
CHAPTER 1

Simulation and
Validation of Structural
Models

Christoph Hoffmann, Ahmed Sameh, and Ananth Grama
Department of Computer Science,
Purdue University.
{cmh, sameh, ayg}@cs.purdue.edu

There has been significant recent work on development of simulation methodology
and validation techniques for understanding the behavior of large structures – buildings,
bridges, dams, etc. These efforts are aimed at designing structures that are robust to nat-
ural excitations (earthquakes, floods, high winds) as well as human factors (explosions,
fire). The eventual goal of these efforts is to understand whystructures fail and how to
mitigate these failures. In this chapter, we describe our recent efforts aimed at developing
complex structural models, using them to understand structural failure (the 9/11 collapse
of the Twin-Towers), and experimental efforts aimed at calibrating and validating com-
putational models. In particular, we demonstrate that using high-performance computing
platforms, powerful simulation engines, high-resolutiongeometric models, and accurate
materials models, we can gain considerable understanding of structural response to exci-
tations. We also describe the complexity of experiment design and data acquisition from
experiments.

May 26, 2009 – 20 : 30 1



2 Simulation and Validation of Structural Models

1.1 Simulation of Large-Scale Structures

The objective of computational simulation of structures isto develop models capable of de-
scribing structural response to a high degree of accuracy. These models are used to predict
failure modes, as well as to guide techniques for model reduction. Reduced-order models
(models with fewer degrees of freedom) can be used for real-time control of structures. In
this chapter, we describe our work on model construction, simulation, and validation. We
also present some insights on the interplay between the numerical and geometric aspects
of the problem.

The initial model for the simulation has two parts: a description of the geometry of the
elements and a description of the physical properties. The former is translated into node
coordinates and connectivity information to specify the elements (beam, shell, and volume
elements), the latter reduces to a system of equations from which a numerical problem is
constructed. Since high-fidelity models of structures havelarge numbers of elements, it is
best to use electronic models where available, and to discretize them using an automatic
mesh generator, instead of building finite-element models from scratch. Many choices for
mesh generation exist, with varying degrees of suitabilityfor classes of objects. The annual
International Meshing Roundtable [9] is an excellent venuefor familiarizing ones self with
the latest tools and techniques in meshing. We describe eachof these phases of modeling
using a case study of the 9/11 crashes.

1.1.1 Modeling the North Tower of the World Trade Center and
the Airframe

In the case of the World Trade Center simulation, we were ableto use a partially meshed
model of the exterior of the North Tower (WTC-1) which was then completed by adding
the interior structure, consisting of the buildings core, the spandrel beams supporting the
floor and the elements for the concrete flooring as well. Staircases were not modeled in
detail. This task of completing the interior of WTC-1 used public domain blueprints. The
model had 640,000 nodes, 530,000 beam elements and 360,000 shell elements.

Aside from the model size, meshing the building structure ofmodern high-rises is not
difficult. However, much of the detailed structure of the joints gets abstracted. By this,
we mean that the geometric structure is reduced to a shared node among several beam
elements, say. The corresponding material response is thencaptured by the governing
equations and material properties. Also, the beam shapes are often abstracted as well, rep-
resented simply by line elements with an intrinsic orientation and a specification of the
type of beam. This geometric information is lost in translation and has to be reconstructed
for visualizing the simulation results. Figure 1.1 illustrates this issue. Fortunately, obtain-
ing reliable information about the WTC-1 building was not difficult, and the validity of the
model is established through experiments, described laterin this chapter.

Modeling the airplane posed challenges, however. Here, it turned out to be difficult
to obtain reliable information about the Boeing 767 airframe structure. Overall dimen-



1.1.2 Model Calibration 3

Figure 1.1 Structure of ground floor facade for the FEA and corresponding geometry. The FEA ab-

straction cannot properly represent the complexity of the shapes, especially at their meeting points.

sions are readily available, but except for an accurate reconstruction of the planes exterior,
little information is available about the interior structure, the shape and dimensions of the
beams, ribs, and stringers. Understandably, Boeing considers a detailed model of its planes
proprietary, so we needed to find a different way to create a reasonable model [2] and test
its accuracy as best as possible. We undertook this task beginning with a graphical model
of the plane’s exterior.

