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1 O n  t h e  S e m a n t i c s  o f  C S G  a n d  B R e p  

Constructive Solid Geometry (CSG) and Boundary Representations (Brep) are 
two major approaches to representing rigid solids dating back to the 1970s; see, 
e.g., [2, 6, 11, 14, 18, 22, 20, 21]. 

CSG implicitly represents a solid as an algebraic expression. The operators 
are regularized set operations, union, intersection and difference, and rigid-body 
motions. The operands are primitive solids, classically block, sphere, cylinder, 
cone and torus, instantiated to specific dimensions. 

Brep explicitly represents the boundary of a solid as a data structure. Topo- 
logically, the surface is a quilt of vertices, edges and faces, where the adjacencies 
are represented. Geometrically, a face is a (well-behaved) subset of a surface. The 
surface could be a parametric surface or patch, an implicit algebraic surface, or 
a procedurally represented surface. The face boundaries are recursively repre- 
sented as lower-dimensional boundary representations. Operations on solids in 
Brep first were the operations from CSG. However, soon other operations were 
introduced and implemented. 

From the outset, research sought to give precise mathematical foundations 
to these solid representations and the operations on them. A proposed criterion 
by which to judge the representations was informational completeness. This was 
meant that there should be an algorithm that could, in principle, decide un- 
ambiguously whether any point in 3-space was inside, on the boundary of, or 
outside a given solid. Semantic work in CSG also paid attention to a finitary 
condition imposed to exclude pathological solids, for instance solids with a frac- 
tal boundary. The operations of (regularized) union, intersection, and difference 
were then defined in mathematical terms. 

The task for defining a mathematical semantics for CSG and its modeling 
operations was simplified by the algebraic structure of the representation. The 
parallel task of giving Brep modeling a precise semantics turned out more diffi- 
cult. Some research efforts formalized the topological validity of the representa- 
tion, see, e.g., [18]. The interaction between topology and geometry, however, is 
a subject that continues to attract research; e.g., [10, 17, 23] 

Over time, new operations were introduced into solid modeling that were 
difficult to fit into the well-established semantic framework of CSG. For example, 
consider a cube on which we round some edges and vertices. Conceptually, we 
can think of the construction as beginning with the cube, and modifying the 
shape by performing rounding operations. To accomplish this using only cubes, 
cylinders and spheres along with the Boolean operations of union, intersection 



and difference is not natural, hence a "rounding" operation was introduced in 
solid modelers. 

The importance of such new operations to applications, and the apparent 
difficulty of reducing them conveniently to the repertoire of classical CSG is one 
of the factors that contributed, over time, to the decline of pure CSG modeling. 
While the conceptual legacy of CSG is very much present in many of today's 
solid modeling systems, Breps are used in virtually all of them. Moreover, the 
introduction of new operations has accelerated while needed semantic founda- 
tions are underdeveloped or absent. Two example areas follow that illustrate the 
situation, one with the classical operation of blending, the other with emerging 
design practices that stress ease of editing designs. 

2 T h e  S e m a n t i c s  o f  B l e n d i n g  

Rounding a convex edge or vertex, filleting a concave edge or vertex, are oper- 
ations that are collectively called blending operations. Their precise semantics 
has a geometric and a topological aspect. 

Geometrically, a blending surface is a surface that has to be in tangential con- 
tact with two or more given surfaces, along prescribed link curves, and whose 
geometric shape should conform to qualitative expectations. The geometric prob- 
lem has been isolated and treated with precision by many researchers; see, e.g., 
[9, 11]. A blending surface qualitatively should have a rounded shape, and for this 
reason, spherically-derived blending surfaces are frequently chosen in practice. 
There are different ways to give meaning to the vague term spherically-derived. 
For example, in the case of blending two surfaces the following possibilities exist: 

1. The blending surface is the envelope of the volume swept by a sphere that 
maintains simultaneous contact with the two primary surfaces; e.g. [12]. The 
spine of such surfaces is the trajectory of the center of the sphere, and it must 
be defined correctly in order to define the blending surface unambiguously. 

