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Abstract

Modeling of products (objects) form a critical task in design and manufacturing. CAD–CAM techniques based on solid/geometric
modeling have been developed for this purpose. Primarily, these methods capture the shape of the object. However, recent developments
in diverse fields demand modeling schemes, which extend beyond the shape to include other relevant attributes of the object. In this paper,
this issue is addressed and a new modeling framework is proposed. This framework enables the modeling of geometry and several attributes
simultaneously in an integrated fashion.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Solid modeling has been an application driven field with
new developments stemming from the needs dictated by
evolving applications [1–3]. Solid modeling has focused
mainly on modeling objects to capture their shape or geome-
try (inclusive of related topological aspects) [4,5]. Solid
modeling has been extensively used in mechanical design,
analysis and manufacturing where the geometric informa-
tion present in the solid models is utilized and processed for
various purposes. That is, the geometric model of the net
shape is used to compute material characteristics and perfor-
mance parameters, possibly after converting to a mesh
representation. This computation assumes homogeneous
material distribution throughout the interior of the solid.
Other uses of the geometry include annotations with attri-
butes of selected areas of the net shape surface, for example
with surface finish, etc. Thus, in traditional CAD models of
products, surface characteristics may vary over a part’s
surface, but the volumetric characteristics are considered
constant throughout the interior.

With the advent of new manufacturing technologies and
applications, there is a need to represent parts with inhomo-
geneous interior material distributions. Material distribution

becomes one of a number of attributes, associated with the
volumetric domain defined by the net shape [1]. One such
recent advent is the design and fabrication of heterogeneous
objects, for example with solid free form fabrication
machinery.

Heterogeneous objects are objects composed of different
constituent materials and could exhibit continuously vary-
ing composition and/or microstructure thus producing
gradation in their properties [6–11]. There exist structural
and material design methods which are capable of deriving
optimal designs (geometry, topology and material) for
mechanical/structural components that are made of hetero-
geneous materials [12–16]. The host of manufacturing
processes that can fabricate such 3D heterogeneous objects
is termed Solid Freeform Fabrication (SFF) or Layered
Manufacturing (LM). This fabrication technique involves
deposition of material to create an object unlike conven-
tional methods where material is removed to obtain the
final object [17–20]. The deposition of material can be
explicitly controlled thereby providing unique opportunities
to selectively deposit material. In other words, the material
deposited can be varied continuously to yield a heteroge-
neous object with varying material distribution [21–25,44].

For the purpose of design, analysis and manufacture of
heterogeneous objects, a CAD model of the object is
required which has not only the geometry information but
also the information on material, property, etc. at each point
of the object [8,26,27]. Below, we present an example to
illustrate the need imposed by heterogeneous objects.
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1.1. Motivating example from aerospace design

Many structural elements used in aerospace applications
(such as turbine blades, vanes, outer plane body, etc.) are
subject to severe thermomechanical loading giving rise to
intense thermal stresses. Ideally the materials used must
possess the following properties—heat resistance and
anti-oxidation properties on the high temperature side,
mechanical toughness and strength on the low temperature
side, and effective thermal stress relaxation throughout the
material [6]. Initial designs of these elements used metals on
the low temperature side and ceramics on the high tempera-
ture side. However, the property difference between the two
materials generated high stress concentrations at the inter-
faces resulting in cracks, plastic deformations and interfa-
cial decohesion. Recently, this problem was solved by using
a mixture of metal and ceramic with varying proportions
(heterogeneous or graded materials). An example of a
turbine blade design using such a mixture is shown in Fig.
1. The sharp interface between the metal and ceramic is
eliminated by using a graded zone of metal/ceramic,

denoted as FGM (functionally graded material) in Fig. 1.
In such a structure, the properties can be adjusted by
controlling the composition, microstructure and porosity
ratios from metal to ceramic. The graphs in the figure
show typical variation in properties due to the variation in
material composition at the FGM region.

A complete representation of the above turbine blade (and
similar such designs) must include not only the geometry of
various regions (metal, ceramic, bond coat and graded
zones) but also the material information for each region.
Specifically, the material variation for the graded zones
must be captured which is essential for the fabrication of
these designs. Also, it is necessary to represent the variation
in properties (strength, conductivity, etc.) for analysis
purposes.

1.2. Extending beyond geometry representation

Recent developments in diverse fields such as mechanical
design, aerospace, etc. (as the above example illustrates)
generate objects that have attributes which vary throughout
the interior of the geometric shape—attributes such as
material density, varying proportions of mixed materials,
etc. Current CAD and solid models cannot represent such
attribute information. Hence, new representation schemata
should be explored in which the volume of a shape becomes
the domain of attribute functions, and for which, at every
interior point of a solid, we can determine in principle the
value of each attribute under consideration. The availability
of such modeling techniques is bound to assume an increas-
ingly prominent role in the design, analysis and fabrication
of technologically advanced artifacts.

In our earlier work [8,28], the rigorous inclusion of mate-
rial composition along with geometry was considered. The
term “heterogeneous solid model” was used to refer to
models possessing both geometry and material composition
information. Heterogeneous models are sufficient for the
purpose of design and manufacture of heterogeneous
objects. However, to explicitly capture property variation,
the heterogeneous solid models must be generalized to store
several attributes simultaneously, material variation being
one such attribute. Such a generic model is termed as an
“object model”.
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Fig. 1. Use of graded materials in turbine blades.

Table 1
Evolution of modeling strategies for objects

Year Motivating applications Object attributes Computer representation

1950s Computer graphics and
NC machining

Geometry Electronic drafting and
wireframe

1960s Polygonal and surface models
1970s and 1980s CAD/CAM Geometry and topology Solid Models
1990s Heterogeneous objects Geometry, topology and

material
Heterogeneous solid models

Future Heterogeneous objects
and physical modeling

Geometry, topology,
material, physical,
attributes etc.

