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T IS WIDELY RECOGNIZED THAT COMPUTER
aided design and other engineering tasks will
requife computer representations of physical
objects. These representations must be capa-
ble of supporting a wide variety of activities includ-
ing graphical display, simulations, finite element
techniques, cte. The methods of representalion in
use today includé wire-frames, octrees, surface rep-
resentations and constructive solid geometry [1-3,
5, 7, 8). Each method has inherent advantages and
disadvantages.

Regardless of the relative merits of current repre-
sentations for the design process, many objects one
wishes to design contain surfaces whose sole pur-
pose is to connect other surfaces smoothly. Oflen,
such surfaces are unimportant to the design at
large, yet accupy much of the designer's time and
effort since they can be mathematically compli-
cated and their shape and placement has Lo be
tn precise relation to the surfaces to be connected.
We therefore concentrate on laying the ground
work for a system Lhat automatically deduces the
shape and placement of these surfuces, freeing the
designer from much drudgery and routine work.
This paper developes a technique for gencrating
a smooth surface connccting lwo given algebraic
surfaces for use in aulomatic surface generation.
In certain circumstances the method can be applied
to patched algebraic surfaces as well. The specific
advantages of the technique include:

(1) simplicity of derivation,

(2) ability to connect arbitrary, algebraic surfaces,
(3} low degree connccting surfaces whose shape is
easily understood.

The use of automatic surface derivation is demon-

strated by means of a concrete design illustrating -

several situations in which surfaces may be derived.
A concise, intuitive and flexible syntactic structure
15 used to specify the location of these derivations.
The gate valve body, shown in Fig. 1 is used for the
sample design. All fillet surfaccs, all edge roundings,
and the joining surfaces that arisc when reducing
or increasing pipe diameters are automatically con-
structed and shown in blue. We refer to these sur-
face types collectively as blending surfaces.

We have chosen to represent surfaces by algebraic
equations. An important consideration when doing
50 is the degree of the algebraic cquations that
arise, The equation degree can enter exponentially
into the running time of many symbolic computa-
tions wec might wish to perform, and would also
affect adversely the simplicity of numerical approx-
imations, should approximative methods be pre-
ferred over symbolic ones. Furthermore, (he
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number of coeflicients a surface equalion may have
grows dramalically with its degree. A threc vari-
able equation of degree 16, for cxample, may have
up to 969 coefficients. If the surface depends on
several paramelers Lthen many more coefficients are
required. A degree 16 surface in 3-space depending
on only two paramcters can have up to (3') or
20349 cocllicients.

Our central concern is that the system be able to
deduce automatically blending surfaces whose pur-
pose is Lo smooth out intersections of other shapes
or to join other shapes in a standardized manner.
Since a blending surface is constrained to be tan-
gent o two other surfaces in general position, it
has, in general, a higher degree than either of the
other two surfaces. It is crucial to obtain low de-
gree blending surfaces, so that they may be derived
simply and admit simple internal manipulation al-
gorithms.

Here we can state positively that the automatic
derivation of a blending surface results in a new
surface of very low degree. For example, when
blending two degree 2 surfaces, a degree 4 surface
sufficies. In this regard, our derivation method
contrasts pleasanily with traditional techniques
from differential geometry [6]. In particular, when
smoothing the intersection of two cylinders, one
could consider a family of spheres of fixed or vary-
ing radii that are in contact with both cylinders,
and take as blending surface the envelope of the
family. This results, in the simplest case, in a poly-
nomial of degree 16. Another possible strategy for
obtaining blending surfaces is to rotate a planc
through the axis of one of the cylinders and pre-
scribe the intersection curve of the blending surface
with this plane, say as a circle. This results in a
parametric definition of the surfacc whose implici-
tization is beyond the resources of MACSYMA

[4] running on a VAX 780. In contrast, our sur-
faces can be derived very easily without the aid
of a computer.

Ultimately, a precise language is needed to specily
unambiguousty the shape and position of all com-
ponents to be connected, by automatically derived
Joints or otherwisc. The design of such a language
is not the central concern of this paper. Conse-
quently, many language issues deliberately remain
undeveloped. Rather, we restrict our attention Lo
classifying a number of typical joints and parame-
terize their shape and oricnlation.

