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An Experiment in Rule-based Crowd Behavior for Intelligent 
Games 

Seongdong Kim,† member and Christoph Hoffmann††, non- member

Summary 
Today video games and animated movies and robotics involve 
individual and collective character behaviors.  To this end, 
behavior algorithms are studied to identify underlying principles 
of how information flows between the characters and studies 
consider research in animal behavior. The prey-predator models 
could be based on simple attraction / repulsion. We will 
primarily be limiting ourselves to the behavior of prey-predator 
to finding mathematical models and simulating prey-predator 
interactions for application in computer games. 
Key words: 
Crowd behavior, rule-based behavior, collective behavior, 
interaction 

1. Introduction 

A crowd is a large group of people physically grouped 
(crowded) together. There are certain behaviors that 
individuals of a crowd assume because they are members 
of the crowd that differ from ordinary, individual 
behavior. The collective crowd behaviors are similar to 
those found in members of a flock of animals and include 
collision avoidance and maintaining crowd membership. 
For instance, a migrating group of geese will have a leader 
the group is following. A migrating herd of gazelles will 
proceed in a broad stream of individuals. 

In a crowd of people an announcement may cause 
individuals to head in a particular direction or initiate 
specific maneuvers. Behavioral character is all about 
cognitive interaction with environment combined with the 
limitation imposed by simulation. Crowd behavior is not 
only needed to create an atmosphere but also should 
simulate intelligent actions of the group or individuals [1]. 
Modeling reflexive behavior, and intelligent behavior, is 
an open-ended task. Even simple flocking and pre-
predator models can be difficult to control. Humans are 
even more complex and modeling their behavior is a task 
that Artificial Intelligence has been addressing for decades 
in many contexts [2]. In a [4], Couzin defined each 
individual animals follow three simple rules: repulsion, 
orientation and attraction zone [9]. 
In this paper we explore crowd behavior that is based on 
simple rules. Despite the simplicity of individual behavior 
rules, the internal dynamic of a crowd can result in 
complex collective behavior, and research in ethological 
biology seeks to explain observed collective behavior by 

postulating rules for individuals. We seek to invert this 
process, devising rules that lead to compelling crowd 
behavior for use in computer games, simulating prey-
predator interaction to use the behavior algorithms and 
enhancing interaction of simulation by manipulating 
control parameters. 

2. Steering and Flocking 

Steering behaviors for autonomous characters draw on a 
long history of related research in other fields.  Reynolds 
[1] used to refer to the improvisational and life-like 
actions of an autonomous character. He proposed a 
division of motion behavior for autonomous characters 
into a hierarchy of 3 layers: action selection, steering, and 
locomotion. While flocking behavior can be interesting, 
especially when interacting with obstacles in the 
environment, the objective is to produce a single uniform 
motion – the emergent behavior of the flock. It is one of 
the lowest forms of behavioral modeling. Members have 
only the most primitive intelligence that tells them how to 
be a member of a flock. From these local rules of the 
individual members, a global flocking behavior can 
emerge. While flocks typically consist of uniformly 
modeled members, prey-predator behavior may result 
from mixing two competing types of agents. To use the 
flock analogy but acknowledge that it refers to a more 
general concept, Reynolds uses the term boid to refer to a 
member of the generalized flock. To simulate the behavior 
of actual flocks, the animator can have the leader change 
periodically [2]. Actual flocks may change leaders because 
the wind resistance is strongest for the leader and rotating 
the job allows the birds to conserve energy as shown in 
Figure 1. 
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(a)    
 

(b)   
 

(c)    
 

(d)   

 Fig. 1  ⒜ Prey-predator scene in Galapagos (1st ). ⒝ Korean crowd     

behavior at a beach of   Haewoondae (2nd ). ⒞ The winter behaviors of 

birds in Gachang, Korea (3rd ). ⒟ Traffic flow in Seoul(4th ) [8] 

Assumptions  

There are many factors that influence the behavior of 
the prey-predators and more research is needed to fully 
and completely model it. Prey and predators have a 
maximum age. In the case of prey it relates to the 
number of prey inversely, so that it can model the 
capacity of the environment to sustain a large herd. 
That would eliminate the need for the current 
maximum number of prey allowed. Likewise, fertility 
should be higher for a smaller number of prey and 
lower for a larger herd, for the same reasons. Predators 
should have offspring too, and should feed them to 
make them grow up. There would be a set amount of 
food needed over a certain time span to make the 
predator baby grow up and be viable. Like the prey, 
predators should die. In nature, herds can assume 
specific formations to defend themselves and their 
young. Likewise, many predators hunt in groups and 
execute a strategy for isolating individuals from a herd 
and hunting it down. Those behaviors are a particular 
challenge to model well and require geometric 
algorithms we are beginning to explore. 
 