Object models



The need for an object model also arises from another
application—physical modeling. Physical modeling aims to
establish a formal link between several activities related to
engineering design and analysis. The goal is to provide
uniform and rigorous computational models, which expli-
citly link form to function. One of the key ingredients to
achieve this goal is an object model which captures all
information related to an object in a mathematically rigor-
ous fashion. Earlier work in this regard is presented in Ref.
[29,30].

In this paper, the aim is to develop the object models.
Table 1 shows the historical perspective and evolution of
various models of object over time.

1.3. Prior models in the literature

Solid modeling focuses on creating a valid representation
of the geometry of an object. Several mathematical models
have been proposed in the solid modeling literature for this
purpose. These models are bounded manifold solids,r-sets,
s-sets, non-manifold solids (non-homogeneous pointsets),
CNRG and SGC. A comprehensive survey is presented in
Ref. [31].

Manifold solid [2,4]: A manifold solid is a finite collec-
tion of disjoint compact connected 3-manifolds embedded
in E3 such that the boundary of each 3-manifold is a
compact, oriented 2-manifold without boundary, embedded
in E3 with bounded variation. Also, for every 3-manifold,
the connected components of its boundary are pair-wise
consistently oriented (i.e. pointing to the interior of the 3-
manifold consistently). Regularized operations can be used
to manipulate manifold solids. However, they are not closed
under these operations.

R-set[5]: An r-set is defined as a compact, regular, semi-
analytic subset ofE3. An r-set can be disconnected and
hence, an object with many components (components are
connected sets) can be modeled with a singler-set. Regu-
larized boolean operations are used which regularize the
resulting pointset to obtain valid solids. Anr-set can also
be obtained from manifold solids by relaxing the condition
of 3-manifolds being disjoint and allowing their boundaries
to intersect with dimension 0 or 1 [2]. It can be seen that
manifold solids form a subset ofr-sets.

S-set[32]: An s-set is defined as a bounded open subset of
E3 whose boundary is a patchwise smooth surface (smooth-
ness being defined by homeomorphisms, a weaker condition
than analyticity used forr-sets). The modeling scheme
based ons-sets was called Realizable Shape Calculus and
operations were defined to manipulate theses-sets.S-sets
are more suitable for modeling assemblies when compared
to r-sets and can potentially model more variety of objects
thanr-sets.

Selective geometric complex (SGC)[33]: SGC is a non-
regularized non-homogeneous pointset represented through
enumeration as union of mutually disjoint connected open
cells. The cells are dimensionally homogeneous and

singularity-free manifolds of algebraic varieties. SGC
includes pointsets with internal geometric structures and
incomplete boundaries to extend traditional coverage of
solid modeling. Appropriate operations (sub-division, selec-
tion and simplification) are used to manipulate the cells.

Non-manifold solid[34]: A non-manifold solid is an
extension of manifold solids to allow non-manifold entities
that includes dimensionally non-homogeneous pointsets.
The non-manifold boundaries defined are quasi-disjoint
enumerations of compact pointsets of dimension one and
two. The radial data structure was developed to allow the
representation of these solids.

Constructive non-regularized geometry (CNRG)[35]: A
collection of non-regularized regions that need not be
connected, bounded, nor dimensionally homogeneous are
constructed through set-theoretic and topological operators
from primitive regions. A generative approach is followed
similar to CSG (Constructive Solid Geometry), but can
represent assemblies and solids with internal structures.

Manifold solids and r-sets do not capture internal
(geometrical) structures such as cracks or separations
while the other models do.S-sets can capture these struc-
tures, however, these information are lost when boolean or
set-theoretic operations are performed on them. Non-mani-
fold solids, SGC and CNRG can capture these internal struc-
tures and operations defined on them can be used to create
and manipulate them. Manifolds solids,r-sets ands-sets
enforce dimensional homogeneity whereas the more general
models of non-manifold solids, SGC and CNRG allow
lower dimensional entities as well as non-manifold neigh-
borhoods. This enables them to capture internal structures as
well as assemblies.

It must be noted that all these models, in varying degree
of generality, represent only geometric structures, i.e.
geometric entities of various topological nature and
complexity are modeled. Thus, any sort of purely geometric
information corresponding to physical situations can be
represented by these models. The examples include cracks,
internal boundaries, separations, etc. that exist in a solid.
However, the domain of representation still remains
geometric. Our emphasis in this paper is to go beyond geo-
metry to include other information which are not geometric
but can be represented with geometry as the basis. Such
information include attributes like material, microstructure,
properties, etc. These models are not capable of modeling
these attributes of the object, as discussed in the previous
example. However, these models do provide the basis for
such a generalization into representation of multiple attri-
butes of solids. Previous work in this direction are described
below:

Heterogeneous solid model[8,28]: In our earlier work,
heterogeneous solid modeling system was developed to
incorporate material composition along with the geometry.
A heterogeneous solid model (rm-object) is developed as a
finite collection of material domains with each domain
being discrete or mixed/graded. A discrete material domain
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is made of only one material, which could also be an
embedded component. In a mixed material domain, each
point in the object is made up of many materials and
could possibly contain voids. Each material domain (rm-
set) is modeled as anr-set and a material distribution func-
tion is attached to it that specifies how the material compo-
sition varies in the particularr-set. Mathematically stating:

S� { �Pj ;Fj�} ; j � 1…k �finite� �1�
where

Fj � { vj�x [ Pj� ; �vj
1�x�;…; vj

n�x��}
Here,Sdenotes the heterogeneous model,Pj denotes anr-

set which models the geometry of thej-th material domain
and Fj denotes the material distribution function in that
domain.Fj contains component functionsvj

i�x�which denote
the variation of volume fraction of a particular material
(tagged with indexi) in that material domainPj. Hence,
the term “material domain” refers to a region of the object
whose material could be discrete (constant), mixed (graded
or varying) or an embedded component. This model
contains both external and internal surfaces, external
surfaces bounding the entire object and internal surfaces
separating different material domains.

