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Abstract—Surface remeshing is a key component in many geometry processing applications. The typical goal consists in finding a

mesh that is (1) geometrically faithful to the original geometry, (2) as coarse as possible to obtain a low-complexity representation and

(3) free of bad elements that would hamper the desired application (e.g., the minimum interior angle is above an application-dependent

threshold). Our algorithm is designed to address all three optimization goals simultaneously by targeting prescribed bounds on

approximation error d, minimal interior angle u and maximummesh complexityN (number of vertices). The approximation error bound d

is a hard constraint, while the other two criteria are modeled as optimization goals to guarantee feasibility. Our optimization framework

applies carefully prioritized local operators in order to greedily search for the coarsest mesh with minimal interior angle above u and

approximation error bounded by d. Fast runtime is enabled by a local approximation error estimation, while implicit feature preservation

is obtained by specifically designed vertex relocation operators. Experiments show that for reasonable angle bounds ( u � 35�) our
approach delivers high-quality meshes with implicitly preserved features (no tagging required) and better balances between geometric

fidelity, mesh complexity and element quality than the state-of-the-art.

Index Terms—Surface remeshing, error-bounded, feature preserving, minimal angle improvement, saliency function

Ç

1 INTRODUCTION

SURFACE remeshing is a key component in many geometry
processing applications such as simulation, deformation,

or parametrization [1]. While many remeshing techniques
are goal-specified, a common goal is to find a satisfactory
balance between the following three criteria:

� The output mesh should be a good approximation of
the input, making the geometric fidelity, usually mea-
sured as the approximation error, a key requirement
for most applications.

� The quality of mesh elements is crucial for robust
geometry processing and numerical stability of sim-
ulations, which requires fairly regular meshes in
terms of both geometry and connectivity. Particu-
larly, a lower bound on the minimal angle is vital for
many simulation applications [2].

� Mesh complexity, measured as the number of mesh
elements, is important for an efficient representation
of complex shapes. Since mesh complexity usually
conflicts with geometric fidelity and element quality,

a “just enough” resolution for the required element
quality and geometric fidelity should be the goal.

However, to the best of our knowledge, only a few
approaches fulfill all of the above criteria. Most existing
methods that generate meshes with high element quality
often require high mesh complexity or introduce high
approximation error [3], [4]. The error-driven methods,
while preserving the results in controllable geometric fidel-
ity and low mesh complexity, do not deal with the element
quality [5], [6]. In addition, many approaches require the
sharp features to be specified or detected in advance [7], [8],
[9], which is usually difficult and error-prone.

Wepropose an approach that controls both the approxima-
tion error and element quality simultaneously. Our approach
only requires the user to specify the error-bound threshold d,
the desired minimal angle u and an upper bound on the mesh
complexity N , measured as the number of vertices. In an ini-
tial phase our algorithm coarsens the mesh as much as possi-
ble while respecting the error-bound d. It then iteratively
improves the minimal angle of the mesh until the desired
bound for u or N is met. Since all atomic operations respect
the error-bound d, the result is guaranteed to satisfy geometric
fidelity. In contrast, low mesh complexity and high quality of
mesh elements are optimization goals, which depending on
the model and the desired boundsmight or might not bemet.
However, experiments show that given a reasonable vertex
budget N and an angle bound u � 35� our algorithm is usu-
ally able to reach all three goals simultaneously. Moreover,
our method preserves geometric features like sharp creases
and ridgeswithout explicitly specifying or detecting them.

It is inspired by the remeshing methods that proceed by
applying a series of local operators such as edge split, edge
collapse, edge flip, and vertex relocate [10], [11]. Contrary to
the existing methods that apply these operations sequentially
and globally, our core algorithm employs a dynamic priority
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queue to maintain all angles which are smaller than the user
specified threshold, and then greedily applies local operators
whenever an improvement of the mesh is possible. After the
initial coarsening ourmethod only improves themesh in local
regions where the element quality is poor, and thus modifies
the model as little as necessary with respect to the minimal
angle threshold u and the error-bound constraint d.

Since we apply local operators directly on the mesh,
without using any surface parameterizations or density
functions, our algorithm is naturally suitable for high genus,
irregular, and multi-component inputs, as well as meshes
with very high/low resolutions. In summary, we claim the
following contributions:

� A surface remeshing algorithm with minimal angle
improvement based on applying local operators,
which bounds the “worst element quality” (Section 3).

� A reliable and efficient local error update scheme
based on approximated symmetric Hausdorff dis-
tance, which bounds the geometric fidelity (Section 4).

� A feature intensity function designed for vertex posi-
tion relocation, which enables implicit feature pres-
ervation and supports geometric fidelity (Section 5).

2 RELATED WORK

The variety of applications leads to a large number of differ-
ent remeshing techniques. We restrict the discussion to the
most relevant aspects of our algorithm, i.e., high-quality
remeshing, error-driven remeshing and feature-preserving
remeshing. For a more complete discussion we refer the
reader to the survey [12].

High Quality Remeshing. Is typically based on sampling
and Centroidal Voronoi Tessellation (CVT) optimiza-
tion [13]. Early approaches apply 2D CVT in a parametric
domain [3], [7], [14], [15], [16], [17]. Instead of CVT optimi-
zation, Vorsatz et al. [18] utilize a partial system approach
in the parametric domain. In general, parametrization-
based methods suffer from the additional distortion of the
map and the need to stitch parameterized charts for high
genus surfaces. Valette et al. [4] perform a discrete version
of CVT directly on the input surface. However, the resulting
mesh quality can be poor due to the inexact computation.
Yan et al. [8], [19], [20] avoid the parameterization by com-
puting the 3D CVT restricted to the surface. Additionally,
they proposed blue-noise remeshing techniques using
adaptive maximal Poisson-disk sampling [9], [21], farthest
point optimization [22], and push-pull operations [23],

which improve the element quality as well as introducing
blue-noise properties. However, these approaches still suf-
fer from common limitations, e.g., geometric fidelity and
the minimal angle cannot be explicitly bounded. Moreover,
sharp features must be specified in advance.

Another way to avoid the stitching problem is to operate
directly on the surface mesh [24], [25]. An efficient isotropic
approach proposed by Botsch and Kobbelt [11] takes an
edge length as input and repeatedly splits long edges, col-
lapses short edges, equalizes vertex valences and relocates
vertex positions until all edges are approximately of the
specified target edge length. To extend this work to an
adaptive version, Dunyach et al. [26] replace the constant
target edge length with an adaptive sizing field that is sensi-
tive to local curvatures. Since this kind of methods requires
neither surface parameterization nor density functions, they
are easy to implement, robust for high genus inputs, and
efficient for real-time applications. Our method falls into
this category. However, we enrich the local operators and
apply them in a more selective manner in order to obtain
guarantees on the geometric fidelity as well as higher-
quality results and implicit feature preservation.

Error-Driven Remeshing. Amounts to generating a mesh
that optimizes the tradeoff between geometric fidelity and
mesh complexity. Cohen-Steiner et al. [5] propose an error-
driven clustering method to coarsen the input mesh. They
formulate the approximation problem as a variational geo-
metric partitioning problem, and iteratively optimize a set
of planes using Lloyd’s iteration [27] to minimize a prede-
fined approximation error.

