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Abstract

Product data exchange requires exchanging geometrical shape data that may have to be represented differently in the sending and in the
receiving system. Since the translation process thereby entailed can lead to errors, emerging exchange standards include numeric invariants
computed from the shape. Agreement of these invariants in the sending and receiving system are then used to increase confidence in the translation
process. In this paper we show that there are many classes of noncongruent solids for which all the invariants of volume, surface area, moments and
products of inertia agree. Thus these quantities alone are insufficient to exclude many translation errors. We also consider whether the examples
are realistic and find that in today’s constraint-based shape constructions the examples are not unlikely to occur.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Geometry data exchange; STEP; Product data exchange; Shape invariants; Inertial properties

1. Introduction1

Product data exchange is of growing importance in2

manufacturing. This importance is driven by the cost and3

effort to exchange data between different CAD systems and4

is unavoidable because of the underlying globalization of the5

supply chain. STEP standards for data exchange have been6

devised and continue to evolve to respond to this need. Of7

particular concern in practice is the exchange of geometrical8

data [1]. In part, the difficulty of exchanging geometry is due9

to proprietary technology that is used to devise special surfaces10

such as sweeps or to represent with acceptable accuracy surface11

intersections as well as proprietary geometrical constraint12

solvers. But the difficulty is also due to the fact that different13

geometry kernels work with different representations. Devising14

accurate conversions between those representations remains, in15

some cases, a research issue.16

Against this backdrop of geometrical data exchange17

problems, STEP standards include the use of numeric invariants18

of volume and surface area to increase the confidence in the19

shape translation. While it is obvious that there are many20

shapes that are not congruent, yet have the same volume and21

surface area, it is not known whether the same can be said22

∗ Corresponding author. Tel.: +1 317 494 6185; fax: +1 317 494 0739.
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about two shapes that have the same volume and surface area, 23

as well as the same moments and products of inertia. In this 24

note we prove that there are two simple convex shapes that 25

are not congruent, yet have the same volume, surface area, 26

moments and products of inertia. While the inclusion of the 27

latter invariants is helpful, it is therefore not sufficient to 28

distinguish between noncongruent shapes. 29

This result is strengthened in a number of ways. 30

Integral properties of point symmetrical functions, for which 31

f (x, y, z) = f (−x, −y, −z), are of no help. Restricting to 32

convex bodies also is of no help. Considering the invariants 33

in a coordinate system at the centroid is of no help. Finally, 34

the constructions that demonstrate these properties point to 35

the distinct possibility that translation errors due to constraint 36

solving variants are especially vulnerable. 37

Although our focus in this note is on shape data exchange, 38

we note that related questions arise in the semantics of CAD. 39

Briefly, how do we associate with a mathematical description 40

of a solid A a representation A′ that, by efficient computation, 41

can be guaranteed to be close in some metric? We shall say 42

more about this question below. 43

2. Definitions and notation 44

Given a solid object V and a line L , the moment of inertia 45

about the line L is the integral 46
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IL =

