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ABSTRACT

We present a technique to parameterize skin deformation by skeletal motion and to transfer the deformation style from
one character to another. We decompose skin deformation into time-varying signals and basis matrices by using dimen-
sion reduction techniques and then approximate the time-varying signals by using radial basis functions with respect to
joint angles that define skeletal motion. This decomposition reduces the size of deformation data to a small number of
time-varying signals that represent the complex role of muscle action. The subsequent parameterization yields a fast and
intuitive control of characters; thus, it allows us to construct faithful skin deformations quickly as skeletal bones move. The
representation of our parameterization allows us to capture and transfer a derived deformation style to another skeleton–
skin structure without considering the input dimension of the deformation data. This style transfer can be used as a basis
for realistically animating variants of sample characters that have the same skeletal topology. Parameterization of skin
deformation and its style transfer can be performed within a small amount of error once the preprocessing time and control
of the deformation is carried out in real time by our graphics processing unit implementation. Copyright © 2011 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Faithful skin deformation enhances the realism of virtual
characters in interactive animation environments such as
games. Skin deformation has numerous degrees of freedom
because it is affected nonlinearly by complex motions of
underlying structures such as bones and muscles. The com-
plex and nonlinear dependence makes it hard to achieve
realistic skin deformations.

Traditionally, well-trained artists spend much effort on
setting up a realistically looking and moving character.
Motion capture and physical simulation techniques have
greatly reduced the required amount of manual effort
and resulted in computational tools for generating realis-
tic skin deformation. However, those methods require a
large amount of storage space or execution time and lack
convenient controls for computing appropriate skin defor-
mations. Therefore, those methods have a limited role in
particular interactive environments. In game applications,
for example, fast execution with small amounts of data
and simple control methods are crucial yet must achieve

a credible degree of realism. It is clear that these require-
ments cannot be met easily and that a trade-off may be
needed. We present a method to parameterize skin defor-
mation by skeletal motion in order to represent the defor-
mation with a small amount of data and to provide a fast
and intuitive control. We also present a method to transfer
the deformation style from one character to another using
simple matrix computations.

We assume that skin deformation is represented by a
sequence of vertex motions over time. This data can be
obtained either by motion capture devices or by compu-
tationally demanding physical simulation of muscles with
skin. First, we decompose the skin deformation into two
parts, one of which represents a local basis matrix and
the other represents time-varying signals, using existing
dimension reduction techniques such as principal compo-
nent analysis (PCA) or independent component analysis
(ICA). Time-varying signals model virtual muscle actions
that affect the vertex motions in a local coordinate system.
Projecting the signals into time-corresponding joint angles
and approximating the signals using radial basis functions
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(RBFs), we have a parameterization of skin deformation
with respect to skeletal motion. Although it is not easy
to define the style of skin deformation mathematically,
the notion of style is often considered as the intrinsic dif-
ference between two deformations. The style captured by
the difference between deformations can be transferred to
another deformation so that it follows the style. Because
the skin deformation is represented by the matrix multipli-
cations in our parameterization, we can easily capture the
deformation style between two deformations and transfer
the style to another using simple matrix computations.

2. RELATED WORK

There are many research results aiming to represent real-
istic skin deformation as the human body moves. We
briefly review the subspace parameterization and data-
driven approaches that are closely related to our method.

The subspace parameterization approach parameter-
izes skin deformation by a certain underlying structure—
typically bones (joints). In a skeleton subspace deforma-
tion (SSD) model, a vertex on the skin is attached to a
few joints, and the motion of the vertex is computed as
a weighted combination of joint angles [1]. Because of its
simplicity, this method executes extremely fast and is easy
to implement, and hence this technique is widely adopted
in many real-time applications such as games. Unfortu-
nately, this method cannot avoid artifacts near joints such
as collapsing elbows and candy wrap effects. To resolve
such artifacts, Lewis and colleagues [2] proposed a pose
space deformation technique, in which they represented the
deformation as a function of a high-dimensional pose space
spanned by a set of skeletal joints using scattered data
interpolation techniques. Sloan and colleagues [3] interpo-
lated an articulated figure using example shapes scattered
in an abstract space. Kry and colleagues [4] presented the
practical EigenSkin technique where they used a PCA to
represent the displacements locally. Mohr and Gleicher
[5] modified erroneous regions with additional bones for
better approximation of skin deformation. Kurihara and
Miyata [6] used the weighted pose space deformation for
more accurate example interpolation. Wang and Philliphs
[7] instead used multiple weights for each bone. James
and Twigg [8] suggested a method to determine a virtual
skeleton from example deformation data, seeking to find a
single weight envelope method. Wang and colleagues [9]
proposed a rotational regression model with deformation
gradient prediction. Kavan and colleagues [10] presented a
dual quaternion blending scheme for skinning.

