cross-entropy loss for the a�nity
loss to compare the predicted a�nity matrixM0 and the ground-
truth matrix M. However, the ground truth a�nity matrix is sparse,
i.e., the number of positive labels (Mi j = 1) is too small compared
to the number of all clusters, which is a classical class imbalance
problem. In such a case, the binary cross-entropy contributes a low
useful learning gradient to positive labels. The easy negatives can
overwhelm training and lead to degenerate models that are biased
toward predicting 0. To overcome this issue, we introduce the focal

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021. Submission ID: 148. 2021-09-06 11:07. Page 6 of 1�16.



TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction ˆ 1:7

loss [Lin et al. 2017] to improve the result:

LA =
1

N0

N 0Õ

i =1

1
N0

N 0Õ

j =1

Lf l
�
M0

i j ;Mi j
�

, (7)

Lf l ¹m;aº =

(
� ! ¹1 � mº
 logm; a = 0

�¹ 1 � ! ºm
 log¹1 � mº ; a = 1;
(8)

where the focusing parameter
 � 0 controls the weight of samples
that are "hard" to classify, and the parameter! controls the weight
of positive and negative samples. We set! = 0:43;
 = 2 by default
in our training task.

4.4 Implementation and Training Details
Dataset preparation. Our approach is based on supervised learn-
ing, but it is quite hard to obtain ground-truth skeletons or clus-
terings from real-world data. Therefore, to obtain numerous point
clouds of trees for training, we automatically generate a set of syn-
thetic 3D tree models by utilizing a procedural modeling approach
similar to [Palubicki et al. 2009]. This dataset contains 20 common
tree species (maple, oak, Gingko, etc) generated by tuning di�er-
ent modeling parameters. Each tree is described as a hierarchically
bottom-up organized skeletal structure [de Re�ye et al. 1988]. We
create the polygonal models of the tree branches by using a set of
generalized cylinders. To help train the foliage classi�cation net-
work, leaves are created procedurally at the end of the growth cycle,
with positions randomly chosen in a sphere centered on the leaf
node.

After getting such 3D tree shapes, we generate 16K surface sam-
ples for each model. Then, to further simulate a real scan, we aug-
ment the training data by adding slight rotation, Gaussian noise,
outliers, and data incompleteness. Finally, to normalize each point
cloud, we �rst compute its center and determine the largest distance
from each point to that center. Then, we rescale the point cloud to
�t into a unit sphere whose radius is the computed largest distance.

Since we know which junction parts belong to the ground-truth
skeleton, we can label each sampled point. We also record the branch
ID for each point. To label clustering information, we generate a
farthest sampled point setP 0 2 RN 0� 3 (N0 = 256 in this paper).
The initial ground-truth cluster forpi 2 P is assigned as the index
of the nearest point inP 0 with the same branch ID. To prepare
the a�nity matrix M, for each sampled pointpi 2 P0 we found
its three closet pointspj 2 P0 having the same branch ID aspi .
Then we set the elementsMi j = 1 as positive and other elements
Mik = 0 as negative. We generated 7; 100 point clouds of trees with
ground-truth labels, which were separated into disjoint training
models (5; 680 trees), validation models (710 trees), and test models
(710 trees).

Network training. Our network is implemented in PyTorch
based on [Wijmans 2018]. We trained the entire network end-to-end
for 500 epochs using the Adam optimizer [Kingma and Ba 2014]. The
initial learning rate was set to 10� 2 and reduced with an attenuation
coe�cient of 0.8 every 5 epochs until we reached 10� 5 to avoid
over�tting. The learning rate decayed every 3e5 step by 0:5. The
batch size was 4, and the momentum was 0.9.

(a) (b)

(c) (d)

Fig. 5. Training examples from procedural tree models. (a) and (b) are two
branching structures, (c) and (d) are two trees with foliage. For each example,
from le� to right we show the input point cloud, the junction or foliage
labeling, and the clusters labeling results, respectively.

5 TREE MODELING
Our algorithm's last step aims to provide a compact and fully con-
nected surface representation of tree models, which can be easily
used for visualization, procedural editing, or simulation.

After neural decomposition, each point in the input point cloud
is assigned to two attributes: a label of whether it is a junction
point or not and a cluster ID of the branch it belongs to. Since the
junction regions reveal the most critical topological structure of a
tree, we cut the input points into a set of cylindrical branch parts
and non-cylindrical junction parts by separating junction points.
Each junction part stores the cluster IDs of its nearby connected
branches.