Since a genceral, detailed notation can easily {tus-
(rale the intuitive spatial ability of the designer,
it is crucial fo give a simple and c¢lear form to
typical situalions. We do this by concentrating on
three concepls: attach, smooth and join. The sim-
plest of these is artach. It refers to combining, with-
oul penetration, two objects by mating identical
features in cach object. This entails appropriately
positioning the second objccl in space so thal mat-
ing can be achieved. In particular, the designer is
not required to explicitly position the objects. After
the objects have been joined, ncw edges wilt appear
in the composite as the inlersection ol two surfaces,
one from either component. These edges may have
to be smoothed out by rounding or [illcting. In
this case, one uses smoorh_atitach in place of at-
tach.

Both the smooth and join operations modify ob-
jects by adding or substracting volumes through
which a blending of ideatified fcalures is achieved.
Here the smoothing operation blends intersccting
surfaces in given position, whereas join connects
nonintersecting surfaces thal may have to be posi-
tioned in space. In particular, join makes spccial
assumptions about the typec of joint Lo be achieved,
thereby restricting its positioning abilities. More

Fig. 1. a Gate Valve Body specification. b Gatec Valve Body
Fig. 2. Scc page 4
Fig. 3. Blending surface smoolhing outside;

((x2 42 —8%)--36)% ((»*+:27-4%)—20)%
16° 20°

[=0

Fig. 4. Blending surlace smoothing insidefoulside;
P+’ =89 +28)* (P +22-4%)-20)*

1=0
25* 20?
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Fip. 5. Blending surluce as interscction of a homotopy family
with auxiliary pluncs

Fig. 6. Blending surface joining two elliptic cylinders;
O +4y*—4) (232 + OxF +p2 -9 (z+3)* =0

Fig. 7. Blending surfacc joining circular cyclinder and parabolic
cylinder; (x*+ % —4) (z = 5P +{x* =) (z+ 5P =0

Fig. 8. Singular bleading surface homatopy method;
(D242 = 1) (=5 H(—(x— 1P ~p? +1) 2 =0

Fig. 9. Pinched blending surface homotopy method;
1+ =1 =5+ — 1P+ = 1) 2" =0



general joining opecrations are not needed in the
gate valve design, and so both the mathematical
derivations, as well as the textual description of
more complicaled joints has been omilled.

It is by now standard to describe solids in local
coordinate frames. When combining two objects,
the relative position of the objects as well as the
resulting coordinate system necds to be under-
stood. It is our view, that this should be governed
by simple, yct flexible rules that dispense with the
need of explicitly positioning objects in routine sit-
valions. Consequently, attach, smooth and join all
adopt the coordinate frame of the [irst object argu-
ment for the result. Subscquent object arguments
are automatically positioned. In considering the
valve design, the reader may verily that there is
indeed 4 minimum of coordinate frame manipula-
tion and movement ol objects.

The derivation
of blending surfaces

Two types of blending surfaces arise frequently in
physical objects. The [irst type of surface is used
to smooth the Inlersection of two surfaces. The
second type is used to form a smooth transition
betwecn, say, pipes with different cross sections.
In this section we develop the first type of blending
surface.

Associated with a surface g(x, y,2z)=0 is a one
parameter family of surfaces G(s) delined by
g(x. v, 2)=s. For certain values of 5, G(5) may de-
generale to lines, points or even the emply scl.
For example, if g(x,y, z2)=x>+y*+z>—1, then
G(s) is a sphere of radius |/1_+s. For s=—1 the
surface degenelrates to a point, and for s< —1 the
surface has no real points. Similarly, if g(x, y. 2)=
X%+ yp?—1, then G(s) is a cylinder of radius J/ 1+
which degencrates into a line for s= —1.

Suppose we are given two cylinders C; and C,
whose axes intersect at right angles. We can obtain
a smooth surface as follows. Starling with an cn-
larged radius for C,, gradually decrease this radi-
us, simultaneously increasing the radius of C, . The
intersection of the two cylinders defines a curve
that sweeps oul a surface as the radii change. By
suitably controlling the relative rate of change of
the two radii, a blending surface is obtained. The
consiruction is illustrated in Fig. 2.
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To be precise, let g and # be lwo surfaces whose
intersection is to be smoothed and let G(s,) and
H (s,) be the associated famulics of surfaces. We
assume that g(x, y, z)—s£h(x, y, z) for all s. Vary-
ing the values of 5, and s, correspond to varying
the radii in the example of the two intersecling
cylinders. A [unclion f(s,, s2)=0 is used to relate
the values of 5, and s,. The implicit equation F
for the surface is oblained by chiminaung s, and
5; [rom the three equations. Thus F(x, y, z2)=
f(g(x, y, 2), h(x, y, 2).