∫
r2ρdV .1

That is, the volume elements dV are summed weighted by the2

squared distance from the line. The quantity ρ is the density of3

the solid. In the following, we assume solids of homogeneous4

density and thus omit the factor ρ.5

Assume that the solid V is given with respect to a coordinate6

system with origin O . Then the product of inertia in the coordi-7

nate system, with respect to the coordinate axis z, is the integral8

Jxy =

∫
xyρdV .9

That is, the volume elements dV are summed weighted by the10

product of the coordinates (x, y) of dV and multiplied by the11

density ρ. Again, we assume homogeneous solids and omit ρ12

in the following. The products of inertia Jyz (with respect to the13

axis x) and Jxz (with respect to the axis y) are defined similarly.14

Note that a solid that is symmetrical about the yz-plane has15

zero products of inertia Jxz = Jxy = 0.16

Point-symmetry µ with respect to the origin of the17

coordinate system is defined by requiring that the point P =18

(x, y, z) correspond to the point µ(P) = (−x, −y, −z).19

Plane symmetry hx with respect to the x = 0 plane is defined20

by requiring that the point P = (x, y, z) correspond to the point21

hx (P) = (−x, y, z) in a suitable coordinate system. Symme-22

tries with respect to other coordinate planes are defined analo-23

gously, namely hy(P) = (x, −y, z) and hz(P) = (x, y, −z).24

Note that if two bodies are symmetrical with respect to a plane,25

then there is a coordinate system in which this plane is x = 0.26

We recall the regularized Boolean set operations of27

Constructive Solid Geometry; e.g. [2]. A solid A (in the sense28

of [2,3]) is regular, if the closure of the interior of A is equal29

to A. An example of a nonregular solid would be a cube with30

an attached surface patch (colloquially termed a dangling face).31

To regularize a solid take the closure of the interior of the solid.32

The regularized union of two solids A and B, denoted A ∪
∗ B,33

is the closure of the interior of the set-theoretic union A ∪ B.34

Similarly, the regularized intersection of two solids, A ∩
∗ B,35

is the closure of the interior of the set-theoretic intersection36

A ∩ B, and the regularized difference, A −
∗ B, is the closure37

of the interior of the set-theoretical difference A − B.38

3. First construction39

Consider a cube centred at the origin O of the coordinate40

system, with vertices at the points with coordinates (±1, ±1,41

±1) (i.e. aligned with the coordinate system). We add to the42

cube a square pyramid with the four base vertices coincident43

with the cube’s vertices at (±1, −1, ±1) and apex P0 =44

(0, −1 − u, v) where u = v = 0.4. Call the resulting solid45

C ; see also Fig. 1.46

We will construct two convex solids, A and B, that are not47

congruent and demonstrate that they agree in all numerical48

invariants (which we considered earlier).49

To obtain solid A, we add to the top face of C a square50

pyramid with apex P1 = (0, 0, 1 + w) and choose w arbitrarily51

so the solid remains convex, say w = 0.4. The resulting solid A52

Fig. 1. Core solid C used for constructing solids A and B for Proposition 1.

Fig. 2. Solids A and B for Proposition 1.

is shown in Fig. 2 to the left. It is easy to verify that A is convex 53

and that it is symmetrical with respect to the yz-plane. 54

We construct the solid B similarly, by adding to the bottom 55

face of C a square pyramid with apex P2 = (0, 0, −1 − w) and 56

observe that B, too, is convex and symmetrical with respect to 57

the yz-plane. The solid B is shown in Fig. 2 to the right. 58

By the construction, it is obvious that both solids A and B 59

have the same volume and surface area, and that they are not 60

congruent owing to the fact that u and v are positive. We show 61

that they have the same inertial moments. 62

Lemma 1. Solids A and B have the same moments of inertia 63

about any axis through the origin O. 64

Proof. Let L be any line through the origin and recall that the 65

origin of the coordinate system is at the centroid of the cube. 66

To each volume element dV of solid A that is in the core 67

C of A there is a corresponding volume element of B at the 68

same location. Moreover, to each volume element dV of A that 69

lies in the pyramid with apex P1 over the top face of C , there 70

corresponds the volume element µ(dV ) of solid B that lies in 71

the pyramid with apex P2. Since L contains the origin of the 72

coordinate system, the distance of dV of A to the line L must be 73

equal to the distance to L of the corresponding volume element 74

of B. Thus the integral IL over solid A is equal to the integral 75

IL over solid B. � 76

Lemma 2. Solids A and B have the same products of inertia 77

Jxy, Jyz , and Jzx with respect to any coordinate system with 78

the origin O. 79
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Proof. Consider any coordinate system with origin O and1