Chain model[29,36]: Chain model was proposed for
physical modeling and is composed of cell complexes and
algebraic chains defined over them. An object is defined as a
set of physical quantities that is distributed over space and
time. The cell complex models the geometry of the object as
collection of cells (spatial decomposition) which are finite
and oriented. The chains are used to associate physical
quantities to each cell in the complex through functions.
Chains are essentially mappings from the cells of the
complex to a vector space, elements of which are used to
represent physical quantities.

Hermite hyperpatch[37]: The use of hyperpatches based
on multivariate Hermite interpolation for shape and physical

properties is explored. In this approach, the shape and the
physical data is modeled simultaneously with the same para-
metric variables.

FR-set[30]: FR-sets were proposed to provide a mechan-
ism to attach physical attributes tor-sets. The FR-sets aim to
provide the required physical information during analysis.
FR-sets are based on the concept of fiber bundles. The shape
of the object is defined byr-sets and physical attributes are
attached as fibers. Refer texts on differential geometry for
details on fiber bundles [38,39]. Our work follows a similar
approach in exploiting the fiber bundle framework.

All these models aim to include additional information
along with the geometry. Heterogeneous solid model
provides the facility to have continuous material functions
attached to geometry. Chain models use a combinatorial
approach and provide a more general capability than the
heterogeneous solid models by allowing attachment of
multiple attributes. The use of hermite hyperpatches
restricts the type of geometry that can be represented.
Also, simultaneous representation of geometry and attri-
butes using the same parametric variables is not always
feasible. FR sets use a differential geometric approach to
model several attributes along with geometry. It must be
mentioned that SGC also has the provision of attaching
discrete values to each cell, but is not fully explored in
the context of physical modeling.

The aim of this work is to model geometry along with the
continuous variations of physical quantities. The object
model proposed shares the same aim as chain models and
FR sets (for object representation) and uses the well-estab-
lished concepts of differential geometry.

1.4. Outline

In this paper, a new modeling strategy (object model) is
based on the concepts of product manifolds and trivial fiber
bundles. This model is generic enough to represent varying
attributes of an object in a rigorous and integrated way. As
mentioned earlier, the use of fiber bundles was also explored
in Ref. [30].

2. Attributes of an object

As mentioned, a complete description of an object must
include all the characteristics and attributes of an object.
Below, a list of attributes is presented (Table 2):

• Geometry (Shape):Capturing shape information of an
object is addressed in solid/geometric modeling and
involves modeling and representing the geometry along
with the required topological information of an object.

• Material: The most general type of objects are hetero-
geneous objects which possess varying material compo-
sition and microstructure.

• Properties: Though the material properties of an
object can be estimated from the material composition
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Table 2
Classification of various attributes of an object

Attribute Specifications

Geometry Geometry (and related topology)
Composition

Material Microstructure Inclusions: Shape parameters
Voids
Orientation/Spin
Phase transition
Crystal structure
Dislocations
Density

Property Moduli (elastic, bulk, shear, etc.)
Thermal expansion coefficient
Thermal conductivity

Physical parameters Temperature
Velocity
Stress



and microstructure, it might be useful to explicitly eval-
uate and store them. This is required for performing any
analysis of the object such as in FEM, etc.

• Physical parameters:These parameters associated
with an object are specified based on the physical
process which the object undergoes. Examples of
such parameters are temperature, velocity, stress,
strain, etc.

2.1. Geometry as a base attribute

Geometry of an object is the most fundamental attribute
used in any description of object. Each point in the object is
represented by a unique geometrical point in the euclidean
spaceE3 (one-to-one mapping). All other attributes are typi-
cally described as a function of geometry, expressed in
terms of spatial variables. Also, any physical process or
phenomena modeled through partial differential equations
uses geometry (spatial variables) for their description.
Hence, “geometry” of the object is termed as the “base
attribute” and this distinction proves to be useful in defining
the mathematical model of an object.

3. Mathematical model for an object

In this section, a new mathematical model is introduced
to model multiple attributes of an object. The inclusion of
other attributes can be achieved by constructing a separate

model for each attribute. An object model is defined as a
composite of its attribute models:

M �MG ^ MA1
^ MA2

^ … ^ MAn
�2�

Here,M denotes a model with the subscripts denoting the
attributes. G represents the geometry (inclusive of topology)
andA1;…An represent the other attributes. The symbol^

indicates that the object model is a composite (collection) of
individual attribute models, the precise form of this operator
is discussed later. Geometry being the base attribute is used
as a model parameter for all other attribute models. Hence,
the object model can be stated as:

M �MG ^ MA1
�MG� ^ MA2

�MG� ^ … ^ MAn
�MG�

�3�
The above equation gives a general form of an object

model. It is obvious that the geometry modelMG has to
be generated first. First, we describe the mathematical
model used to describe the geometry.

3.1. Geometry model

The geometry model of an object is defined asMG �
�P; { Ci} � where:

• P , E3 is anr-set.
• { Ci} is a finite set of disjoint decompositions ofP i.e.

eachCi partitionsP into a finite set of closed 3-cells,
which are mutually interior disjoint. Thus, eachCi can
be considered as a geometric cell complex (as in Ref.
[38]) where eachn-cell �n # 3� in Ci is a compact
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Fig. 2. Geometry model—r-set and its decompositions (atlases).



connectedn-manifold. The boundary of eachn-cell is a
finite union of �n 2 1� cells. Each 3-cellUa in Ci

possesses a local coordinate system, which is related to
the global coordinate system through theC∞ compatible
coordinate mapca. All the coordinate systems are
assumed to beC∞ compatible (non-vanishing Jacobian)
and consistently oriented. For each local coordinate
systemca in eachCi, the appropriate metric tensor [g]
is generated. Each 3-cell and its coordinate map (Ua,ca)
is called a chart and the collection of these charts (i.e. the
entire decomposition) is called an atlas.