2. A circle is swept in space such that, at each point, contact with the primary 
surfaces is maintained, thus defining a surface. Here, an addtional difficulty 
is to prescribe the spatial orientation of the circle as its center moves along 
a suitable curve in 3-space. 

3. The surfaces to be blended are systematically deformed and pairwise inter- 
sected. The intersection curves lie on a blending surface. The circular rule 
might be that the intersection curves must pass through a fixed circle, in 
3-space or in an abstract space; see, e.g., [13]. 

Other approaches, used for parametric primary surfaces, are derived from prop- 
erties of the parametric representations; see, e.g., [9]. Figure 1 shows a constant- 
radius rolling-ball blending surface between two cylinders. 

Consider variable-radius rolling-ball blends as a specific example. Such sur- 
faces are obtained by rolling a ball whose diamater varies along the path, and 
using the surface of the swept volume as in the case of constant-radius rolling- 
ball blends. The major difficulty is to define precisely how the sphere's diameter 
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Fig. 1. Two cylinders and a rolling-ball blend between them 

varies. The algorithmic techniques proposed in [19] are insufficient because they 
include an iterative step that traces an unspecified path on a two-dimensional 
manifold. 

In the case of constant-radius rolling ball blends, the contact requirements 
imply that the spine of the blend must maintain a distance to the primary 
surfaces equal to the ball's radius. Thus, the spine is the intersection of the 
offset surfaces, of the primary surfaces, by the radius of the ball. Evidently, 
this is a necessary condition. Note, however, that it does not exclude global 
self-intersections of the blend. 

In the case of variable-radius blends, we must determine the spine curve on 
the equi-distance surface of the primary surfaces, a generalization of the Voronoi 
cell boundaries familiar from computational geometry; e.g. [12]. The equidis- 
tance surface of two given surfaces f and g is the locus of all points p that are 
at equal distance from both f and g. Only in simple situations are such surfaces 
represntable with traditional mathematics. For example, the equidistance sur- 
face of a sphere and a (nonintersecting) plane is a paraboloid of revolution; the 
equidistance surface of two parallel planes is another plane; and the equidistance 
surface of two nonintersecting cylinders of equal radius and skew axes is a hy- 
perbolic paraboloid. In general, the representaiton and analysis of equidistance 
surfaces requires higher-dimensional manifolds and projections; [7, 8]. 

While there is considerable work on the geometry of blending surfaces, work 
on the global topology and requirements for blending solid models is largely ab- 
sent; [3]. A requirement of solid modeling is that blending surfaces be constructed 
based on the selection of edges and vertices, plus a few attributes. From this in- 
formation, the blending operations proceed unassisted and in ways that are not 
even mapped out conceptually. For example, are the surfaces to be constructed 
sequentially or simultaneously? If they are to be serialized, in what order? For 
example, the two variants shown in Figure 2 have been obtained by blending the 
two edges in different order. A simultaneous blend might create a third variant. 
For a wide variety of such questions and how they might be answered see [3]. 

Clearly, such decisions, largely made automatically, affect the possible result 
of blending. Complete algorithms for blending of solid surfaces are of great prac- 
tical importance, but there is little published work addressing the questions of 
topology and ordering of the possible variants. 



% 
I t 1 

Fig. 2. Two variants when blending two adjacent edges 

3 The Problem of Variational Design 

Many solid modeling systems implement a design paradigm in which no longer 
an specific solid shape is designed, but a parameterized class of potential shapes 
in which a specific shape is then instanced. Figure 3 illustrates this for two- 
dimensional shapes: A quadrilateral with a rounded corner has been defined. 
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Fig. 3. Design variants of a quadrilateral 

Some of the lengths and angles have been prescribed, as well as that two sides 
should be perpendicular and the rounding arc tangent to the two adjacent edges. 
By varying the lenghts or angles, different rounded quadrilaterals are obtained 
from the same underlying definition schema. Moreover, this definition is descrip- 
tive rather than procedural because there are no requirements on the sequence 
in which the constraints should be elaborated. This descriptive definitional style 
is often termed variational in the solid modeling literature, and the procedural 
definitional style is called parametric. 

