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We present eight group-theoretic problems in NP one of which is a reformulation of graph 
isomorphism. We give technical evidence that none of the problems is NP-complete, and give 
polynomial time reductions among the problems. There is a good possibility that seven of 
these problems are harder than graph isomorphism (relative to polynomial time reduction), so 
that they might be examples of natural problems of intermediate difficulty, situated properly 
between the class of NP-complete problems and the class P of problems decidable in deter- 
ministic polynomial time. Because of strong structural similarity, two of the apparently harder 
problems can be interpreted as generalized isomorphism and generalized automorphism, 
respectively. Whether these problems ultimately prove to be harder than graph isomorphism 
seems to depend, in part, on the open problem whether every permutation group of degree n 
arises as the automorphism group of a combinatorial structure of size polynomial in n. 
Finally, we give an O(n* k) algorithm for constructing the centralizer of a permutation 
group of degree n presented by a generating set of k permutations. Note that we may assume 
that k is O(n . log n), without loss of generality. This problem is a special case of one of the 
harder group-theoretic problems. From the method of constructing the centralizer, we recover 
results about the group-theoretic structure of the centralizer. Furthermore, applying our 
algorithm for intersecting with a normalizing permutation group, we show how to find the 
center of a permutation group of degree n in O(n6) steps, having constructed the centralizer of 
the group first. 

1. INTR00ucT10~ 

To date, the complexity status of graph isomorphism is still open. Although clearly 
in NP, it has neither been shown to be NP-complete, nor has there been given a deter- 
ministic polynomial time algorithm for the problem. The length of time graph 
isomorphism has resisted the many attacks on it suggests that it is a problem of inter- 
mediate difficulty, i.e., a problem which neither is in P nor is an NP-complete 
problem (assuming of course that P # NP). 

Extensive work on graph isomorphism has resulted so far in the following infinite 
hierarchies of graphs possessing a polynomial time isomorphism test: graphs of 
bounded genus [9, 10, 16, 17, 19, 261, graphs of bounded valence [7,21], and graphs 
of bounded eigenvalue multiplicities [2]. For example, isomorphism of eigenvalue 
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multiplicity k may be tested in O(n 4k+c) steps, where n is the number of graph 
vertices and c is a suitable constant. 

Much recent research on graph isomorphism has concentrated on finding problems 
polynomial time equivalent to graph isomorphism. Such problems are called 
isomorphism complete, and there is a sizable list of them (4, 23, 241. Almost all 
known isomorphism complete problems are again isomorphism problems associated 
with topological, combinatorial, or algebraic structures. There are, however, at least 
two interesting exceptions: The problem of determining the automorphism group of a 
graph and the problem of counting the number of isomorphisms between two graphs 
1231. 

The isomorphism completeness of the problem of counting the number of 
isomorphisms is of interest because it may be taken as technical evidence against the 
possibility that graph tsomorphism is NP-complete. For NP-complete existence 
problems, the associated counting problem is believed to be more difficult [ 12, 29 ]. 

The isomorphism completeness of the problem of determining the automorphism 
group of a graph is of interest precisely because it is not an isomorphism question of 
some structure. We therefore view it as a different perspective on the nature of graph 
isomorphism and see significance in the fact that the recent development of efficient 
isomorphism tests for two of the above-mentioned hierarchies of graphs has been 
based largely on group-theoretic techniques. 

This paper is divided into two parts. In the first part, we present a number of 
group-theoretic problems which appear to fall into two levels of difficulty relative to 
polynomial time reduction, with graph isomorphism on the easier level. We can 
interpret the more difftcult problems as natural generalizations of the problems of 
testing isomorphism and of determining the automorphism group for graphs. 
Previously proposed generalizations of graph isomorphism, e.g., subgraph 
isomorphism [ 121, or fixpoint-free automorphism 1201, have been shown to be NP- 
complete. In contrast, for the generalizations of this paper, we can present technical 
evidence against the possibility that any of our problems is NP-complete, and we 
therefore believe that they are subcomplete. 

In the second part of this paper, we give polynomial time algorithms for two 
special cases of one of the harder problems. Specifically, given an arbitrary 
permutation group G < S, by a generating set of k permutations, we show how to 
find generators for the centralizer (in S,) of G, in O(n* . k) steps, This generator set, 
found for the centralizer of G, has the special properties required by the O(n’) group 
membership test of [S], i.e., it is a strong generating set in the sense of 128 ]. (See also 
Theorem 2.5 below.) Exponential algorithms for determining generators for the 
centralizer of a group have previously been advocated 16,271. We have recently 
learned, however, that our centralizer algorithm was independently discovered by 
Fontet ]3 1 ]. Applying our algorithm for intersecting with a normalizing permutation 
group ] 151, we give an O(n* . k + ti6) algorithm for determining the center of G. The 
only polynomial time algorithm previously known for this problem is due to Luks, 
1221, and requires a squaring of the group degree, thus requiring at least 
O(n’ - k + n’*) steps. 
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The group-theoretic problems to be described in the first part appear to fall into 
two levels of difficulty. Representative harder problems include the double coset 
membership problem and the group intersection problem. Graph isomorphism is 
apparently easier. The distinguishing characteristic of all problems appears to be that 
the existence problem and its associated counting problem are polynomial time 
equivalent. 