An example is shown in Fig. 2. The overall geometry is
defined by ther-setP. This model has three decompositions,
C1, C2, andC3, with C2, being a finer decomposition ofC1.
The local charts ((U1,c1) to (U6,c6)) are illustrated forC1 in
the figure. Similar charts (not shown) exist for the atlasesC2

andC3. Several atlases (decompositions) {Ci} are defined in
the geometry model to help in modeling the attributes.
However, these decompositions are specified only when
required and is not essential for the initial definition of the
geometry (r-set)P. The geometry model could possess only
the r-setP with no decompositions. Depending on the attri-
butes to be modeled, new decomposition(s) can be gener-
ated and added to the geometry model. Each attribute is
defined on one of the decompositions as described later.
The identification of appropriate decompositions ofP for
the purpose of defining and evaluating attributes efficiently
is a continuing issue for research.

For each chart in a decomposition the local coordinate
system can be defined in three possible ways. First, the local
system is same as the global coordinate system. Second, the
local system is intrinsically defined from the geometry of

the region (like using spherical coordinates for the local
spherical region). Thus, any CSG primitive can be given a
local chart when the geometry is created. Also, any primi-
tive generated as a parametric solid has a chart defined in the
parametric space. Third, the local coordinate system is
imposed on the geometry derived from physical constraints
depending on the applications, and is not intrinsic to the
geometry.

As all charts are required to beC∞-related to the global
system, all the atlases areC∞-compatible with each other. In
fact, all the atlases {Ci} can be combined to a single atlas
and would belong to the complete atlas for ther-set.
However, the explicit separation facilitates the definition
of models for different attributes. Each attribute has to be
defined only on a finite set of charts which cover ther-setP.
These charts are explicitly put together as a separate atlas.
The condition that the 3-cells in an atlas must be mutually
interior disjoint is imposed intentionally and can be relaxed
if required.

3.2. Attribute model

The generic model for the attributeA is a manifoldN,
which could be a vector or a tensor space. Additional prop-
erties on the model have to be imposed depending on the
attribute that is being modeled.

Each point in the object, modeled geometrically as a point
x in the r-set P, is mapped to its corresponding attribute
value in N through the attribute functionF � { Fa} : This
attribute functionF is defined on a particular atlasCj in
the geometry model:

Fa : �Ua [ Cj� ! �Vg # N� �4�
One particular atlasCj in the geometry model is asso-

ciated with the attributeA in order to define the correspon-
dence between the geometry model and the attribute model.
In general,F is a collection of functionsFa which are
required to beCk

; k . 0: The exact continuity class as
well as other constraints on these functions can be dictated
by the attribute that is being modeled.

A few points that must be noted are:

• The function F need to be surjective, i.e.F�P� �
<{ Fa�Ua�} � <{ Vg} # N:

• Each attribute model is associated with only one atlas in
the geometry model. This atlas is used to define the attri-
bute corresponding to the geometry.

• More than one attribute can use the same atlas in the
geometry model.

• The atlases defined in the geometry model must be suit-
able to define the attribute functionsF�P�: If no such atlas
exist, a new atlas has to be created.

Thus, the attribute model is defined asMA � �N;F�
where F � { Fa} relates the geometryP to the attribute
manifold N through the atlasCj. The image ofF in N (i.e.
<{ Vg} � is implicitly defined.
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Fig. 3. Object model as a topological product, a trivial fiber bundle.



3.3. Object model

An object with a single attribute is modeled as a product
setS� P × N whereP is ther-set describing the geometry
and N is the manifold describing that particular attribute.
The operator̂ (Eq. 3) is precisely defined as a topological
product. The functionF � { Fa} is specified which maps the
geometryP to the attributeN. Refer Fig. 3.

The above model can be treated as a trivial fiber bundle
whereS is the total space (product set),P is the base space
(r-set) andN is the fiber space (attribute manifold). Refer
Appendix A for a detailed mathematical definition of fiber
bundles. If the fiber spaceN is a vector (tensor) space, the
bundle becomes a vector (tensor) bundle. The bundle is
trivial if it can be expressed as a global product. Then,
both the projectionsPG and PA are defined everywhere.
However, for true fiber bundles (non-trivial), onlyPG is
defined everywhere, andPA is defined only locally with
respect to geometric base variables. The charts on the
base spaceP and the attribute functions define the charts
on the total spaceS. The use of fiber bundle concept withr-
sets, termed FR-sets, was also proposed in Ref. [30].

For an object havingn attributes, the product setS
(equivalent to (Eq. 3)) would be:

S� P × �
Yn

i�1

Ni� �5�

whereP is the r-set model describing geometry and each
Ni is a manifold describing the attributeAi. It is possible
that the attribute modelNi for each attributeAi could be a
finite collection of disjoint manifolds. The mathematical
space in which the object modelS is represented can be
given as:

T � E3 × �
Yn

i�1

Rmi � �6�

The set of mappingsFi � { Fa} is defined for each attri-
buteAi which maps ther-setP to the attribute manifoldNi

using one particular atlasCj:

Fi : P! Ni ; using some atlasCj �7�
The projection functions forSare defined as:

PG : S! P �8�

Pi : S! Ni

The geometry projectionPG is a continuous surjective
while the other projectionsP i need not be. Thus, in the
object model, the geometry model has a special significance
as the base model for other attribute models. This can math-
ematically specified by letting the productS (Eq. 5) to be a
trivial fiber bundle where the geometryP is the base and all
other attribute manifolds are attached to the base as fiber
spaces.

To summarize, the object model (Refer Fig. 4) is defined
as a trivial fiber bundleM � { S;P; { Cj} ; { �Ni ;Fi�}} where:

• Object S is a product space (called the total space) as
defined in (Eq. (5)).

• Geometry is defined byr-setP and its atlases {Cj} (base
model).

