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Abstract

Many desirable operations occurring in geometric and solid modeling
can be expressed and understood simply in intuitive terms. Examples
include offsets, equal-distance surfaces, variable-radius blending surfaces,
and connection structures that establish a point correspondence between
curves. The simplicity is due to their specification in terms of certain con-
straints that relate to simple notions such as distance or perpendicularity.
However, a precise mathematical formulation using established paradigms
of CAGD and geometric modeling is difficult or impossible, and so one
would have to settle for an approximation. We discuss how to express such
surfaces simply and precisely, using the dimensionality paradigm.

Given that a constrained surface has been expressed with the dimen-
sionality paradigm, we examine how to interrogate it. We consider oper-
ations such as surface/surface intersection, global surface approximation,
and the determination of local surface properties such as curvature.

The medial-axis transform (MAT) was developed in computer vision
as a shape abstraction. Other names for the MAT include skeleton and
symmetric-axis transform. In engineering applications, current research
studies how to use information provided by the MAT for automatic mesh
generation and feature recognition. The MAT is closely related to concepts
from descriptive geometry and from theoretical mechanics. In consequence,
algorithms for computing it can take advantage of these connections di-
rectly or conceptually. We discuss such computational approaches.

*Supported in part by ONR Contract N00014-90-J-1599, NSF Grant CCR 86-19817, and
NSF Grant ECD 88-03017.
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1 Introduction

Geometric shape computations by computer require many extensive calcula-
tions that are based on significant mathematical theories. In geometric model-
ing, shapes are composed and altered in many sophisticated ways, and so it is
advisable to carefully consider using a uniform, mathematical representation of
the shape elements, because nonuniform representations would lead to unnec-
essary complexity in the programs that implement geometric operations. On
the other hand, the algorithms processing a specific representation may, in cer-
tain situations, not fully utilize all geometric properties of the specific shape
because the properties may not be accessible in the given representation. So, an
algorithm based on a uniform representation may produce more complicated or
less accurate results. The unrecognized properties might be more evident in a
different representation, motivating conversion between several geometric repre-
sentations. In this tension of conflicting advantages of different representations,
a further difficulty arises in that not all representations are fully convertible
to each other, and that, furthermore, a conversion that is possible in principle
could be too expensive with the current state of the art.

This paper omits a deeper analysis of the conversion problem and the many
ongoing efforts that address it from a variety of perspectives [21]. Instead, two
approaches to representing surfaces and solids are discussed that are different
from those widely used nowadays. The representations are motivated by a
search for representations that simplify specific geometric operations that are
intuitively very straightforward. That is, there are geometric operations that
are simple to understand, yet remain difficult to implement with the traditional
representations. In part, the traditional difficulty is due to the fact that the
operations may lead outside the class of shape elements that can be represented
exactly, and in part the difficulties also reflect mathematical complications that
arise in specific situations in which there are degeneracies.

In the first approach to be discussed, a surface is represented as a system
of nonlinear equations that formally defines a manifold in n-dimensional space,
and we are interested in a projection of this manifold into a subspace. We have
called this approach the dimensionality paradigm [17] because by raising the
dimension of ambient space one can simplify the task of representing a complex
surface. The advantage here is that the additional variables and equations can
express, in a most natural way, geometric constraints that define the surface
we are interested in. The approach allows us to deal with a broad class of
geometric operations in a uniform way. Moreover, so representing surfaces and
curves generalizes both parametric and implicit representations.

The second representational approach discusses the medial-azis transform
(MAT), a concept commonly associated with computer vision and image pro-
cessing but also rooted in geometry and classical mechanics. Here we consider
the MAT as a representation of solids. The MAT fundamentally relates to Eu-



clidean distance. It therefore interacts with the dimensionality paradigm, first
because the MAT component surfaces are simple to represent exactly with the
dimensionality paradigm, and second because the MAT naturally identifies the
localities at which offset surfaces, also easily defined with the dimensionality
paradigm, exhibit self-intersection.

2 The Dimensionality Paradigm

We consider a surface as the natural projection of a 2-manifold in n-dimensional
space into a subspace of dimension 3. The manifold is specified by a system
of nonlinear equations in n variables. Usually, the equations are algebraic,
although this would not be strictly necessary. This view includes the following
two important special cases:

1. Implicit algebraic surfaces. We have n = 3, and the single equation
f(z,y,z) =0 is algebraic.

2. Integral parametric surfaces. Here n = 5, and the projection is into the
(x,y, z)-subspace.

Like many generalizations, this view of surfaces is oblivious to some existing
structure. For example, a parametric surface is also a mapping from R? to R3,
but in this view it is the projection of a 2-manifold in 5-dimensional space into
a subspace of dimension 3.

