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Abstract: We apply dynamic proximity calculations (density and clustering) from dynamic
computational geometry to a military application. The derived proximity information serves as
an abstract view of a current situation in the battlefield that can help a military commander
achieve situation awareness. We employ Delaunay triangulation as a computational tool in our
framework, and study its dynamic update in depth. © 2003 Wiley Periodicals, Inc. Naval Research
Logistics 51: 166–192, 2004.
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1. INTRODUCTION

For the past two decades or so, computational geometry (CG) has had a significant impact on
algorithmic and theoretical development in geometric computing and its many applications.
However, it has been argued until recently that the practical aspects of CG have been neglected
considerably. The CG Impact Task Force Report [11] published in 1996 is a notable voice
documenting unbalanced achievements during the development of CG. The report also recog-
nizes limited success stories in some application areas; for instance, in computer graphics, in
shape reconstruction, and in robotics. Nevertheless, even these areas still do not exploit fully the
best and recent development of CG. Coding complexities and robustness issues are cited in the
report as two main reasons why the full utilization of CG remains hampered in applications.

In this paper, we work to expand the domain of applied CG to a military application. Much
prior work in the military domain as well as in some civilian applications indicates that
providing situation awareness to a commander (or user) in a correct and timely fashion is a key
to success in accomplishing various tasks. These tasks include training [31], tactical engagement
[40], maneuvering an aircraft [21], battlefield analysis [44], and more. We abstract a battle
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situation by means of proximity calculations, a well-studied problem in CG. Density and
clustering computation are typical examples of the proximity calculations that we relied on for
the abstraction. This abstraction is eventually delivered to a battle commander in such a way that
it helps the commander to increase the situation awareness on the battlefield.

Like other applications, our military application entails application-specific constraints. In
particular, platforms engaged in battle are assumed to be constantly moving. This means that one
needs to dynamically update the abstraction, in our case the proximity calculations, in order to
correctly reflect a changing situation in the battlefield. In CG, this kind of study on the dynamic
update of underlying geometric entities is known as dynamic computational geometry. Dynamic
algorithms and data structures are known to be more difficult to work with than static ones.
Especially in practice, the high complexity of dynamic algorithms typically results in increased
running time. However, running time performance is very critical for time demanding applica-
tions such as a military application. In order to meet such time-critical requirements, we explore
various efficient techniques from dynamic CG. In particular, we extensively study Delaunay
triangulations and their dynamic updates.

1.1. Main Results

The major results of this paper include the following:

● Inspired by Gestalt perceptual processing, we conceive density of platforms as an
abstraction of the concentration of forces in the battlefield. Also, we provide an efficient
algorithm to compute the density.

● We present a new clustering definition inspired by the military formation rules, and
consider this as an abstraction of the battle formation of adversary forces. We present an
efficient linear time algorithm for this problem.

● Computationally, our approach to proximity calculation requires fast algorithms and
flexible data structures. We employ Delaunay triangulation as an underlying computa-
tional framework, and explore various techniques, such as successive insertion and
deletion, one-time update, and lazy update, to maintain the triangulation dynamically.

● We present a novel approach to approximate the Delaunay triangulation when one cannot
always afford the computational cost of updating the triangulation. We report experi-
ments that elucidate how effective approximation is for different motion scenarios.

1.2. Organization

The paper is organized as follows. We review some preliminary notions relevant in our
application and survey related previous work in Section 2. Section 3 describes the definition and
computational methods for density and clustering. Section 4 is mainly devoted to various update
techniques for Delaunay triangulation. Section 5 shows various experimental results of our compu-
tation. Finally we summarize our work and discuss future research directions in Section 6.

2. PRELIMINARIES

In this section, we review the definitions of situation awareness, and also survey related prior
work.
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2.1. Situation Awareness

Situation awareness is the concept describing the performance of a domain expert during the
operation of a complex system, such as an aircraft, or a vehicle, or a chemical plant. The concept
was first used to discuss the critical difference between ordinary fighter pilots and ace pilots
[46]. Due to the relative importance of the different aspects in situation awareness, there has
been a broad range of definitions for the situation awareness.

From the point of view of human factors, Endsley [18] describes situation awareness as
follows;

An expert’s perception of the elements in the environment within a volume of time
and space, the comprehension of their meaning, and the projection of their status in the
near future.

From a military viewpoint, Blanchard [8] depicts battle space awareness as “knowing what
is needed to win with the minimum number of casualties.” He identifies situation awareness as
one of seven core concepts in the battle space awareness, and refers to it as the situations of
friendly and enemy forces. Thus, we can conclude that helping a commander to develop
situation awareness is an important factor in accomplishing the mission.

2.2. Prior Work

Many applications from avionics and from the human factors community are deemed as
successful because of the use of situation awareness. The goals of such applications range from
training [31] to tactical engagements [40]. Most of the applications are also incorporated into an
immersive display technology or a virtual reality facility. Extensive references to situation
awareness in the avionics applications can be found in [38].

TSAS (Tactile Situation Awareness System) is a system to utilize human touch to deliver
situation awareness. It is designed to improve the performance of a human pilot in simulated
rotorcraft under high-load working conditions. The system helps a pilot to avoid three-
dimensional disorientation during the maneuver of a rotorcraft [21].

Sentinel is a software tool to provide an analysis capability of the battlefield to a military
commander. It helps maintain situation awareness [44]. The tool gives the user an indication of
the importance of action within a “watchspace,” an area designated by the user. The importance
indication is displayed on a configurable status board, and fuzzy logic is used to judge
importance. The goal of Sentinel is very similar to our application in the sense that it tries to
make the complex battlefield environment intuitive by providing situation awareness. However,
Sentinel lacks the consideration of a human perceptual process when displaying the importance
factor on the status board. Therefore, there is a possible danger that it can lead to a perceptual
overhead and delay as the delivered information becomes more complex and increases in
volume.

The Naval Research Laboratory’s Virtual Reality Responsive Workbench (VRRWB) and the
Dragon software system are well known works in battlefield visualization. With the extensive
use of virtual reality technology, the dragon system was considered a critical break-through over
previous battlefield visualization system [16]. However, the systems do not employ any
technology to reduce the cognitive overhead of a commander, and it merely provides a “3D
metaphor” of a real battle.
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Plan View Display (PVD) from MÄK technologies provides a bird’s eye view into a
simulated battle by overlaying entities and information onto 2D views of tactical, strategic, and
visual databases. The overlayed information includes tracking individual entities and groups of
entities and displaying intervisibility of entities and points. Moreover, since PVD is compatible
with both the Distributed Interactive Simulation (DIS) and the High-Level Architecture (HLA)
simulation protocols, it is highly interoperable with other products [34]. However, PVD lacks
consideration of the human visual perception process, such as preattentiveness. Thus, the visual
presentation in PVD could bring about an additional cognitive overhead.