• Each Ni describes the attributeAi (fiber manifolds
attached to baseP). The attributes are rigorously attached
to geometry (section of the bundle) using the functionsFi

using one particular atlasCj defined onP.
• The projections are defined in (Eq. (8)).

Note that the explicit modeling of the attribute manifolds
Ni is not necessary if the attribute functionsFi are defined
properly and yield valid attribute values.

3.4. Object model as a generalization of heterogeneous
solid model

Heterogeneous solid models (rm-objects) were proposed
in Ref. [8] for representing material variation. These models
can be viewed as a special case of an object model (fiber
bundle model) with single attribute. Inrm-objects, the
geometry model consists of a collection ofr-sets which is
equivalent to one particular atlas in the object model. Hence,
the space of volume fractionsV (defined in Table 4) which
represent the material composition is the attribute manifold
N and the material functions correspond to the attribute
functions which map the geometry to the attribute manifold
V.

4. Example

In Section 1.1, it was mentioned that the variation in
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Fig. 4. Schematic of the object model.



material composition of heterogeneous objects results in
variation of material properties, illustrated with an example
of turbine blade design. Here, a sample heterogeneous
object with a rectangular geometry is used to explain the
concept of object model for modeling property variation.
Refer Fig. 5. The geometry of the object is modeled by an
r-setP. Three decompositions are used for this model. As
mentioned earlier, identification of appropriate decomposi-
tions of an irregular/complex geometry for defining and
evaluating attribute functions is a topic of ongoing research.
In the example considered in Fig. 5, the decompositionC1 is
used for describing the material composition. The decom-
position C2 describes the microstructural regions in the

object. DecompositionC3 is an intersection ofC1 and C2

and is used for the purpose of defining the material proper-
ties. Each decomposition has a set of 2-cellsUij and the
corresponding local coordinate systemsLij (G represents
the global coordinate system). For the sake of simplicity,
all Uij shown in Fig. 5 are defined in the global systemG.

For the purpose of evaluating the properties, it is assumed
that the heterogeneous object is made of carbon and silicon
carbide—a C/SiC system. The material composition of
these materials is defined on the decompositionC1 where
v1 andv2 are the volume fractions of C and SiC (see Fig. 6).
The volume fractions are defined for each of the three
regions (U11, U12, U13) by the functionsF11, F12, F13.
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Fig. 5. Object and its geometry model.

Table 3
Various models used for evaluation of bulk and shear moduli

Volume fraction range v1:0.0–0.16 v2:1.0–0.84 v1:0.16–0.85 v2:0.84–0.15 v1:0.85–1.0 v2:0.15–0.0
Geometry range (range of x) 0.0–0.4 0.4–0.5 0.5–0.6 0.6–0.9 0.9–1.0
Model 1 Dilute estimates Wakashima–Tsukamoto method (or, Mori–

Tanaka method) with averaging
Dilute estimates

Model 2 Wakashima–Tsukamoto Method (or, Mori–Tanaka Method) combined with fuzzy techniques
Model 3 Self consistent method



In addition to material composition, we also require infor-
mation about microstructure in order to evaluate accurately
material properties. Modeling of microstructure is a compli-
cated problem and is not fully solved. Methods based on
stereology, fractals, percolation theory, topology etc. are
being explored to characterize the microstructure [9,24].
For our example, a simple microstructure is assumed
where one material is embedded in the other as spherical
particulates. Three microstructure domains are defined for
the sample using the decompositionC2–U21 is a dispersed
microstructure where the sphericalC particles are included
in continuous SiC matrix,U22 is a network structure with
both C and SiC exist as an interconnected phase and,U23 is a
dispersed microstructure with SiC particles included in C
matrix. In a dispersive structure, the volume fraction of the
dispersed material in the continuous matrix is typically less
than 0.2. A limit of 0.16 is used for this example, i.e. inU21

andU23 the volume fraction of the dispersed material (C in
SiC and SiC in C, respectively) is less than 0.16. A simpli-
fied model is used for modeling the microstructure by repre-
senting its type (dispersed as type 1 and network as type 2)
using the functionsF21, F22, F23. Additional information
such as the size distribution of the spherical inclusions can
be added to this model, if needed.

Several models exist to estimate the bulk modulus and
shear modulus based on material composition [9,27,40].
Here, three models are considered as shown in Table 3.
The appropriate methods used for various volume fraction
ranges and their corresponding geometry range is shown.

Model 1 uses the method of dilute estimates for the

dispersed microstructure i.e. in the regionsU21 and U23

where the volume fraction of one material (either C or
SiC) is less than 0.16. In the middle zoneU22, Model 1
uses Wakashima–Tsukamoto Method with averaging
which yields identical results as Mori–Tanaka Method in
this case. Model 2 uses Wakashima–Tsukamoto Method
entirely with a combination of fuzzy techniques. Model 3
uses the Self Consistent Method for the entire region.
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Fig. 6. Models for material composition and microstructural type.

Table 4
Various attributes of an object and their nodes

Attribute Manifold

Material composition V , RN
;V � { v [ Rn

=ivi1 �
1; vi $ 0}

Inclusions: shape parameters M (could beRm)
Voids �0; v� , R; v , 1
Planar spin S1

Orientation/spin S2 (unit vectors)
Liquid crystals P2, projective plane
Cosserat medium Orth1(3)

Vector microstructure T, translational space ofE3

Crystal orientation Orth1(3)/G (crystal symmetry)
Density R
Moduli Cijkl, 4th order tensor inE3

Thermal expansion
coefficient (similar
coefficients)

R

Thermal conductivity R
Temperature R
Velocity R3

Stress Sym, GL�3;R�



These three models were computed precisely. The actual
equations are described in Ref. [27] and are not shown here.
The results of these computations for the three models are
plotted in Fig. 7. The variations of bulk and shear moduli as
derived from the three models are shown. The decomposi-
tion C3 is used to represent the Models 1 and 2, and decom-
position C1 is used to represent Model 3. Usually, it is
preferable to have continuous property variation if the mate-
rial composition variation is continuous. Model 1 yields
discontinuous results. Model 2 is continuous but is notC1

continuous. HenceC3 is used to represent these two models.
Model 3 is generated as an interpolated polynomial func-

tion, which is continuous over the entire region and is repre-
sented usingC1.