In some geometric modeling applications, a new surface is constructed from
one or more given surfaces which we will call base surfaces. We encode the
construction as a set of equations that lay down constraints that the new surface
must satisfy. Ultimately, the equations define a manifold in n-space. The surface
we seek is now the natural projection of this manifold into a three-dimensional
subspace. Instead of eliminating variables — a task that is frequently intractable
— we will work directly with the system of (nonlinear) equations.

2.1 Surface Definition
2.1.1 An Example

We consider the definition of an equal-distance surface as an example of the
dimensionality paradigm, following the presentation of [22]. When we are given
two implicit surfaces f(z,y,z) = 0 and g(z,y,z) = 0, we can describe the
equal-distance surface as follows:

1. Let p = (x,y,2) be a point on the equal-distance surface. Moreover, let
pf = (u1,v1,w1) be a point at minimum distance from p on f, and let
pg = (u2,v2,w2) be a point at minimum distance from p on the surface g.
Then:



2. The point p; satisfies the equation of f, and the point p, satisfies the
equation of g.

3. The distance (p,py) is equal to the distance (p,py).
4. The line p,py is normal to f at p;.
5. The line p,p, is normal to g at p,.

Assertion (1) is essentially a variable declaration. There are nine variables,
comprising the coordinates of three points. Assertions (2-5) define geometric
relationships that these points must satisfy.

We translate Assertions (2-5) into equations, using the variable names of
(1). We obtain in sequence:

flur,vi,w) =0 (1)

g(uz,ve,w2) =0 (2)

( —w)’+ (y = 01)*+ (2 —w1)* = (z —ug)’ = (y — v2)*— (z —w2)’= 0 (3)
T —ui,y —vi,z2 —wi] - [=fo, fu, 0] =0 (4)

[ —u1,y — v,z — w1 [fuw,,0,—fu,] =0 (5)

[ —uy,y — v,z —wi] [0, —fu,, fo,] =0 (6)

[z — ug,y — v2,2 — Wa] * [~Gus, Gu,,0] =0 (7)

[ —ug,y —v2,2 — wa] - [gusy, 0, —gu,] =0 (8)

[# — u2,y —v2,2 — wa] - [0, —Guy» Gu] = 0 (9)

Partial differentiation is denoted using subscripts. For example, f,, denotes
Equations (1-3) express Assertions (2) and (3). Equations (4-6) together
express Assertion (4), since the three vectors

[_fvlafulao]
[fwlaoa _ful]
[07 _fw17fvl]

are tangent to f and span the tangent space as long as py is not a singular
point on the surface. Similarly, Eqs. (7-9) together express Assertion (5). If a
base surface were given parametrically, then a similar translation into equational
form could be given.

The entire system of equations defines a manifold in 9-dimensional space.
The projection of that manifold into the (z,y, z)-subspace contains the equal-
distance surface. For other examples of surface definitions with the dimension-
ality paradigm see:



e [17, 18], for offset surfaces;

[17], for constant-radius rolling-ball blends;

[8, 17], for variable-radius rolling-ball blends;

[12], for ruled surfaces used in parametric blending;

[14], for trimming surfaces in skeleton computations; that is, for surfaces
obtained from the normals through a fixed curve on a surface.

2.1.2 Faithful Definition Systems

The above equation system also defines certain points that are unwanted because
they do not reflect the geometric intent. Such points can be present for one of
two reasons:

1. Distance constraints are expressed by local extremum conditions. Thus,
global minimum distance is not expressed.

2. Some of the equations may become dependent at certain points. For exam-
ple, if p; is a singular point, then Eqgs. (4-6) vanish. Hence, the example
system also defines a manifold that projects to the equal-distance surface
of g and the singular point.

It is not possible to express global minimum distance without introducing in-
equalities, and this would significantly complicate subsequent geometric compu-
tations with surfaces so defined. In consequence, this type of extraneous solution
must be excluded algorithmically, by suitably programming surface interroga-
tion algorithms.

The possible local interdependence of the individual equations can be ex-
cluded equationally. We do this by adding more equations that encode that
certain quantities are different; [23]. The idea is familiar from the refutational
approaches in automated geometry theorem proving, [24, 25].

It is not always simple to define precisely what is meant by “extraneous” so-
lution. In [23], extraneous solutions are defined as follows for equi-distance sur-
faces. Let p = (z,y, z) be a point of the equal-distance surface, p; = (u1,vi,w1)
a point on f at minimum distance from p, and p, = (uz,v2,w2) a point on g
also at minimum distance from p. The points p; and p, are footpoints of p on f
and g, respectively. Footpoints and the associated surface point(s) are said to
correspond. Then a solution is eztraneous if it corresponds to a footpoint that,
in turn, corresponds to infinitely many solutions. Using this definition, it can
be shown that all real extraneous solutions to Egs. (1-9) must arise as follows,
[23]:



1. Footpoints py or p, are singular. We obtain as extraneous solutions those
points that are at equal distance from the singular point and the other
surface. In case both footpoints are singular but not coincident, there is
an additional plane. If both footpoints are singular and coincident, then
every point in R? is an extraneous solution.