Branch reconstruction. Each branch part is similar to a tubular
component that can be represented using a generalized cylinder
which consists of a curve and a set of cross-sectional pro�les. To
extract the piece-wise linear skeletal curve, we adopt theL1-medial
skeleton proposed by Huang et al. [2013] because this method is
robust to noise, outliers, and large areas of missing data. Then for
each skeletal pointsp , we compute an orthogonal pro�le curve to
the skeletal curve.

First, we �nd k nearest neighbor points ofsp in the original
point cloud, each neighbor is projected to the line corresponding
to the directiondp of the skeleton atsp . We compute the average
projected distance as the skeletal radiusrp at sp . Then we generate
a circular curve represented byf¹xi ;yi ; 0º j xi = rp cos¹2� •m �
i º;yi = rp sin¹2� •m � i ºgin the XY-plane. To get the pro�le curve,
we transform the circular curve by rotating itsZ axis to align it
with dp and translating its center tosp . This step can be e�ciently
solved by de�ning a local coordinate frame.

Finally, each pro�le curve is represented by a planar and regular
polygon with m vertices (m = 10 in our implementation). This
generalized cylinder is then transformed to a patch of a surface
mesh by a lofting process.

Computing the joint points. Junction parts corresponding to
branching bifurcations are generally non-cylindrical and often con-
nect multiple branches. Thus the points in a junction part often
belong to two or more branch clusters. To achieve a high geometric
�delity near the joint regions, we check each pointp of the junction
part: if p belongs to a branch clusterBi and one or more of its
neighbor points if from another branch clusterB j , we call the point
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Fig. 6. Evaluation on two synthetic examples from our test dataset, where we show the step-by-step results of our decomposition and reconstruction process.
For each example, from le� to right, we show the input point cloud, junction detection, initial clusters, merged clusters, extracted skeleton, and our final
reconstructed, textured models.

p a boundary pointbetweenBi and B j . We collect all boundary
points and compute their center as thejoint point for this junction
part.

Connecting branches. The position of each joint point deter-
mines how to connect nearby branches. Since we have stored the
branch IDs in every junction part, we can directly connect the joint
point o to the closest skeleton endpoint (e) of each branch to form
a fully connected skeletal graph. To ensure a smooth transition
between the joint connections, we compute the angle� between
two joint connectionseio andoej . If � is larger than a threshold�
(� = 120� by default), we replaceeio andoej by using a Hermite
curve, whose tangential directions atei and ej are aligned with
the corresponding branch directions. The Hermite curve is also
represented by a generalized cylinder to build a surface mesh patch.

Foliage synthesis. Within the foliage, it is challenging to extract
proper skeletons. To obtain a complete tree model, we automatically
synthesize the foliage by using a procedural system, as was done
in the past methods [Livny et al. 2011; Tan et al. 2007]. Then, from
the main branches, we grow additional branchlets guided by the
extracted foliage points. Finally, the leaves are generated at the end
of the growth cycle and textured according to the tree species.

6 RESULTS AND EVALUATION
To demonstrate our decomposition neural network, we start with
several experiments by visually inspecting our results. Then we
evaluate our algorithm qualitatively and quantitatively by involving
challenging point clouds and comparing state-of-the-art approaches.
The real input point data were obtained from laser scanning with
a RIGEL LMS-Z360i 3D imaging sensor (Fig. 1), or a Leica scanner
(Figures 7 (d), 15, 16). The inputs to Fig. 7 (a)-(c) are from multi-view
stereo reconstruction with images captured using a smartphone.

All experiments were conducted on a desktop computer equipped
with an Intel Xeon Gold 6226R processor with 2.9 GHz and 256 GB

RAM. O�ine training was run on an NVIDIA GeForce RTX-6000
(20GB memory) graphics board. We implemented our tree modeling
algorithm in C++. The training process was completed in 7 hours,
while the inference took about 0.78 seconds to process one point
cloud and 27 seconds to obtain a reconstructed model.

6.1 Evaluation
Robustness. We tested our algorithm with several point clouds
to evaluate robustness against noise, outliers, and incompleteness,
including synthetic models and real-captured tree geometries.

The two examples in Fig. 6 show the step-by-step results of our
decomposition and reconstruction process. The examples were se-
lected from the test data. The underlying geometries possess com-
plex topological structures, leading to sparse point clouds with
missing data. Our trained semantic segmentation detects the com-
plicated junctions, and the clustering module recovers cylindrical
branches faithfully. Thus, it is possible to extract the skeletons and
reproduce 3D tree models accurately from the segmented branches.