Finally, the object representation for this heterogeneous
example is a trivial fiber bundle, which is generated as a
product of the geometry and attribute models. As shown in
Fig. 5, three decompositions,C1, C2 andC3 were defined for
the geometryP. The first attributeA1 is the material compo-
sition, whose attribute manifold is defined as the space of
volume fractionsV , R2

: The volume fractions are defined
by functionF1 on the decompositionC1 as shown in Fig. 6.
The second attributeA2 is the microstructure type which is
described as an integer and hence, the attribute manifold is
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the set of integersZ. The type is defined usingF2 on the
decompositionC2 (Fig. 6). The third and fourth attributesA3
andA4 are the bulk and shear moduli. The attribute mani-
fold for both is the real spaceR. These attributes are defined
by the functionsK and m and the decomposition used
depends on the property model used. Three possibilities
were illustrated in Fig. 7, one of which can be selected.
The entire object is now modeled as a product setS, a
product of geometry and attribute sets. The object model
M for this example is summarized as:

MG � �P; { C1;C2;C3} �

MA1 � �V;F1�C1��; V � { �v1; v2� [ R2uv1 1 v2 � 1}

MA2 � �Z;F2�C2��

MA3 � �R;K�Ci��; i � 1 or 3

MA4 � �R;m�Ci��; i � 1 or 3

S� P × V × Z × R × R

M � { S;MG;MA1;MA2;MA3;MA4} �9�
The above model describes the geometry of the hetero-

geneous object as well as its attributes (material composi-
tion, microstructural type, bulk and shear moduli) as a
function of geometry.

In this example, though the decompositionC1 was suffi-
cient for specifying the material composition, another
decompositionC2 was required due to the presence of differ-
ent microstructure regimes (based on volume fraction
ranges). Note thatC1 andC2 are two different subdivisions
of geometry. Property variations in the geometry depend on
both the material composition and the microstructural type.
Hence, a new decompositionC3 (combination ofC1 andC2)
was required to specify the physical properties (using
Models 1 and 2).

As mentioned in the introduction, layered manufacturing
(LM) processes have shown potential to fabricate heteroge-
neous objects. The LM processes demand a decomposition
of the geometry dictated by manufacturability constraints.
Specifically, the process planning of heterogeneous objects
for LM require the geometry to be broken into “compacts”
[41,42]. SFF-Compacts are proposed in Ref. [41] which are
compacts with necessary process planning information
attached to it. The collection of SFF-Compacts is termed
as SFF-Object. The SFF-Object is equivalent to one parti-
cular decomposition of the geometry and each SFF-
Compact is equivalent to a 3-cell in that decomposition.
The attributes that are attached to the geometry are process
planning information such as build direction, build
sequence, etc. The object modeling framework presented
in this paper can be used to represent the SFF-Object.
Thus, the object modeling framework can provide a unified

representation of heterogeneous objects that can be used for
their design, analysis and manufacture.

4.1. Models of attributes

Depending on the object and its applications, several
attributes may be added to the model. In Table 4, a list of
some attributes is presented along with their manifold model
(some of these are cited in Ref. [43]). Depending on the
object and its applications, these attributes can be added
to the model by means of appropriate atlases and attribute
functions.

5. Modeling operations for object model

The modeling operations on object models depend on the
operations that are defined for manipulating the geometry
models as well as the attribute models.

5.1. Operations on geometry model

Geometric affine transformations can be applied to the
geometry model (r-set and its atlases) to transform them
in E3. The general form of this transformation (combination
of rotation [T] and translationc) can be given as:

G : Rn ! Rn �10�

G�x� � �T�x 1 c

Any two r-sets can be combined using a set of modeling
operations called regularized operations (reg-union< p,
reg-intersect > p and reg-difference /p). Given two r-sets
P andQ, the regularized booleans (denoted collectively as
Ap) are defined as:

Ap : A × A ! A �11�
where

Ap�P [ A;Q [ A� ; PApQ� clo�int�PAQ��
whereA denotes the set ofr-sets,A represents one of the set
theoretic operations (union< , intersection> , and differ-
ence /) and,col(int( )) represents regularization (closure of
interior) of the pointset. These regularized operations are
algebraically closed in the class ofr-sets and preserve the
dimensionality of ther-sets. Ther-sets with the regularized
boolean operations from a boolean ring.

If two geometry models are combined, the regularized
operations defined above in (Eq. (11)) yields the resulting
geometry. However, the set of atlases must be modified to
reflect this change. For the difference operationP/pQ, only
the atlases ofP have to be modified:

;i; Ci =
pQ� { Ua;ca} =pQ� { Ua=

pQ;ca} �12�
For the intersectionP >p Q; if the same attribute exists in

both P andQ, only one set of the charts corresponding to
that attribute is retained. If the attribute exists only in one of
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the object models, then the atlas corresponding to the
attribute is modified by restricting it to the intersecting
region.

Ci >p Cj � { �Ua >p Vb;ca� or �Ua >p Vb;wb�} common attribute

Ci >p Q� { �Ua >p Q;ca�}attribute not on Q

Cj >p P� { �Vb >p P;wb�}attribute not on P

�13�

If more than one attribute is defined on an atlas, (for
example, on atlasCi in P), then the above operation yields
two atlases (i.e.Ci >p Cj for the common attribute and
Ci >p Q for the attribute not inQ).