2. The footpoints coincide, and are regular. Moreover, the base surfaces
intersect tangentially. Now the common surface normal is extraneous.

In the proof, [23] assumes that f and g are algebraic surfaces, because Bezout’s
Theorem is used to show that all other footpoints must correspond to finitely
many points of the equal-distance surface.

We modify the system of equations to exclude extraneous points. All singular
footpoints on the base surfaces are excluded by

(aful - 1)(0(f1,1 - 1)(0[wa - 1) =
(Bguy — D)(Bgv, — 1)(Bgw, — 1) =

where « and S are new variables. The equations express that not all partial
derivatives of f and of ¢ vanish simultaneously at footpoints. Next, we add the
equation

(YU = 1)(vU2 = 1)(vUs = 1)(yN1 = 1) (N2 — 1)(yN3 — 1) =0

where
U = up—u Ny = fo,9w, — fu 9vs
Uy = vi—wv No = fuiGus = fuyGuws
Us = wy—wy N3 = fu9vs — fo,Gus

It expresses that the footpoints py and p, are distinct, or else that the surface
normals through them do not coincide. It can be shown that the resulting
system has no extraneous real solutions.

In the same way, [23] excludes extraneous solutions from offsets, constant-
radius blends and variable-radius blends. Obviously, the definition of extraneous
solution is not suitable to surface definitions in which, conceptually speaking,
points on a base curve are associated with curves on a surface. This would be
the case with rolling-ball blends: If the radius remains fixed, the spine of the
blending surface is the intersection of two offset surfaces. Each point on this
curve of intersection is associated with a circle on the blending surface, and so
“corresponds” to infinitely many points.

2.1.3 Closure

In current work, Chen and Hoffmann are exploring how the dimensionality
paradigm behaves under iterated operations including offset, equal-distance,



and other surface construction operations. So far, the literature has discussed
only cases in which the base surfaces are implicit or parametric. In contrast,
this work extends the problem to base surfaces that are in turn constructed
with the dimensionality paradigm. Roughly speaking, the operations can be
iterated as long as expressions can be formulated that define the surface normal
in projection. By exploiting the geometry of the individual operations, such
expressions can be formulated.

2.2 Interrogating Higher-Dimensional Surfaces

A sizeable body of algorithmic infrastructure has been developed that deals with
surfaces defined with the dimensionality paradigm:

1. Given two surfaces and an initial point on both, evaluate their intersection;
see [4, 16, 18]. This algorithm is of the marching type. It is robust
and can evaluate very high-degree surface intersections without significant
precision problems.

2. Given a surface and an initial point, evaluate locally the curvatures, [12],
and give a local parametric or local explicit surface approximant of arbi-
trary contact order, [12, 17]. The local parametric approximant generalizes
the approximant used for the surface intersection algorithm.

3. Given a surface and an initial point, globally approximate the surface; [12].
The strategy of this algorithm is reminiscent of the marching-cubes tech-
nique. However, the interplay of the definitional space and the projected
space makes it quite different.

These algorithms do not require the system to consist of algebraic equations,
but assume that the equations are continuously differentiable.

There are many techniques for finding initial points. When the geometry of
the surface is unknown, then general techniques such as [1, 2, 6, 7, 28] can be
used. However, when the geometric intent of the system is known specialized
methods should do much better, because the overall geometry of the target
surface and the base surfaces gives many opportunities to derive initial points.

2.2.1 Local Parametric Approximation

Consider the manifold S defined by

f1($17$27"'7$n) =

fQ(ZEl,ZEQ,...,(I:n) = (10)

fm(z1, 29, c0y2n) = 0



where p = (u1,ug,...,u,) is assumed to be a solution of the system. Assume
that every hypersurface f; is regular and twice continuously differentiable at p,
and that the matrix of first-order partials

ofi
0z i

has rank n — 2, also at p. Then S defined by Eq. (10) has dimension 2 in the
neighborhood of p. Its natural projection into the (x1,xs,x3)-subspace will be
denoted by 7(S). We compute a local approximant to the manifold at p, using
the approach of [12, 17]. More precisely, we compute n coordinate functions

)y = hl(sat)
o = ha(s,t
2 T b (11)
Tn = hn(sat)
such that
b= (h1(0,0), ,hn(0,0))
and

fi(h1(s,t), ho(s,t), ..y hp(s,t)) =0

for i = 1,...,m. Note that the projection 7(S) of the manifold S into the
(z1,x2,x3)-subspace is approximated by