The mesh simplification techniques are similar to error-
driven remeshing in some way. Garland and Heckbert [28]
use iterative contractions of vertex pairs to simplify models
and maintain surface approximation error based on quadric
error metrics. Borouchaki and Frey [29] define a fidelity
metric named Hausdorff envelope, and simplify and opti-
mize the reference mesh that stays inside the tolerance
volume. While they consider the geometric fidelity and ele-
ment quality simultaneously, nothing is done to improve
the worst element quality. Our method guarantees the
worst element quality by improving the minimal angle and
keeping the mesh complexity as low as possible, with
respect to a given error-bound. Based on the concept of tol-
erance volume, Mandad et al. [6] propose an isotopic
approximation method. Their algorithm generates a surface
triangle mesh guaranteed to be within a given tolerance

Fig. 1. Examples of surface meshes generated with our approach. The input model (a) has 7.2k vertices. From (b) to (g) are the results with different
minimal angle threshold u. The blue histograms show the distribution of minimal angles of triangles and the red curves the corresponding approxima-
tion errors of these triangles. The error-bound threshold d is set to 0.2 percent of the diagonal length of the input’s bounding box ð%bbÞ.
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volume. However, they generate the mesh from scratch, and
mainly focuse on mesh complexity rather than element
quality. Instead, we strive for good balances between mesh
complexity and element quality with a given input.

Feature Preservation. Is crucial in remeshing. However,
automatically identifying sharp features on a surface mesh
is a difficult problem that depends both on the local shape
and on the global context and semantic information of the
model. This makes feature detection a strongly ill-posed
problem. A wide range of approaches address this prob-
lem [30], [31], [32]. However, none of them works reliably
for all kinds of meshes. Most remeshing algorithms avoid
this problem by assuming that the features have been speci-
fied in advance [8], [9], [19], [21], [22], [33]. Some remeshing
techniques try to preserve features implicitly [34], [35].
Vorsatz et al. [36] first apply a relaxation in the parameter
domain, and then snap the vertices to feature edges and cor-
ners. Since they separate remeshing and feature-snapping,
the resulting mesh quality near sharp features might be
poor. Valette [4] alleviates this issue by embedding the
Quadric Error Metric approximation (QEM) criterion inside
the CVT optimization. However, the performance of their
cluster-based method is highly dependent on the quality of
the input, and the sharp features might not be well pre-
served when users specify a small vertex budget. Jakob
et al. [37] propose a general framework for isotropic trian-
gular/quad-dominant remeshing using a unified local
smoothing operator, in which the edges naturally align to
sharp features. However, little attention is paid on the
approximation error and element quality. We address this
problem by optimizing the element quality explicitly in
combination with implicit feature preservation based on the
new defined feature intensity functions.

3 ALGORITHM OVERVIEW

Given a two-manifold triangular mesh MI , the goal of our
algorithm consists in finding an improved surface mesh MR

with approximation error below d, minimal interior angle
above u and mesh complexity below N . The main idea is to
transform the mesh by a series of discrete local operators,
e.g., those illustrated below:

In our algorithm, only edge collapse, edge split and vertex
relocation operators are employed. Edge flips are implicitly
performed as a combination of an edge split followed by an
edge collapse (cf. Fig. 2). This convention not only lowers
the combinatorial complexity of all operators but is also
advantageous for our implicit feature preservation since
edge flips tend to destroy sharp creases and would require
additional nontrivial checks.

The remeshing algorithm is designed to perform local
operators in a conservative manner. More specifically, a
local operator is only executed if it respects the approxima-
tion error bound d, does not introduce new interior angles
below the current minimal angle umin and maintains the
two-manifoldness of the mesh. This behavior can be inter-
preted as a conservative greedy algorithm, which in each
step identifies the most promising operation that improves
the result (either coarsens or improves angles), while never
leaving the feasible set of meshes with approximation error
below d. Note that since pure topological edge collapses and
edge splits improve the mesh quality very rarely, these
operations are always combined with vertex position
optimization.

The most crucial design choices of the algorithm are the
scheduling of different operators and the efficient modeling
and handling of approximation error queries (cf. Section 4).
The algorithm passes through three different stages:

The initial phase concentrates on coarsening and runs a
mesh simplification, which solely performs edge collapses.

The second phase then tries to lift the minimal interior
angle above the user-provided bound u. For this task we
devised three different processes, which are tried subse-
quently, as illustrated in Fig. 3. Since an edge collapse
reduces the complexity, it would be the best way to improve
the minimal angle. If no edge collapse is possible, we try to
improve theminimal angle by relocating one of the triangle’s
vertices. If vertex relocation also fails, edge splits are consid-
ered as the last option as they increase the mesh complexity.
While edge splits do not directly improve the minimal angle,
they are crucial to enrich the local mesh connectivity in order
to enable improvements in subsequent steps. We apply an
approach similar to the longest-side propagation path [38],
described inmore detail in Section 3.2.

The third stage of our algorithm freezes the mesh connec-
tivity and concentrates on global vertex relocation. This
stage is designed to improve the average quality of the mesh
elements, while not violating the user-specified bounds.
The pseudocode of our remeshing algorithm is shown in
Algorithm 1.

Fig. 2. Common local operators [1].

Fig. 3. Local operators. The local patches before/after applying the operators are shown in the first/second rows, respectively. The inner patch
(green) contains the facets that will be directly affected by the local operators, and the outer patch (gray) includes the facets who share vertices with
facets of the inner patch. In each sub figure, the left shows the inner case while the right shows the boundary case, in which the boundary edges and
vertices are depicted in blue. We depict the current minimal angle umin in yellow.
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Algorithm 1. RemeshingðMI;MR; d; u; NÞ
Input:MI {Input mesh}

d > 0 {Error-bound threshold}
u � 0 {Minimal angle threshold}
N > 0 {Desired mesh complexity}

Output:MR {Remeshing result}
1: MR  MI ;
2: InitialMeshSimplificationðMI;MR; dÞ;
3: fill Q with angles of MR smaller than u; Q is a dynamic

priority queue
4: #V  the number of vertices inMR;
5: while Q 6¼ ; and #V < N do
6: umin  PopðQÞ;
7: GreedyImproveAngleðumin;MI;MR; d; uÞ;
8: update Q and#V ;
9: end while
10: FinalVertexRelocationðMI;MR; d; uÞ;

In the following we provide more details on the three
phases of initial mesh simplification, greedy angle improve-
ment and vertex relocation.

3.1 Initial Mesh Simplification

The input mesh is often dense such that themesh complexity
can be significantly reduced without violating the approxi-
mation error bound. While such a mesh simplification could
potentially also be done on the fly, a specialized pre-process
turns out to be more efficient. The goal of this step consists in
finding a mesh, which is significantly coarser and offers a
good starting point for the second phase of element quality
improvement. Simplification is achieved through iteratively
collapsing edges and relocating related vertices as long as
the approximation error does not exceed d. Short edges, or
those opposite to small angles are likely to lower the mesh
quality and are consequently collapsed first. This is achieved
through using a priority queue sorted by increasing values
of the function lðhÞ � ðu1ðhÞ þ u2ðhÞÞ=2, where lðhÞ denotes
the length of halfedge h and uiðhÞ denote the two angles
opposite to h and h’s opposite halfedge. The pseudocode of
this initial mesh simplification is shown in Algorithm 2.