Data-driven approaches are able to produce realistic
results because they capture the deformation from real
examples. Most of them take a large volume of the defor-
mation data obtained by range scan [11], or by a motion
capture device with a large number of markers [12], and
so on. Anguelov and colleagues [13] presented a method
for building a human-shape model that spans variation in
both subject shape and pose by learning a pose deformation

model and a separate model of variation based on body
shape. Park and Hodgins [14] presented a method to rep-
resent the deformation due to dynamic effects as well
as skeletal motion. Several research results have been
proposed to resolve the high-dimensional difficulties of
the deformation data by reducing the dimensionality of
the parameter spaces using reduced deformation models,
modal techniques, and so on [4,15–18].

Sumner and Popović [19] presented a method to transfer
the deformation from a source mesh to a different target
mesh using a user-defined correspondence map between
the source triangles and the target ones. Baran and col-
leagues [20] proposed an automatic transfer method that
uses several example mesh pairs by inferring a correspon-
dence between the shape spaces of the two characters.
Those methods so proposed are to produce target mesh
deformation from source mesh deformation by exploiting
the correspondence of triangles or poses. In this paper, we
aim to produce target skin deformation that follows source
deformation style by capturing and transferring the dif-
ference of two source deformations without considering
any shape or pose correspondence between the source and
the target.

3. PARAMETERIZATION OF SKIN
DEFORMATION

It is well known that PCA and ICA can be used to reduce
the input dimension within a specified amount of error
[21,22] and that RBF can be used to parameterize the
scattered data with respect to desired parameters [23]. By
means of these mathematical tools, we describe the over-
all parameterization method briefly as shown in Figure 1.
We assume that the skin deformation is represented by
a sequence of n vertex motions over time whose frame
length is m such that P .t/D f Epi .t/j0� i < n, 0� t < m,
and Epi 2 R3g and that the corresponding joint angles
‚.t/D fE�j .t/j0� j < l; 0� t < m, and E�j 2 SO.3/g
are known, where l is the number of joints.

Figure 1. Parameterization of skin deformation with respect to
joint angles by means of (1) dimension reduction, (2) projection,

and (3) radial basis function approximation.
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First, we extracted the nonrigid deformation X.t/ by
eliminating the contribution of the rigid and possible SSD
motion from the rest pose such that X.t/D P 0.t/�P .0/,
where P 0.t/ is the vertex positions measured in the space
that defines the rest pose P .0/ [4,24]. The vertex dis-
placements X so obtained was anatomically considered to
be influenced mainly by muscles between skeletal bones
and the skin. Instead of modeling the influence from the
muscles directly, we reduced the dimensionality of X.t/
in order to make the subsequent parameterization simple
by dimension reduction techniques such as PCA or ICA;
then, we have

X.t/D A S.t/ (1)

In Equation (1), within a specified amount of error, we can
take k largest eigenvalues in PCA or specify k independent
signals in ICA. In the case of k < m; n, the size of defor-
mation X is reduced from .n�m/ to .n�k/C .k�m/ by
decomposed matrices A and S .

By means of dimension reduction techniques, we have
time-varying signals S.t/ with respect to a basis matrix A,
which defines the linear combination of signals for all ver-
tex motions in X . Each column vector of S.t/ represents a
k-dimensional position on a curve parameterized by time.
At the same time, for each column vector of S.t/, we also
have its corresponding joint angles at the corresponding
column of ‚.t/. For any column vector Es in S.t/ and its
corresponding column vector E� in ‚.t/, an ordered pair
.Es; E�/ represents a position in .k C l/-dimensional space.
Projecting all the m positions onto an l-dimensional sub-
space (skeletal space), we have scattered m point samples
of a k-dimensional surface. Using a thin plate spline as the
kernel function of RBF, we can approximate the surface
that maps from joint angles onto signals. Once the approx-
imation is performed successfully, we can represent the
vertex displacements on the skin with respect to arbitrary
joint angles such that

X.E�/D A S.E�/ (2)

where E� stands for joints angles of length l . Equation (2)
gives an intuitive control to produce a nonrigid skin defor-
mation from the joint angles that define skeletal motion.