The Army Research Laboratory’s Virtual Geographic Information System (VGIS) has the
same objective as our work: providing visual information to a commander to help build situation
awareness [47]. The main functionality of the system is displaying concentration information of
battlefield entities. The system uses a grid (raster) based approach to compute the concentration,
and constructs isosurfaces of concentrations by considering concentration values as vertical
height in three-dimensional space. Depending on the viewpoint, concentration is shown by
height or by color intensity. Therefore, the height serves as a redundant encoding of concen-
tration. Another functionality in the system is temporally condensing a potentially lengthy battle
into an MPEG movie. Later, the movie can be played back at a desired speed. By doing this, the
commander can grasp the strategic or tactical implication of lengthy battles that might be missed
otherwise.

2.3. Applying the Theory of Perception

Usually a battlefield is represented by large datasets with various attributes. These large
datasets make it difficult for a user, in our case a military commander, to assess the situation in
the battlefield in a timely manner. Moreover, it is more troublesome when it comes to dealing
with the multiattribute or multidimensional datasets, since the users must spend additional time
building up a single comprehensive view of the battle.

We postulate that an appropriate visual interpretation of the battlefield helps a military
commander to build up a comprehensive view of the battlefield effortlessly and rapidly, and as
a result to make a strategic decision accurately. In order to accomplish this objective, we address
two important discoveries from the domain of perceptual psychology, preattentive features and
gestalt perception in human perceptual processing. Taking advantage of the low level human
visual systems, these perceptual techniques allow users to perform exploratory tasks on large
multidimensional datasets rapidly, accurately, and effortlessly. Such tasks include identifying
concentration (density) and boundary detection (clustering) from a given large positional
dataset.

2.3.1. Preattentive Processing

Psychophysicists have identified a limited set of features that the human visual system detects
very quickly without the need for search. These features are called preattentive, and such
features include color (hue), intensity, texture, length, and width. It is known that by using these
features one can perform various exploratory tasks independent of the total number of elements
involved in the tasks, and these tasks can be performed in a single glance, taking less than 200
ms [25]. It has also been shown experimentally that the preattentive features can work not only
in a static setting but also in a dynamic setting where datasets are constantly changing.
Furthermore, some preattentive features have no interferences with each other, and they seem
to be prioritized by the human visual system. For instance, form, hue, and intensity are

169Kim and Hoffmann: Dynamic Proximity Calculations for Situation Awareness



prioritized features. In our application, such features are used for density and clustering
visualization in Section 3.3.3.

2.3.2. Gestalt Perceptual Processing

Gestalt psychologists observed that when elements were gathered into a figure, the figure took
on a perceptual salience that exceeded the sum of its parts. It was also demonstrated that people
extract the global aspects of a scene before smaller (local) details are perceived [28, 37].

Because of this preattentive, global processing phenomenon, when the differential saturation
based on the density of positional data is presented, the user can determine concentrations of
forces with less visual interrogation and cognitive effort (also see Fig. 1). A user study
conducted jointly by the authors and the Army Research Laboratory shows that displaying
different levels of concentration to the users help them achieve higher levels of situation
awareness rapidly [17, 29]. From this experiment, we conclude that density is a very important
tool to enhance situation awareness [29].

3. PROXIMITY CALCULATIONS

One of the important goals in battlefield visualization is to convey an abstract view relevant
to the battlefield to a military commander in such a way that the commander can understand the
situation of the battle with a minimal cognitive effort. The example of such an abstract view
includes concentration, grouping, or threatening levels of opposing forces. These abstractions
can be derived from positional information or movement information reported periodically or
known in advance. Hence, the problem of deriving the abstraction naturally boils down to a
proximity problem such as nearest neighbor search or fixed radius query. Moreover, in order to
efficiently compute the proximity, the temporal and spatial coherence must be fully utilized in
the course of the derivation.

3.1. Modeling the Battlefield

We model the battlefield as a 3D virtual world populated with two opposing groups of entities
which are moving on a 2D plane. Every entity is assumed to report its positional data at a

Figure 1. Various maps (from [28]). In the map (a) where an individual battle unit is displayed as a point,
it takes some time to recognize the whole troop boundary and concentration. In the shaded map (b), the
troop boundary becomes easy to recognize, but it is still hard to see the troop concentration. In the density
maps (c) and (d), the troop concentration becomes apparent. A correct understanding of the troop
concentration depends on a correct display.
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discrete time interval or continuously; depending on the nature of motions, we provide its
appropriate solution. Each entity belongs to either the red or the blue group, and each group is
further subdivided according to its internal formation rule. We assume that such an internal
formation rule about the blue group is known. Although each entity moves like a point on a 2D
plane, it has a vertical elevation determined by the underlying terrain model, but we restrict the
use of the elevation data only to visualizing the terrain. The possible range of elevation values
is assumed to be negligible compared to the range of horizontal values in the 2D position.

3.2. Density Computation

By density of a point, we mean a measure of how many other points are close by. Both the
number and distance of the nearby points are considered. In the Delaunay triangulation, nearness
is approximated by adjacency, see Theorem 2 in Section 4.2. Once the Delaunay triangulation
has been computed, density assignment can be done using Algorithm 1.

After all vertices have been processed, the average density is obtained as the density value
divided by the number of incident edges.

The density computation requires O(n) steps for the edge quantization and averaging, and
O(nlogn) steps for Delaunay triangulation construction.

3.2.1. Density Visualization

Once density has been assigned to each point, we have reduced the problem to height
interpolation and terrain visualization. A simple way to do this is to use the piecewise linear
interpolant induced by Delaunay triangulation. Considering the density value of each vertex as
intensity, we then render the polygonal terrain using Gouroud shading [for instance, see Fig.
2(a)].

Another way to visualize density is rendering by blobby shading [9]. Simplifying, the density
distribution is obtained by summing the contribution from each atom separately. In our case, the
platforms are the atoms. For instance, see Figure 2(b).

3.3. Clustering

A military commander would be interested in formation information of adversary forces in
order to appropriately react to a potential attack from the enemy or to counterattack the enemy.