Teo achicve the desired resull, £ must be chosen
so as Lo satisly three conditions.

(1) There must exist a point (0, #) on f such that
the surface # (b) intersects g{x, y, z)=01n a space
curve. Similarly, a point (a, 0) must exist on fsuch
that G (a} intersects Ii{x, y, £} in 4 space curve.

(2) The coordinate axes must be langent Lo f in
the points (0, b) and (a, 0).

(3) The function f must smoothly connect the
points (0, &) and (a, 0}, and for each point (x, v)
of the arc, G(v) must intersect H{pv) in a space
curve.

Intuitively, condition (1) entails that I inlersects
each of the surfaces g and /4 in a space curve. Spe-
cifically, £ intersects g in the curve G(0)m H(b)
and Fintersects /i in the curve G {a) n H(0). Condi-

Fip. 2. Blending surlface as Intersection of surlace [amilics
G5} and H(s3)
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tion (2) cntails that I” is tangentl to g and £ in
ihe respective curves ol intersection, and condition
(3) states that F is well behaved in between. These
facts arec formalized in the [ollowing thcorem.

Theorem 1. The surface F=f{(g, k) intersects g in
the curve G(OYn H(b) and intersects It in the curve
G@)nH(0) and is tangens to the surfaces in the
respeclive intersection curves.

Praof. The intersection of Fwith g and / is evidend.
We show that for every pointl on Lhe intersection
curve, the tangent plancs Lo the two surfaces coin-
cide. For this it suffices to show that the partial
derivatives at the point agrecc up to a constant.
The partial derivalives ol F are:

Fla— f(xl gtx} + f(ﬂl Jix}
F— fm gb'l a4 f(h,\ L
Fi =fm g(=l —I—f“’" s

If (x, y, z) 1s a point on GO} H (), i.e., of Fng,
then by condition (2), f®=0. Hence, for this

point, -
g™
=f(s} gb'l
g(=)

F}

F0

F

Now f is not conslant, hence f® is not identically
zero, and so the tangent planes are the same. A
similar argumenl shows tangency of F with It in
the curve Fo =G (a)n I (0).

Since we desire a blending surface of low degree
and since g and h arc given survaces, the degree
of fshould be low. Clearly, fcannot be ol degree
1, so onc chooscs a degree 2 curve for f that has
the required tangency properties. This resulls in
a blending surface of degree at most 4. In the fol-
lowing, we use ellipses:

Y _ M2
f(sla SZ)=(SI 2“) +(“-Z zb) —1 =0.
a b

We could have used hyperbolas, parabolas or cir-
cles.

Example. Consider the simple case of two cylin-
ders, of radius 4 and 8, respcctively, whose axes
intersect al right angles.

(1) glx, »)=x>+y*—82=0

(@) h(y, )=y +22—4*=0.
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The associated lamilies of surfaces are

G(s)=x"+y'—64—s5,=0
H(52)=y2+22_'16—52 =0.

We assume that the space curves in which the
blending surface £ is to intersect with the two cylin-
ders are the intersection of G (36) with /i and of
H(20) with g. We connect (36, 0} and (0, 20) in
the s, —s, planc with the ellipse,

(s, —36)° + (s2—20)* _

167 202 1=0.

This yields the blending surface

81z*+ 1622 22 583222 +106y* + 502 y?
—10832y2 +25x* —5000x2 +322576=0.

Il is possible to verify analytically, that the surface
is tangent to both cylinders and smoothly connects
them, as shown in Fig. 3.

The role of the points (0, ) and (a, 0) becomes
evident when g and b are chosen as —28 and 20
and are connecled by the ellipse

1=0.

(514+28)* | (5,—20)°
287 202

One may verily that the resulting surface is

49z% +98y% z2 352822 + 74 y* +50x2% y?
—5328y% +25x* —1800x? +76304 =0

which also connects the two cylinders smoothly
but is in the imterior of the larger cylinder. The
surface is shown in Fig. 4.

Similarly, an arc f in the third s, —5;, quadrant
leads to a surface that is in the interior of both
I and g. An arc in the fourth quadrant leads to
a surflace that is in the interior of # and the exterior
of g.