3. The Model 

 
Video games, autonomous machines, animations in 
movies and robotics are subject areas interested in studies 
that explore individual and group behaviors. We propose 
as a modified mathematical model of Lotka-Volterra 
equation for the behavior of prey-predator interaction [7]. 
We are trying to understand the natural interactions 
between individuals. If we let N(t) and M(t) represent the 
number of prey and predators, respectively, that are alive 
at time t, then the prey-predator model with linear per 
capita growth rate is  

 

NgMk
dt

dN
)(     and     MqwN

dt

dM
)(   (1) 

 
The parameter k is the growth rate of the species n of 
prey, in the absence of interactions with the species M of 
predators. Prey numbers are diminished by these 
interactions. The per capita growth rate decreases here 
linearly with increasing M, possibly becoming negative. 
The parameter g measures the impact of predation and q is 
the death rate of species M in the absence of interaction 
with species N. The term wN denotes the net rate of 
growth of predator population in response to the size of 
the prey population. 
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4. Description of the Experiment  

4.1 Prey-predator behavior description 

At a minimum, the reasoning component for prey-predator 
models could be based on simple attraction/repulsion 
[Error! Reference source not found.]. One character 
class is attracted to the other trying to eat it while the other 
class is repulsed by the first and seeks to avoid being 
eaten. While a simple force field model can produce 
interesting motion, incorporating some predictive 
reasoning ability in one or both character classes can make 
the situational behavior more realistic. The rule used in the 
experiment is to populate the field with N preys as follows 
(see Fig.2). The spawn point is a random location within 
the test field for mature prey. Prey may spawn babies, and 
in this case the baby prey is spawned in the vicinity of the 
parent.  The starting and maximum speeds are initialized 
to be random values with a global default maximum for 
each of them.  As prey ages, they acquire greater speeds, 
so simulating the vulnerability of new offspring. Next, M 
predators are spawned, also in a random location in the 
test field, and again the current and maximum speed is 
initialized as in the case of prey. Here the maximum speed 
is constant and does not increase with time. 
 

4.2 Experimental implementation 

We give a few notes explaining the prey-predator 
algorithm: 
 
 

 
 The default behavior of prey is to group together and 

exhibit flocking but highest precedence is given to 
obeying boundary constraints of the field. So, even 
when engaged by a predator, a prey first ensures that it 
does not violate the test field boundary limits.  

 The first update step involves refreshing the current 
max speed because this grows constantly for a prey. So 
when it is born the current max speed is relatively low, 
but as it ages, the speed is increased to reflect growth 

 
Eqn:curMaxSpeed = ( min(curMaxSpeed + 0.15f * 

 elapsedTime, maxSpeed) ); 
 

 The next step is to obey boundary constraints. If the 
prey is currently outside the field limits it steers to 
seek the center of the field thus automatically causing 
to turn back into the field. 

Code: if(fabs(position().x) > FIELD_SIZE || 
fabs(position().z) > FIELD_SIZE) 

totalSteer += 10.0f * 
xxxsteerForSeek(Vec3::zero).perpendicularComponent
(forward()); 

 

 Next, a check is performed to find out if the prey is 
currently under pursuit by a predator. Right now this 
is pretty straightforward: get the list of neighbors 
from the spatial database and check if any of them is a 
predator. If so, find an exact opposite direction vector 
and steer in that direction. There are also some 
random calls to a ‘wander’ steering behavior for 
better realism. 

Code:Vec3 flee = ((*i)  

->predictFuturePosition(elapsedTime)) - position(); 

flee *= -1.0f; 

flee = flee.normalize() * 13.0f; 

 

 If not being pursued, then the next step would be to get 
into a flock with the neighboring prey. This is done in 
3 steps: 

 
a. Separation: Try to maintain a minimum 

amount of distance from the neighbors so 
no collision takes place. 

totalSteer += 8.0f * 
steerForSeparation(4.0f, -0.707f, 
nb); 
 

b. Cohesion: Try to move towards the center 
of gravity of the neighboring prey so as to 
form a closed group. 

totalSteer += 6.0f * 
steerForCohesion(9.0f, -0.15f, nb); 

c. Alignment: Try to orient self in the average 
forward direction of the neighbors. This 
ensures the future movement of the 
collective herd is synchronized. 
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totalSteer += 6.0f * 
steerForAlignment(7.45f, 0.7f, nb); 

 

 

 Finally, if the prey is a newborn of an existing live 
prey (its mother), it tries to stick with it. This is first 
taken care of by spawning the baby in the vicinity of 
the mother. The flocking behavior ensures that the 
baby tries to stay close to its mother. But this could be 
disrupted by a predator chase or collision avoidance 
measures amongst the flock. In such a case when a 
baby’s distance from its mother exceeds a particular 
threshold, it performs a ‘steer to seek’ action until it is 
within an acceptable distance from its mother. 
 