T = h (57 t)
T2 = h2(8, t)
r3 = h3(57 t)

in the vicinity of the projection m(p) of p.
The Taylor expansion of f; at p = (uq,...,uy) is

filx1yeyzy) = filur + 61,u2 + 2, .oy up + 6y)
= fi(uy,...,up)
+ 6 4+ -+ 1,
A 4+ £ 2) )2 (12)
26065 + -+ 1546,
+ £V 0305 + -+ f 8,16,
+ higher order terms



where fi(j *) denotes the partial derivative

9 fi
327]‘ 8mk

We choose s and ¢ such that p = (h1(0,0), h2(0,0), ..., h,(0,0)). Then the
Taylor expansion of the h; is

hk:(sa t) = hk(oa 0)
+hs + ht
[R5 52 4 2h(Y st + BED12) /2
+ higher order terms

(s)

where h;’ denotes the partial derivative of h; by s, and so on. By assumption,
there is a neighborhood of p in which

fi(hi(s,t), ha(s,t), ..., hp(s,t)) =0

We set
o = Bs+nt 4 A2 4 2nW st 4 BED2) /2 -
5y = hs+ Pt D2 4 2n D st 4 BV 22 4
6 = Ks+h0t+ [ s? + 20 st + D122 + -
whence

2 = (b2 + 200 n st + ()22 4
ok8; = BRI+ (IR + RO st + RO 1

By substitution

FORE + SR 4 s [~ (13)

FORD 4 f@p0 Ly e = g (14)
FORED 4 g @G oy fpen) — (15)
FORED b JORED 4y fO — g 19
FORED L f@plt |y s o, (17)

10



where 2 = 1,...,m. The right hand sides are, respectively,

o = FIGIR -+ ff”’"’(hﬁ’)?
+2[fl(1:2)hgs)hés) C f(l’")hgs)hgf)
-+ f )1h( )]

di — f(l l)h( )hgt) 4. +fz("’”)h,(f)h7(f)

+f ) t) ‘+fi(1’n)hgs)h£f)
f( )hSth)
+f g) S fi(l’n)hgt)h%s)
(n—

f >h§f>_1h§f>

ei = VG2 >
o) hg) B 4 ) AL
S o Sfllhﬁf’]

The partial derivatives of the coordinate functions h; are determined from these
systems of linear equations, and they define an approximate local parameteri-
zation of the manifold given by Eq. (10).

The linear systems of Eqs. (13-17) have rank n — 2. Their solutions, there-
fore, must have the form

a1Vfi+ -+ an2oVfn_o+ Bt + 7t

where t; and t9 are two linearly independent tangent directions to the surface
at the point p. These tangent directions are determined by the method chosen
to solve the linear systems. See also [11, 17].

2.2.2 Local Curvature

As shown in [12], it is possible to determine the curvature of the surface 7(S)
at p. The main result is
Theorem

Let n; be the normal vector to the hypersurface f; at the point p, for 1 <7 < m.
Let a; be such that the last n—3 components of ny = Y_;*; a;n; = (a,b,¢,0, ...,0)
are zero, and such that a® + b> +c? = 1. Let v = (v1,v2,...,v,) be a tangent
vector to S at p where v? +v3 +v3 = 1. Let H; be the Hessian of f;. Then the
normal curvature of 7(S) at p in the (projected) direction 7(v) is given by

m

K = —VT(Z aiHi)v
=1

11



Note that the principal curvatures and their directions can be recovered from
the normal curvatures in three different directions; e.g., [32]. Thus, the principal
curvatures, mean curvature, and Gauss curvature of (S) can all be determined
with help of the theorem.

2.2.3 Surface Intersection

Using the same approach as described before for surface approximants, a lo-
cal approximant for the surface intersection at a given point is derived. This
approximant is used to derive an estimated point on the intersection that is
improved using Newton iteration. At the new point, a local approximant is
derived, and the above steps are repeated. Using the higher-order terms of the
approximant, safe step lengths can be estimated. For details, see [4, 16].

2.2.4 Global Approximation

In contrast to pure marching and exploration schemas, a global approximation
scheme requires algorithmic elements that determine whether a bounded surface
area has been completely approximated. In the case of surfaces, this entails in
particular determining, for closed components, whether a particular locale has
already been approximated. To do so, we organize the spatial exploration using
an auxiliary partition of space.

We could approximate the surface in n-space and project the approximation.
Doing so is not as good as approximating the projection directly, because n-space
has more independent directions, and thus the exploration using methods such
as [2] slows down. Since we are ultimately interested in the projection w(S),
it is better to approximate the projection only. However, since the surface has
been defined in a higher-dimensional space, we must lift estimated surface points
somehow into the definition space.