Algorithm 2. InitialMeshSimplificationðMI;MR; dÞ
1: fill Qwith all halfedges;Q is a dynamic priority queue
2: while Q 6¼ ; do
3: h PopðQÞ;
4: if CollapseAndRelocateImprovesðh; d;MI;MRÞ then
5: CollapseAndRelocateðh; d;MI;MRÞ;
6: end if
7: update Q;
8: end while

3.2 Greedy Improvement of Angles

The second phase is designed to improve the mesh quality
by iteratively increasing the smallest angle in the mesh,
until the desired angle bound u is satisfied or the complexity
limit N is reached. Our approach repeats the following pro-
cess: We simulate a potential operation, test whether the
resulting mesh improves and only in this case perform the
candidate operation. The mesh improvement test addition-
ally contains several important validity checks.

Mesh Improvement Test. We simulate each potential opera-
tion and measure if the following constraints are satisfied:

� Topology. For edge collapses topology changes are
prevented by checking the link condition [39].

� Geometry. The operator should not create fold-overs
by flipping the orientation facets (cf. Fig. 4).

� Fidelity. The approximation error between MR and
MI should remain below d (cf. Fig. 6).

In order to improve the minimal angle, we greedily apply
operators that successfully pass the mesh improvement test.
The operators are tested in the following order: (i) edge collap-
ses, (ii) vertex relocations and (iii) edge splits. The pseudo-
code of the greedy improvement is shown inAlgorithm 3.

Algorithm 3. GreedyImproveAngleðumin;MI;MR; d; uÞ
Input: umin {Angle requiring improvement}

MI {Input mesh}
d > 0 {Error-bound threshold}
u � 0 {Minimal angle threshold}

Output:MR {Locally improved mesh}
1: h halfedge opposite to umin;
2: if CollapseAndRelocateImprovesðh; umin; u; d;MI;MRÞ then
3: CollapseAndRelocateðh; umin; u; d;MI;MRÞ;
4: return;
5: end if
6: let vo; vs and ve be h’s opposite, start and end vertex;
7: for v 2 fvo; vs; veg do
8: if RelocateImprovesðv; umin; u; d;MI;MRÞ then
9: Relocateðv; umin; u; d;MI;MRÞ;
10: return;
11: end if
12: end for
13: hl  LongestSidePropagationðhÞ;
14: if SplitAndRelocateIsValidðhl; u; d;MI;MRÞ then
15: SplitAndRelocateðhl; u; d;MI;MRÞ;
16: end if

Longest-Side Propagation Path. If neither edge collapse nor
vertex relocation is possible, we search the longest edge hl

in the neighborhood [38] and then split it. Starting from an
edge e, we iteratively move on to the longest edge of the
neighboring two triangles until no further enlargement is
possible or until we hit the boundary. Though the edge split
operator does not increase umin directly, it modifies the local
connections such that umin can be improved in later itera-
tions (cf. Fig. 3c). While there might exist other ways for
local connectivity modification, experiments show that this
strategy works well in our algorithm.

3.3 Final Vertex Relocation

To achieve a better overall element quality, in the third
phase we perform a series of vertex relocations until the

Fig. 4. Examples of fold-overs in 2D. (a) An edge collapse might flip tri-
angles by p

̎
ulling€an edge SP over a vertex T ; (b) A similar problem might

occur in a vertex relocation. In 3D, fold-overs occur if the triangle normal
before and after applying an operation have opposite orientations.
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angles can no longer be improved. In contrast to the second
phase which only focuses on specific regions where angle
improvement is required, the third stage optimizes all ver-
tex locations. We maintain the relocation candidate set in a
queue, which is initialized with all vertices. Whenever a
vertex is relocated, all its neighbors are added to the queue,
since a change in the neighborhood might enable further
improvements. The pseudocode of the corresponding func-
tion is shown in Algorithm 4.

Algorithm 4. FinalVertexRelocationðMI;MR; d; uÞ
1: fill Qwith all vertices ofMR;Q is a FIFO queue
2: while Q 6¼ ; do
3: v PopðQÞ;
4: if RelocateImprovesðv; umin; u; d;MI;MRÞ � Du then
5: Relocateðv; umin; u; d;MI;MRÞ;
6: add neighbors of v to Q
7: end if
8: end while

Optimal vertex positions would be found if no vertex
could be relocated to a better position anymore. However,
we empirically restrict the angle improvement Du ¼
0:1�(cf. Section 6.4), since afterward there are usually no
significant changes anymore.

4 ERROR METRIC

4.1 Hausdorff Distance

We use the Hausdorff distance to measure the approxima-
tion error betweenMR andMI . Let dðp; qÞ denote the euclid-
ean distance between two points p and q in 3D space. The
distance of a point p to a surfaceM is defined as the shortest
distance between p and any point ofM

dðp;MÞ ¼ min
q2M

dðp; qÞ: (1)

The one-sided Hausdorff distance from a source surface M
to a target surface T is defined as the maximum of all such
point to surface distances

dhðM;T Þ ¼ max
p2M

dðp; T Þ: (2)

The one-sided Hausdorff distance is in general not symmet-
ric, i.e., dhðM;T Þ 6¼ dhðT;MÞ. It is easily possible to con-
struct counter-intuitive cases where dhðM;T Þ ¼ 0 but
dhðT;MÞ is arbitrarily large.1

The two-sided Hausdorff distance [40] between M and T
resolves this issue by symmetrization

dHðM;T Þ ¼ maxfdhðM;T Þ; dhðT;MÞg: (3)

4.2 Approximating dH with Stratified Sampling

The exact evaluation of the two-sided Hausdorff distance is
computationally very expensive [41]. However, by careful
surface sampling in combination with local updates of short-
est point-to-surface links it is possible to obtain an efficient
yet sufficiently accurate approximation, as discussed next.

Assume that M is sampled by a point set SM �M. Then the
one-sided Hausdorff distance can be approximated by

dhðM;T Þ � max
a2SM

dða; T Þ: (4)

By additionally sampling T we obtain an approximation of
the two-sided Hausdorff distance

dHðM;T Þ � max max
a2SM

dða; T Þ;max
b2ST

dðb;MÞ
� �

; (5)

with ST being a set of point samples on T . Note that our
approximation still measures the exact distance from sam-
ple points to the complete surface, which provides signifi-
cantly higher accuracy than a point cloud distance
dHðSM; ST Þ. Moreover, it ensures that we strictly underesti-
mate the real distance. Following the triangle inequality, the
approximation error of our sampled Hausdorff distance is
bounded by maxfdhðM;SMÞ; dhðT; ST Þg, i.e., the maximum
gap between sample points. Consequently, in order to guar-
antee a good approximation, we target a uniform sampling
of the surfaces. However, for piecewise linear triangle
meshes the maximal distance often occurs at creases or cor-
ners, i.e., at mesh edges or vertices. This two observations
motivate our stratified sampling approach, which is uniform
on faces but additionally adds samples on edges and verti-
ces, as a kind of greedy importance sampling.

Sampling the Facets. Instead of uniformly sampling the
complete surface, we empirically found that better results
can be obtained by uniformly sampling per triangle. In this
way we obtain an automatic adaptivity, since more samples
are available in structurally complex and highly curved
areas, where also more triangles are necessary to describe
such shape. Since our meshes are often highly non-uniform,
we add a slight local smoothing of the sampling density by

nðfiÞ ¼ nf � 1þ jN fi j
1þP

fj2N fi

Aj

Ai

; (6)

where nf is the average number of samples per facet speci-
fied by the user, N fi are the neighbor facets that share verti-

ces with fi, and Ai is the area of facet fi. Choosing a large nf

offers a tighter approximation of the Hausdorff distance,
however, resulting in high computational complexity. In
our experiments, we found that nf ¼ 10 yields good trade-
offs between efficiency and effectiveness (cf. Fig. 12).