 The first step of a predator’s update loop is the same as 
the prey’s obeying boundary limits. This is exactly as 
shown above. 

a. The next step is to find the easiest prey to 
chase. This involves taking into account 2 
things, the distance to the prey and the age 
of the prey (the younger it is, the slower it 
is).  

 

5. Results 

We have simulated a prey-predator behavior management 
within a specific area with scripted and ruled-based 
behaviors. 

 
 

Fig.2 Prey-predator intelligent behavior 
 

 

To find the optimal prey, a list of neighboring prey is first 
retrieved. Then for each prey, a heuristic is used to decide 
its optimal candidate value. The distance to the prey is 
divided by the Min (0.1f, age), where the age ranges from 
[0, 1.0]. So far this has turned out to be a pretty good 
heuristic. We are currently extending the simulation in 
several ways. Predators are given the ability to 
communicate with each other up to a certain distance.  
They are then negotiating which prey to pursue and may 
collaborate.  To collaborate, they first execute a stalking 
strategy, staying just beyond the distance below which 
prey notices their presence. Concurrent with stalking, 
predators need a positioning strategy that surrounds the 
group of prey and seeks to isolate some of its individuals. 
If unsuccessful, predators will die from starvation after 
some time. For enhancing interaction with the simulation, 
we let the user manipulate the controlling parameters 
through the control interface shown in Figure 3. The 
number of prey-predators, of max prey-predators and 
prey-predator life span can be modified with the control 
interface as shown in Figure 3. These parameters and 
modalities are controlled by a user interface, allowing us 
to explore the effect of various settings on the overall 
emergent properties of the system. 
 

 
 
Fig.3 Prey-predator behavior parameters 

6. Pack Hunting and other Extensions 

The experiment reported uses only very simple behavioral 
strategies.  More behavior traits are desirable and can be 
implemented.  In particular, the Open Steer Library of 
Reynolds [2] offers tools for overlaying over the basic 
behavior more complex pattern.  One such pattern would 
be to let predators hunt in packs and try to single out 
individuals from the crowd, separate them spatially, and 
then attack.  In the current version of the implementation 
we have begun to implement such strategies.  In particular, 
predators are seeking to communicate with their peers and 
surround a targeted individual: 
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(a)  

(b)  

(c)  
Fig.4 Predators (cyan) surrounding 3 prey (red). 

(a): two predators decide to join with a third to hunt. 
(b): waiting while the predators surround the prey. 

(c): closing in on the prey from three sides. 

 
In this implementation, the predators start out as 
individuals, but a pack-seeking behavior activates other 
predators are nearby and there is a chance to hunt prey 
together.  Such a behavior has to be weighed against other 
behavior.  For instance, when the pack forms, they do so 
for the purpose of hunting a common target.  There may 
be an opportunity target that a predator would forgo if the 
pack formation has too high a priority.   

Figure 4 illustrates the pack-hunting process.  In the 
top panel, (a), two predators encounter a third who is 
getting ready to attack the prey at the top right.  They 
decide to join.  Since predator vision extends farther than 
prey vision, the prey is still unaware of this development.  
Elsewhere, two flocks of prey decide to join. 

Next, in the middle panel, (b), the two predators who 
have joined surround the prey just outside the circle of 
awareness, getting into position.  The two other herds of 
prey have now combined into a larger herd. 

Finally, in the bottom panel, (c), the predators close in 
on the prey which unsuccessfully tries to escape.  This 
pack-hunting behavior is in addition to the behavior 
characterized before.  Its activation has to be carefully 
considered, so that realistic overall behavior results.  In 
particular, the decision to hunt separately or in a pack has 
to be considered.  In our implementation, predators hunt 
individually unless there are other predators nearby, in 
which case they join forces and run together.  In nature, 
one can observe more complex patterns in which packs of 
hunting predators split, separately pursuing different prey, 
and abandoning the chase of the other prey when a kill has 
been made. 