observe that the (regularized) solid2

X = (A ∪ B) −
∗(A ∩ B) = (A ∪ B) −

∗ C3

is point-symmetrical with respect to O . That is, we associate4

with the point Q = (x, y, z) of solid A in the pyramid with5

apex P1 the point Q′
= (−x, −y, −z) in B, and with the6

point Q of A in the core C the same point Q of B. Observing7

this correspondence, it is now obvious that the integrals are8

pairwise equal: Jxy(A) = Jxy(B), Jyz(A) = Jyz(B), and9

Jzx (A) = Jzx (B). That is, the corresponding products of inertia10

are equal. �11

Lemma 2 can be strengthened by dropping the requirement12

that the coordinate system be aligned with the sides of the cube.13

This is easy to see: Considering the integral for the products14

of inertia, we note that the argument of equality rests on the15

point symmetry µ. As long as the variants have a common core16

and additions that are point-symmetrical (to each other) with17

respect to the origin, then the products and moments of inertia18

must agree. Summarizing, we have the following proposition:19

Proposition 1. The solids A and B, as constructed, have20

identical volume, surface area, moments and products of inertia21

with respect to any coordinate system with origin at the centroid22

of the cube of C. They are convex and not congruent.23

Q1
Note that both moments and products of inertia are integrals24

of point-symmetrical functions. That is, the integrand f25

satisfies f (x, y, z) = f (−x, −y, −z). It is this property on26

which Proposition 1 depends, and therefore there is the obvious27

corollary28

Corollary 1. The solids A and B, as constructed are convex29

and not congruent, they have identical volume and surface area.30

Moreover, with respect to any coordinate system with origin at31

the centroid of the cube of C the integrals32

JA =

∫
A

f (P)dV =

∫
B

f (P)dV = JB33

are the same for A and for B provided that f (x, y, z) =34

f (−x, −y, −z).35

4. Centroid-based invariants36

In applications one usually determines the inertial properties37

with respect to the centroid of a body. The constructions of38

the previous section are not based on local coordinate frames39

with origin at the centroid of the shape in question. We now40

give equivalent constructions that use the centroid as the origin.41

The two variants will again be called A and B, but will have42

a different shape. Dropping the convexity requirement for the43

moment, we wish to prove the following:44

Proposition 2. There are noncongruent polyhedral solids A45

and B that have identical volume, surface area, moments46

and products of inertia with respect to any coordinate system47

through the centroid of the solids.48

Fig. 3. Core solid C for Proposition 2.

Fig. 4. Solids A and B for Proposition 2.

As before, we can strengthen the statement to achieve 49

equality of the integrals over the solids of point-symmetrical 50

integrands f . 51

We construct a base solid C that is the union of an hexagonal 52

prism and a triangular prism as shown in Fig. 3 (left). The base 53

hexagon is regular and the triangle equilateral. The centres of 54

the two prisms coincide (let us denote them by O), but the 55

triangle is rotated by a small angle, say two degrees, so the 56

sides s and s′ are not parallel. This reduces the symmetries of 57

the solid C . The triangular prism sticks out by the same amount 58

on both sides of the hexagonal prism. 59

To construct solid A, we affix to the three faces of the 60

hexagonal prism (with sides s, u and v) three pyramids such 61

that the base of each of them is the face of the prism; the 62

pyramids are congruent and their apices lie on lines through 63

the centroid of C perpendicular to the faces in question. The 64

resulting solid A thus has its centroid at the centroid of C . Let 65

us denote by P(A) “the total decoration”, i. e., the union of 66

the three pyramids. This is shown in Fig. 4 (left). For solid B 67

we attach the same pyramids, only at the three other faces, as 68

shown on the right of Fig. 4 (let us denote by P(B) the union 69

of these new pyramids). 70

Obviously, P(B) is point-symmetrical to P(A) with respect 71

to O . Note, however, that the two solids are not congruent since 72

the rotation of the triangular prism destroyed the rotational 73

symmetry of C under a 60◦ rotation. However, it is clear that the 74

two solids demonstrate Proposition 2, namely, that they agree as 75

to volume, surface area, and inertial properties with respect to 76

any coordinate system with origin at the centroid. As before, 77

the proof of the inertial invariants rests on the fact that P(B) is 78

point-symmetrical to P(A) with respect to O . 79

The construction of solids A and B involves “decorating” 80

three of the side faces with the same “feature”. The choice of a 81

pyramid is not essential. Other shapes could have been chosen, 82

Please cite this article in press as: Kuzminykh A, Hoffmann C. On validating STEP product data exchange. Computer-Aided Design (2007),
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Fig. 5. Core solid C used for Proposition 3. No hidden lines are shown.

Fig. 6. Face decorations used for Proposition 3.

but they should be such that the first “total decoration” is point-1

symmetrical to the second one with respect to O .2

We also note that it is possible to construct convex solids A3

and B that satisfy Proposition 2. To do so, we first convexify the4

solid C as shown in Fig. 5. Then, we add to each of the six faces5

a gadget as shown in Fig. 6. The gadget is constructed placing6

a short edge above the centre of each lateral face, in lieu of a7

pyramid vertex, giving it an alternating orientation. Then the8

convex hull defines the additions to the faces, as shown.9

The solids A and B differ only in the orientation decorations.10

Where the solid A has a gadget in orientation 1, solid B has it11

in orientation 2, and vice versa. Clearly, the two solids are not12

congruent, yet “the total decoration” of A is point-symmetrical13

to “the total decoration” of B with respect to the centroid and14

A and B agree in the common core C . Thus, we have proved15

Proposition 3. There are noncongruent, convex polyhedral16

solids A and B that have identical volume, surface area,17

moments and products of inertia with respect to any coordinate18

system with origin at the centroid of the two solids.19

Other classes of examples of noncongruent solids can be20

constructed that have various properties in common. Among21

them we can prove22

Proposition 4. There are polyhedral solids A and B with the23

following properties:24

1. the surfaces of A and B have different genus (in particular,25

A and B are not congruent);26

2. A and B have the same volume and surface area;27

3. A and B have the same moments and products of inertia with28

respect to any coordinate system with origin at their centroid29

O;30

4. for each continuous function f : R3
→ R such that f (P) =31

f (µ(P)) we have
∫

A f (P)dV =
∫

B f (P)dV .32

Note that moments and products of inertia are special cases33

of the integrals in property 4.34

Fig. 7. Base cross-sections construction for solids with identical inertial
properties but different genus.