ALGORITHM 1: ComputeDensityUsingDT
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However, such formation information about the opposite side is not known in general. There-
fore, the commander should infer the enemy formation from the available data, in our case
positional data. For instance, a database file with useful attributes such as enemy positions,
dates, and weapon types can be furnished by a spy satellite in a track file format. One possible
way to infer the enemy formation from the track file is to use the proximity of enemy entities
to each other, since entities in the same unit tend to move together. This kind of a problem is
considered a clustering problem.

3.3.1. Various Clustering Techniques

Depending on the application, the clustering problem has different objective functions. In
general, the clustering problem is known to be NP-hard regardless of the objective function [10,

Figure 2. Comparison of density visualization.
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23]. Moreover, for Euclidean space, it is NP-hard to approximate, to within a factor close to two,
in higher than one dimension. Therefore, most clustering algorithms work only on a fixed
number k of clusters.

In k-center clustering or pairwise clustering, the objective function is to minimize the radius
or diameter of each partitioned cluster. The doubling algorithm is a typical example of such a
k-center clustering algorithm. Here, the objective function is to minimize the maximum cluster
diameter. Motivated by an information processing application, it is an incremental clustering
algorithm that performs dynamic insertion of one item at a time. The algorithm runs in O(k log
k) time per update. The time is spent mainly on maintaining a complete graph of the centers of
induced clusters. Its performance ratio to optimal clustering is 8 in any metric space [10].

In variance-based clustering, the objective function is to minimize the sum of squared errors
in each cluster. The Voronoi diagram based approach is one such algorithm [30]. The main idea
is that optimum clustering which minimizes such an objective function is a Voronoi partition,
i.e., the ordinary Euclidean Voronoi diagram for some k points. Initially, the algorithm finds two
linearly separable clusters using a randomized approach, and then recursively applies the same
technique to each partition of clusters until k clusters have been found. The algorithm, sampling
m points from a total of n points, finds a 2-clustering whose clustering cost is within a factor of
1 � O(1/m) from the minimum clustering cost with high probability in O(m2n) time. However,
due to the exhaustive linearly separability checking, the algorithm is not suitable for a real-time
application.

3.3.2. Delaunay Based Approach

One can also think of a different definition of clustering. Suppose points belonging to the
same cluster should move maintaining at most a given maximum distance from some of their
neighbors. In this case, the outline of clustering can be any arbitrary shape, for example a sickle
shape. This is a particularly appropriate case for military unit formation: Each entity in a military
unit is moving while maintaining some distance from the others (see Fig. 3).

We can define this type of clustering formally as follows:

DEFINITION: Given n points in Rd and distance threshold r, find clusters S1, S2, . . . , Sk

which satisfies the following

1. @xi � Sl, ?xj � Sl, such that �xi � xj� � r.
2. @xi � Sl, @xj � Sm, where l � m, we have �xi � xj� � r.

Fortunately, this computation is not NP hard, and can be solved easily especially in 2D based
on the Lemma 1 in Section 4.2. We can compute clusters as in Algorithm 2.

Once a Delaunay triangulation has been computed, the computation requires O(n) running
time for edge cutting plus extracting connected components by a Depth First Search (DFS) on
the triangulation.

As points move, we must update the clusters. This task involves two subtasks: dynamic
update of the Delaunay triangulation and of the connected components. The first subtask can be
accomplished as will be explained in Section 4.2.1. The second subtask can be done by
maintaining a spanning forest in a dynamic setting. This kind of problem is better known as a
dynamic connectivity problem, since, if we have a spanning forest of a graph G, we can quickly
answer whether two vertices in G are connected or not. There are three different known
algorithms related to the dynamic connectivity problem: Fredrickson’s topology tree [22],
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sparsification [19], and Henzinger and King’s randomized algorithm [26]. The Henzinger and
King algorithm achieves an expected amortized update time of O(log3n) for a sequence of
updates, and experimentally it was shown to be the fastest algorithm for random inputs [2].
However, in the dynamic setting where all points move at discrete time intervals, we might as
well recompute the connected component from scratch.

3.3.3. Clustering Visualization

The clustering visualization is overlayed on top of density visualization. Using the Hue,
Saturation, Value (HSV) color scheme [20], we prioritize the clustering visualization as follows:

Figure 3. A typical example of clustering in our application. Each cluster has its own threshold value
defining who is a member, namely, a maximum distance between neighboring members. The dotted arrow
between two points denotes such a maximum distance within a cluster.

ALGORITHM 2: ComputeClustering
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● Assign different Hues (H), H � 2/3 (blue) for friendly platforms and H � 0 (red)
for hostile platforms.

● Assign different Saturations (S) to different clusters.
● Value (V, pixel intensity) at position p, is determined by its density level.

Thus, by different V we can identify the boundary of platforms, and by different H we can
differentiate between the opposing platforms, and finally by different S we can further differ-
entiate the cluster boundary of opposing platforms [see Fig. 4(a)].

4. COMPUTATIONAL TOOLS

In this section, we explain how our computational framework for proximity calculations can
be based on the Delaunay triangulation. We also address various issues related to updating a
Delaunay triangulation dynamically.

4.1. Various Approaches to Proximity Computation

Many techniques have been developed to efficiently solve the proximity problem. The types
of techniques are as diverse as the problem domains in which they have been applied.

For the orthogonal searching in a multi-dimensional data set, spatial data structures such as
quadtrees, octrees, k-d trees, and range trees have been developed [12]. The primary target
application for these techniques is a range query in geographic databases. Using fractional
cascading, the most efficient two dimensional range query requires O(log n � k) with an O(n
log n/log log n) storage requirement. Here, n is the number of items in the database, and k is
the number of items resulting from a query. A particular difficulty in spatial data structures is

Figure 4. Visualization Result. Figure (a) shows the results of the density and clustering visualization.
The blue platforms represent friendly forces, whereas the red platforms represent enemy forces. Figure (b)
shows the visualization of the “edge cutting” technique discussed in Section 3.3.2. The dark edge
represents a disconnected edge in the Delaunay triangulation. Here the clustering computation is performed
only for enemy (Red) forces.
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that it is costly to dynamize the data structures, especially for the case of deletion operations
[41]. It is known that the deletion operation can have a poor performance in the worst case. For
example, the deletion operation in k-d trees takes a logarithmic time; however, in the worst case,
the deletion of a root node can take sublinear time [41].

For the proximity computation on three dimensional models, techniques such as the sched-
uling scheme, sorting-based sweep and prune, and spatial subdivision have been developed [33].
The target application for most of them is collision detection among geometric models in a
virtual environment. Particularly, the sweep and prune technique in the I-COLLIDE system is
highly adaptable to dynamic environments. The technique exploits spatial and temporal coher-
ence from the motion of objects.