There has been research to parameterize the motion of
points on the skin by approximating X with respect to ‚.
The parameterization has taken place directly in a higher-
dimensional parameter space with .nCm/ dimension. In
contrast, our parameterization is indirect and takes place in
a .kCl/-dimensional space of much lower dimensionality.
Even though the approximation problems are recognized as
underdetermined linear system, the approximation in this
low-dimensional space can avoid the over-fitting problem,
and hence it generates a smooth surface with respect to
desired parameters.

Our parameterization method seems to be quite similar
to that of the EigenSkin [4], which also takes PCA and

RBF interpolation into account for the parameterization
of skin deformation. They defined the joint support that
is significantly affected by a joint motion, computed an
eigendisplacement for each vertex of a joint support using
PCA, and then blended the eigendisplacements of all the
joints that support a single vertex using RBF interpolation.
However, we are not required to find a set of vertices that
are affected by each joint explicitly and take all the possi-
ble joints that affect a single vertex into account simulta-
neously. The consequence representations of [4] and ours
are quantitatively equivalent for a vertex displacement, but
our representation is suitable for the style transfer opera-
tion described in Section 4. It is also obvious that a vertex
of skin is not always influenced from all the joints when
we consider the whole-body skin deformation. Hence, the
explicit segmentation of skin is helpful to reduce the size
of parameterization problem of skin deformation.

4. STYLE TRANSFER

Given two input skin deformation data X1 and X2, we
present a method to capture and transfer the style between
X1 and X2 into another input deformation Y1 in order to
produce a new skin deformation Y2 that follows the style
by simple matrix computations (Figure 2). We show that
our style transfer can be carried out without considering
any shape or pose space correspondence but considering
the intrinsic conditions between input deformations such
as the number of vertices of the skin, time-varying signals,
and examples. We assume that input skin deformations
are obtained from the same skeletal topology, that is, the
same skeletal hierarchy but not the same bone length to
each other.

Let the matrix T WX1!X2 be the transformation from
X1 toX2, which plays a role in capturing the style between
X1 and X2, such that

T D A2S2S
C
1 A
C
1 (3)

where MC stands for the pseudo-inverse matrix of M .
Applying T to X1 allows us to obtain the transformed sig-
nals ofX1 with respect to the same basisA2 ofX2 because
T is the change of coordinate transformation matrix from
X1 toX2. Let n1 and n2 be the numbers of vertices, k1 and

Figure 2. Skin deformation style transfer: computing the skin
deformation Y2 that follows the style between X1 and X2

from Y1.
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k2 be the numbers of time-varying signals, andm1 andm2
be the numbers of example frames in the deformation data
X1 and X2, respectively. The transformation matrix T can
be obtained only if k1 D k2 and m1 D m2, irrespective
of the number of vertices n1 and n2. It is easy to make
k1 D k2 by specifying the same number of independent
signals in ICA or taking the same number of eigenvalues
in PCA when computing Equation (1). Note that we can
always reconstruct new input skin deformation X1 and X2
of the lengthm by specifying the samem sequence of joint
angles E� for S1 and S2 in Equation (2), once we obtained
the parameterization of the original skin deformation.

Similarly, let the matrix U W Y1 ! X1 be the transfor-
mation from Y1 to X1, which plays a role in matching the
space between X1 and Y1, such that

U D A1S1R
C
1 B
C
1 (4)

Let n01, k01, and m01 be the number of vertices, time-
varying signals, and frames in Y1, respectively. Regardless
of n1 and n01, the matrix U can also be obtained only if
k1 D k

0
1 and m1 Dm01, which can be achieved as easily as

described in Equation (3).
Finally, we can obtain the desired deformation Y2

such that

Y2 D T
0Y1

D UCT UY1
(5)

Only the additionally required condition to obtain the
deformation data Y2 using the Equation (5) is n1 D n2
but not necessarily n1 D n01. That is to say, if we prepare
two example deformations X1 to X2 carefully for a char-
acter X with the same number of vertices, we can transfer
the style between X1 and X2 to any variant Y2 of Y1 for
a character Y without having to consider the number of
vertices between X and Y .