Considering these other positions for f illustrales
the nced Lo choose a and b such that the respective
surfaces intersect. Choosing ¢=36 and b=—-20
connecled by an cllipse, for example, yields a sur-
face that is tangent to # but does not touch g,
since H (—20) has no real points. In fact, this sur-
face has two bubbles that “plug™ the cylinder g
in two places. I the points are a=36 and b= —16,
then the bubbles touch g, each in one point, since
H (—16) has dcgenerated inlo a straight line.
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Homotopy methods
for transitional joints

In this section we develop smooth surface transi-
tions between surfaces such as coaxial cylinders
with diflerent cross sections. The method con-
structs a family G (¢} of surfaces from two given
surfaces g and /# by means of a homotopy. The
surfaccs in the family G (¢) arc intersected with sur-
faces In an auxiliary Family of surfaces FI(r). For
simplicity we lake H to be a family of planes. The
inteescction of G and H is a curve that sweeps
out the desired surfacc as s varies. (See Fig. 5.)
Consider the homotopy

G(.\', }’! Z, 'f)=Sl (f) g(x! Vs Z)+s2(f) h(x-: ¥, Z)=O

and the auxiliary family of planes, # (f)=z—+t. The
intersection of corresponding surfaces in these two
families yiclds the blending surface

F(,\', W Z)=.S'1 (2) g(x-r s z)+52 (Z) h(.\', ¥, Z)=0

The functions 5, and s, must satisfy the following
conditions, so that F smoothly joins g and A:

(1) There is a valuc z, such that s,(z,)=0 and
$3{(z)=0

(2) There is a value z, such thal s,(z,)=0 and
1 (22)=0.

(3) Let s,{(z,)=b and s,(z.})=a. In the 5, —s5,
plane, the points (0, ) and (4, 0) arc smoothly con-
nected by the arc (5;(), 55(f)), where z; £1£z,,
and cach surface G (x, y, z, 1) intersects the planc
Z=rin a space curve.

Briefly, conditions (1) and (2) ensure that Fis tan-
gent to g and X in the z=z, and z=z, plancs,
respectively, and condition (3) states that in be-
tween these planes # is well behaved. Note the
similarity with the conditions in the previous sec-
tion.

Theorem 2. The surface F=s,g+5,h is rangent to
the surfuce g at z=z, and is tangent 1o the surfuce
hatz=z,.

Proof. Assume that conditions (1), (2) and (3) arc
satisfied. In the z=z, plane, we have F(x, y, z2)=
bg(x, y, z), which means that the curve in which
g intersects the z=z, plane is also the curve in
which Fintersects the plane. Now

F—g, g™ 4 5, 40
FO =5, g% 45,0
FP=5 g+53h+8,g9 +5, 0%
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With z=z,, we have for every poinl (x, y, z,) on
the intersection of F with g that g(x, y, z,)=0,
55 (z,)=0, and 55(z,)=0. Hence

F®(z=2,)=b g¥(z=z,)
FO (z=z,)=b g (z=z,)
FOz=z,)=bg™Nz=2))

For each point in which Fintersects g, the tangent
planes of the surfaces are the same and so £ is
tangent lo g. A similar derivation establishes that
Fis tangent to /1 in the z=z, plane.

Example. Let g and & be the surfaces to be joined.
The homotopy G (f)=12/+(1 —£)*g and the auxil-
lary surfaces H()=z—t vyield the surface
F(x,y,2)=z*h+(z—1)*g=0. In this manncr the
two quadrics arc joined by a degree 4 surface.

In the case where g and / are the elliptic cylinders
xt 44yt =4 and 9x*+ y* =9, Fis the surfacc

10x% 22+ 5y* 22— 2x% 2 —8y? z+ x* + 4y?
—13z2+8z—4=0

shown in Fig. 6, but with the z axis stretched by
a factor of 5. Analytically, stretching is done using

é in place of ¢ in the homotopy functions. Since
the two surlaces are cylinders, one may substitute
equivalently % for z.

As a second example consider joining the circular
cylinder x? +y%-1=0 with the parabolic cylinder
2x*—y=0. Using the same homotopy [unctions,
the surface derived (o join the two is

Fx,p,2)=3x2 22 4+p* 22 —2x% 2—-2)? z—p 2*
+x? 4y =zt 2z—-1=0

Since the parabolic cylinder is open whereas the
circular cylinder is not, the surface must open up
in the positive y direction. It is shown in Fig. 7,
again after strelching z for clarity.