To distribute the samples evenly on a triangle fi, we first
generate nðfiÞ samples randomly, and then perform a Lloyd
relaxation process onto a bounded Voronoi Diagram
(BVD) [42] (Fig. 5b). Usually, five iterations are sufficient to
generate quasi-uniformly distributed samples on facets.
Sampling the Edges. By counting the number of incident Vor-
onoi cells to an edge we first estimate the local sampling
density. The resulting number of samples is then evenly dis-
tributed along the edge (Fig. 5c).

Sampling the Vertices. The position of a vertex is simply
regarded as its own vertex sample.

By setting SI and SR as the stratified samples on MI and
MR, the Hausdorff distance between MI andMR is approxi-
mated using Eq. (5), as illustrated by Fig. 6.

1. Choose T as a sphere of radius r and M as a hemisphere subset.
Then with r!1 also dhðT;MÞ ! 1.
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4.3 Local Update Scheme

Each operator of our remeshing algorithm only changes a
local area L �MR of the target mesh MR (cf. Fig. 3 green
area). Hence, it is possible to rapidly compute the Hausdorff
distance for the updated mesh. In general both directions of
the Hausdorff distance change and require an update.

Updating dhðMR;MIÞ. First of all notice that the one-sided
Hausdorff distance can be decomposed w.r.t. to a modified
local area L �MR into

dhðMR;MIÞ ¼ maxfdhðL;MIÞ; dhð �L;MIÞg;
with MR ¼ L [ �L being a partition of MR. Since �L is
unchanged, checking dhðL;MIÞ � d is sufficient to verify
that the modification does not violate the approximation
error bound d. Thus, we first re-sample the modified local
area Lwith stratified samples SL, and then efficiently evalu-
ate the approximated Hausdorff distance dhðSL;MIÞ with a
pre-computed axis aligned bounding box tree [43] for the
static meshMI .

Updating dhðMI;MRÞ. Checking the opposite direction is
more difficult for two reasons. First, since MR changes, we
cannot simply pre-compute a static search tree. Second,
decomposing the Hausdorff distance in the second argu-
ment is more intricate. In addition to MR, MI must also be
decomposed correctly. More specifically, we have

dhðMI;MRÞ � dhðSI;MRÞ ¼ maxfdhðSL
I ; LÞ; dhðS �L

I ;
�LÞg;

where SI ¼ SL
I [ S �L

I is a partitioning of samples on MI into

those closer to L and �L (the rest ofMR) respectively.
Identifying the correct partitioning of samples SI would

in general require global tests and is thus time consuming.
Therefore, in order to enable a rapid update we only
approximate this decomposition by tracking the history of
samples in SI . The key idea is to store for each sample
sj 2 SI a link to its closest triangle tj 2MR (Fig. 6). After a
local modification of MR these links will typically change in
the vicinity of the modified area L. Thus, in order to avoid
global checks, we only update the links of samples connect-
ing to a region Lþ, which enlarges L by an additional ring
of neighboring triangles (cf. Fig. 3 gray area). These new
links are efficiently found by constructing and querying an
axis aligned bounding box tree of the local area Lþ. Note
that the resulting approximated Hausdorff distance is a

strict overestimator because shorter links to �Lþ might exist
that are not investigated by our approximation. A positive
side effect of our localized update scheme is that links can-
not jump between geodesically far away regions, which
could cause topologically inconsistent links.

5 IMPLICIT FEATURE PRESERVATION

A clean representation of geometric features as for instance
sharp creases is important in many applications ranging from
visualization to simulation. In a polygonal mesh, we distingu-
ish between vertex and edge features. Vertex features include
tips, darts, cusps and corners, while edge features are either
creases or boundaries. Typical examples are depicted in Fig. 7.

Instead of requiring an explicit tagging of features as most
remeshing approaches, e.g., [8], [9], [19], [22], [33], our goal is
to implicitly preserve features. This not only releases users
from the time-consuming burden of manual tagging but
moreover often enables the recovery of features that were lost,
e.g., through inappropriate sampling by a 3D laser scanner.

In principle feature preservation could simply be a
byproduct of approximation error minimization since incor-
rectly meshing features usually induces a large approxima-
tion error. Nevertheless, there are several reasons why
special care is still required. First of all, the minimization of
the approximation error is a non-convex problem such that
bad initializations might lead to low-quality local minima,
not well representing features. Moreover, anticipating fea-
ture locations and placing vertices accordingly will speed
up the overall method. In our method special feature han-
dling is done whenever vertices are either newly placed or
relocated, i.e., during (i) edge collapse, (ii) edge split and
(iii) vertex relocation. Since robust and automatic feature
detection is a difficult yet unsolved problem, we rely on a
softer identification of features by means of a feature inten-
sity function defined at vertices of the mesh.

5.1 Feature Intensity

Feature vertices can be characterized by large Gaussian cur-
vature KðvÞ, which in the discrete setting is identical to the
angle defect, i.e.,

Fig. 6. Hausdorff distance approximation with stratified samples. Sam-
ples on vertices, edges, and faces are rendered in red, yellow, and green
respectively. We use the circles centered with crosses to indicate the
samples on one mesh, and the circles centered with dots to indicate their
closest points on the other mesh. The approximated one-side Hausdorff
distances are shown as the blue links, and the overall approximated
Hausdorff distance is simply the length of the longer one.

Fig. 5. Stratified sampling process. (a) Initial facet samples; (b) Optimized
facet samples with BVD; (c) Edge samples. The facet, edge, and vertex
samples are rendered in green, yellow and red, respectively.

Fig. 7. Vertex features: (a) Tips, (b) Darts, (c) Cusps and (d) Corners are
feature vertices who are adjacent to zero, one, two and three sharp
creases respectively.
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KðvÞ ¼ p	 usumðvÞ v is on a boundary,
2p	 usumðvÞ otherwise;

�
(7)

where usumðvÞ is the sum of interior angles adjacent to v.
Feature edges are characterized by large dihedral angles.

Accordingly, for a vertex we define the feature edge intensity
EðvÞ to be the maximal unsigned dihedral angle of an edge
adjacent to v

EðvÞ ¼ max
e2N eðvÞ

jDðeÞj; (8)

whereN eðvÞ are the edges adjacent to v andDðeÞ is the dihe-
dral angle at e.

Finally, the feature intensity FðvÞ is defined as the combi-
nation

FðvÞ ¼ ðtðjKðvÞjÞ þ 1Þ � ðtðEðvÞÞ þ 1Þ 	 1;

with the transfer function tðxÞ ¼ minfp; 2 � xg, which
rescales values by a factor of 2 and clamps them at p. Thus,

the feature intensity is a value between 0 and ððpþ 1Þ2 	 1Þ
and corresponds to a logical or whenever one of the individ-
ual intensities vanishes. Fig. 8 shows an examples of the
three fields jKj, E and F .

5.2 Feature-Sensitive Vertex Relocation

In our remeshing algorithm each local operation is com-
bined with a subsequent relocation of the modified vertex
in order to minimize the approximation error. This reloca-
tion of a single vertex is done in two stages. First a feature-
sensitive initialization, specifically adapted to the local
operation, and then a nonlinear minimization of the two-
sided Hausdorff distance. A careful initialization of vertex
positions is important to avoid poor local minima of the
non-convex Hausdorff energy and additionally increases
performance.