Assuming that P # NP, it has been shown that there exist problems which are 
neither in P nor are NP-complete [ 181. Such problems of intermediate difficulty 
typically have been constructed as artificial subproblems of certain NP-complete 
problems, and are known to contain hierarchies relative to polynomial time reduction. 

Our problems are among the first examples of natural problems of unknown 
complexity status which might participate in a subcomplete hierarchy. Other natural 
problems polynomially equivalent to our harder problems have been proposed by 
Luks [22]. Previously, Booth has proposed the two level hierarchy of group 
isomorphism < graph isomorphism (here each group is given as a list of elements) 
[3, 241. Thus this paper and [22] might add a new (and natural) level. It is interesting 
to note that there is also an NP-complete generalization of the harder group-theoretic 
problems given here which we sketch below. 

Our suggestion that the problems presented differ in difficulty is, of course, quite 
tentative: For one, research into the complexity of these group-theoretic problems is 
fairly recent, and given the evidence presented here, our conjecture is not compelling. 
On the other hand, there has been research that has found other problems 
polynomially equivalent to the harder problems presented here, while also finding 
subcomplete problems apparently harder yet [22]; this research has not produced 
evidence against the properness of the two levels of difficulty. Moreover, the open 
problem of whether all permutation groups arise as the automorphism group of a 
small combinatorial structure is related and has remained open in mathematics for 
several decades ( 111. 

We outline several of the problems presented. Let A and B be two permutation 
groups of degree n, i.e., A and B are subgroups of S,, the symmetric group of degree 
n containing all permutations of the set {l,..., n). Let x E S, be any permutation. The 
set 

AlrB= {cm~~aEA,/?EB} 

is called the double coset of A and B containing n. Double cosets induce an 
equivalence partition on S,. The double coset membership problem is the question 
whether two permutations lie in the same double coset, i.e., whether they are 
equivalent. In Section 3, we discuss why this problem is a natural generalization of 
graph isomorphism. 

Of difficulty equal to the double coset membership problem is the group inter- 
section problem: Given two permutation groups A and B of degree n, by generating 
sets, determine a generating set for their intersection C = A n B, again a group. In 
] 151, ,we have shown that a polynomial time solution to the group intersection 
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problem gives a polynomial time solution for graph isomorphism. In Section 3, we 
show that a polynomial time algorithm for the double coset membership problem 
gives a polynomial time algorithm for the group intersection problem, and vice versa. 
Group intersection is a natural generalization of the problem of determining the 
automorphism group of a graph. 

On the lower level of difficulty is graph isomorphism. Because of [ 23 1, we choose 
here as representative graph automorphism, the problem of determining a generating 
set for the automorphism group of a graph. Note that for graphs, isomorphism and 
automorphism are problems of equal difficulty. 

Although not an object of traditional mathematical inquiry, one may define rripfe 
cosets associated with three subgroups A, B, and C of a group G 

where 7c, w E G. Testing membership in the triple coset ABC is an NP-complete 
problem [22]. Thus we have the following situation: Testing membership in a single 
coset (i.e. in An) is in P [8]. Testing membership in a double coset is, as we 
conjecture, of intermediate difficulty. Testing membership in a triple coset is NP- 
complete. 

There are a number of group-theoretic problems polynomial time equivalent to the 
double coset membership problem. One of these is the problem of determining the 
centralizer of a permutation group in another permutation group. Let A and B be two 
permutation groups. The centralizer of A in B is the subgroup of B defined by 

F8(A)= {/?EB/(VaEA)(ap=/3a)}. 

That is, qB(A) contains all permutations in B which commute with every permutation 
in A. If B is S,, the symmetric group of degree n, then we speak of the centralizer of 
A, dropping the reference to the group B. The centralizer of A in A is called the 
center of A. 

While determining the centralizer of a group A in a group B is of difficulty equal 
to double coset membership and is therefore at least as hard as graph isomorphism, 
determining the centralizer of A and the center of A are two important and natural 
subproblems which seem to be substantially easier. In Section 4, we show how to 
construct generators for the centralizer of a group G in O(n’ . k) steps, where n is the 
degree of G and k is the number of generators given to specify G. Note that both G 
and Vs,(G) could be of order exponential in n, while k may be assumed to be 
O(n . log n), without loss of generality. We solve this problem by representing the 
centralizer of G as the automorphism group of a family of directed multigraphs, for 
which we give an efficient isomorphism test. 