The cross sections of the surface with the z=t
plane are clliptic {or 0 =<1, with incrcasing axis
length in the x=0 plane. In the z=1 plane, the
parabola is the limit curve of these ellipscs. For
z>1, surface has again elliplic sections.

One should observe that a smooth joint derived
wilh the homotopy method may nol meet other
design criteria such as minimum cross sectional
area. Our experience indicates that in practice most
surfaces derived arc satisfaclory, but undesirable

97




— Nisual
Compuiter

results can occur in siluations, such as illustrated
in Fig. 8 and 9.

In Fig. 8, the joining surface has a singularity. The
reason here is that Lhe inside of one cylinder was
taken to be belween the surface and its axis of
symmcliry, whereas in the second cylinder the out-
side is between the surface and ils axis. This is
typically a sign error thal would not occur in an
automaled system. In Fig. 9, the joining surface
in pinched to a point because two mantle lines
coincide, but on opposite surlace sides.

This difficulty is intrinsic to the homolopy scheme
we use here, and can bc corrected by a scheme
in which the homotopy is not purely additive. An-
other possibilily is Lo join each cylinder to a ficti-
tious intermediate one 1n the middle.

The Gatevalve Body

We use the specification ol a gate valve body as
a vchicle Tor illustrating design using aulomalic
surface generalion. The gate valve is specified in
a textual language. Language statements arce defi-
nitional as opposcd-to executlable statements in
convenlional programming languages. The com-
plete description of the valve is given to ilusirate
that a designer can indeed make use of automatic
surface generation Lo eliminaic consideration of
complex but unimportant parts of the design,
thereby allowing him to concentrate his efforts on
functionally importiant parts.

The valve body consists ol a cylindrical chamber
to which an intake and an outlet assembly are at-
tached coaxially, one on each side. At right angle
lo the chamber axis is the bonnet stem, a pipe-
flange combination of oval cross section, Lo which
the valve bonnet {(not desighed here) is fastened,
and through which the shut-off mechanism is
guided. The chamber diameter equals the major
diameter of the ovoid, which is the cross section
of the valve stem, and may differ from intake and
outletl assembly diameters.

Each assembly consists of a pipe-flange combina-
tion. The flange’s outer diameter and thickness are
[unctionally dependent on the pipe’s wall thickness
and sizc of the bolts with which the valve is to
be fastened to a run of pipe. (For simplicity, we
do not cxpress the bolt dependence and give all
Manges a uniform thickness of 7/8.) The connection
belween the various assemblies is made by joints
that have Lo mediate between the differing dimen-
sions. These joints are specified explicitly by Lhe
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joint length and implicitly by the radius differential
of the two pipes, as outlined in Section 3.

The valve body in our example is a simplified de-
sign. Usually the chamber diamcler is reduced to
the intake and outlet diameters in two sleps with
the first reduction accommodaling screwed In
valve seats. Moreover, the chamber and bonnet
stem have two (racks along Lhe inside on which
the shut-off mechanism rides. The addition of these
features introduces (urther complexily to the de-
sign definition, bul it does not add fundamentally
new considerations.

Preliminary definitions

Since many subassemblics of the gate valve are
made (trom pipes, we begin by defining the generic
object pipe. The objecl is construcled from a sys-
tem defined generic objecl yeylinder(r) and two hall
spaces, which are given explicitly. Here, yeplin-
der(r) is an infinite cylinder of radius r whose axis
is the y-axis. The cylinder is a solid, given by the
equation

x*+z2<r2,

Note that definitions arec made in the form of as-
signments to formal names. Fealurcs of the pipe
are named by other definitions included in the defi-
nition of pipe. These subdelinitions are nested in
the where-clause following the expression delining
the pipe, and may be referred to from the outside

as, e.g., pipe.top.

pipefradius, thickneas, lengih) 1= fedf - pf2j N It N X2 whera
beglo
eyt! 1= peylinderfradiur+thickner);
eplE := yeylinderfradius);
Hi =y > 0);
He := {y = length);
top .= fepl! - epigj N {uy = lenprh);
bottom .= feglt - ept®) N {y = 8);
oulside ;= eyt aurfoce N K N HE;
top.in_edge 2= lop N cyif;
boffom.in_edge 2= batlom M cpi®
endj

The deflinition of pipe is used Lo define a new gen-
eric object, flanged_pipe, which is constructed [rom
two pipes, one of which serves as a flange. Since
the flange is conceplualized as a pipe, the [lange’s
thickness is (he the pipe’s length (f7) whereas the
radius difference is the wall thickness (ff). Note
that ft functionally depends on the wall thickness
of the pipe Lo which the flange is attached. Similar-
ly, /1 could be made functionally dependent on




the bolt size of the bolts used to fasten the valve
lo the line. Note that f/ enters parametrically into
the definition of flanged_pipe, although this is not
made explicit.