A graphical model is wholly unsuitable for finite element analysis (FEA). Its surfaces
are often composed of very long and slender triangles; a minimum angle of less than 10
degrees is not uncommon. Moreover, relying on the graphics hardware to cull invisible
regions of the surface, parts such as the skin of a wing will extend part-way into the interior
of the fuselage without any explicit representation of the intersection curve. Thus, the first
step is to rectify the airplane’s skin and to suitably mesh it, a task that requires substantial
manual labor even using the meshing capabilities of LS-Dyna[4]. We then added to the
fuselage ribs and stringers, the keel beam, the wing anchor beams, floor supports and the
floor itself. We also added spars and ribs to the wings, aileron and rudder. Aircraft engines
and landing gear contain substantial parts. The landing gear typically is a titanium forging,
and the engine shaft is another substantial part. Both structures were modeled and meshed
appropriately. Sections of the resulting mesh are shown in Figure 1.2.

1.1.2 Model Calibration

Since there is little hard data on the structural componentsof the aircraft, we consulted ex-
perts in aerospace engineering and used the Riera approach to calibrate the aircraft model
[14, 15]. The Riera approach is an upshot of experiments at Sandia National Labs measur-
ing reaction forces and damage from aircraft impact. The impact forces, measured from



4 Simulation and Validation of Structural Models

Figure 1.2 Meshed structural elements of the aircraft. The main landing gear is partly visible

behind the wing.

the time of impact to its completion, relate intuitively to the ability of the impacting struc-
tures to absorb energy by deformation. Accordingly, the forces are highest when the most
massive and rigid structural elements hit. Figure 1.3 showsboth a moment in our impact
simulation and the Riera curve used to calibrate the aircraft model.

The fuel of the impacting aircraft carries a large fraction of the kinetic energy. We
modeled the fuel using smoothed particle hydrodynamics (SPH), which benefited from
a separate calibration step. The SPH calibration was done byour collaborators in Civil
Engineering modeling a beverage can impacting a rigid metalplate. Led by Santiago
Pujol, the simulation results were compared with experimental measurements. Both are
shown in Figure 1.4.

1.1.3 Simulation and Results

After constructing those models and calibrating them in theindicated manner, we then
simulated the impact of the loaded airframe into the top floors of the WTC-1 building.
Initial conditions were chosen to approximate the known attitude and position of the North
Tower impact.

The difficulty obtaining accurate dimensions and properties of the air frame make quan-
titative conclusions from the simulations difficult. In fact, there are widely diverging es-
timates of the core damage of the North tower [3, 8, 13, 16]. Nevertheless, it is possible



1.1.4 Visualization of Simulation Results 5

Figure 1.3 Impact of our Boeing 767 model into a rigid wall, yielding the yellow curve on the right.
Predicted curve based on the literature in red. Fuel in the tanks is modeled using smoothed particle

hydrodynamics (SPH).

to conclude with considerable confidence that the collapse mechanism of the North Tower
was initiated by the ensuing fires [7]. Those fires easily elevated the temperature of the
core structure sufficiently so that it could not carry the building load. That load, about
60undamaged building, was increased by the extra load that rested on the core due to the
perimeter structure being cut in a wide swath. Further corroboration that our simulation
captured the essential elements of the event, despite the uncertainty surrounding the ex-
act properties of the air frame, can be seen in Figure 1.5, which compares the simulated
damage to the facade, at the entry of the colliding aircraft,with a contemporary image
reproduced from [12].

1.1.4 Visualization of Simulation Results

The final part of the 9/11 simulation effort, led by our colleague Voicu Popescu, was to
render and animate the results of the simulation using state-of-the-art techniques from
computer graphics. Downloaded to-date more than 5.5M times, the simulation has gener-
ated tremendous debate and continues to be used in documentaries in the US and abroad.
Here, the key step was to export the simulation data, as computed by the FEA system,
and import it into 3dsMax, an animation system that incorporates leading-edge graphics
algorithms. In this part of the effort, a major difficulty is the aforementioned abstraction of
geometric shape, particularly the shape of beams and how different structural elements are
joined. Some still images from the visualization are shown in Figure 1.6.