Chuang’s algorithm [11] approximates the projection only, while solving the
lifting problem. A regular grid in 3-space is used to detect whether a paricular
volume of space has already been explored.

1. At p, a local approximant to S is constructed.

2. The projected approximant, (h1(s,t), ho(s,t), hs(s,t)), is intersected with
the faces of the cube, as a function of s and ¢.

3. From the intersection curves with the faces, the coordinates (s1,%;) are
determined of a point on the approximant that lies in an adjacent cube.

4. The estimated point hy(s1,%1), ..., bn(s1,%1) is refined using Newton itera-
tion.

12



Figure 1: Linear Approximant in a Space Element and Local Frame

There is a tradeoff between the degree of the approximant, the mesh size of
the grid, and the difficulty of determining face intersections and adjacent points
in Steps 2 and 3. With increasing degree of the approximant a coarser mesh
can be tolerated, so that fewer approximant calculations are needed. However,
determining the intersection with the faces of the current cube becomes more
difficult, as does the estimation of adjacent points to be explored.

We illustrate the method for linear approximants. Assume that we are at
a point p = (u1,us,...,uy) on S that projects to 7(p) in a cube, and we have
constructed the linear approximant

L: ry = u1+vls+w1t
To = Up+ V28 + wat
Ty, = Up+v,s+ wpt

L intersects the faces of the cube containing 7(p), perhaps as shown in Figure
1. Each face intersection is now determined. If the face plane is 1 = a, then
the line in (s, t)-space corresponding to the intersection with L is simply

ms+wit =a—uy

Intersections with the planes y = b and z = c are analogous. So, the intersections
define a polygon in (s, t)-space that corresponds to the area of L contained in the
cube, as shown in Figure 2. Possibly with help of additional lines corresponding
to the intersection of L with the faces of adjacent cubes, we can now find good
estimates (s1,%1) for new points in neighboring cells, as illustrated in Figure 3.

Experiments indicate that a variation of this algorithm is more convenient:
Determine the intersection of L with the edges of the cube in which L was con-
structed. The intersections are refined with Newton iteration, and the deformed
polygon so obtained in each cube is triangulated, yielding a faceted approxima-
tion that is continuuous across the facet edges.

13



Figure 2: Corresponding Face Intersection Lines in (s, t)-Space

Figure 3: Finding a Point (s;,%;) in Adjacent Cubes
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2.3 Summary

The main motivation of the dimensionality paradigm has been the observation
that many geometric operations are simple to express by formulating a system
of nonlinear equations, but that a subsequent elimination computation to derive
an equivalent implicit equation cannot be carried out in practice, in most cases;
[17]. Advances in symbolic computation will certainly shift the boundary of
when the derivation of an implicit form is practical.

There is another aspect of the higher-dimensional formulation that has not
been mentioned yet. Empirical data suggest that numerical geometric compu-
tations are more robust in the higher-dimensional form of a surface than in the
implicit form. Since the degree of the implicit form can be extremely high even
when all equations of the nonlinear system have degree no higher than 2, this
observation could be simply due to working with lower degree polynomials.

3 The Medial-Axis Transform (MAT)

The medial azis (MA) of a three-dimensional solid is the closure of the locus of
the centers of all maximal inscribed spheres. A sphere is mazimal if there is no
other inscribed sphere that contains it completely. The medial-azis transform
(MAT) of a three-dimensional solid consists of the medial axis plus, for each
medial-axis point, the radius of the sphere centered on it.

Blum has proposed the MAT as a shape representation for use in com-
puter vision; [5, 39]. Applications of the medial axis in pattern recognition are
discussed in [5, 27] and other articles. In the context of geometric modeling ap-
plications, it has been argued by several authors that the MA in 2D is useful for
automatically generating finite-element meshes [3, 31, 40], because it gives in-
formation about where the 2D shape is constricted or extended, and so provides
the basis for quantifying certain shape parameters needed for meshing.

The medial-axis transform is an informationally-complete solid representa-
tion in the sense of Requicha [36]. We discuss this representation and some of
its applications. For simplicity, we discuss first the MAT of two-dimensional
shapes. Thereafter, we discuss how to generalize to three-dimensional solids.
This section follows closely the presentation of [22].

3.1 Properties of the MAT

There is an interesting connection between the MAT and certain concepts from
classical geometry and from the theory of differential equations, [20]. We will
discuss these connections as well.