A basic semantic difficulty of variational design is that there are different ways 
to interpret the design constraints and the meaning of the changes. In the case of 
the rounded quadrilateral, the problem is the ambiguity of the constraints. For 
example, the two interpretations shown side-by-side in Figure 4 are both correct 
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mathematically, but presumably one interpretation is intended while the other 
one is not. 
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Fig. 4. Two interpretations of a design variant 

We could argue that the multiplicity of interpretating variational geometric 
constraints is unavoidable. After all, the constraints will naturally correspond 
to a nonlinear system of equations, and such systems have multiple solutions in 
general. Hence, the question of "which variant" might be reformulated instead 
as the question of "what additional information" is needed, to unambiguously 
define the members of a class of designs in such a way that only the meaningful 
shape instances are included. Some mathematical and combinatorial difficulties 
arise in the investigation of this formulation; e.g., [1]. 

Another broad class of ambiguities in how to interpret a change in design 
arises from the persistent naming problem; [15, 16, 4, 5]. Consider Figure 5. 
Here, the part on the right was obtained by changing the position of the center of 

Fig. 5. Variant designs? 

the round slot. This variation is counter-intuitive, because we probably consider 
such design changes conceptually as a continuous deformation of one shape into 
the other, here by raising or lowering the center line of the slot. 

To understand why a solid modeling system could construct the variant we 
must consider the steps in which the part was designed: First, a block was 
created, with prescribed height, width, and depth. The block's shape could bc 
varied subsequently by changing these dimensions. Next, the round slot was 



created by choosing a direction of the cut, a radius for the circular profile, and a 
position for the center, based perhaps on the distance from one of the sides and 
the bottom of the block. Finally, an edge round was created by selecting one of 
the edges bounding the slot laterally and prescribing a radius for the round. The 
edge selection was done visually, interacting with a specific instance. 

When the slot's position is changed, we must recreate the data structure 
of the old instance to reflect the change. In particular, the design is reverted 
to the block, the slot is re-created from the new dimensions, and a new round 
is created. This means that a description of the edge has to be given that is 
independent of the data structure of the first design instance. The description 
has to be re-evaluated for the new design. 

How could the edge be described? Clearly, it is the intersection of the slot with 
the top of the block - -  but so is the other edge, and it is this ambiguity whose 
resolution is imperfect in the example. Various schemata have been proposed 
in the cited literature. Moreover, proprietary schemata exist in implemented 
commercial solid modeling systems. These schemata are difficult to characterize. 

The combination of the naming schema, and its reinterpretation after editing 
a design, constitutes a procedural semantics of variational solid design that is 
not clearly understood and requires further exploration. The difficulty of re- 
interpreting includes arbitrating multiple occurrences of a named entity, for 
example when subdividing an edge or a face, resolving clashes when merging 
vertices, edges or faces, and responding to the diappearance of named entities 
such as the obliteration of a vertex by an expanded feature elsewhere on the 
solid. 

Consider the design shown in Figure 6. A protrusion was added to the block, 
but the height was chosen such that the top face, f2, merged with the top of the 
block, fl .  The height of the prism is controlled by a dimension measured agains 
the top face. When the protrusion is lowered, a decision must be made which 
part of the L-shaped top face is to be used to reconstruct the prism. For a more 
detailed discussion of these and other problems see, e.g., [15, 16, 4, 5]. 

4 S u m m a r y  

We have sketched several operations and design paradigms in solid modeling that 
remain without adequate semantic foundation. To obtain a proper mathematical 
semantics, and to harmonize it with the intuitions and expectations applications 
of solid modeling require, poses some fascinating and difficult research topics 
worthy of sustained exploration. 
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Fig. 6. Identification problems for merged faces and consequences 
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