Edge Collapse Initialization. During an edge collapse of
edge eij the two vertices vi and vj merge into a new vertex
vm and a new position for vm must be specified. Common
feature-sensitive approaches use error quadrics [4], [28].
However, since we anyway perform a more accurate
approximation error-driven relocation subsequently, a sim-
pler and faster position initialization based on our feature
intensity is sufficient. We distinguish two cases. If the edge
is incident to a single strong feature we want that vm snaps
onto this feature, meaning that the default behavior is to
snap to the vertex vk with higher feature intensity, i.e.,
vk ¼ argmaxv2fvi;vjgFðvÞ. An unclear situation arises, when

both feature intensities are similar, i.e., FðviÞ � FðvjÞ. This
happens either in regions without features or for edges
along a crease, where it is reasonable to initialize vm to the

edge midpoint. We decide for the midpoint initialization
based on a parameter v, whenever

jFðviÞ 	 FðvjÞj < v �maxðFðviÞ;FðvjÞÞ;

with v ¼ 0:15 in all our examples.
Edge Split Initialization. Since an edge split does not

change the geometry we simply always initialize the new
point as the edge midpoint.

Vertex Relocation Initialization. Without topological mesh
modifications (edge collapse or split), a vertex relocation is
initialized in the following way. The goal is to anticipate a
good relocation position for v while preserving feature cor-
ners and creases. Therefore, we first classify the vertex v as
either being (i) a feature vertex, (ii) a crease vertex or (iii) a
smooth vertex. If v is a feature vertex it simply remains at its
position. If it is on a crease, we relocate v to the CVT barycen-
ter of its two neighboring crease vertices. And only if it is a
smooth vertexwe relocate it to the CVT barycenter of all one-
ring neighbors. The classification is done by counting how
many neighbors vi are of similar or higher importance as v,
i.e., if FðviÞ � z � FðvÞ for a tolerance parameter z 2 ð0; 1Þ. In
this way v is classified as (feature vertex/crease vertex/
smooth vertex), depending on whether (none/two/all) of its
neighbors are of similar feature intensity. Unclear cases
where k out of n neighbors are of similar importance are clas-
sified towards the closest case, meaning as a crease vertex if
k is closer to 2 or as a smooth vertex if k is closer to n. Wrong
classifications where two crease vertices are connected by a
non-crease edge can be avoided by only counting important
neighbors that are connected by an important edge with
jDðev;vi j þ 1 � z � ðEðvÞ þ 1Þ, as illustrated in Fig. 9.

The parameter z controls the feature classification. For
higher values of z more vertices are implicitly treated as fea-
tures and thus prevented from free movement. Fig. 10 shows
an example classification for z varying between 0.3 and 0.7.
In our experiments the default is z ¼ 0:5

Nonlinear Hausdorff Distance Minimization. After one of the
former initializations is done,we further optimize the position
of a vertex v by directly minimizing the approximate two-
sided Hausdorff distance of Section 4.2. This optimization is
highly nonlinear, since changing the position of v changes the
samples SR of themodifiedmeshMR aswell as the links from
the input mesh samples SI to MR. We perform an optimiza-
tion similar to the Hausdorff distanceminimization technique
proposed byWinkler et al. [44]. However, we improve the fea-
ture-sensitivity by adjusting the weighting scheme with our
feature intensity functionF , as detailed next.

Fig. 8. From left to right Gaussian curvature jKj, feature edge intensity E
and combined feature intensity F , with higher intensities in red.

Fig. 9. Visualization of FðvÞ in (a). The color of v’s Voronoi cell repre-
sents the number of important neighbors, with red=0, blue=2, purple=3
and gray=degree(v) is shown in (b) and (c). A wrong classification based
on solely feature intensity in (b) is corrected by additionally checking
importance of edges in (c).
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We wish to relocate v in order to minimize the two-sided
Hausdorff distance between the local area L �MR consisting
of all one-ring triangles of v and the subregion ofMI with links
into L, referred to as MI!L. Assume that the corresponding
subsets of samples for our Hausdorff distance approximation
are SL � SR and SI!L � SI . Then according to Motzkin and
Walsh’s theorem [45] there exist weights wi and ŵi such that
minimizing Eq. (5) w.r.t. the center vertex v is equivalent to
minimizingX

ai2SL
wijaiðvÞ 	 âij2 þ

X
bi2SI!L

ŵijb̂iðvÞ 	 bij2; (9)

where âi 2MI!L and b̂iðvÞ 2 L are the closest points to ai
and bi respectively. Freezing the closest point pairs and
assuming a linear barycentric relation

aiðvÞ 	 â ¼ aivþ bidi þ giei 	 â ¼ aiv	 pi;

with constant pi ¼ â	 bidi 	 giei and similarly expressed

b̂iðvÞ 	 bi ¼ âiv	 p̂i, the optimal position v
 can be com-
puted analytically as

v
 ¼
P

ai
wiaipi þ

P
bi
ŵiâip̂iP

ai
wia

2
i þ

P
bi
ŵiâ

2
i

: (10)

To find optimal weights wi and ŵi, Winkler et al. [44] use
Lawson’s algorithm [46] with iterative updates of the form

w
ðkþ1Þ
i ¼ w

ðkÞ
i � dðaðkÞi ; â

ðkÞ
i Þ; (11)

where dðaðkÞi ; â
ðkÞ
i Þ is the Euclidean distance of the closest-

point pair ðai; âiÞ after the kth iteration, and initialization

w
ð0Þ
i ¼ 1. The idea behind this scheme is that samples with

larger distances get a higher weight in the next iteration.
Based on our feature intensity function and a sample den-
sity estimation, the weight update can be improved to

w
ðkþ1Þ
i ¼ w

ðkÞ
i � dðaðkÞi ; â

ðkÞ
i Þ � VðaðkÞi Þ � FðaðkÞi Þ; (12)

where VðaiÞ is the Voronoi cell area of sample ai, andFðaiÞ is
the linearly interpolated feature intensity value at ai. Fig. 11

illustrates the additional weighting factors. Advantages are
a better feature preservation, improved robustness w.r.t.
non-uniform sampling and faster convergence.

Each time a local operator is applied, we iteratively
optimize the new position of the effected vertex by mini-
mizing Eq. (9) using the new weighting defined in
Eq. (12). The optimization procedure is similar to the
Expectation-maximization (EM) algorithm: in each itera-
tion, we first calculate the optimal position v
 of vertex v
using Eq. (10), and then move v to vþ �ðv
 	 vÞ; � 2 ð0; 1�
with default � ¼ 0:9 and update the closest point pairs. In
practice, a few iterations usually suffice to get very close
to the optimum.

6 EXPERIMENTS AND DISCUSSIONS

We implemented our approach in C++ and tested on a
64 bit Windows 8.1 operating system. The CGAL lib-
rary [47] provided most of the basic data structures and
operations. Timings for all the examples were conducted
on a single 3.40 GHz Intel(R) Core(TM) i7-2600 K CPU
with a 16 GB RAM. We provide next a complete evalua-
tion of our algorithm and comparisons with state-of-the-
art approaches.