Finally, for the unionP <p Q, a new atlas is created as a
collection of all charts fromP andQ, if the attribute is the
same. If the attribute is defined only for one geometry, then
the remaining region in the union where the attribute is
undefined is added as a single chart.

Ci <p Cj � { Ci =
pQ;Ci >p Cj ;Cj =

pP} if attribute is common

Ci <p Q� { Ci ; �Q=
pP;cG�} if the attribute does not exist inQ

Cj <p P� { Cj ; �P=pQ;cG�} if the attribute does not exist inP

�14�
Using the above equations, ther-sets and its atlases are

updated when Boolean operations are performed. An exam-
ple illustrating these ideas is presented later in this section.
Henceforth, it is assumed that the operations on the
geometry models implies the boolean operations on the
r-sets as well as on their atlases.

5.2. Operations on attribute model

Operations on attribute model depend on the attribute
being modeled. Here, a generic set of operations can be
defined based on the following operations:

• The vector space operations1 (sum) and p (product
with scalar).

• The operations < (union), > (intersection) and,
(complement) on the subsets of attribute manifold.

These operations have to be modified to satisfy certain
conditions such as algebraic closure, dimensional homo-
geneity etc. In the rest of the paper, we denote these opera-
tors generically asS. A typical example of such operators is
the “combine” operator defined for manipulating material
composition values (points of volume fraction spaceV) for
heterogeneous objects [8].

5.3. Operations on object model

The operations on the object model are driven by the
operations on the geometry model. The attribute operations
are used during the geometry operations in order to retain or
derive the appropriate attribute values for the new geometry.

Operations for creating object models are

• Construction of base space (r-set):The construction of
geometry (r-set P) has traditionally been done using

primitives (like in CSG) or using sculptured objects. A
vast amount of literature exists in CAGD and solid
modeling on geometry creation.

• Construction of atlases:The atlases ({Cj}) can be speci-
fied as a part of geometry creation (local coordinate
systems) or can be separately defined for a particular
attribute.

• Construction of fiber space (attribute manifold):The
fiber space (Ni), in general, is a collection of manifolds
or a vector/tensor space. Though, it is not necessary to
explicitly model the fiber space, it is useful to identify the
constraints imposed by this space to ensure the validity of
the attribute model generated. It must be noted that the
attribute space may have higher dimensions (. 3). Most
often, these manifolds are simple geometrically and
hence possess simple representations.

• Construction of section (attribute functions):The attri-
bute model is specified using the attribute functions (Fi)
and attribute manifoldsNi (or its constraints). The subsets
of the attribute (fiber) space which models the attribute is
implicitly defined throughFi.

• Construction of object (product) model:This construc-
tion essentially ties the attribute model to the geometry
model.

Operations for manipulating/modifying/querying object
models are

Attribute modifications:The following operations are
needed to modify the attribute model and are used in
conjunction with the geometry model operations
described next.

• Replacing the fiber space by its own subspace, which
includes component-wise projection.

• Combining several different fibers to form a new fiber
of which the original fibers form a subspace (compo-
nent product, inverse of above).

• Combining two fibers (same attribute) into a single
fiber. The operations used to combine them are
based on those mentioned in Section 5.2 and gener-
ically denoted byS.

• Comparing attribute functions between cells. This
would involve performing coordinate transformations
for the attribute functions using the coordinate maps
defined for the cells.

Geometry modifications:These operations involve modi-
fying the geometry model(s) and creating new geome-
try(s). The attributes (fibers) must be appropriately
carried over to the resulting object. The common opera-
tions used to modify the geometry are:

• Generating a new geometry from the charts of a parti-
cular atlas. The attributes defined on these charts are
carried over to the new object model.

• Combining two geometry models (Section 5.1).
• Slicing the geometry into a set of subspaces. The
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geometry model can be sliced by a plane or, split into
two geometry models. The attributes (fibers) must
be appropriately carried over to the generated
geometries.

• Geometry reconstructed from a set of subspaces of the
base (inverse of the above).

The regularized boolean operations are used for manip-
ulating the geometry model (r-sets and their atlases, refer
(Eqs. (11)–(14)). Thus, new object modeling operations are
defined (similar to the regularized boolean operations on the
r-sets) to help manipulate object models:

=
p ! �=p; I ;…; I � >p ! �>p

;S1;…;Sn�
<p ! �<p

;∨1;…;∨n�
�15�

The symbolI above denotes the identity operation indi-
cating that the attributes need not be altered for the differ-
ence operation. The operationSi on each attributeAi can be
different and depends on the individual attribute models.
The operation∨ i is a combination ofI andSi. The example
below illustrates the operations with an example. Refer [27]
for details of these modeling operations.

5.3.1. Example
A sample example is presented to show how two object

models can be combined. Consider two objectsO1 andO2.
O1 possesses two decompositionsC1 andC2, andO2 has one
decompositionD1.

Consider two attributesA1 and A2. ObjectO1 possesses
both the attributes whereas objectO2 possesses only one
attributeA1. The functions and atlases used to define these
attributes for each object are shown in Table 5.

Thus, the two object models are defined asO1 �
{ P; { C1;C2} ; { �A1;F1�C1��; �A2;F2�C2��}} and O2 �
{ Q; { D1} ; { �A1;G1�D1��}}. When these two objects are
combined, their decompositions have to be updated and

new ones created if necessary. Table 6 lists the decomposi-
tions generated as a result of combining these two objects
for all attributes. New atlases are created depending on the
modeling operation performed.

For the union operation, the operator∨ is defined as:

�F1 ∨ G1��C1 <p D1�

�
F1�C1=

pQ� for P=pQ

�F1SG1��C1 >p D1� for P >p Q

G1�D1=
pP� for Q=

pP

:

8>><>>: �16�

where

C1 <p D1 � { C1=
pQ;C1 >p D1;D1=

pP}

6. Computer representation

A representation scheme for the fiber bundle model is
shown in Fig. 8. Some of the data elements are included
to provide clarity. This representation has not yet been
implemented completely.