When it comes to dealing with massive data sets, an algorithm using external memory and
dynamic prefetching has been proposed [48]. The main data structure in the algorithm is called
an overlap graph which partitions the data set into objects that are likely to represent actual
contacts at run time. The overlap graph is built by multilevel graph partitioning.

Despite all these efficient techniques, the proximity computation on a point set is most
efficient with a Delaunay triangulation based approach. Particularly, the dynamization is much
easier with the Delaunay triangulation based approach than with other techniques.

4.1.1. Dynamic Computational Geometry

Traditionally the proximity problem has been widely studied in the context of computational
geometry [12], but usually in a static setting. However, our problem setting requires handling
the constant change of a point in motion. This additional requirement makes it a dynamic
computational geometry problem. The nature of acquiring the motion data also varies depending
upon application. It is possible to make four different combinations from discrete or continuous
motion, and from predictable or unpredictable motion. However, since continuous and unpre-
dictable motion or discrete and predictable motion are inconceivable or practically nonexistent,
those combinations are not considered further.

When we deal with a motion data set, its associated geometric data structure should be
updated accordingly in order to reflect the positional changes in the set. This means, in our case,
that we need to update the Delaunay triangulation in a dynamic fashion. Furthermore, in order
to obtain an efficient update, spatial or temporal coherence inherent to the motion data set must
be exploited as well. Surely, the coherence that we can exploit heavily depends on the nature of
movement. As we have seen earlier, one can have two possible scenarios of the movement:
discrete and unpredictable motion or continuous and predictable motion.1

Investigation of the dynamic update of a geometric structure is known as dynamic compu-
tational geometry. The study of dynamic computational geometry is further divided into two
different categories in the computational geometry literature. The division coincides with the
categorization of the movement mentioned above.

Dynamic Computational Geometry for Discrete Motion. The dynamic computational geom-
etry is a field of study where efficient insertion and deletion operation into a certain geometric
structure is investigated. In the context of our application, the geometric structure of interest is
a Delaunay triangulation. This technique is well suited for the discrete motion of points, whose

1 From now on, we refer to discrete and unpredictable motion simply as discrete motion, and to continuous
and predictable motion as continuous motion. We also describe the nature of continuous motion as a kinetic
setting.
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location is reported periodically at discrete time steps. For example, in the military application,
positional information of each battle unit is reported to the Command Operations Center (COC)
at periodic time intervals. In this case, we have no choice but to adopt the first methodology (i.e.,
insertion and deletion operations at discrete time samples), since we do not have any coherence
from the movement other than a local spatial coherence over a few time steps of the report. In
particular, when future positional data is completely unpredictable, for instance when tracking
an espionage unit of adversary forces, then the use of local spatial coherence is restricted to only
the previous time frame and the current time frame of the report.

Dynamic Computational Geometry for Continuous Motion. The other concept of the dynamic
computational geometry, introduced by Atallah [3], investigates a combinatorial change of a
“configuration function” related to a property of interest and its efficient update, when points
move continuously. The motion is assumed to be known in advance in a functional form in time.
For example, in the case of civil aviation, one can safely assume that a plane follows a
predictable trajectory. In this case, one can compute a critical moment when the configuration
function or its relevant subfunction changes. Hence, the overall update computation can be very
efficient, since the computation is performed only when it is needed. In other words, the spatial
and temporal coherences are fully utilized based on the critical moment computation. Recently,
this technique has been elaborated in the use of Kinetic Data Structures (KDS) by Basch et al.
[5, 6, 7]. While Atallah’s seminal work on the dynamic computational geometry was focused on
the theoretical aspect of the algorithm, KDS have been studied both theoretically and practically.
Both Atallah’s work and KDS use Davenport and Schinzel sequences to derive a theoretical
bound on the performance of the algorithm.

In the following two sections, we investigate each methodology in more detail and explain
further why we have decided to adhere to the first concept of dynamic computational geometry,
which, in our case, corresponds to a dynamic update in a Delaunay triangulation.

4.2. Delaunay Triangulation Based Approach

The Delaunay triangulation in 2D is defined as a triangulation of points where the circum-
circle of each triangulated face does not contain any other points than those on the face.

Such in-circle property is a direct result from the fact that the Delaunay triangulation (or more
precisely the Delaunay Diagram) is a dual of the Voronoi Diagram. The incircle property allows
many proximity questions in 2D to be reduced to relatively easy computations on a Delaunay
triangulation. For instance, the closest pair or Euclidean minimum spanning tree is a subgraph
of a Delaunay triangulation. It is not a coincidence that our computational framework heavily
exploits the Delaunay triangulation, since most geometric queries arising in our application are
essentially proximity questions. For example, neighborhood search within a given threshold d
is a typical geometric query arising often in the application. The search computation is based on
the following lemma on a Delaunay triangulation.

LEMMA 1 [15]: Let S be a set of distinct points on a plane, � a distance, and D the Delaunay
triangulation of S. If �p, q� � � for p, q � S, then either �p, q� is an edge in D or there exist
distinct points o1, o2, . . . , om such that:

1. �p, o1�, �om, q�, and �oi, oi�1� are edges in D for 1 � i � m.
2. �p, o1� � �, �om, q� � �, and �oi, oi�1� � � for 1 � i � m.
3. �p, oi� � �, �oi, q� � � for 1 � i � m.
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Depth first search (DFS) of the Delaunay triangulation based on the above lemma suggests a
simple strategy to compute the neighborhood in O(k) time, where k is the number of reported
nodes.

Since the search does not force any unnecessary node traversals, performance of the search
algorithm is strictly output sensitive. This is not the case for spatial division methods such as k-d
trees, octrees, range trees, etc. The neighborhood search can be extended to the query composed
of an arbitrary polygon. Even though any triangulation can be used for this purpose, the
Delaunay triangulation provides a nice performance analysis in this case.

Besides the in-circle property, a Delaunay triangulation approximates the complete Euclidean
graph within a ratio of less than 2.42 as the following theorem shows.

THEOREM 2 [32]: Let p and q be a pair of points in a set S of N points in the plane. Let d( p,
q) be the Euclidean distance between p and q and let DT( p, q) be the length of the shortest path
from p to q in the Delaunay triangulation of S. Then,

DT	p, q


d	p, q

� 2.42. (1)

The property suggests that we can approximate the neighborhood of a node and know how
it is distributed by following the incident edges of the node in the Delaunay triangulation, so we
can have a quick approximation of the density or concentration of each point using the above
property. More than that, the triangulation can also be used to smoothly interpolate computed
densities, and finally to visualize the density distribution.