A similar issue of activating different elements of 
behavior arises when, in the pursuit of prey 1, a predator 
passes by a prey 2 that is apparently closer.  Here, the time 
discretization can lead to unexpected results.  Suppose we 
want to implement that a predator switches from prey 1 to 
prey 2 if, in the pursuit of prey 1, prey 2 is nearer at some 
point in time.  The natural implementation will evaluate 
the nearby prey 2 by determining the expected distances at 
time t+t.  If the chase is high-speed, the point at which 
prey 2 is nearer may be in-between time t and time t+t.  
This makes the predator ignore prey 2 and continue to 
chase prey 1, a situation that is visually unconvincing. 

Finally, if the predator-prey simulation is to reflect 
animal communities, we have to include spawning 
offspring that, on the predator side, has to be fed and 
trained, and on part of the prey has to stay close to a 
parent. This means in particular that the urge to stay with 
the crowd is stronger in youth and could diminish later-on, 
since the relatively slower and vulnerable offspring of 
prey is an easier target.  That is especially the case when 
grown-up prey are difficult or impossible to attack 
successfully [11].  
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7. Temporary Separation 

Obstacles present a special problem for autonomous 
behavior since it is difficult to endow autonomous 
characters with a true sense of space.  For example, using 
only Reynold’s rules, a flock of boids that encounters a set 
of pillars in its path may have to split into subgroups until 
the pillars have been passed.  A true flock would at that 
point re-unite, but explicit bounds on the group attraction 
can cause difficulties.  The problem has been investigated 
in [10] assuming a variety of individuals and accounting 
for their physical characteristics.  The types of individuals 
considered include bicyclists; one-legged, hopping robots; 
and abstract point-mass individuals.  Since the work 
accounts for the physical characteristics, it is not 
surprising that the separation distance for bicyclists has to 
be made greater than for the other types of individuals, in 
order to avoid collisions.   

Since obstacles must be avoided, as must be other 
members in the crows, the separation rule has to be 
adjusted near obstacles.  This can be done by defining an 
influence region around the obstacle of appropriate size, 
and assigning weights to the urgency with which to avoid 
the obstacle that grows with diminishing distance from the 
obstacle.  The main difficulty is to ensure a form of 
progress beyond the obstacle.  For example, in order to 
avoid bouncing aimlessly along an obstructing wall, 
Reynolds aims for the obstacle silhouette, creating a goal 
for the motion of the crowd.  Once a silhouette location is 
achieved, the individual must switch to a more distant goal 
so as to continue along the path and not stop next to the 
obstacle.  This approach of setting goals can be adapted to 
our predator/prey simulation as follows. 
1. Predators seek out prey wherever it may be found.  

No specific global goal needs to be added. 
2. When nearing an obstacle, a subgoal is formulated by 

which to steer towards the silhouette of the obstacle.  
When this subgoal has been achieved, we can 
reinstate the search for the global goal. 

3. Prey seeks out pasture for grazing.  Again, this is a 
global goal. 

4. Obstacles are treated in the same way as prey do, and 
when the subgoal has been achieved, the global goal 
is again reinstated. 

We assume here that the formulation of the global goal is 
derived from the geometry of the obstacle and the location 
of the global goal, as indicated in Figure 5: 

 
Fig.5: Subgoal formulation by global goal:  

The nearer silhouette point is chosen 

 
When the path towards the goal intersects an obstacle, the 
silhouette points seen from the current position are 
computed.  The nearest silhouette point is then chosen as 
the subgoal to pursue.  When the subgoal has been reached, 
navigation switches back to the global goal.  By choosing 
the nearest silhouette, complex paths can result as shown in 
Figure 6. 

 
Fig.6: Navigation past several obstacles by subgoal choosing the nearest 

silhouette point.  Solid arrows show the final path. 

 
We have not investigated the competence of this heuristic 
experimentally.  In particular, the case of a moving global 
goal may require adjustments.  

It is important to realize that this heuristic cannot cope 
with all situations.  It uses a simple obstacle avoidance 
strategy that is very efficient, but it is well known that path 
planning has high complexity, thus this simple heuristic 
must fail in certain situations; e.g., [12].  Furthermore, it 
does not account for the geometry of the moving 
individual which may not fit through tight passages. 
 

9. Summary 

We have investigated experimentally the behavior of 
individuals in a crowd and the emergence of crowd 
behavior.  Using predator/prey simulations as vehicle, we 
have considered behavior that adds to Reynolds three 
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basic rules (avoid collision, seek out your kind, and go 
along with your neighbors) higher-level behavioral traits 
in a hierarchical manner, as advocated before by Reynolds 
[2].  Our experience with developing this higher level 
behavior on the whole is good:  New traits can be fitted 
well into the hierarchy of impulses.  However, some 
aspects of the implementation, such as goal switching and 
subgoal formulation require more experimentation to 
accomplish simulations that reproduce, in fair measure, 
animal predator/prey behavior. 
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