Each object model (OBJECT) is comprised of three
representation modules—the geometry (GEOM), the attri-
bute section (ATTR-SECTION) and the attribute manifold
(ATTRIBUTE). GEOM represents ther-setP and its atlases
{ Ci}. The attribute model is broken into two separate
modules ATTR-SECTION to represent the attribute func-
tions Fi and ATTRIBUTE to represent the attribute mani-
fold (Ni). As mentioned earlier, ATTRIBUTE need not be
explicitly created if the validity of the ATTR-SECTION is
ensured. However, it might be good idea to partially repre-
sent the attribute manifold in terms of the constraints. This
would also ease the creation of ATTR-SECTION especially
if several objects have the same attribute through different
mappings.

The geometry representation (GEOM) captures the
geometrical and topological information of the shape. A
B-Rep scheme (G-BREP) is used to model the entirer-set
(R-SET). Ther-set can possess several atlases denoted by
ATLAS. Each cell (CELL) in the atlas is represented by a B-
Rep scheme (L-BREP). The cell has the information about
its coordinate map (COORD) from its local coordinate
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Table 5
Attribute definitions for the two objects

Object Attribute Atlas used Function

O1 A1 C1 F1

O1 A2 C2 F2

O2 A1 D1 G1

Table 6
Combining object models

Object Geometry Atlases Attributes

A1 A2

O1 P C1,C2 F1(C1) F2(C2)
O2 Q D1 G1(D1)
O1 >p O2 P >p Q C1 >p D1;C2 >p Q �F1SG1��C1 >p D1� F2�C2 >p Q�
O1 <p O2 P <p Q C1 <p D1;C2 <p Q �F1 ∨ G1��C1 <p D1� F2�C2 <p Q�



system to the global system. The information about the
global system is attached to ther-set as SPACE.

The attribute manifold representation (ATTRIBUTE)
implements the attribute model as a manifold
(MANIFOLD), similar to that of R-SET. The hierarchy
for manifold includes SUBSET, CELL, COORD and
SPACE are identical to those implemented forR-SET.
The CELL represents the subset of the attribute manifold
which is mapped from a single cell in ther-set. The collec-
tion of these cells is SUBSET. Each CELL is implemented
through a B-Rep scheme called A-BREP.

The attribute section representation (ATTR_SECTION)
relates GEOM with MANIFOLD. This hierarchy imple-
ments the attribute functions ATTR-FUNC. The ATTR-
FUNC contains the FUNC-MODULE to represent the indi-
vidual functions.

7. Summary

Solid modeling schemes are used in various CADCAM
applications to create, manipulate and query shapes of objects.
Several models exist in the literature such asr-sets, manifold
solids, SGC etc. to represent the shape of the objects. Recent
applications such as design and manufacture of heterogeneous
objects demand models of object, which represent not only the
geometry but also include other attributes of an object.

In thispaper, we havepresented a trivial fiber bundle (global
product set) model to represent several attributes of an object
along with the geometry. This object model aims to provide a
rigorousframework formathematically integrating thevarious

attributes of an object, as demanded by the applications. The
geometry model represents the geometry of the object and
forms the basis for modeling other attributes.R-set are used
in this paper for representing geometry and, decompositions of
ther-set are used to define the attributes. For each attribute, an
attribute function is defined on a particular decomposition to
map the geometry model to the attribute model. As mentioned,
the attribute model need not be explicitly created if the validity
of theattribute functionscanbeensured.However, someappli-
cations might require the explicit presence of an attribute
model. In order to create and manipulate these models, model-
ing operations are also defined.

The framework presented in this paper is a preliminary
step towards the development of generic models of objects
that are responsive to the needs of emerging manufacturing
and engineering technologies. The models extend well
beyond representing solid geometry alone, and can, in prin-
ciple, represent all important engineering properties and
attributes. At this time, it remains an open problem to ascer-
tain that the proposed representation is a convenient basis
from which to launch future methods and algorithms that
help the designer explore and master new manufacturing
and engineering technologies.
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Appendix

Fiber bundle: A fiber bundle (E, P , F, G, X) is [38,39]:

• A topological spaceE (total space)
• A topological spaceX (base space)
• A projectionP of E ontoX:

P : E! X

• A topological spaceF called fiber
• A group of homeomorphisms of the fiberF.
• A set of coordinate neighborhoodsUa coveringX which

makes the bundle locally trivial as a product space

fa : P21�Ua� ! U × F

wherePf21
a �x; f � � x; x [ Ua; f [ F

• A group G of homeomorphisms of the fiberF defined
through the homeomorphisms between coordinate neigh-
borhoods as:

fa·f21
b : �Ua > Ub� × F ! �Ua > Ub� × F

For every pointx [ Ua > Ub; the mapfa·f21
b defines

a map fromF to F. This map is termed as the transition
function,gab�x�; which forms a homeomorphism on the
fiber F. The set of all these homeomorphisms for entire
family U � { Ua;fa} form a group called the structure
groupG of the fiber bundleE.

There are similarities between the definition of a mani-
fold and a fiber bundle. The manifold is locallyRn and a
fiber bundle is locally a product space. The mapsfa·f21

b are
homeomorphisms between charts in a manifolds and the
transition functionsgab are homeomorphisms between
fibers.

A fiber bundle whose fiberF is a vector space is called a
vector bundle. A similar name extends to tensor bundle
whose fiber is a space of tensors.

Principal bundle: If the fiber spaceF of a bundleE is
replaced byG itself, then the bundle obtained is called the
principal bundleP(E). Section of a bundleE is a continuous
map

s : X! E

satisfyingPs�x� � x; x [ X: If the principal bundleP(E)
has a section then it is trivial. Then,P(E) is globally a
product of its fiberG and its baseX, i.e. P�E� � G × X:
Hence, the bundleE is trivial and is a product spaceE �
F × X:
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