6.1 Evaluation of the Local Error Update Scheme

For efficient local error update we use the axis aligned
bounding box tree of CGAL. Since a global error update is
too compute-intensive we only verify how the inner patch
sizes and sampling densities affect the effectiveness and
efficiency of the local error update scheme (Fig. 12). We find
that even when the inner patch size is set to the one-ring (cf.
Fig. 3), our local error update approach catches more than
99.9 percent of the globally nearest points. The accuracy
increases little with higher sampling density and larger
inner patch size. Consequently, we set the inner patch sizes
as one-ring facets and the average sampling number per
facet as ten in all experiments.

Fig. 10. Influence of the classification tolerance z. The Voronoi cells of
vertices color code the classificationwith red=feature vertex, blue=crease
vertex and white=smooth vertex. We show the Anchor model with obvi-
ous features (top) and the Handmodel without obvious features (bottom).

Fig. 11. Sample weights of a cube corner, with the integration of VðaiÞ
and FðaiÞ. Higher intensity of red highlights larger weight values.

Fig. 12. The nearest point searching accuracy and execution time of our
local error scheme, with respect to different sampling densities and inner
patch sizes. In this experiment, d ¼ 0:2 percent of the bounding box’s
diagonal length(%bb) and u ¼ 30�. The above data are the averages of
10 consecutive executions with the Rockerarm model (Table 2) as input.
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6.2 Evaluation of Vertex Position Optimization

Solely applying the vertex position initialization makes
most vertices of MR stay near or on the surface of MI .
Though this quasi-interpolation preserves sharp features,
the optimal geometric fidelity is usually achieved when MR

is an approximation ofMI . We visually demonstrate the dif-
ference between interpolation and approximation in Fig. 13.
In the interpolation case, the Hausdorff distance (Hdist) [48]
between the sphere and the icosahedron is 6:48ð%bbÞ, and
the root mean square (RMS) distance is 4:84ð%bbÞ; while in
the approximation case, the Hdist and RMS distances
between them are 5:00ð%bbÞ and 1:09ð%bbÞ, respectively.

However, the approximation might destroy features when
minimizing the local sample pair distances [44]. Fig. 14
compares the average distance and RMS distance based on
Lawson’s weighting scheme (Eq. (11)) and our improved
weighting scheme (Eq. (12)). Generally, ourweighting scheme
reduces the average distance and RMS distance about 2.3 and
3.1 percent respectively. However, it reduces the approxima-
tion error of vertices on sharp features about 11.8 and 12.8 per-
cent, respectively. Therefore, applying the improved
weighting scheme does not only reduce the approximation
error, but also better preserves sharp features.

We extensively tested how the iteration count and reloca-
tion ratio (�) affect the approximation error and execution
time in the vertex position optimization procedure (in
Fig. 15). We found that setting the iteration count to two
and the relocate ratio to 0.9 yields the best balance between
effectiveness and efficiency. This configuration is used in all
our later experiments.

6.3 Evaluation of Initial Mesh Simplification

In general, applying Algorithm 2 further reduces 20 percent
vertices on average, however, the execution time is 2-3 times

slower. Fig. 16 shows the remeshing results of the Egea
model with and without applying initial mesh simplifica-
tion, and Table 2 further compares the differences (OUR
versus OUR*). Usually, if users care more about the execu-
tion time than the mesh complexity, Algorithm 2 can be dis-
abled. However, we enable Algorithm 2 by default for
better balancing between mesh complexity, element quality
and approximation error.

6.4 Evaluation of Final Vertex Relocation

To measure how the overall element quality is improved by
applying Algorithm 4, we introduce two new measure-
ments: the first is the average minimal angle of all triangles
in MR and the second is the average value of triangle quali-

ties defined as Qt ¼ 2
ffiffiffi
3
p

St=ðpthtÞ [49], where St is the area
of triangle t, pt the in-radius of t and ht the length of the lon-
gest edge in t. We investigated the statistical element quality
and the execution time with varying Du in Algorithm 4
(Fig. 17), and found when Du < 0:1�, the quality improve-
ment is not significant. In our experiments, we set the
default Du as 0.1 degree in Algorithm 4.

Fig. 13. Demonstration of interpolation and approximation. We use an
icosahedron (a) to interpolate and approximate a sphere ((b) and (c)). In
interpolation, the vertices of MR are guaranteed to be on the surface of
MR, while in approximation, the error is minimized, regardless of
whether the vertices ofMR are on the surface ofMI .

Fig. 14. Comparison of geometric fidelity between Lawson’s weighing
scheme [44] and ours(Eq. (12)). We sort the vertices in MI according to
their saliency function values in ascending order, and compute their
average distance and RMS distance in each bin. In this experiment,
d ¼ 0:2ð%bbÞ, and u ¼ 30�. The above data are the averages of 10 conse-
cutive executions with the Hand model (Fig. 10) as input.

Fig. 15. Effectiveness of the iteration count and relocate ratio. For sepa-
rability, RMS and Hdist bars are plotted in different scales. We set
d ¼ 0:2ð%bbÞ, and u ¼ 30�. The above data are the averages of 10 conse-
cutive executions with the Homer model (Table 2) as input.

Fig. 16. Egea models with/without executing Algorithm 2. we set u ¼ 40�
and d ¼ 0:20ð%bbÞ. The input (a) has 8.3k vertices. The result with Algo-
rithm 2 enabled has 4.2k vertices (b), and spends 330 seconds; the result
with Algorithm 2 disabled has 7.6k vertices (c), and spends 133 seconds.

Fig. 17. The effectiveness ofDu in Algorithm 4. In each sub figure, the first
bar indicates the value when no final vertex relocation is applied. In this
experiment, d ¼ 0:2ð%bbÞ and u ¼ 30�. The above data are the averages
of 10 consecutive executions with the Helmetmodel (Table 2) as input.
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6.5 Influence of the Minimal Angle Threshold and
the Mesh Complexity

Our algorithm produces results with either desired minimal
angle bound or desired mesh complexity, depending on the
user specified parameters. In order to get the desired mini-
mal angle, N in Algorithm 1 should be set very large; other-
wise, u should be set very large (e.g., 60 degree). Usually,
the larger the value u or N is specified, the better element
quality is achieved. We tested the remeshing results of the
Fandisk model with u varying from 0 to 40 degree and N
varying from 0.15 k to 2.8 k, and depict the results in Fig. 1.
The complete attributes are listed in Table 1. Note that in
Fig. 1g, one vertex has been relocated a little away from the
crease after refinement, such that the minimal angle is
improved. This happens when optimizing a mesh with
sharp features up to a high minimal angle threshold.

We compare our results with the state-of-the-art meth-
ods, and find only in a small portion of results presented
in [19] and [9], that the minimal angles exceeds 35 degree
(with maximum 38 degree). For most other methods, the
minimal angles vary in the range [25�, 35�]. Contrary to the
previous work, our method is able to generate results with
minimal angles higher than 35 degree in all test cases. The
complete comparison with the state-of-the-art methods is
shown in Section 6.8.

6.6 Influence of the Approximation Error Threshold

We demonstrate the influence of d in Fig. 18. The results indi-
cate that d does not influence the mesh complexity and the
execution time significantly with a fixed u value. However,
two interesting phenomena are observed: 1) when u � 35�,
the larger the u value is, the lower the mesh complexity we
achieve; however, when u is set to 40 degree, bothmesh com-
plexity and execution time increase dramatically. This is
because when u is small, the edge collapse operator is prefer-
entially applied, which increases the minimal angles while
reduces the mesh complexity. However, when u is large,

more edge split operators are applied tomodify local connec-
tions. 2) Within a fixed u, when d increases, the mesh com-
plexity decreases slightly and smoothly, since the higher d is
set, themore edge collapses are possible.