15



Figure 4: Interior MAT of a Rectangle

3.1.1 The MAT Representation

Let T be a bounded solid in R? or R? that has a smooth, compact boundary
OT. The distance of the point p is defined as the minimum FEuclidean distance
d(p,q) where ¢ is in T. For every p, there is always at least one point ¢ on
the boundary of T' such that d(p,q) is minimum, and such a point ¢ will be
called a foot point of p on T. The interior MA of T consists of all points p
that are interior points of T' and have more than one foot point on 9T, as well
as the limits of point sequences in this set. For a two-dimensional example see
Figure 4. It is not difficult to see that this definition is equivalent to the earlier
definition of the MA as consisting of the centers of maximal inscribed circles or
spheres. Similarly, the exterior MA of T is the closure of all points p that are
exterior to T and have more than one foot point.

We associate with each MA point its distance from 9T'. For two-dimensional
solids, therefore, the MA point (u,v) at distance r from 9T becomes the point
(u,v,r) in 3-space. The MAT can therefore be thought of as a three-dimensional
object, as illustrated in Figure 5. We recover the boundary 9T from the MAT
conceptually as follows: Associate with the point (u,v,r) of the MAT the circle

Figure 5: The MAT as 3D Object

16
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Figure 6: Self-Intersections of Positive MAT Translates

(x —u)? + (y —v)2 —r?2 = 0. Then 9T is the envelope of all such circles.

Likewise, the MA point (u,v,w) at distance r, of the three-dimensional
solid T' is represented by the point (u,v,w,r) in 4-space, thus considering the
MAT a four-dimensional structure. Then 0T is the envelope of the spheres
(z —u)?+ (y —v)2 + (z —w)? — r? = 0, where (u,v,w,r) is in the MAT.

Since the r-coordinate gives the distance from the boundary, we expect that
a translation of the MAT, in the r-direction, represents an interior or exterior
offset of T'. More precisely, with d a signed translation distance, the d-translate
of the MAT S consists of the points

{(w,v,w,r +d) | (u,v,w,r) €S, r+d>0}

Then a negative d-translate of the MAT represents the interior d-offset of T,
whereas, in the case of positive d-translates, self-intersections are possible when
T is not convex. See also Figure 6.

Since the boundaries of positive translates may contain self-intersections,
the interior MAT does not contain sufficient information to generate offsets in a
simple way: Exterior offsets require knowing the exterior MAT as well. Briefly,
a positive translate of the interior MAT is combined with a negative translate of
the exterior MAT, by the same distance. Then the exterior MAT points that are
clipped by the rule r+d > 0 identify self-intersections. Note that the translated
interior MAT is not the MAT of the true exterior offset.

3.1.2 Cyclographic Maps And Images

The concept of cyclographic maps is due to Miiller [30], and has uses in descrip-
tive geometry. Historically, the concept evolved from circle geometries investi-
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gated by Laguerre. Cyclographic maps conceptualize the MAT differently, as
we now explain.

We consider cycles, that is, oriented circles in the (z,y)-plane. The plane is
embedded in (z,y, z)-space. A counter-clockwise orientation is positive, as seen
from points with positive z coordinates, and a negative orientation is clockwise.
If a cycle has the center (u,v) and radius r, we associate with it the point
(u,v,7) in 3-space, where r is signed according to the cycle orientation. This
association defines a bijection

d:R> < C

between points in 3-space and cycles in the (z,y)-plane. Points in the plane
correspond to cycles of zero radius.

Let C be an oriented curve in the plane and consider cycles tangent to C
with consistent orientation. Let p be any point on C. All cycles that are tangent
to C at p are centered on the normal to C at p. Hence, the points in 3-space
corresponding to the cycles lie on a line that is inclined to the (x,y)-plane by 45°
and projects onto the normal of C' at p. The set of all oriented circles tangent
to the curve C' therefore corresponds to a ruled surface in 3-space all of whose
generators intersect C, project onto the normals of C', and have slope 1 against
the (z,y)-plane. This surface is the cyclographic map of C. In particular, if C
is a line, then the cyclographic map is an inclined plane, and if C is a circle or
a point, then the cyclographic map is a right circular cone with a right angle at
the vertex.

Now consider the inverse of the cyclographic map. Intuitively, the family
of cycles corresponding to a curve in space will have an envelope, although the
envelope could be imaginary. We call this envelope the cyclographic image of the
space curve. The space curve will arise as the locus of tangent discontinuities of
the cyclographic map, of some curve C', where we assume that the cyclographic
map has been restricted to a graph of a function mapping the points in the
(z,y)-plane to the distance from C.

Assume that the space curve is a line £. Each point on £ maps to a cycle. If
¢ is parallel to the (z,y)-plane, then the cycles have equal radius and so their
common envelope is a pair of parallel lines in the (x,y)-plane. If £ is inclined,
with a slope less than 1, then the cycles are enveloped by a pair of intersecting
lines. The intersection is the point at which £ intersects the (z,y)-plane. If
the line £ has slope 1, then the envelope is a single line perpendicular to the
projection of £ onto the (x,y)-plane. For greater inclination angles, the cycles
have no real envelope. See also Figure 7. Note that the envelope of the cycles
has an orientation.