The two objccts are combined using the operation
smootl_arrach, which attaches them non-penetral-
ingly to each other malting (wo identical leatures.
The opcration also smoothes all edges that arc the
intersection of surfaces not belonging to the same
original componcnt., By convention, the resulting
object has as intrinsic coordinale system that of
the first argument. The third parameter r Lo
smooth_attach conlrols the placemeni of the tan-
gency poinls (a, 0) and (0, ). These points are
placed such that the resultant surface approxi-
mates, in cerlain cross sections, a circle of radius
r. The third parameter Lo smooth has the same
meaning.

flanged_pipefradius, thickness, length) ==
rmooth_attachfnipple.top.in_cdye, rflange bottam.in_cdge, 1}8) where
begln
J1 1= Bsthicknesr+hole_diameler;
Hange ;= pipefradive, fi, A);
#flange ;= ymooth{fange_ outside, flange bottom, 1} 18);
nipple := pipefradiue, thickreas, length);
boltom ;= mippic.baltom;
top ;= sflange.lop
endj

Two flanged pipes are needed: one as intake as-
sembly, the ether as outlet assembly. Both are de-
rived from the same definilion, but one of them
is rotated by 180 degrees when attached (o the
valve chamber. A flanged pipe is also needed for
the stem of the valve body, but as its cross section
is an ovoid, new definitions are required.

We define first the ovoid shape, and then with
it, the ovoid pipe. Here the system deflincd object
zeylinder(r) is uscd, which is a solid cylinder of
radius r whose axis i1s the z-axis. The ovoid is the
intersection of three cylinders whose axes lie paral-
lel in the x=0 plane, with all intersection edges
smoothed out. The function ymove moves the axis
of the zeylinder a prescribed distance in the y direc-
tion. Here, r1 and r2 are the cylinder radii, and
r3 is the radius for smoothing edges. The operation
smooth is used when combining objects by union
or interscction and smoothes (those edges not be-
longing Lo the same original component. The defi-
nition of flanged_oveid is completcly analogous to
the delinition of flanged_pipe, and is used to deline
the bonnel stem.

In defining the chamber ol the valve body, a tee
is constructed rom {wo pipes ol different shape.

Omputer

The through pipe, of circular shape, is delined with
radius equal lo the major radius of the ovoid,
which 1s the cross section of the stem pipe. The
pipes are posilioned with the origin of the coordi-
nate systemn at the intersection of the two pipe axes.
The stem pipe riscs in the positive direction of the
z-axis, and the through pipe is in the direction of
the p-axis. Both pipcs have the same wall thickness.
In conslructing the Lee, we cut into {pipe an open-
ing corresponding to the inside of the stem pipe.
Similarly, the stem pipe is clipped al the bottom
so as not lo penclrale inlo the inside of tpipe. The
resulting shapes are combined with a set union.
Note that there is an overlap.

Combining the chamber and the bonnet stem is
a simple arrach due to the fact that we have an
cxact match of the corresponding cross scctions.
No smootihing is needed. The intake and outlet
asscmblies are connected by join, which has to con-
slruct an adaptive joint ol prescribed length that
connects Lwo nonintersecting pipes of dilferent
wall thickness and inside diameter.

Finally, all remaining paramcicrs are assigned in
order Lo design a specific valve body. Alternalively,

pipefradivs, thickness, lengih) == feldl - cpi2f N Hi N I{2 whera
beglo
eplt := yeplinderfradive+thickners);
eyi® ;= yeplinderfradius);
it o= {y = 0},
He := (¥ < length);
top (o feplt « epf2) N {g == length);
bottom = feyll - e} 01 {y = 0);
ouleide := cyll.aurface 1 HI 01 12,
top.in_cdge === top N cyl®;
boltom.im_edge ;= botlom [ c)f2
end;