We compare our results with those provided by Yan
et al. [9], [19], [22]. The best approximation error is
0:10ð%bbÞ, which is generated by [8] with the Homer model
as input. However, it can not be explicitly controlled. For
other methods, the approximation error is between
0:3	 0:5ð%bbÞ, and still cannot be strictly bounded. In con-
trast, our algorithm is able to explicitly control the approxi-
mation error, and achieve a value below 0:07ð%bbÞ with the
same input. More complete comparisons are in Section 6.8.

6.7 Robustness

Since in our local error update scheme, the closest point
pairs of stratified samples are reliably initialized and locally
updated, our method is robust to models with complex
topology, holes, and intersections of surfaces. For example,
the Close spheres model (Fig. 19c) is composed of two
rounded half spheres that are positioned very close to each
other, and the Klein bottle model (Fig. 19h) exhibits non-
orientable surfaces that are self-intersecting. Our method
generates correct results for both of them.

By integrating the feature intensity function, our method
successfully handles models with and without clean sharp
features. The Helmet (Fig. 19a), Fertility (Fig. 19b) and Close
spheres models are smooth, whereas the U-part (Fig. 19e)
and the Smooth crease models (Fig. 19f) have sharp fea-
tures. In addition, since the feature intensity also captures
boundaries, our method is capable of remeshing models
with boundaries (Fig. 19i) and smooth features (Fig. 19f).

TABLE 1
Influence of u and s

u #V Qmin umax RMS(%bb) V567ð%Þ Time

0 0.15 k 0.040 174.4 0.043 76.5 1:42*
10 0.20 k 0.188 155.1 0.038 71.3 2:18
20 0.26 k 0.340 135.5 0.036 78.6 2:41
30 0.40 k 0.482 117.7 0.031 81.7 3:01
35 0.73 k 0.552 109.3 0.029 85.5 3:44
40 2.8 k 0.640 98.8 0.022 98.5 6:14

* This indicates the execution time of Algorithm 2.
V567 is the percent of vertices with valences 5, 6 and 7. We set d ¼ 0:2ð%bbÞ,
and the Fandisk (Fig. 1a) is the input.

Fig. 18. Influence of the error-bound threshold d. The above data are the
averages of 10 consecutive executions with the Elephant model (Table 2)
as input.

Fig. 19. Selected results. In this experiment, d is set to 0:2%ðbbÞ and u is
set to 35 degree. In (h) and (i), the boundaries are rendered in red. The
dark part of (h) means the triangle normals are inside.
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Our method requires no surface parameterization, mak-
ing it naturally suitable for high-genus models (Figs. 19a
and 19b) as well as models with multiple components
(Fig. 19g). Note that if reasonable, adaptivity is created auto-
matically by the approximation error parameter d without
requiring an a priori estimation of a density function. The
Helmet, Fertility, U-part and Lion head models in Fig. 19
clearly illustrate this advantage.

Our method is suitable to process models with very
high/low resolutions and/or badly shaped triangles. To
tackle dense models, typically the initial mesh simplification
strongly reduces the mesh complexity. For very coarse mod-
els, users can optionally increase the sampling density for
better error control. We present two typical examples: the
input Fertility model has 13 k vertices, whereas our remesh-
ing result (Fig. 19b) has only 2.9 k vertices, thanks to the
effectiveness of Algorithm 2. The input U-part model

possesses only 86 vertices. By sampling 50 points in each
facet averagely, we get the result with 347 vertices, and the
geometric fidelity is well-controlled.

6.8 Comparisons

We compare our approach to the state-of-the-art techniques
in terms of efficiency, geometric fidelity, element quality
and mesh complexity. For simplicity, only the most efficient
methods (RAR [26] and MMGS, an improvement of
YAMS [24]) and the methods that produce the best results
in Yan and Wonka’s conduction [9] (CVT [8] (100 iterations
in our experiments), CVD [4] and MPS [9]) are compared
with identical inputs. Among all the compared methods,
CVT and CVD require the number of vertices to be speci-
fied, and the Hdist is required in RAR and MMGS. To make
the results comparable, we set the Hdist of RAR to the same
value as that of our method, and carefully adjusted the

TABLE 2
Comparison with the State-of-the-Art Methods

Input Methods #V Qmin uminð�Þ umaxð�Þ Hdist (%bb) RMS (%bb) u < 30�ð%Þ V567ð%Þ Time

Rockerarm

[RAR] 2.1 k 0.556 27.9 107.2 0.20/0.94 0.120 0.02 100 < 0 : 01< 0 : 01

(3.4 k)

[MMGS] 5.8 k 0.056 3.4 172.5 0.47 0.103 1.73 93.4 0 : 01
[CVT] 5.8 k 0.588 28.3 104.6 0.21 0.030 0.02 99.9 0 : 48
[MPS] 5.8 k 0.516 32.0 113.6 0.48 0.033 0 100 0 : 05
[OUR*] 2.8 k 0.559 35.0 108.5 0.20/0.20 0.025 0 89.0 0 : 29
[OUR*] 3.0 k 0.612 38.6 102.2 0.20/0.17 0.024 0 95.4 0 : 38
[OUR*] 3.8 k 0.646 40.0 98.1 0.20/0.14 0.020 0 98.5 0 : 51
[OUR] 3.6 k 0.639 40.0 99.0 0.20/0.20 0.025 0 97.9 2 : 58

Homer

[RAR] 2.6 k 0.569 29.2 106.5 0.20/0.55 0.070 0.02 99.9 < 0 : 01< 0 : 01

(6.0 k)

[MMGS] 7.2 k 0.210 13.1 152.2 0.43 0.028 1.07 95.8 0 : 01
[CVT] 7.2 k 0.568 25.3 102.3 0.10 0.021 0.02 99.9 1 : 14
[MPS] 7.2 k 0.513 32.0 115.0 0.31 0.023 0 100 0 : 05
[OUR*] 4.8 k 0.553 35.0 109.2 0.20/0.09 0.010 0 91.8 0 : 46
[OUR*] 5.0 k 0.600 37.8 103.6 0.20/0.09 0.010 0 95.2 0 : 59
[OUR*] 6.9 k 0.643 40.0 98.5 0.20/0.07 0.009 0 98.7 1 : 29
[OUR] 4.3 k 0.635 40.0 99.5 0.20/0.17 0.018 0 97.8 4 : 48

Triceratops

[RAR] 1.6 k 0.607 30.0 98.4 0.20/2.61 0.570 0.03 99.8 < 0 : 01< 0 : 01

(2.8 k)

[MMGS] 9.0 k 0.270 13.5 143.3 0.41 0.080 1.11 93.6 0 : 01
[CVT] 9.0 k 0.543 31.7 110.3 0.12 0.018 0 99.9 1 : 23
[MPS] 9.0 k 0.506 32.0 114.8 0.46 0.062 0 100 0 : 29
[OUR*] 2.1 k 0.552 35.0 109.3 0.20/0.16 0.028 0 87.0 0 : 28
[OUR*] 3.0 k 0.605 38.4 103.0 0.20/0.18 0.024 0 93.8 0 : 41
[OUR*] 4.8 k 0.634 40.0 99.6 0.20/0.19 0.036 0 97.7 1 : 39
[OUR] 3.5 k 0.644 40.0 98.4 0.20/0.19 0.040 0 97.1 2 : 36