4.2.1. Dynamic Update in a Delaunay Triangulation

The Delaunay triangulation is a primary data structure in our application. As points (in our
case, battle units) move, we must update the Delaunay triangulation too. When we are not able
to get a future position report of points or a prediction is unreliable, we must use only a
contemporary report. The military application is the typical case where the positions of
adversary forces are difficult to predict or unreliable. We assume that we are provided with a
position report as a track file at discrete time intervals. At each interval, we update a Delaunay
triangulation using only a current report and its prior report. Three approaches are considered for
updating a Delaunay triangulation in this setting.

Successive Deletion and Insertion. When a point has moved, we simply delete the point at the
old position from the Delaunay triangulation, and reinsert it in the new position. The best
insertion and deletion algorithms use randomization techniques, where insertion takes O(log n)
expected time and deletion takes O(k log k) expected time (n is the number of nodes in the
triangulation and k is the number of incident edges of the deleted node). The algorithms require
maintaining an additional search structure, such as the Delaunay tree, besides the triangulation
[13, 14]. The search structure is used for locating the triangle into which the point should be
reinserted.

Library implementations, such as LEDA or CGAL, have chosen a more straightforward but
less sophisticated implementation for this problem. Instead of maintaining an extra search
structure, they use segment walking to locate points, update the triangulation locally, and finally
perform consecutive Delaunay flipping to reestablish the Delaunay property [35]. The simpler
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implementation takes O(�n � k) and O(k2) expected time for each insertion and deletion
operation respectively, where n is the number of nodes and k is the complexity of the face to
which the new point belongs, i.e., the number of incident edges. When segment walking is
combined with bucketing, it provides a more effective, practical location method. For example,
the location structure maintains a regular grid of known positions and the location query starts
from the closest grid [43].

However, when many points move or in the worst case when all points move, even complete
recomputation from scratch easily beats successive deletion and insertion [29].

One-Time Update. When a movement of points has spatial coherence, we can exploit this fact
to reduce the computation needed for locating points. Suppose a point is moving slowly. We can
use the last face from which the point was deleted as a starting position for the insertion search
in segment walking. Since the majority of the insertion time is spent on locating the correct face,
this simple modification cuts the total update time significantly. Furthermore, we can also reduce
update time by performing Delaunay flipping at one time for all triangles generated by insertion
and deletion.

Lazy Update. This approach also exploits spatial coherence. When points have moved only
slightly or move while forming a group or flock, such as formation movement in the military,
the old Delaunay triangulation before points moved can be a good approximation even after they
have moved. This observation suggests a slightly modified Delaunay flipping algorithm. The
original flipping algorithm runs in O(n2) time in two steps as follows: (1) Construct an arbitrary
triangulation in O(n log n) and (2) perform Delaunay flipping in O(n2). However, instead of
constructing the new triangulation from scratch as in the first step, we start with the old
Delaunay triangulation. The old triangulation must be retriangulated only if necessary, but it
would require few updates which should take much less than O(n log n) time. Furthermore the
Delaunay flipping process also should take much less than O(n2) time, possibly O(n) in some
cases since most of edges are already Delaunayed.

Experimentally we have shown that even when all points move, the modified flipping
algorithm beats the fastest Divide and Conquer algorithm by a factor of 2 and the original
flipping algorithm by a factor of 4 (see Table 1 in Section 5.2), for a number of moving points
in the hundreds to low thousands.

The retriangulation process is done by successive deletion and insertion into the old trian-
gulation. The deletion process exploits the “star-shaped2 property” of the triangulated face
incident to the node to be deleted. The star-shaped face implies that we can always find a convex
quadrilateral formed by two adjacent triangles from the face. By flipping the diagonal of such
a quadrilateral, we can reduce the degree of the node until it is lowered to three, and finally we
can delete the node. The POINT SET class in LEDA also exploits this property for the deletion
of a point from the Delaunay triangulation [35]. The insertion process is accomplished by
performing the similar location operation as done in the one-time update: Starting from the
deleted face, we walk toward the face to which a new point belongs. After correctly locating the
face, we retriangulate it.

Since we are interested in knowing which other points are nearby, for each point, we need not
maintain the precise Delaunay property for every movement of points as long as the triangu-
lation is valid and the adjacency in it is a good approximation of what is nearby. Therefore, we

2 When every vertex in a face f is visible from a vertex v in f, f is called “star-shaped.”
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can use the retriangulation without flipping as an approximation of the new Delaunay triangulation.
Table 1 shows how closely the retriangulation can approximate the new Delaunay triangulation. The
lazy update technique is illustrated in Figure 5, and summarized in Algorithm 3.

4.3. Kinetic Data Structures Approach

4.3.1. Basic Idea

In a kinetic setting where future positions of all entities can be predicted as a continuous
functional form, f(t), an efficient algorithm known as KDS (Kinetic Data Structures) has been
proposed. When devising an application of KDS, a configuration function is defined that
quantifies the properties and the states of the configuration relevant to the application. The

Table 1. Dynamic update on a Delaunay triangulation (also shown in Fig. 8).a

NODES EDGES DC FLIP LAZY RETRI FLIPS

a. When the maximum speed is 5 mph

10 44 0.00018 0.00021 0.00008 0.00004 0
50 276 0.00096 0.00160 0.00047 0.00020 0

100 570 0.00191 0.00351 0.00097 0.00043 0.03
200 1160 0.00391 0.00777 0.00212 0.00096 0.03
300 1760 0.00611 0.01256 0.00338 0.00162 0.15
400 2368 0.00836 0.01755 0.00475 0.00257 0.13
500 2961 0.01051 0.02266 0.00628 0.00328 0.36
600 3567 0.01284 0.02783 0.00794 0.00426 0.35
700 4160 0.01511 0.03382 0.00965 0.00537 0.62
800 4754 0.01717 0.03891 0.01165 0.00665 1.44
900 5350 0.02003 0.04546 0.01405 0.00799 1.31