flenged pipefrodive, thickness, length) c=
rmooth_attachfnipple.iop-in_cdge, sflonge. dottom.in_cdpe, 1/8) where
beglo
ft = S4thicEnezs+Role_diameler;
Aange (= pipcfradive, fi, A);
sflange := rmeoth{flangc.ociside, fange.baltom, 1f16);
nipple := pipefradius, thickness, lenglh);
toltem (ea mipple.dotiom;
top := sflange top
end;

ovoidfrt, r8, r3) o smoothfeylt N epl2 1) epls, r8) where
begin
exld := ymovef-f§+8f16}, zeplinderfro});
cyl2 == ymove{{+2] 16, zeglinderr2));
cyl8 (= replinderfri};
end}

ovoidpipefri, rf, r3, thickners, Iength) ;= evaidl - cvoid? 0 HI N HE whera
begln
1= thickness;
svaid! ;= ovaidfri+i, ré+t, rS4);
ouaid? ;= ovoid{ri, r2, ri}};
1 :={z2> 0}
He:={:<1i);
tap 1= fovoid} - ovaid®) (1 {z = fengih];
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bottam ;= foveid! » aveid®) N {2 = 0};

oufpide ;= ovaidLaurface N N1 1 K2,

top.in_cdge = lop (| ovoid®;

boftem.in_cdge := bolfom M oveidf
end;

Aanged_ovoidfrl, r2, r8, thickness, fnglh) 1=
smooth_attachfnipple_ top.in_cdge, sflange.bottam.in_edge, 15} where
begin
f 1= Sthickness + hole_diameter;
nipple = ovoidpipefr!, re, r3, thickneas, lengih);
flange := ovoidpipefri, r2, rS, I, A);
#flangc 2= smacth{flangc outaide, fange. baltom, 1f10);
bottem = nipplc boltom;
tep '= gflange top
end;

imlake = flanged pipefin_radius, thickness, in_length);

outlet '= flanged_pipefoul_radius, thickness, oul_fength);

chamberfechamber_tength, chamber_beight) :ea clipped_tpipe U clipped_ttem where

begln
slem ;= ovoidpipefrs, r2, t3, aslcm_thicknees, chamber_hcigth);

tpipe = ypmovef .chamber fength[ 2, pipefrf, sicm_thickness, chamber_fengih});

ovsid! := ovoidfrl, r8, r8) 01 (= = 0};
piped 1= peplinderfri};
clipped_{pipc ;= {pipc - {Ipipe N ovoidl);
clipped_slem := plem - fstem N pipel);
{op ;= rlem.iop;
feft := lpipc.baliom;
right '= tpipe_tap

end;

bonnei_stem := flonged_ovoidfrt, r8, r8, stem_thicinces, afem_iength};
cenfer = altachfchamber.fop, bonnel_slem. botlom);

arremify ;= B where
begln
A := joirf{center.lefi, intcke.bottam, joint_fength);
B := joinfA.ccnler.right, ouffes.bottom, joinl_fength)
endj

f=118

Join!_tength = 8f§;
in_radiue := £+1f16;
in_fenpth := 8f8;
oul_radius := L+1f18;
ouf_fength (== 8f5;
thickners := 515,
hote_diameter = 9] I5;

rl = 24+7f8;

8= 6+8f8;

3= 1f4;

chamber_ength = S+ 1fE;
chamber_Aeigth = S+ 8f;
siem_thicknegs ;= [ 2
tem_fength :=1;

they could have remained partially unassigned
when designing gencrically.

Conclusions

We have developed the mathematics necded to
support automatic gencration of connecting and
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smoothing surfaces in Lthe design of objects. Not
only is the derivation of these surfaces straightfor-
ward, bul also the surfaces are of low algebraic
degree.

A sample design is used to demonstrate the feasi-
bility of using these surfaces as a basic tool to
reduce design complexity and to free the designer
[rom the burden of unneccessary detail. In con-
junction with a disciplined usc of paramelerized
design, our example also shows that textual lan-
guages can be used to modify shape extensively
in a concise and conveniend way: only the parame-
ters of the valve body need to be changed in order
to accommoedale, for cxample, different linc sizes,
different wall thickness, or differenl overall dimen-
sions of the valve,

QOur design notation 1s a step towards the textual
componcnl of a comprehensive, userfricndly de-
sign language. IL needs to be perfected and in-
creased in scope a5 does the underlying mathemat-
ics. Bul a texwual design language also should be
complemented by a powerful, interactlive graphics
component, allowing the designer to add to or
modily his design graphically or textually, as he
sees fit. These issues need to be explored further.
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