One of the advantages in our parameterization is pro-
viding a mathematic way to interpret geometric meaning
of skin deformation using a simple matrix computations.
We can represent Y1 D Y1S

C
1 S1, which describes Y1 with

respect to the same time-varying signals S1 of X1 in a
transformed basis Y1S

C
1 . Similarly, let X2 D A1A

C
1 X2;

then, X2 is described by a transformed time-varying sig-
nals AC1 X2 in the same basis matrix A1 of X1. Therefore,
X2 and Y1 can be described in the same style space of X1
with transformed basis and signals simultaneously. For the
verification purpose, let A� D Y1S

C
1 be the transformed

basis matrix and S� D AC1 X2 be the transformed time-
varying signals; then, the style-transferred deformation
can be described by the multiplication of the transformed
basis matrix and time-varying signals such that Y2 D
A�S� D Y1S

C
1 A
C
1 X2 D UCA2S2 D UCTA1S1 D

UCT UB1R1 D T
0Y1, which produces the same result in

Equation (5).

5. EXPERIMENTAL RESULTS

We implemented our proposed method on a PC with
2.4-GHz core 2 quad processor, 4GB main memory, and
GeForce 8800 Ultra (768MB) graphics subsystems. For
our graphics processing unit implementation purpose, we
set the maximum number of signals to 12 for each x, y,
and z coordinate of a single vertex deformation. If a ver-
tex of the skin has more than 12 signals within a specified
amount of error, we make the skin partitioned into several
parts manually.

Table I shows the quantitative experimental result of our
parameterization and style transfer of skin deformation.
For input skin deformation shown in Figure 3(a), we
applied either PCA or ICA to parameterize the deformation
with the same RBF shown in Figure 3(b). Then, we com-
pared the parameterization results in terms of root mean
square error (RMSE) and the maximum error (MAXE)
with respect to the original input deformation. The RMSE
and MAXE are measured relatively to the size of the
model, which is set to 100. When using the same number
of signals in both PCA and ICA, there is no meaningful or
noticeable difference quantitatively between PCA and ICA
for a given example deformation. Therefore, Table I does
not show whether we apply either PCA or ICA.

The amount of parameterization error is mainly affected
by the quality of input example deformation as shown
in Table I. Note the result for the male character of
Figure 5(a). As the number of example framesm increases,
the number of selectable signals increases, and hence the
amount of RMSE and MAXE decreases rapidly. Given
the same number of example frames, the more signals
selected, the smaller error obtained. However, the impact
of the number of signals is limited and saturated at a cer-
tain number of signals. The amount of processing time
includes computing time for the matrices A and S in
Equation (2), which is also primarily affected by the num-
ber of input examples but not by the number of signals.
Once Equation (2) is obtained by our parameterization, the
evaluation performs very quickly.

To measure the performance of our style transfer
method, we designed deformation examples for simple
geometry objects as shown in Figure 4. There are input skin
deformation X1 and X2 for a cube shape X and another
input skin deformation Y1 for a cylinder shape Y . The
input deformation X1 and Y1 are generated using a sim-
ple SSD, and X2 are generated using the dual quaternion
technique [10] for the comparison purpose. The number of
vertices in X and Y differ to each other(402 vs. 290 or
482), but the number of examples and signals have to be
the same in order to capture and transfer the style between
X1 and X2 into Y1. The result deformation Y2 after style
transfer from Y1 is compared with the ground truth defor-
mation that is generated using the dual quaternion tech-
nique to the same cylinder shape Y . The amount of error
in Figure 4(b) includes the parameterization error relative
to the ground truth deformation. The amount of error in
Figure 4(d) includes the style transfer error between the
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Table I. Quantitative result of parameterization and style transfer, where n stands for the number of vertices on skin, m for the
number of frames in a given example, k for the number of signals obtained by principal component analysis, and R for the radius of

the bounding sphere for a given model.

Model n m k R RMSE MAXE Time FPS

Arm (Figure 3(b)) 9071 20 68 770:56 0:00216 0:09127 4:403 8325:16

Cube (Figure 4(b)) 402 9 7 12:00 0:04671 0:32829 0:015 64448:49

290 0:40031 2:59442 0:034 65530:20
Cylinder (Figure 4(d)) 9 7 12:00

482 0:40086 2:59489 0:038 62844:75

11 312 0:05218 1:31168 13:058 4133:19
28 493 0:00500 0:22317 19:622 2191:03
55 512 0:00345 0:10871 33:275 1225:22

Male (Figure 5(a)) 39808 1720:78
55 265 0:00354 0:10870 33:369 1369:48
55 176 0:00420 0:15525 33:189 1785:24
55 71 0:01811 0:48350 32:938 2034:79

Male (Figure 5(b)) 39808 55 512 1720:78 0:03673 1:01821 19:364 1244:93

Female (Figure 5(c)) 38389 55 512 1584:53 0:00369 0:12671 9:852 1232:16

Note: The execution time for parameterization or style transfer is measured in seconds.
FPS, frames per second; MAXE, maximum error; RMSE, root mean square error.