Model Reduction. Reducing a model such as the WTC-1 building and the impacting
aircraft can be done by simplifying the geometry and also by simplifying the physical
model. Geometry simplification is quite common in finite element analysis: symmetry is
exploited where possible; in the case of WTC-1, details of the lower floors of the building
are eliminated; detail shapes such as beam interconnections and cross sections are not



6 Simulation and Validation of Structural Models

Figure 1.4 Simulated beverage can impact (top left) and experimental setup (top right). Resulting

time-displacement curve (bottom). Measured values in red, simulation prediction in black. Work by
Santiago Pujol, Civil Engineering, Purdue University.



1.1.4 Visualization of Simulation Results 7

Figure 1.5 Facade damage determined by the simulation (left) compared with a contemporary

photograph [12] (right).

Figure 1.6 Damage to Floors 95 and 96 (left); reverse angle shot from floor 96 (right). Note
the detailed geometry of the spandrel beams and core beams represented by line elements in the

simulation.

represented geometrically. Simplifying the physics basedon the numerical characteristics
of the problem is novel and promising. It is a topic of intenseresearch efforts, and deserves
a comprehensive treatise by itself. Since this kind of simplification seeks to reduce the
degrees of freedom of the problem, it also implies a large-scale geometry simplification.
As we have seen, such simplifications of the geometry lose important detail that will be
missed when creating subsequently sophisticated visualizations. In the larger scientific
work-flow, therefore, it is helpful to have a detailed geometric model from which to derive,
as suggested by the numerical properties, a low-order shapeapproximation that can be
lifted back to the original, detailed geometry model. Both the reduced-order physics and
the corresponding shape model, therefore, become information structures derived from a
master model, a concept familiar to the community from discrete manufacturing.



8 Simulation and Validation of Structural Models

1.2 Calibration and Validation of Structural Modeling

Two important aspects of computational simulations are, calibration of underlying models
(material properties, joint stiffness, etc.), and validation of models using measured excita-
tions and structural response. We refer to some of these above – namely, the Riera curve
approach and the SPH calibration through fluid-structure impaction. Experimental valida-
tion requires instrumentation of structures, real-time techniques for data acquisition, and
data analysis. Each of these represent significant computational challenges associated with
implementation of the complex distributed software that senses, communicates, and stores
data. This distributed program has exacting requirements on performance (real-time), con-
straints on resources (communication rates, buffers), andguarantees on correctness. In
heterogeneous fault-prone environments such as structures subject to external stresses, im-
plementing such distributed programs is a major undertaking. In the rest of this chapter,
we describe efforts aimed at implementing real-time sensing and control.

As applications of sensor networks mature, there is increasing realization of the com-
plexity associated with programming large numbers of heterogeneous devices operating in
highly dynamic environments. Much of this complexity stemsfrom the need to account for
network state, failures, time and resource constraints, heterogeneity and scalability issues,
and data-driven in-network processing. Even tasks that areconceptually straightforward
from the point of view of aggregate system specification, such as data acquisition, process-
ing, and aggregation require significant programming effort.

Traditional approaches to programming sensor networks rely on “network-enabled” ap-
plications for individual nodes that code distributed behavior through explicit messaging.
Application development in this framework often requires implementation of system-level
primitives, or reliance on inflexible or inefficient underlying platforms. Consequently, ap-
plication development is time- and effort-intensive, error-prone, and has limitations with
respect to scalability, heterogeneity, and performance. Indeed, software development cy-
cles for complex applications at current state-of-the-artdo not keep pace with updates in
sensing hardware. In contrast, a macroprogram directly specifies the behavior of a dis-
tributed ensemble. Through suitable abstractions, it eases programmer burden in dealing
with resource constraints, performance optimization, andscalability and adaptability w.r.t.
to network and load dynamics. Macroprograms can often be statically verified to enhance
robustness and to enforce time and resource constraints.

The presence of a small number of low-cost and low-power, yetrelatively powerful
devices (such as X-Scale based Intel Stargate devices in a network of Mica motes) can
significantly enhance sensor network performance [17]. Existing development platforms
target development for specific device capabilities – for example, mote-scale devices (e.g.,
[6, 5]), or networks of higher performance machines in a sensor network (e.g., [10]). This
lack of vertical integration across heterogeneous devicesresults in increased development
complexity and programmer effort. Consequently, there is aneed for a unified macropro-
gramming model that realizes benefits from heterogeneous environments. The dynamic
nature of such networks necessitates a runtime environmentthat can execute on resource-



1.2.1 COSMOS Runtime Environment 9

constrained motes, such as Mica2, while potentially scaling to resource rich nodes.
The goal of supporting easy-to-use high-level abstractions that hide system-level details

is often at odds with requirements of low overhead and flexibility. This tradeoff is the pri-
mary determinant of the design choices associated with a realizable macroprogramming
architecture. The underlying architecture must provide a low overhead execution environ-
ment for fundamental macroprogram primitives, while naturally supporting rich extensions
based on the system’s operational requirements or application domain. Among other de-
sign objectives for a macroprogramming architecture, the reuse of software components
across applications is an important engineering parameter, specially as sensor systems be-
come more commonplace.