1000 5957 0.02196 0.04988 0.01565 0.00949 2.23
1500 8953 0.03367 0.07942 0.02808 0.01873 4.26
2000 11,953 0.04575 0.11408 0.04556 0.03315 9.13

b. When the maximum speed is 45 mph

10 42 0.00018 0.00020 0.00008 0.00004 0
50 272 0.00092 0.00155 0.00044 0.00020 0

100 568 0.00189 0.00338 0.00098 0.00042 0.02
200 1166 0.00403 0.00783 0.00213 0.00100 0.11
300 1760 0.00615 0.01252 0.00338 0.00161 0.24
400 2353 0.00842 0.01773 0.00476 0.00240 0.7
500 2964 0.01060 0.02256 0.00630 0.00326 1.43
600 3561 0.01291 0.02817 0.00801 0.00427 2.23
700 4160 0.01511 0.03298 0.00964 0.00546 3.3
800 4764 0.01722 0.03887 0.01164 0.00673 4.3
900 5356 0.01953 0.04439 0.01356 0.00811 5.45

1000 5961 0.02188 0.05009 0.01582 0.00951 8.35
1500 8956 0.03389 0.07983 0.02823 0.01943 26.28
2000 11,960 0.04753 0.11205 0.04788 0.03366 48.26
a NODES and EDGES denote the number of nodes and edges in a Delaunay triangulation (DT). DC, FLIP
and LAZY respectively denote the time for updating a DT using Divide and Conquer, Flipping and Lazy
Update algorithms respectively. RETRI denotes retriangulation time in Lazy Update, and FLIPS denotes
the number of flipping operations performed after the retriangulation. This table shows that when the
number of points is less than 400, the Lazy Update is a good technique to maintain a Delaunay
triangulation; notice that the retriangulation time becomes a dominant factor in the computation.
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configuration function is represented implicitly as a set of certificates, or assertions, whose
correctness implies the validity of the configuration function. A certificate is always an assertion
related to a small number of geometric entities. An event refers to changing a certificate, whether
by expiration or because of a change in flight plan, f(t). Such events are computed using f(t) and
pushed into an event queue (priority queue). Then, one can think of the KDS as a variant of a
plane sweeping algorithm, where the sweeping proceeds in the time direction rather than along
a principal spatial axis. At each time event, updating occurs in the KDS by popping out the event
if necessary.

Figure 5. Two Steps in Lazy update on Delaunay triangulation. If spatial coherence is present, the
retriangulation time is mostly spent in the triangulation check; see Figure (b). Furthermore, many edges are
already flipped; in Figures (b) and (c), only edge e1 is flipped into e2.

Figure 6. Convex hull reestablishment when a point p1 moves to p2 (also see Algorithm 3). If e1 and
e2 form a left turn (Case 1), a new hull edge newhull is created. Else if e1 (upper hull) and its predecessor
or e2 (lower hull) and its successor form a left turn (Case 2), new hull edges upperhull1, . . . ,
lowerhull1, . . . should be created consecutively until the upper hulls and lower hulls form a right turn with
their predecessors and successors respectively.
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The Davenport-Schinzel (DS) sequences are a basic tool in many geometric applications for
deriving bounds on the number of changes or events in a dynamic setting [3, 7, 42]. The DS
sequence has been used to analyze the complexity bounds in the KDS assuming the trajectories
are linear.

ALGORITHM 3: UpdateDelaunayTriangulation
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4.3.2. Kinetizing Delaunay Triangulation

When the configuration function is a Delaunay triangulation, its certificate is particularly easy
to devise. The certificate directly corresponds to the in-circle function in time of every four
points forming a convex quadrilateral. We associate each edge with such a certificate. This type
of certificate is called a “self-certifying” structure [7]. In this case, kinetization is immediate.
Whenever the certificate of an edge has expired, we update the triangulation by flipping the edge
and reschedule other affected edges, and this idea has been recently extended to dimensions
higher than two [1].

4.3.3. Problems in KDS

Even though KDS can be extremely efficient, we have discovered two major problems in our
application. First, update events may be generated so often and accumulated in an event queue
that even computation from scratch at that particular moment is faster than processing the update
events in the queue one by one. This comes from the fact that the KDS algorithm for the
Delaunay triangulation does not satisfy the local criterion, meaning that the number of events
that depend on a single entity is not polylogarithmic in the number of moving entities involved
[1, 7]. Our application demands frequent interaction among entities, and it requires an update of
their flight plans for all the interacting entities. Eventually this causes many new rescheduling
events due to the non-local property of the KDS applied to a Delaunay triangulation. Recently,
a new simulation technique to improve the performance of KDS has been developed. The
improvement is based on interval arithmetic to reduce the unnecessary computation to calculate
an expiration time that will not happen. Even though this speedup can not totally eliminate the
possibility of “queue thrashing” in the dynamic maintenance of Delaunay triangulations, it
significantly improves the overall performance of KDS [24]. Another reason for queue thrashing
is that the Delaunay triangulation inherently undergoes more changes compared to other
configuration functions such as the closest pair or convex hull.3

Furthermore, in many applications, it is difficult to predict future positions as a functional
form as is assumed in KDS. Especially in our battle field application, the position of each entity
in a battle unit is reported at discrete time intervals. In this case, we cannot predict future
positions by a simple extrapolation technique. However, when the past history of movement
provides a good prediction of the future movement, we can formulate a plausible trajectory of
the movement and use a technique similar to KDS.

4.4. Image Based Approach

When fast graphics hardware support is available which is common in a modern graphics
workstation, one can exploit the hardware to perform various proximity calculations.

In the image-based approach, we assume the existence of a mapping from geographic
coordinates to pixel positions displayed on a digitized map. Using the mapping, we define a local
proximity function from each grid position or pixel to neighboring pixels depending on a target

3 Basch et al. [4] showed that if the position and linear velocity of n points are drawn independently at
random from the uniform distribution on the square, their Voronoi diagram undergoes �(n3/ 2) combina-
torial changes in expectation, whereas their convex hull undergoes �(log2n) combinatorial changes and
their closest pair undergoes �(n) combinatorial changes. In the worst case, the tightest upper bound on the
number of combinatorial changes in the Delaunay triangulation is known to be roughly cubic.
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proximity function. This local proximity function defines an area of influence around each pixel
position containing at least one entity. For example, for the density computation, we construct
a local proximity function as in Figure 7.

For each entity, we sequentially compute the appropriate pixel position and then apply
cumulatively the local proximity function to each neighboring pixel in the area of influence
around that pixel. After all entities are so processed, the result is a pixel array containing the
global cumulative results of the repeated application of the local density functions. When
graphics hardware is available, the accumulation process can be accelerated by the use of the
fast alpha blending capability in the hardware.