Figure 3. (a) For an input deformation data X with 20 example frames, (b) our parameterization can generate the same deformation
at the same input posture (first, third, and fifth) within a very small amount of error and new deformation at desired skeletal postures

(second and fourth).

Figure 4. Style transfer of skin deformation from cube to cylinder. (a) X1, (b) X2, (c) Y1, and (d) Y2.
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ground truth deformation and the style-transferred defor-
mation from Y1 by the matrix U in Equation (4) as well as
by the matrix T in Equation (3). The amount of errors for
style transfer is approximately 10 times larger than that for
parameterization error, which is mainly due to the amount
of residual errors of the matrix T and U . The sum of resid-
ual errors of the matrices T and U appears in RMSE and
MAXE of Figure 4(d) in the performance table.

For the whole-body skin deformation of a given male
human character X as shown in Figure 5(a) and (b) and
that of a female character Y in Figure 5(c), we can generate
faithful skin deformation only from 55 frames long exam-
ples and 512 computed time-varying signals without con-
sidering the difference between the number of vertices.
Note that the time for Figure 4(d) and Figure 5(b) and (c)
includes the processing time to compute the matrices T and
U but not the parameterization time.

6. DISCUSSION AND
FUTURE WORK

We have presented a method to parameterize the skin
deformation by skeletal motion. We presented skin
deformation by matrix multiplication of two matrices, one
of which encodes the basis matrix that deformation takes
place and the other does the time-varying signals that cap-
ture the virtual muscle action. The time-varying signals
are then parameterized by joint angles using RBF, which
gives us a fast and intuitive way to control the skin defor-
mation. Furthermore, given a set of two skin deforma-
tions, we capture the style between the deformations and

transfer the style into another deformation data using only
matrix computations.

There are a few limitations to capture and transfer the
style of skin deformation from one to another. Differ-
ently from the traditional deformation transfer techniques,
our method can transfer the style but not the deformation
itself when the number of vertices in source and target
differs to each other. When capturing the style between
two deformation data X1 and X2, the number of vertices
should be the same to compute Equation (5). Further-
more, for X1, X2, and Y1, the number of signals and the
number of example frames should be the same to com-
pute Equations (3) and (4). Mathematically, it is relatively
easy to achieve those conditions as described in the style
transfer section. However, the quality of example defor-
mation in X1, X2, and Y1 matters at the same skeletal
pose. If the original input deformation data X1 and X2 do
not contain enough example skeletal posture, because of
the possible extrapolation, the reconstructed deformation
by Equation (2) may very differ from the other deforma-
tion Y1. This makes the resulting deformation Y2 unfaith-
ful, because either X1 or X2 can be. According to our
experiments, our style transfer method works well when
input deformation contains enough length of examples,
that is, the primary reason that we apply our parame-
terization and style transfer method to generate the vari-
ants of a character from existing example deformations of
another character.

In this paper, we considered skin deformation as caused
by the action of the structure between the skin and the
skeleton. So far, we have interpreted the time-varying sig-
nals as muscle actions. In conventional animation software,

Figure 5. Style transfer of skin deformation from male to female. (a) X1, (b) X2, (c) Y1, and (d) Y2.

516 Comp. Anim. Virtual Worlds 2011; 22:511–518 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



J.-H. Kim, J.-J. Choi and C. M. Hoffmann Parameterization and style transfer of skin deformation

skin deformation is controlled using simplistic parameters
of muscles, such as a “bulging rate”, which seems to
be intuitive to the deformation. In contrast, changing the
value of a single signal or a small set of signals is
not meaningful and does not result in realistic shapes
of the characters. Thus, signals are qualitatively different
than the bulging rates of individual muscles, and given
realistic deformation data, we cannot expect that direct,
manual control of the signals is intuitive. Therefore, the
use of RBF that map signals to joint-space coordinates
of the skeleton is an important aspect of the reported
work, because control of joint angles is the easiest and
fastest way of character control affecting the skin deforma-
tion. Observed muscle shape depends not only on skele-
tal pose but also, for example, on loads when lifting
heavy objects or on the secondary action when mov-
ing fast. Our method cannot parameterize or transfer the
style effectively for those dynamic skin deformation by
external force.
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