Proof. Let us denote by H a regular hexagon, let O∗ be the 35

centroid of H . Let τ be a rotation of the plane of H around O∗
36

by the angle of 120◦. 37

It is easy to see that there is a (2-dimensional) polygon Q 38

which is the union of H and six small polygons (see Fig. 7) 39

such that 40

(1) τ(Q) = Q; 41

(2) there are two sets R1 and R2 such that 42

R1 is the union of three rectangles labelled “1”, and R2 43

is the union of three rectangles labelled “2”; 44

τ(R1) = R1 and τ(R2) = R2; 45

R1 is symmetric to R2 with respect to O∗; 46

Q ∪ R1 is topologically equivalent (homeomorphic) to 47

a disk with three “holes” but Q ∪ R2 is topologically 48

equivalent to a disk; 49

Q ∪ R1 and Q ∪ R2 have the same area and perimeter. 50

Let us denote by A (respectively, B) the prism of height 1 51

with the base Q ∪ R1 (respectively, Q ∪ R2) such that centroids 52

of A and B coincide. 53

It is easy to see that A and B have properties 1–4. � 54

5. Chirality 55

We now consider the question of distinguishing parts that 56

are mirror images of each other and yet have the same volume, 57

surface area, and products and moments of inertia. In other 58

words, what is the effect on these properties when the STEP 59

translator commits chirality errors. 60

Recall that two solids A and B are congruent if there 61

is an isometry F : R3
→ R3 such that F preserves the 62

orientation of the space and F(A) = B. If we do not require 63

that the isometry preserves orientation, then we call the solids 64

isometric. Formally, two solids A and B are isometric if there 65

is an isometry F : R3
→ R3 such that F(A) = B. 66

We note that in the formulations of our preceding 67

Propositions 1 through 4, we can replace “congruent” by 68

“isometric”. That is, the solids A and B in those propositions 69

are not only not congruent but even are not isometric. 70

So far our examples are constructed by choosing a suitable 71

base shape and adding features to it in a particular way. 72

These added features have been placed point-symmetrically 73

with respect to a chosen centre, for example, the centroid 74

of the base shape. Now we consider objects that are

Please cite this article in press as: Kuzminykh A, Hoffmann C. On validating STEP product data exchange. Computer-Aided Design (2007),
doi:10.1016/j.cad.2007.09.004



U
N

C
O

R
R

EC
TE

D
PR

O
O

F

JCAD: 1351

ARTICLE  IN  PRESS
A. Kuzminykh, C. Hoffmann / Computer-Aided Design xx (xxxx) xxx–xxx 5