Elephant

[RAR] 2.9 k 0.480 24.9 115.5 0.20/5.0 0.112 0.12 100 < 0 : 01< 0 : 01

(6.9 k)

[MMGS] 11 k 0.187 10.9 155.1 0.29 0.034 1.24 93.5 0 : 02
[CVT] 11 k 0.560 26.8 107.7 0.11 0.018 0.01 99.8 1 : 43
[MPS] 11 k 0.505 32.0 114.9 0.38 0.061 0 100 0 : 31
[OUR*] 4.4 k 0.553 35.0 109.2 0.20/0.11 0.014 0 90.4 0 : 49
[OUR*] 5.0 k 0.617 39.1 101.5 0.20/0.13 0.013 0 96.6 1 : 05
[OUR*] 6.8 k 0.638 40.0 99.1 0.20/0.11 0.010 0 98.7 1 : 45
[OUR] 2.7 k 0.633 40.0 99.7 0.20/0.14 0.021 0 98.4 4 : 25

Bunny

[RAR] 4.1 k 0.545 27.5 109.4 0.20/0.69 0.072 0.02 100 < 0 : 01< 0 : 01

(34 k)

[MMGS] 12 k 0.260 13.1 142.4 0.41 0.041 0.59 93.8 0 : 03
[CVD] 12 k 0.150 9.6 160.1 0.34 0.028 0.71 96 0 : 05
[CVT] 12 k 0.603 30.6 103.1 0.20 0.018 0 99.9 3 : 57
[MPS] 12 k 0.510 32.0 114.6 0.37 0.035 0 100 0 : 24
[OUR*] 37 k 0.550 35.0 109.6 0.20/0.07 0.003 0 95.8 3 : 23
[OUR] 1.5 k 0.637 39.8 99.2 0.20/0.19 0.033 0 97.2 10 : 41
[OUR] 1.7 k 0.646 40.0 98.2 0.20/0.19 0.031 0 97.7 12 : 28

For all the method, the input parameters are highlighted with italic fonts, and the best results are highlighted in bold. In column Hdistð%bbÞ, the values before
“=” are the input, and the values after “=” are the real HDist measured by Metro [48].
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Hdist parameter for MMGS, such that it generates results
with the same complexity as CVT, MPS and CVD. In our
method, OUR* means Algorithm 2 is disabled while OUR
means it is enabled. A detailed comparison is listed in
Table 2, and Fig. 20 shows a close-up comparison. More
visual comparisons are provided in the supplemental
materials, which can be found on the Computer Society Dig-
ital Library at http://doi.ieeecomputersociety.org/10.1109/
TVCG.2016.2632720.

From all compared methods, RAR performs most effi-
ciently and introduces the lowest mesh complexity. How-
ever, the geometric fidelity cannot be guaranteed. MMGS is
also efficient, yet it introduces much higher Hdist distances.
Our method is almost at the same level of efficiency as CVT
when u ¼ 35�, but is substantially slower when u ¼ 40�.

According to [9], CVT performs best in keeping high geo-
metric fidelity, but cannot explicitly bound the approxima-
tion error. By setting d comparable to CVT’s best results, our
method consistently produces results with strictly bounded
Hdist, and produces lower Hdist and RMS distances in
most cases. We also find that our method consistently gen-
erates results with higher minimal angle and triangle qual-
ity than MPS, due to the fact that our method provides a
better improvement of “worst element quality” measured
by the minimal angle. However, since our method does not
optimize the global connectivity of the input, our results
have lower regularity (measured as V567) than MPS.

From Table 2, we see that by setting the desired resolu-
tion lower than MMGS, CVT, MPS and CVD, we still get
results with higher geometric fidelity and better bounds of
minimal angle. For the very dense Bunny model, when
Algorithm 2 is enabled, our method even reduces the com-
plexity of the Bunny model to 5 percent of the input without

violating the error-bound constraint. When it is disabled,
the resolutions are still lower than the inputs in most
cases, since the edge collapse operator has high priority in
Algorithm 1.

To the best of our knowledge, RAR, MMGS, CVT and
MPS require sharp features to be specified or detected in
advance, which may be time-consuming or error-prone.
Though CVD is able to preserve features implicitly, it leads
to results with lower geometric fidelity and element quality
than our method.

Since our method does not optimize the element quality
globally, the average element quality is not superior to
remeshing based on farthest point optimization [22] (FPO).
However, we consistently produce results with better geo-
metric fidelity and larger minimal angle than FPO.

6.9 Limitations

Although practically the minimal angles can be improved to
values above 35 degree in all our test cases, we do not have
any theoretical guarantee for the convergence with a speci-
fied u. To challenge our algorithm, we set u to its theoretical
upper bound and show the best results that our algorithm
achieved in Table 3. We found the approximation error can
still be bounded. However, the algorithm runs into infinite
loops or generates degenerated edges while refining.

Another limitation is that we can only tackle two-mani-
fold meshes, for the reason that our local operators crucially
rely on the topology information of local regions. Finally,
our method cannot remesh noisy models robustly, since the
feature intensity function interprets noise as some kind of
features and thus tries to preserve it.

7 CONCLUSION

We introduced a novel surface remeshing algorithm based
on minimal angle improvement. In this framework, the min-
imal angle of the input model is sequentially improved by
applying local operators. Furthermore, an efficient and reli-
able local error update scheme is designed and embedded
for explicitly bounding the approximation error, and two
novel feature intensity functions are defined and utilized
for vertex relocation, in order to preserve features implicitly.
Compared to the state-of-the-art, our method consistently
generates results with higher element quality, lower mesh
complexity as well as satisfied error-bounds. The resulting

Fig. 20. A close-up comparison of results with state-of-the-art approaches. In our method, d is set to 0:20ð%bbÞ and u is set to 40 degree.

TABLE 3
Cases Where Too High u is Specified

Input #V umin Hdist(%bb) Fail Types

Rockerarm 4.2k 41.22 0.20/0.19 Degenerated edges
Homer 6.1k 41.13 0.20/0.14 Infinite loops
Triceratops 4.8k 40.02 0.20/0.19 Degenerated edges
Elephant 4.8k 41.23 0.20/0.13 Infinite loops
Bunny 2.4k 41.42 0.20/0.19 Infinite loops

We set u ¼ 60�, run Algorithm 1 until it fails, and record the best results it
achieved. Algorithm 2 is enabled here.

HU ET AL.: ERROR-BOUNDED AND FEATURE PRESERVING SURFACE REMESHINGWITH MINIMAL ANGLE IMPROVEMENT 2571

http://doi.ieeecomputersociety.org/10.1109/TVCG.2016.2632720
http://doi.ieeecomputersociety.org/10.1109/TVCG.2016.2632720


meshes are well suited for robust numerical simulations,
since they offer bounded approximation error and large
minimal angles.

However, there are still some limitations (Section 6.9),
which motivate future work in the following aspects: 1) pro-
viding a theoretical convergence guarantee with a specified
u; 2) extending the current implementation such that this
framework can be applied to triangle soups or even point
clouds, for error-bounded and feature preserving mesh
reconstruction; and 3) exploring more robust feature inten-
sity functions for measuring sharp features on noisymodels.
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