To demonstrate the capability and robustness of our approach,
we reconstruct several trees using poor-quality real inputs with
missing regions, noise, and sparsity. Fig. 7 shows decomposition
and reconstruction results by showing them side by side with the 2D
photographs. The foliage classi�cation network separated the point
cloud corresponding to the trunk from the foliage. Then, TreePart-
Net dealt with the complex topology and generated realistic results
by focusing on the branching structures. Finally, the branching parts
were reconstructed using generalized cylinders, while small twigs
and leaves in the foliage were generated using a procedural sys-
tem [Livny et al. 2011]. Fig. 7 shows a side-by-side visual comparison
of the rendered images and the photos.

We also evaluate the performance of the foliage segmentation net-
work quantitatively with precision, recall, accuracy, and F1 scores.
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�
 a��

�
 b��

�
 c��

�
 d��

Fig. 7. Several results of reconstructed trees from real data. From le� to right: reference photo, input point cloud, our foliage segmentation, and branch
decomposition, reconstructed model, and rendering result adding leaves and textures. The input point clouds in (a)-(c) are obtained by using multi-view stereo
reconstruction from 64, 66, 40 images, respectively.

Their de�nitions are:

Prec=
TP

TP+ FP
, Rec=

TP
TP+ FN

,

Acc=
TP+ T N

TP+ T N + FP+ FN
, F1 = 2 �

Prec� Rec
Prec+ Rec

,
(9)

whereTPis the number of true positives,T N true negatives,FPfalse
positives, andFN false negatives. Fig. 8 shows their values on the
validation set during the training process, our foliage segmentation
network achieves good classi�cation accuracy here.

Ablation study. We conducted several experiments to evaluate
the in�uence of di�erent components of our network. The scaled
cosine distance and focal loss play a crucial role in improving the
prediction of the a�nity matrix. Fig. 9 shows the evaluation of the
e�ectiveness of these two modules. We show the values of a�nity
lossLA and F1 score on the validation dataset at the end of each
training epoch. The "No scaled cosine distance" indicates that we
use an MLP to take the place of the scaled cosine distance, while

"No focal loss" means using a binary cross-entropy loss instead of
the focal loss as the baseline. "Neither" does not use any of the two
modules, and "Both" is our full model. This �gure veri�es that our
full model obtains a minimal loss and best F1 score.

Tab. 1 reports our quantitative analysis using the measurements
of the average F1-score, precision and recall achieved on the vali-
dation dataset. Our method signi�cantly outperforms the baseline
alternatives, demonstrating that the scaled cosine distance and focal
loss help improve merging clusters' accuracy. Fig. 10 shows the �nal
clustering results of this ablation study. It demonstrates that the
layers of scaled cosine distance and focal loss signi�cantly impact
the performance.

To determine the classi�cation label of each point, we compute
the new feature spaceF5 in the initial �ne clustering step by sub-
tracting the extended local contextual featureF4 from the extended
per-point featureF3. We now compare to other two alternative ap-
proaches for computingF5. "Euclidean distance" directly computes
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Fig. 8. Accuracy, precision, recall, and F1 scores of the validation set as the
function of the foliage segmentation training epochs.
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Fig. 9. Training behavior of our method with and without scaled cosine
distance and focal loss function.
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Fig. 10. Visual illustration of final clustering results with and without scaled
cosine distance and focal loss function.

the distance betweenF3 andF4, it then uses a linear classi�er to
determine the local context label. "Concat feature" concatenatesF3
and F4 and feeds the new feature to a shared MLP network. We
evaluate the memory e�ciency and classi�cation performance of
these approaches in terms of classi�cation accuracy, loss, and the
dimension of theF5 feature vectors. Tab. 2 shows that using Eu-
clidean distance is most memory-e�cient but worst in performance.

Table 1. Ablation study of the scaled cosine distance and the focal loss.

F1-score Precision Recall
No focal loss 49.43% 98.88% 32.98%
No scaled cosine distance 48.14% 98.90% 31.81%
Neither 48.01% 98.98% 31.69%
Both 81.22% 87.58% 76.10%

Table 2. Ablation study of computing local context feature.

Class. Acc. Loss Feature dimension
Euclidean distance 84.24% 0.4711 1

Concat feature 86.05% 0.4357 128
Our subtraction 86.17% 0.4124 64

Our subtraction operation uses less memory than the concatenating
operation but has lower loss and higher classi�cation accuracy.