Now consider a space curve D that is not a line. For each point p of D, the
corresponding cycle contributes in general two points to the cyclographic image
which are real and distinct if the tangent at p has slope less than 1, coincident
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Figure 7: Cyclographic Image of a Line in Space

if the slope is exactly one, and conjugate complex otherwise. Moreover, the
orthogonal projection of the space curve D onto the (z,y)-plane bisects the
envelope curve C. It is not hard to see that D is the MAT of C. Furthermore,
the tangent to D at p, and the tangents to the cycle corresponding to p, at
the envelope points, are concurrent, [30]. See also Figure 8. This fact can be
used to construct the boundary from the MAT. For other interesting geometric
relationships between the space curve D and its cyclographic image see [30].

We trim the cyclographic map of the boundary 9T of a 2D solid T as follows:
For every point ¢ = (u,v) in the (z,y)-plane, the normal of the (z,y)-plane
through ¢ intersects the cyclographic map in a number of points. If ¢ is interior
of T, then we choose among the intersection points the one that lies above the
(z,y)-plane and has the smallest z coordinate. If ¢ is exterior to 7', then we
choose the intersection point below the (z,y)-plane whose z-coordinate has the
smallest absolute value. If ¢ is on 9T then we choose q. With this convention,
we have defined a single-valued function & whose domain is the (z, y)-plane and
whose range is a subset of the cyclographic map of 9T. § is zero only on the
boundary of T', and defines the minimum Euclidean distance of every point of
the (z,y)-plane to the boundary of 9T. Clearly its singular curves are the MAT
of OT. See Figure 9 for an example.

Since the S function is the Euclidean distance function, all interior and
exterior offsets are its level sets and are obtained conceptually by intersecting

Figure 8: Cyclographic Image of a Space Curve
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Figure 9: The Distance Function S Defined by the Cyclographic Map

S with the planes z = d, where d is the signed offset distance. See also Figure
9. This observation is clearly consistent with our earlier note that offsets can
be obtained from translates of the MAT. The interior MAT characterizes S in
the interior of T', but does not reflect the exterior structure of S completely and
therefore its positive translate may generate offsets with self-intersection.

According to [38], a solid can be blended by a succession of interior and
exterior offsets, by the rounding radius. The exterior offset of the interior offset
obtains all rounds, and the interior offset of the exterior offset obtains all fillets.
But the translation of the (z,y)-plane first by d and then by —d recovers the
original boundary 0T'. It follows that the trimmed cyclographic map of an offset
is not equal to the translate of the trimmed cyclographic map of 9T

We can define cyclographic maps of three-dimensional solids analogously, es-
tablishing a correspondence between oriented spheres in 3-space, and the points
of a four-dimensional space. The map of a 3D solid boundary 0T is now a curved
ruled space, and the ruling consists of lines, through every point of 9T, that are
inclined in 4-space against the embedded (z,y, z)-space by 45°. Furthermore,
the lines project onto the normals in (z,y, z)-space of 9T and envelope its focal
surfaces; [42]. The various constructions and properties sketched before for the
two-dimensional case generalize virtually unchanged to the three-dimensional
case [29]. In particular, the MAT of three-dimensional domains is the singular
set of the trimmed cyclographic map.

3.1.3 The Hamilton-Jacobi Equation

The function § is a subset of the cyclographic map. In turn, the cyclographic
map is ruled and each of its generators is inclined 45° against the (x, y)-plane, or
against the (z,y, z)-space in the 3-dimensional case. With ¢ as distance variable,
the geometry of the ruling is differentially expressed by the equation

S;=852+52
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for two-dimensional solids, and by
S;=8:+5+52

for three-dimensional solids. Locally ¢ is an explicit function of the other vari-
ables, whence
S;+S, =1

and
Si+Sr+80=1

respectively. The function S, therefore, satisfies the Hamilton-Jacobi equation
subject to the boundary condition

S=0 on 0T

With proper sign conventions, the Hamilton-Jacobi equation defines the trimmed
cyclographic map §. The connection between the Hamilton-Jacobi equation and
offsets has been noted in [15]. Since the MAT is the locus of points at which
the trimmed cyclographic map is tangent discontinuous, the MAT is the shock
wave in the solution of the Hamilton-Jacobi equation; [41].

3.2 Approaches to Computing the MAT
3.2.1 Discrete and Approximate Algorithms

Early approaches to compute the MA in two dimensions have evaluated an ap-
proximate distance from the boundary, by one or two passes over a discretization
of T. Examples include [27, 37]. Later on Danielson devised an efficient algo-
rithm for Euclidean distance [13], and this approach can be used effectively for
discrete MAT computations; [20].