With these motivating objectives, we have developed COSMOS, an architecture for
macroprogramming heterogeneous sensor networks. COSMOS is comprised of a lean
operating system, mOS, and an associated programming language, mPL. COSMOS sup-
ports complex applications, built upon reusable components. In the COSMOS framework,
aggregate system behavior is specified in terms of the underlying distributed data process-
ing. This specification consists of functional components (FCs), which provide computing
primitives, and an interaction assignment (IA), which specifies distributed dataflow through
FCs. An FC specifies a typed declaration in mPL and the corresponding function, speci-
fied in a suitably constrained subset of C. Node capability constraints associated with each
FC allow the programmer to effectively and safely utilize heterogeneous devices in the
network.

mPL supports the expression of IAs as a fundamental primitive with support for static
program verification. Synergistically, mOS provides a low-footprint runtime environment
providing dynamic instantiation of FCs and realization of IAs through these instances,
along with other requisite OS subsystems. Building on this simple notion of expressing
behavior through composition of FCs, the COSMOS architecture supports the ability to
easily append rich high-level macroprogramming abstractions in mPL, without modifica-
tion to the OS.

1.2.1 COSMOS Runtime Environment

The fundamental design objective for our runtime system is to minimize its processing and
memory footprint, and to allow performance scaling on resource rich nodes. A macro-
program specifies connections between FCs and device port instances using abstract asyn-
chronous data channels. Abstract data channels are realized as data queues, whose nodes
encapsulate data. Each device port of an FC instance has an individual queue associated
with each of its outputs. During application initialization, these queues are attached to the
inputs of an instance of the next component, as specified by the IA. The runtime system
also handles network data flow transparently. If the communicating instances are not on the
same node, output queues connect to the network service FC ofthe source nodes. An out-
put queue from the network service of the destination node tothe succeeding component
completes the virtual data channel. The asynchronous semantics ideally suit the network



10 Simulation and Validation of Structural Models

accel

timer
max

disp2
max

thresh
craw_tcraw_t

cpress
raw_t

craw_t

fft
freq_t

ctrl
ctrl_t

max_t

disp1

max
max_t

Figure 1.7 A macroprogram and its instantiation. This program displays maximum acceleration

values for a structure, evaluates frequency response of the structure, and displays the resulting
spectrogram if the acceleration is above a specified threshold. A controller (ctrl) feeds the threshold

value back, based on aggregate data from the network. This conserves system resources until an

interesting event triggers the need for a high fidelity view of the data.

data channel and impose few restrictions on the semantics ofthe underlying network com-
munication, allowing the use of simple low overhead protocols.

1.2.2 mOS Operating System Architecture

ThemOS operating system provides a low overhead implementation ofthe runtime system
for COSMOS based macroprogramming. Architecturally, mOS consists of a core kernel,
which is logically divided into a platform independent coreand hardware specific drivers
and routines. The key subsystems of the platform independent core include the scheduler,
timer, dynamic memory manager, dynamic component loading and dataflow setup man-
ager, dataflow API, device abstraction layer, and a system information and control API.
We have implemented the mOS operating system on Mica2 and POSIX platforms. On
motes, mOS is a full-fledged operating system directly running atop the underlying hard-
ware. On resource rich nodes (e.g., in our case, Stargate SBCdevices and PCs running
Linux), mOS sits atop the POSIX layer, and provides a transparent environment for exe-
cuting macroprogram applications, which are, by design, platform independent. To execute
a macroprogram on POSIX devices, the mOS management thread loads FCs (which may
be a part of the binary of mOS or compiled as individual loadable libraries), and executes
the FCs (waiting for inputs) each as an individual thread. Both on POSIX, and on the
motes, mOS is accessible to the dynamically loaded components through a system call
pointer table.