6.2 Comparison
Comparison to the decomposition methods. We �rst compare
to the decompositions based on various clustering methods, in-
cluding mean shift [Fukunaga and Hostetler 1975], spectral cluster-
ing [Ng et al. 2001], density-based spatial clustering of applications
with noise (DBSCAN) [Ester et al.1996]. We also compare to an unsu-
pervised neural network, called Self Organizing Map (SOM) [Vettigli
2018], which is designed for clustering analysis and exploring data.
The input for the comparison consists of 8K points. Thus, spectral
clustering needs to compute a Laplacian matrix with size 8K � 8K
and the corresponding eigenvectors, which is time and memory-
demanding. Therefore, instead of directly using the original input
points, we feed our initial �ne clustering results to the spectral
clustering to reduce the computing time.

We adopt two commonly used metrics Rand Index (RI) and Nor-
malized Mutual Information (NMI) for a quantitative comparison.

� Rand index(RI) computes the similarity between two cluster-
ings by considering all pairs of samples and counting pairs
assigned to the same or di�erent clusters in the predicted and
true clusterings:

RI =
TP+ T N

TP+ FP+ FN + T N
. (10)

The index gives a value between zero and one, forRI = 1 the
two clusterings are identical.

� Normalized Mutual Information(NMI) depends on the mutual
information I ¹� ; �º and the entropyH¹�º of the labeled classes

 and clustersC:

NMI =
2 � I ¹
 ;Cº

H¹
 º + H¹Cº
. (11)

NMI zero indicates no mutual information, and a value of one
means perfect correlation.

Figure 11 shows a visual comparison using synthetic point clouds,
for which the ground-truth clusters were provided. The initial num-
ber of clusters for the mean shift, spectral clustering, DBSCAN, and
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Fig. 11. Visual comparison of di�erent clustering methods. The ground-truth labeling (GT) is provided in the second column. Our clustering reveals the
branching structure clearer than other methods while still having the right granularity.

SOM is set to the same values as the ground-truth, while our ap-
proach automatically determines the number of clusters. Although
mean shift, spectral clustering, and SOM generate compact clusters,
they cannot reveal joint regions. DBSCAN falls into computing local
clusters resulting in many groups of fragments, while our approach
works well for separating branches at the joint regions.

The statistics of the clustering performance for the di�erent meth-
ods are reported in Tab. 3. The number of clusters for spectral clus-
tering is �xed, while mean shift, DBSCAN, and SOM adjusted them
iteratively. Note that our number of clusters is also di�erent from
the ground truth because we merge initial clusters by considering
both the clusters' position and the embedded features (such as the
branch direction). In terms of RI and NMI, the results suggest that
our approach is superior to the other methods.

Comparison to skeletonization methods. While the curve
skeleton is a side product of our decomposition, it is vital to tree
reconstruction. Therefore, we compare our algorithm to several
skeletonization methods, including the not-learnedL1-medial skele-
ton [Huang et al. 2013] and the Laplacian-based contraction (LBC)
method [Cao et al. 2010]. In addition, we compare to the recently de-
veloped P2P-NET [Yin et al. 2018], which learns geometric transfor-
mations between point sets from two domains, e.g., meso-skeletons,
and surfaces. The P2P-NET was re-trained on our training dataset.

The result in Fig. 12 shows the comparison results using two point
clouds, where the data at the top is from real scanning while the
bottom one is synthetic data. From the �gure, we see that P2P-NET

Table 3. �antitative comparison of di�erent clustering methods for de-
composition.C represents the final number of clusters (the number under
the figure name is the ground-truth). Best results for each measurement
are marked inbold font.

Input Methods C RI N MI

Fig. 11 (a)
(27)

Mean Shift 30 0.8814 0.5868
Spectral clustering 27 0.7763 0.2104

DBSCAN 192 0.8677 0.5478
SOM 14 0.8557 0.4997
Ours 70 0.9055 0.7129

Fig. 11 (b)
(82)

Mean Shift 15 0.8714 0.4729
Spectral clustering 82 0.9159 0.4722

DBSCAN 177 0.8755 0.5597
SOM 19 0.8749 0.5010
Ours 147 0.9247 0.7145

Fig. 11 (c)
(78)

Mean Shift 15 0.9088 0.5189
Spectral clustering 78 0.8708 0.4206

DBSCAN 177 0.6705 0.4474
SOM 24 0.9171 0.5469
Ours 195 0.9585 0.7327

obtains a thinned version of the input, but it is still far from generat-
ing a real and accurate skeleton. The curve skeletons extracted from
LBC andL1-medial axis contain many incorrect branches or lost
individual branches. In comparison, our approach produces more
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Fig. 12. Comparison of our approach to di�erent skeletonization methods.
The point data in (a) is from real scanning while the data in (b) is synthetic.