mirror-symmetrical, that is, solids A and B such that B = π(A)1

where π is a reflection with respect to a plane. We show that2

there are objects congruent to them that have equal inertial and3

volumetric properties as well.4

Proposition 5. Let A and B be two solids such that B is5

symmetrical to A with respect to a plane. Then there is a solid6

C such that:7

(1) C is congruent to B;8

(2) the centroid of A coincides with the centroid of C— call it9

O;10

(3) for any straight line L through O the moments of inertia of11

A and C about L are equal;12

(4) for any coordinate system with origin O and for any13

coordinate axis l of it, the products of inertia of A and C14

with respect to l are equal.15

Proof. Let O be the centroid of the solid A. Let the coordinate16

system have origin O . Let π : R3
→ R3 be a reflection with re-17

spect to a plane such that B = π(A). Put C := hz ◦ hy ◦ hx (A).18

Hence, C = hz ◦ hy ◦ hx ◦ π−1(B). Since hz ◦ hy ◦ hx ◦ π−1 is19

an isometry of R3 which does not change the orientation of the20

space, C is congruent to B. But hz ◦hy ◦hx is a point-symmetry21

with respect to O . Thus, C is point-symmetrical to A with22

respect to O . Hence, like earlier, (3) and (4) are true. �23

The obvious corollary is that two noncongruent tetrahedra24

that are mirror images of each other satisfy the proposition.25

They constitute the simplest example we can find of two26

noncongruent shapes with identical volume, surface area and27

inertial properties.28

Let us call a solid S unidentifiable if there is a solid S∗ such29

that:30

(1) the solid S∗ is not congruent to S;31

(2) the solids S and S∗ have identical volume;32

(3) the solids S and S∗ have identical surface area;33

(4) the centroid of S∗ coincides with the centroid of S — call it34

O;35

(5) for any straight line L through O the moments of inertia of36

S and S∗ about L are equal;37

(6) for any coordinate system with origin O and for any38

coordinate axis l of it, the products of inertia of S and S∗
39

with respect to l are equal.40

So, Proposition 5 states that, if A is a solid such that41

its mirror image is not congruent to A, then the solid A42

is unidentifiable. In other words, if the translation algorithm43

constructs a solid that is a mirror image of the original solid,44

then checking surface area, volume and moments and products45

of inertia with respect to the centroid is not going to reveal this46

fact. Thus, left-handed and right-handed bolts, screws and nuts47

could not be distinguished.48

6. Discussion49

The STEP standards use agreement of volume and surface50

area as evidence that the translation of a solid of CAD system 151

into a congruent solid of CAD system 2 has a high likelihood of52

being correct. More sophisticated invariants, such as moments 53

and products of inertia, can be added, since it is intuitively 54

clear that equal volume and surface area are necessary but 55

not sufficient. It should be no surprise that using these 56

additional invariants is also merely a necessary condition, not 57

a sufficient one, but the simplicity of our examples does raise 58

eyebrows. 59

The particular constructions of our examples of noncongru- 60

ent solids with identical invariants of volume, surface area and 61

inertial properties, point to a difficulty that is bound to become 62

more prominent once CAD system history and constraint struc- 63

ture is exchanged along with the geometry. It is known that geo- 64

metrical constraint systems have multiple solutions [4], and that 65

the selection of the particular solution to be used is a highly pro- 66

prietary and individual strategy of the solver algorithm. So, it is 67

rather possible, if not likely, that CAD system 2, reconstructing 68

a solid imported from CAD system 1, may choose a different 69

solution. In that situation is a distinct possibility that a feature, 70

such as the pyramid we added to solid C in our constructions 71

is instantiated at a different location. In such cases, especially 72

for mix-ups in highly symmetrical parts, grossly noncongruent 73

shapes with equal invariants would be constructed. Thus, there 74

are entire classes of practical, common mechanical parts that 75

have shape variants that are not congruent yet have the same 76

volume, surface area and inertial properties. See also [5] for the 77

related problem of persistent naming. 78

A particular class of noncongruent shapes are ones in which 79

the two parts with equal invariants are such that one of them is 80

simply (congruent to) a mirror image of the other. For instance, 81

left-handed and right-handed screws have equal invariants, with 82

bad consequences. 83

More can be said about the reliance on the numerical 84

invariants. Since the quantities of volume, surface area, 85

etc. are computed numerically, establishing confidence in 86

the translation will be based on a tolerance within which 87

corresponding invariants are equal to each other. Similarly, a 88

solid S′ is an ε-approximation of a solid S if for every point P ′
89

of S′ there is a point P of S that is closer to P ′ than ε, and, 90

conversely, for every point P of S there is a point P ′ of S′ that 91

is closer to P than ε. We state the following without proof: 92

Corollary 2. For each polyhedral solid S (not necessarily 93

convex) and for each real number ε > 0, there is a polyhedral 94

solid Sε such that 95

(1) the solid Sε is an ε-approximation of S; and 96

(2) the solid Sε is unidentifiable. 97

This adds further uncertainty to the use of numerical 98

invariants for judging whether the translation proceeded 99

flawlessly. These traditional invariants are rather limited. 100

We noted in the introduction a connection between 101

the question of relying on quantitative shape invariants as 102

correctness indication of a shape translation between two 103

systems, and the problem of shape semantics. Consider the 104

following. The translation of solid A in one CAD system to 105

a solid B in a different CAD system makes only sense if 106

we have a way of establishing a mathematical entity that is 107

Please cite this article in press as: Kuzminykh A, Hoffmann C. On validating STEP product data exchange. Computer-Aided Design (2007),
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sufficiently well approximated by each of the two computer1

representations A and B. In seminal papers such as [6–8]2

that question is examined with a topological perspective in3

mind. To bring topology into the picture is a good idea: It is4

possible to approximate an intersection curve of two surfaces,5

for instance, and get good geometrical approximation but fail in6

a topological sense. Namely, the approximation may be a knot7

while the original curve is not [7,9].8

Computing mass and inertia properties involves algorithms9

that sample the solid. That suggests using point sampling10

directly to gain confidence in the translation process. This11

approach would not guarantee uncovering small surface cracks,12

for instance, but does look promising to us, especially when13

combined with topological methods.14
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