COSMOS is currently in use on a real-world three-story building test-bed to study struc-
tural response to ground motion, at the Bowen Labs [1] at Purdue University (Figure 1.8).



1.3 Concluding Remarks 11

Figure 1.8 Deployment and testing of structural response using the COSMOS macroprogramming

infrastructure.

1.3 Concluding Remarks

Simulation and validation of structural models are critical components of understanding
and designing robust structures. Simulations require complex geometric models, material
property databases, high-performance simulation engines, and massively parallel comput-
ers. Tests on real structures serve two important purposes –they provide material proper-
ties and model calibration for simulations and validate simulation results through experi-
ments. Comprehensive validation requires complex instrumentation, multimodal sensing,
and real-time data acquisition, typically through wireless sensor networks. Significant

Figure 1.9 Operational tests – electrohydraulic rams excite the structure and response is mea-

sured through a variety of self-organizing sensors.



12 Simulation and Validation of Structural Models

progress has been made in all of these computational aspects– leading to real-life deploy-
ment of many of these technologies in design and operation.

Acknowledgments

The collaboration with Profs. Mete Sozen, Santiago Pujol, Ayhan Irfanoglu, and Voicu
Popescu are gratefully acknowledged. The work has been partially supported by NSF
Grant DSC-0325227 and by the Northwest Indiana Computational Grid.



Bibliography

[1] Bowen labs. https://engineering.purdue.edu/CE/BOWEN/

Facilities.

[2] M. Badrocke and B. Gunston.Boeing Aircraft Cutaways. Osprey Publishing Ltd.,
Oxford, 1998.

[3] Z. P. Bazant and Y. Zhou. Why did the world trade center collapse? Journal of
Engineering Mechanics, 128(1) 2-6, 2002.

[4] Livermore Software Corporation. Ls-dyna, 2009.

[5] Chih-Chieh Han, Ram Kumar Rengaswamy, Roy Shea, Eddie Kohler, and Mani Sri-
vastava. SOS: a dynamic operating system for sensor networks. InProc. of MobiSys
’05, June 2005.

[6] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer
Pister. System architecture directions for networked sensors. InProc. of ASPLOS-IX,
November 2000.

[7] A. Irfanoglu and C. Hoffmann. An engineering perspective of the collapse of wtc-1.
ASCE Journal on Performance of Constructed Facilities, 22,62, 2008.

[8] M. Karim and M. Fatt. Impact of the boeing 767 aircraft into the world trade center.
Journal of Engineering Mechanics, 131(10) 1066-1072, 2005.

[9] Sandia Laboratories. International meshing roundtable, 2009.

[10] Ting Liu and Margaret Martonosi. Impala: a middleware system for managing auto-
nomic, parallel sensor systems. InProc. of PPoPP ’03, June 2003.

[11] Bertrand Meyer. Applying design by contract.IEEE Computer, 25(10):40–51, Octo-
ber 1992.

[12] National Institute of Standards and Technology (NIST). Final report of the national
construction safety team on the collapses of the world tradecenter towers, nist ncstar
1, 2005.

May 26, 2009 – 20 : 30 13



14 Simulation and Validation of Structural Models

[13] Y. Omika, E. Fukuzawa, N. Koshika, H. Morikawa, and R. Fukuda. Structural re-
sponses of world trade center under aircraft attacks.Journal of Structural Engineer-
ing, 131(1), 6-15, 2005.

[14] J. D. Riera. On the stress analysis of structures subjected to aircraft impact forces.
Nuclear Engineering and Design, 8:415-426, 1968.

[15] T. Sugano, H. Tsubota, Y. Kasai, N. Koshika, H. Ohnuma, W. von Riesemann,
D. Bickel, and M. Parks. Full-scale aircraft impact test forevaluation of impact
force. Nuclear Engineering and Design, 140:373-385, 1993.

[16] T. Wierzbicki and X. Teng. How the airplane wing cut through the exterior columns
of the world trade center.International Journal of Impact Engineering, 2003.

[17] Mark Yarvis, Nandakishore Kushalnagar, Harkirat Singh, Anand Rangarajan, York
Liu, and Suresh Singh. Exploiting heterogeneity in sensor networks. InProc. of
INFOCOM ’05, March 2005.