Fig. 13. Skeleton prediction in comparison to RigNet [Xu et al. 2020].

complete skeletons that better capture the given geometry. In addi-
tion, for the synthetic example at the bottom in Fig. 12, we adopt
Hausdor� distance to measure the similarity between the recon-
structed skeleton and ground-truth. The mean Hausdor� distances
(w.r.t. bounding box diagonal) of P2P-Net, LBC,L1-medial axis, and
ours are 0.716, 1.798, 1.946, 0.676, respectively. It demonstrates that
the skeleton obtained by our TreePartNet is better to maintain the
branching �delity of trees.

RigNet [Xu et al. 2020] predicts skeletons and computes skinning
weights for articulated characters. While Rignet may seem similar
to our approach, there are signi�cant di�erences. It takes a 3D mesh
represented as a graph with strong priors as input, then uses graph
neural networks to predict displacements on mesh vertices. Another
strong constraint of Rignet is that its input shape must be symmetric.

Table 4. �antitative comparison of di�erent tree reconstruction methods
on synthetic data.CEmean andCEstd are the mean and standard deviation
of the completeness error.Hmean and HRMS represent mean and root
mean square (RMS) of the Hausdor� distance with respect to the bounding
box diagonal of the ground truth.

Input Methods CEmean CEstd Hmean HRMS

Fig. 14 (top)

[Livny et al. 2010] 0.6155 0.4287 0.2638 0.3675
[Guo et al. 2018] 1.0846 0.8888 0.3441 0.4503
[Du et al. 2019] 0.7963 0.5763 0.2119 0.3130

TreePartNet 0.6348 0.4257 0.1842 0.2826

Fig. 14 (bottom)

[Livny et al. 2010] 1.4577 1.2057 0.2059 0.2805
[Guo et al. 2018] 1.5954 0.9750 0.3138 0.3646
[Du et al. 2019] 1.4835 1.1852 0.1258 0.2685

TreePartNet 1.4526 1.0304 0.1342 0.2179

Table 5. �antitative comparison of di�erent tree reconstruction methods
on real-world data sets.

Input Methods REmean REstd Hmean HRMS

Fig. 15 (top)

[Livny et al. 2010] 0.7011 0.5845 0.2059 0.3460
[Guo et al. 2018] 0.7379 0.4490 0.3172 0.3708
[Du et al. 2019] 0.3592 0.2966 0.1849 0.1828

TreePartNet 0.5437 0.4110 0.1278 0.2667

Fig. 15 (middle)

[Livny et al. 2010] 1.0053 0.6299 0.2708 0.3488
[Guo et al. 2018] 1.1658 0.5939 0.3213 0.4361
[Du et al. 2019] 1.0047 0.6314 0.2905 0.3508

TreePartNet 0.9416 0.6362 0.2478 0.3185

Fig. 15 (bottom)

[Livny et al. 2010] 0.6638 0.007286 0.1944 0.3572
[Guo et al. 2018] 1.2240 0.7735 0.5488 0.6417
[Du et al. 2019] 0.6979 0.6508 0.2091 0.3423

TreePartNet 1.1811 0.8132 0.2686 0.3140

Fig. 16 (top)

[Livny et al. 2010] 0.9624 0.7531 0.3223 0.5292
[Guo et al. 2018] 2.2847 1.3541 0.8830 1.0097
[Du et al. 2019] 0.9565 0.7558 0.3714 0.5459

TreePartNet 1.7335 1.1524 0.6758 0.7955

Fig. 16 (middle)

[Livny et al. 2010] 0.6812 1.0476 0.1987 0.4059
[Guo et al. 2018] 1.0491 0.5425 0.5364 1.0270
[Du et al. 2019] 0.7999 0.6969 0.1852 0.4483

TreePartNet 1.0156 0.8156 0.7247 0.9615

Fig. 16 (bottom)

[Livny et al. 2010] 0.8267 0.7191 0.1925 0.2888
[Guo et al. 2018] 1.2680 0.8614 0.4466 0.5097
[Du et al. 2019] 0.8053 0.7959 0.1552 0.2184

TreePartNet 1.3681 0.7062 0.3965 0.4828

To compare with Rignet, we use both unsymmetrical and perfectly
symmetrical branching structures for evaluation. Fig. 13 shows two
examples. RigNet can not solve tree skeletonization problems, espe-
cially for unsymmetrical input, because trees are signi�cantly more
complex than articulated characters in their numbers of branches
and also the diversity of branches.