Bowyer et al. [43] describes an approximate MA algorithm for three-dimensional
solids constructed from algebraic half spaces of arbitrary degree. The algorithm
begins by computing in a regular grid which volume elements are inside the
solid, outside, or intersect the boundary. Next, for all nonboundary elements, a
distance computation determines the approximate minimum distance from the
boundary elements. Those that are closest to more than one boundary element
constitute the approximate MA. A number of heuristics narrow the search for
closest boundary elements. The algorithm has been incorporated into the Bath
solids modeler.

Price et al. [35] gives an algorithm for determining the branching points of
the MA of planar domains bounded by curved edges. A Delaunay triangulation
is used to approximate the MA as follows: Select a large number of points
from the domain boundary and construct their Delaunay triangulation, [34]. If
the points are sufficiently dense, the Delaunay triangulation will be compatible
with the domain boundary. Moreover, since in a Delaunay triangulation the
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circumscribed circle of every triangle contains no other triangle vertices in the
interior, the MA is approximated by the centers of the circumscribing circles.

The work considers in particular how to select a small number of bound-
ary points such that the resulting Delaunay triangulation respects the domain
boundary and such that the centers of the circumscribed circles contain all
branch points of the MA. Exact branch points are found later using Newton
iteration. Note that the approach requires only that points on the boundary
can be generated easily and as densely as necessary. The method is used as
basis of a finite-element mesh generation algorithm [3].

3.2.2 Geometric Approaches

Computational geometers have investigated the MA of polygonal domains be-
cause then the curves comprising the MA are lines and parabolic arcs. Preparata’s
algorithm [33] evaluates first the branch points of the MA. A branch point is
the intersection of the bisectors of two edge pairs. By carefully sequencing
the pairs under consideration, Preparata found an O(n?) algorithm for convex
polygons. Conceptually interior offsets are constructed that contain a branching
point. The branch point signals that certain edges of the boundary no longer
contribute to the offset.

D. T. Lee [26] constructs the MA using a divide-and-conquer approach and
achieves O(nlog(n)). Patrikalakis and Giirsoy extend Preparata’s approach to
2D domains bounded by line segments and circular arcs, [31]. In this case the
MA consists of segments of straight lines and conics.

Using a similar conceptual approach, [19] sketches an algorithm for con-
structing the MAT of CSG solids in 3-space. The algorithm computes nearest
approach points between pairs of elements of the boundary. The closest ap-
proach points found are sorted by their distance from the boundary. In this
phase a proximity computation also rejects those closest approach points that
are nearer to a third boundary element.

Beginning at the closest approach points, the MAT is evaluated, by increas-
ing distance from the boundary. At each moment throughout the computation,
the MAT is known up to a current distance. Closest approach points at a greater
distance are considered when their respective distance has been reached. Each
face, edge, and vertex of the MAT is formulated as a suitable set of nonlinear
equations, using the dimensionality paradigm, and is evaluated with help of the
approximation algorithm described before in Section 2.2.4. In particular, the
grid used to orient the exploration of faces and edges also signals that different
MAT faces are about to intersect. A proximity computation determines how to
trim faces in the vicinity of an edge or a vertex.

The algorithm does not attempt to exploit special geometric configurations
of the boundary elements. In [14], many such configurations have been identi-
fied.
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3.3 Summary

We have described the MAT, a concept from computer vision, and how it re-
lates to cyclographic maps, a concept from descriptive geometry, and to wave
propagation governed by the Hamilton-Jacobi equation. We sketched several
approaches to computing the MAT, both discrete and based on special prop-
erties of the boundary geometry. The approximate and discrete approaches
are most general, because the exact geometry of the MAT edges and faces is
complicated, even for boundaries whose shape elements are only quadratic. In
our opinion, the complicated geometry of the MAT and the unavailability of
traditional, exact representations has hindered the development of geometric
algorithms for computing the MAT. Only the dimensionality paradigm and the
algorithmic infrastructure described in the previous section is capable of rep-
resenting MAT shape elements exactly and give a way to compute the MAT
of solids with arbitrary boundary geometries. Such an approach, however, has
to address the problem of finding on the MAT initial points. To find them, a
promising approach is to combine the discrete algorithm of [13], with the tracing
approach of [19]. This approach is currently developed by Chiang [9].

Finite-element mesh generation is currently the best-established application
of the MAT; e.g., [3, 31, 40]. The relationship between the MAT and Euclidean
distance, moreover, suggests that other applications could include offsetting
[10] and geometric tolerancing. As robust and efficient MAT algorithms become
available other important applications should develop.
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