As a benefit of the graphical representation, we are able to recover results about 
the group-theoretic structure of centralizers. In particular, the centralizer of a 
permutation group of degree n is the direct product of s constituent groups Wi acting 
on the blocks of a certain partition of the permutation domain of G. Furthermore. 
each group Wi is isomorphic to the wreath product of a group Gi by a symmetric 
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group. Here each group G, is isomorphic to every one of its transitive constituents 
which are regular groups. 

We then use the centralizer algorithm to construct the center of G in O(n”) 
additional steps, by intersecting G and @Y’“(G). Since u/,n(G) normalizes G, we can do 
the intersection using our polynomial time algorithm from [IS]. 

This paper is organized as follows: In Section 2, we review basic definitions and 
results from group theory and from graph theory to the extent needed here. We also 
briefly review relevant computational techniques recently discovered or analyzed 
(Subsection 2.7). In Section 3, we define a number of problems apparently harder 
than graph isomorphism and give polynomial time reductions among them. Since 
some of the problems arise outside of group theory, we briefly discuss how else they 
can be motivated and explain why they are structurally similar to isomorphism or 
automorphism problems for graphs. For the apparently harder problems, we also give 
proof of the polynomial time equivalence of the corresponding existence and counting 
problems. In Section 4, we show how to construct the centralizer of a permutation 
group G of degree n specified by a generating set, and show how to obtain the center 
of G. 

2. DEFINITIONS, TERMINOLOGY, AND BACKGROUND 

We establish the basic terminology used throughout the paper, and review the basic 
definitions and results required. For the benefit of the reader unfamiliar with 
elementary group theory, we review the group-theoretic material more extensively in 
Subsections 2.1-2.5. Some graph-theoretic concepts are defined in 2.6, and previous 
work on the complexity of group-theoretic algorithms to the extent we require is 
summarized in 2.7. 

2.1. Permutations and Permutation Groups 

We consider l-l maps 71 of a fixed finite set X onto itself. Such a map is called a 
permutation of X. The image of a point x E X under z is denoted x1. The product TTY 
of the permutations 7~ and w of X is defined by xtnO) = (x”)@, for all x E X. 

A finite permutation group acting on the finite set X is a nonempty set G of 
permutations of X closed under product formation, that is, for all IC, w E G, 711,~ E G. 
In the following, we always assume implicitly the finiteness of G and X. 

Let G be a permutation group acting on X. The cardinality of G, denoted 1 G 1, is 
the order of G, and the cardinality of X is the degree of G. The set of all 
permutations of X is the symmetric group of X, and is denoted Sym(X). The trivial 
group I consists of the identity permutation of X only. Usually, we shall choose for X 
the standard domain { 1, 2,..., n}, and write S, for Sym(X), in this case. 

Any permutation can be written in cycle notation. A cycle of 71 E S, is a list 
G, , i, ,..., i,) of distinct points in { l,..., n}, such that iT = i,, it = i, ,..., i:-, = i,, 
i: = i, . Any permutation can be written as the product of disjoint cycles. This 
product is unique up to a cyclic ordering within each cycle, and up to the ordering of 
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the cycles themselves. When writing 7c, we usually omit the cycles of length 1. We 
denote the identity permutation with the empty cycle ( ) throughout. 

2.2. Subgroups, Right Cosets, Lagrange’s Theorem 

Let G be a permutation group, H a nonempty subset of G, not necessarily a proper 
one. If H is also a permutation group, then H is a subgroup of G, written H < G. 
Note that G < G and I ( G. 

Let H < G, 71 E G. The set 

Hn= {xn[~E H) 

is a subset of G, called a right coset of H in G. Two right cosets HZ and Hyl are 
either disjoint or equal, thus G can be partitioned into right cosets of H. This 
partitioning is written 

Note that H is a right coset of itself (in G), so we usually choose ( ) as the represen- 
tative Z, above. The index of H in G is the number of right cosets of H into which G 
is partitioned, and is written (G : H). The cardinality of any right coset of H is equal 
to the order of H. We thus obtain 

THEOREM 2.1 (Lagrange). The order of G is equal to the product of the order of 
H and the index of H in G, i.e., ) GI = 1 H( . (G : H). 

Let H < G and G = Hn, + H;lr, + . .. + H~c,.. Then the set (rc, , z2 ,..., ;rr, } is a 
complete right transversal for H in G. In general, this set is not unique, but its 
cardinality is always equal to (G : H). 

2.3. Orbits, Stabilizers, Generating Sets, Wreath Products 

Let G < Sym(X), and let x E X be a point in the permutation domain. The set 

xc= {yE.X(y=x”,nEG} 

is called the orbit of x in G. The length of the orbit x’ is the cardinality ! x” iI The 
stabilizer of x in G is the subgroup G, of G, where 

G,=(nEGlx”=x). 