Comparison to tree reconstruction methods. Finally, we eval-
uate the reconstruction quality of the obtained 3D tree models. Since
learning-based 3D tree reconstruction is not well-studied, we evalu-
ate our TreePartNet by comparing it to closely relevant approaches
that are not learning-based. These include a global optimization-
based tree reconstruction [Livny et al. 2010] and a procedural tree
modeling guided by point clouds [Guo et al. 2018], and AdTree [Du
et al. 2019]. Here, we adopt three quantitative measurements to
compute the reconstruction quality: completeness error, Hausdor�
distance, and reconstruction error. The completeness error mea-
sures the per-vertex distance between the ground-truth modelM
and a reconstructed meshM 0 from an incomplete point cloud. The
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Fig. 14. Comparison to tree reconstruction methods using two synthetic examples. From le� to right are input point cloud, reconstruction results of di�erent
methods, and ground-truth surface model.

Fig. 15. Reconstruction comparison on three real scanned point clouds. From le� to right: input point cloud, reconstruction results, and error maps of di�erent
methods.

reconstruction error computes the distance between a reconstructed
meshM 0and the input cloudP.

First, synthetic trees serve as the complete surface model. We
use a virtual scanner to generate point data from a view. Then, we
generate 3D trees using di�erent methods. Fig. 14 shows the visual
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Fig. 16. Comparison of reconstruction results for real trees with dense foliage. The detailed views show the reconstruction quality in local regions.

comparison results. The single-sided scan is incomplete because of
self-occlusion. For the bottom model of Fig. 14, we added Gaussian
noise with a standard deviation of 0.01 to evaluate the accuracy and
robustness of the di�erent algorithms. Our reconstructed models
are visually more complete, the quantitative comparison in Tab. 4
also demonstrates that our results are closer to the ground truth.

Second, for Fig. 15, we took three real-scanned tree models as
input and plot the reconstruction results. In addition, the reconstruc-
tion error map for each method is illustrated (blue indicates a low
error, red a large one). Tab. 5 shows a detailed quantitative evalua-
tion. [Livny et al. 2010] and [Du et al. 2019] may generate structures
that appear strange or even erroneous when noisy and insu�cient
data is given, while [Guo et al. 2018] has problems controlling the
geometrical shape because of the randomness in the used space
colonization method for creating new branches. In contrast, since
we segmented the branches, we can better maintain the shape's
geometrical and topological �delity. Fig. 16 shows reconstruction
results on three real trees with dense foliage. We see that all methods
allow to obtain realistic models, but the branches of our result are
more consistent with input points (see detail views).

6.3 Limitations
We present a neural network approach that successfully learns a
cylindrical representation for 3D tree reconstruction from raw point
clouds. While producing convincing results, our approach is based
on supervised learning which heavily relies on labeled synthetic
data, thus our capability is limited by the richness of the training
data. Second, due to the inherent nature of the involved neural
networks, we are unable to handle large-scale point clouds with
hundreds of thousands of points. Downsampling them to a low
number of points would results in losing many branches. Third,
since we focus on reconstructing branching, our method is more
suitable for trees with distinct branches (e.g. elm, maple, oak). We
fail to model trees with signi�cant leaf cover (e.g. spruce, �r) or
other forms of plants such as palms, �owers, and climbing plants.

7 CONCLUSION AND FUTURE WORK
In this paper we propose to use a three-fold network architecture
to reconstruct tree skeletons from point clouds. Our approach com-
bines a neural decomposition into local cylindrical shapes with
robust branching detection to yield accurate tree reconstructions.
In a post-processing step the elements of the �ne grain cylindrical
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decomposition are combined to larger generalized cylinders in or-
der to achieve a data-e�cient reconstruction. An evaluation shows
that our method is better in reconstructing elements of branching
structures than state-of-the-art methods, our reconstructed trees
meet arti�cially scanned input models faithfully.

Considering that we need a post-processing step to reconstruct
trees, in the future we aim for developing an end-to-end solution for
tree reconstruction, for example, learning to extract accurate curve
skeletons or directly learning parameters of generalized cylinders
by combining shape decomposition and implicit functions [Genova
et al. 2020]. Besides, we also want to extend our network to learn a
procedural representation from point clouds of trees.
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