The image-based approach is attractive because it is very easy to implement. Also, because
only a constant number of pixels are processed for each report, spatial and temporal processing
complexity can be made linear with respect to the number of entity position reports. Moreover,
when one wants to render the result of the proximity computations, the rendering process
corresponds to a simple dumping operation from the raster buffer to the frame buffer residing
in a graphics display.

4.5. Hybrid Approach

A particular difficulty in the image based approach is how to construct the local proximity
function uniformly and automatically. One possible solution is to precompute a table of all
possible local density functions and retrieve it if necessary. Clearly this requires a lot of extra
storage and can not be easily customized and extended by an end user.

One can take advantage of graphics hardware to construct a highly flexible local proximity
function. The technique is similar to Hoff et al.’s idea to compute a Voronoi diagram [27], but
applied from a different perspective. We use the fast rendering pipeline and alpha blending
function4 available in OpenGL.

4 The alpha blending formula in OpenGL is Destination Color(Dc) � Source Color(Sc) � Source
Alpha( A1) � Destination Color(Dc) � Destination Alpha( A2).

Figure 7. Image based approach to the density computation. Based on the mapping from geographical
space to raster space, the density is accumulated by superimposing the local density function.
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The main idea is that we approximate the proximity function by polygonalizing it within a
limit of user defined error, and render it in the depth buffer (e.g., Z buffer) on the fly. Once we
have a footprint of this local proximity function, we compute the overall proximity by iteratively
blending it together as in the image based approach. In case of the density computation,
Algorithm 4 summarizes the process.

5. EXPERIMENT RESULT

5.1. Implementation Workbench

The experiment was carried out on 32 SGI 250 MHz IP27 processors with 16G memory.5 An
Infinite Reality 2E graphics board was used for fast polygon rendering for visualization and
geometry computation. No parallel computation capability was used during the computation.
Most components of the program were coded in C�� and compiled by MIPSpro C��
compiler (CC).

In order to provide a convenient 3D interaction (GUI) to an end user and to easily manipulate
3D geometry objects including the mobile platforms and the terrain object, we used the Open
Inventor graphics library.

LEDA (Library of Efficient Data structures and Algorithms) version 3.8 was extensively used
for various basic geometric data structures. In particular, the POINT SET data structure was
modified to implement the Lazy Update technique in the Delaunay triangulation. LEDA was
also used for the comparison of performances between Lazy Update and two different Delaunay
triangulation computation methods, namely the Divide and Conquer and Flipping algorithms.

5.2. Dynamic Update on a Delaunay Triangulation

In Section 4.2.1, we discussed various techniques to update a Delaunay triangulation when
points move. As reported in [29], when all points move, a full recomputation from scratch beats

5 All the experiments except for the one performed in Section 5.4 were done in this setting.

ALGORITHM 4: ComputeDensityUsingAlpha
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a successive insertion and deletion technique; thus, we did not consider a successive insertion
and deletion technique in our experiments. We employed both Divide and Conquer and Flipping
algorithms for the full recomputation method, and compared their performances to that of the
Lazy Update technique. The performance of the flipping algorithm has been measured also in
order to see how much improvement the Lazy Update technique can achieve. Note that the Lazy
Update technique is based on the flipping algorithm. We also measured the computation time of
the retriangulation process in the Lazy Update technique, since a retriangulation alone can give
an approximation of an updated Delaunay triangulation. By measuring how many flipping
operations are needed after retriangulation, we can understand empirically how closely a
retriangulation approximates an updated Delaunay triangulation. The experimental setting for
the comparison is as follows:

Consider a square, 10 miles wide in each direction. Points are uniformly distributed
within the square and assigned a randomly chosen speed from two groups of uniform
distributions. We vary the number of points from 50 to 2000, and assign a speed range
selection from two different speed groups, a slow motion group (maximum speed is
5 mph) and a fast motion group (maximum speed is 45 mph).6 Then, each point keeps
moving by following the Boid animation rules [39].

The experimental results are given in Table 1 and Figure 8. We have observed the following
facts from the experiment:

1. Up to 400 points, the Lazy Update (LAZY) cuts the recomputation time of the
Divide and Conquer (DC) approximately by half and of the Flipping algorithm
(FLIP) by 1/4. Update time is almost linear. As the number of points increases to
more than 400 points, the improvement diminishes. When the number of points
reaches 2000, there is almost no improvement.

2. Up to 800 points, the retriangulation time (RETRI) accounts for almost half of the
Lazy Update time. In other words, Delaunay flipping also takes half of the update
time. The retriangulation time grows linearly. As the number of points increases,
the retriangulation time takes more than the Delaunay flipping time in the process
of the Lazy Update.

3. In the Lazy Update, the number of flipping operations (FLIP) needed after
retriangulation is very small and much less than a worst case estimate would
suggest.7 This becomes more apparent when points move slowly at 5 mph.

Observation 1 tells us that when the number of points is less than 400, Lazy Update is a good
technique to maintain a Delaunay triangulation, and it is two times faster than a pure recom-
putation. However, when the number of points is more than 2000, one might as well recompute
a new Delaunay triangulation from scratch. We offer a possible explanation for this. The
retriangulation process capitalizes on a segment walk for face location, and a segment walk
takes O(�n) time. Observation 2 says that retriangulation becomes a dominant factor in the
Lazy Update as the number of points grows. At 2000 points, the O(�n) factor has become
dominant in the computation. According to Basch et al. [4], in a similar probabilistic setting like

6 We took the example of an M1 Abrams tank whose maximum speed is 45 mph.
7 Note that, in the worst case, the number of flipping operations needed to obtain a Delaunay triangulation
from an arbitrary triangulation is O(n2).
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ours, a Voronoi diagram undergoes �(n3/ 2) combinatorial changes. It seems that the combi-
natorial changes introduce more walks in the retriangulation as n increases.

Observation 3 suggests that a retriangulation without flipping from an old Delaunay trian-
gulation is a very good approximation for a new Delaunay triangulation, especially when the
points move slowly. So, when the number of points is less than 400, we can update a Delaunay
triangulation four times faster than performing a pure recomputation. At up to 1000 points, we
can still update a Delaunay triangulation at least two times faster.

5.3. Various Computational Result

The performance results of the density and clustering computation are given in Table 2. We
used the hybrid approach to compute density distribution. The raster window size used in the
density computation was 400 
 400. Particularly in the case of the density computation, after

Figure 8. Update time comparison on a Delaunay triangulation. In each plot, the green dotted line, the
blue dot-dashed line, the red solid line and the cyan dashed line respectively denote Flipping, Divide and
Conquer, Lazy Update and retriangulation time.
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one of the local influence regions has been rendered once onto the offscreen buffer, its raster
copy is used for the remaining regions instead of rerendering them each time. This is possible
because each local influence region is identical.

5.4. Approximating a Delaunay Triangulation

In some applications, an approximate Delaunay triangulation is sufficient. One way to
approximate a Delaunay triangulation is the lazy update as explained in Section 4.2.1. However,
in army applications, it is often the case that a fraction of the units does not move. Hence, we
can keep the same triangulation for a number of steps. This has motivated our investigation of
keeping the same triangulation for a number of steps. That is, we pretend that even though some
of the points may have moved appreciably, the old triangulation is still a valid Delaunay
triangulation.

In this experiment we use a different motion scenario than the one used in the other
experiments that used Boids movement. We initiated this experiment in order to compare the
performance of KDS with that of approximating a Delaunay triangulation. In the case of KDS,
the trajectory must be represented as a continuous functional form. Nevertheless, there is
probably no characteristic motion scenario in military applications, that is, there is probably no
such thing as average set motion sequences in a combat situation. In view of this situation, we
assume that all points move at random, on random trajectories, with an average but random
speed. The motion scenario in the experiment is as follows:

A set of 100 points moves inside a 2D rectangle of size 1.33 by 1, at speeds that are
on average 0.05 units/s. The maximum speed is 0.1, and minimum speed is 0. At
random intervals, a randomly chosen point alters its course. When a point reaches the
boundary of the rectangle, it alters course by reflection so as to remain within the
rectangle.

We keep track of all pairs that are within some distance threshold from each other, calling
such a pair a threshold pair. The threshold distance for the above experiment is 0.14, and it is
assumed to be a threat distance for hostile platforms. We compute such a threshold pair both on
a correct Delaunay triangulation and on an approximate Delaunay triangulation. The approxi-

Table 2. Simulation performance result.a

NUM DEN CLUSTER

100 0.0500 0.0060
200 0.0860 0.0123
300 0.1218 0.0190
400 0.1576 0.0256

a NUM denotes the number of platforms
involved in the simulation. DEN denotes
the time (s) to compute density distribu-
tion. CLUSTER denotes the time (s) to
compute clustering. Here, we use the hy-
brid approach to compute density distribu-
tion. In this simulation, we achieve inter-
active rates for the density and cluster com-
putations.
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mate triangulation is constructed by keeping the old triangulation. Then, we ask how many
deductions, based on the assumed triangulation, differ from those that would be made from the
true Delaunay triangulation. The measurement was taken on an SGI R10000 with 192MB main
memory, and Table 3 gives some insight into the above question.

The mean time for constructing the Delaunay triangulation from scratch has been 0.0077 s
using the LEDA library. Table 3 shows that in this experiment the effect of using the incorrect
triangulation is small for 5 time steps. In some cases, keeping the old triangulation for 10 steps
may be acceptable, but after that the triangulation should be updated. Therefore, holding over
the triangulation for up to 5 time steps may incur an acceptable safety risk for those who cannot
afford to update the triangulation at every time step.

6. SUMMARY

6.1. Reported Work

We have presented proximity calculations (density and clustering) to enhance the situation
awareness a military commander would have of the battlefield. This work extends the func-
tionality of battlefield visualization packages which have been traditionally devoted to terrain
visualization. By capitalizing on perceptual psychology aspects in the low level human visual
system, we rendered the result of proximity calculations with cognitive efficiency.

Computationally, our approach to the proximity calculations needs fast geometry algorithms.
In particular, dynamic updates are needed since platforms in the application are assumed to
change their position frequently. We have extensively explored various solutions from dynamic
computational geometry to effectively solve the problem, namely, a Delaunay triangulation
based approach, an image-based approach, a hybrid approach, and a KDS approach. Each
approach has its own strengths depending on restrictions either given by the nature of the
problem itself or given by the computing platform. However, we have found that the Delaunay
triangulation based approach is the most flexible approach among them.

Table 3. Experiment on approximating a Delaunay
triangulation.a

A B C D

5 6.10 0.04 0.3153
10 6.1414 0.4738 0.7243
15 6.3 1.38 1.7278
20 6.46 2.63 2.4604
a The A-column shows the number of time steps for
which the triangulation is kept the same topologi-
cally. The B-column indicates the number of pairs,
deduced from the deformed triangulation, that are
within the threat distance of 0.14. The C-column
indicates the mean number of errors between the
threshold pairs of the kept triangulation and those of
the correct Delaunay triangulation. The D-column
shows the standard deviation. This experiment dem-
onstrates that the effect of using the deformed trian-
gulation is small for 5 time steps, and acceptable for
10 time steps.
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We also explored various techniques to dynamically update the Delaunay triangulation,
namely, successive insertion and deletion, one-time update, and lazy update. We have experi-
mentally shown that the lazy update technique is a most efficient way to handle dynamic
updates, especially when there exists sufficient coherence in the movement. This idea is
extended by exploiting what happens when no update is performed within some period of time.
We showed experimentally that two unconventional approaches can be attractive for those who
cannot afford more expensive computation all the time.

6.2. Future Work

Most of the techniques in this paper have been developed in two dimensions. The two-
dimensional view ultimately helps understand a three-dimensional combat view. In some
situations, a two-dimensional approach is sufficient or even more suitable than the three
dimensions counterpart. Nevertheless, the extension to three dimensions is inevitable, simply
because the human visual system perceives the world in three dimensions and battles take place
in three dimensions. This should offer more opportunities to exploit preattentive rendering and
computing density critical attributes.

Expanding into three dimensional space, spatial Delaunay triangulations8 would be needed.
Most of the techniques explored throughout the paper can be directly applied to the computation
in a three-dimensional Delaunay triangulation, since the techniques are independent of the
ambient dimension. Unfortunately, the construction of a Delaunay triangulation in three dimen-
sions becomes more difficult. It is known that the optimal computation time of a Delaunay
triangulation in three dimensions is O(n2) time using a randomized incremental approach [36].
A particular problem with three-dimensional Delaunay triangulations is that it is very difficult
to devise a dynamic algorithm, especially for the deletion operation.9 The main reason for the
difficulty is that the locality property in three-dimensional Delaunay triangulation is intrinsically
more complicated than the two-dimensional counterpart [46]. Accordingly, update techniques
for the two-dimensional Delaunay triangulation discussed in Section 4.2.1 cannot be easily
extended to three dimensions. An efficient deletion operation must be investigated first before
designing an efficient update of a three dimensional Delaunay triangulation.
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