There is an important correspondence between the points in the orbit of x in G and 
the right cosets of G, in G [ 13, Theorem 5.2.21: 

THEOREM 2.2. Let G = G, + G,Tc~ + ..a + G., n,. Then jx(’ ) = r, and, for all 
li/ E G,n, xn = x”. 

Note that r < n. Thus, the index of G, in G is always small. 
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If Y is a subset of X, then the pointwise stabilizer of Y in X is the subgroup G, ,,, of 
G. where 

Glv, = {n E G ) (Vx E Y)(x” =x)}. 

Note that G ,x, = 1, the trivial group. 
Let G < Sym(X). A generating set for G is any subset K of G with the property 

that every element x of G can be expressed as a finite product of elements in K. In 
general, G has many generating sets. 

Conversely, let K be any nonempty subset of Sym(X). Then the group generated by 
K is the smallest subgroup of Sym(X) containing K as a subset, and is denoted (K). 
K is a generating set for (K). 

An important application of pointwise stabilizers is in the following tower of 
subgroups of G. Let G < S,, and let Yi = { l,..., i}. Let G”’ = G, Go+‘) = Glyi,. 
1 <j < n. Then we have 

I= G(“t1) < G(“) < . . . < G@’ < @‘) = G. 

Let Vi be a complete right transversal for G”+ I) in Gci), 1 < i < n. Then every 
element 7~ of G can be expressed uniquely as the product rr = i+~, vn _, .a* w, , where 
vi E Vi. Furthermore, if (Vi] = ni, then ]G] = ny=r ni. (See [8,28]). 

In Subsection 2.7, we review an algorithm for determining the sets Ui in time 
polynomial in n, given an arbitrary polynomial-sized generating set for G. 

Let G ( Sym(X), H < S,. The wreath product, G 2 H, of G by H is a permutation 
group whose elements are (n + 1)-tuples (71, ,..., rr,, ; v/), where rri E G and w E H. The 
element (7~~ ,..., rr,, ; w) acts on n copies of X as follows: First, for each i, permute the 
ith copy of X according to 7ci. Then permute the n copies of X according to w. It may 
be helpful to visualize this action as an automorphism of a tree T of height 2. The 
root of T has n sons, labeled 1 through n. The sons of vertex i in T are the points of 
the ith copy of X. Now rri permutes the sons of vertex i in T, whereas w permutes the 
sons of the root of T along with the subtrees rooted in them. 

The wreath product G 2 H has order 1 G(” . 1 HI. It contains as normal subgroup the 
n-fold direct product of G with itself, and this subgroup is the setwise stabilizer of 
every copy of X in G 2 H. 

2.4. Intersection, Centralizer, Center, Conjugation 

Let G, H ( S, be permutation groups of degree n. The intersection G n H of G and 
H is again a group. In particular, if the standard domain {l,..., n} is partitioned into 
two sets X and 2, then the group G, = G n Sym(X) x Sym(X) is the setwise 
stabilizer of X (equivalently, of 2) in G, and is the subgroup 

G, = {TC E G / (Vx E X)(x” E X)}. 

Note that Gt,] is a subgroup of G,. 
The union G u H of G and H is usually not a group. The group-theoretic union 
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(G, H) of G and H is the smallest subgroup of S, containing both G and H. Thus 
(G, H) is the group generated by G U H. 

If II and II/ are permutations in S,, then nv is, in general, different from vn. The 
permutations 7c and y commute, if nv = in. 

Let G < S,. The set of all permutations in S, which commute with every element 
of G is a group, and is called the centralizer S+?sn(G) of G. The centralizer in H of G. 
W,(G), is SFsn(G) n H. When H = G, then gc(G) is called the center of G. The center 
of G consists of all elements of G which commute with every element of G. In 
Section 3, we discuss the problem of determining @$(G). In Section 4, we give a 
polynomial time algorithm for computing the centralizer (in S,) of an arbitrary 
permutation group G, and for computing the center of G. 

If GWES,, then the permutation rr-‘~n is called the conjugate of v under II. 
n-‘y/n is usually abbreviated by t+P. Conjugation with a fixed permutation is a l-l 
map, i.e., w” = x” iff w = 1. If n and v commute, then v/” = v/ and 72” = n. 

Let G < S, be a group. Then G” = { vy” ) w E G} is again a group and is isomorphic 
to G, since, for w, x E G, w”x” = (m)“. In Subsection 2.7, we review an algorithm for 
computing G” from G and from 7~. 

Let G, H < S, be two groups: G normalizes H if, for all R E G, H’ = H. 
Equivalently. G normalizes H iff, for all rc E G and x E H, ,f E H. 

2.5. Double Cosets 

Let A and B be subgroups of the permutation group G. For rr E G, define the 
subset of G 

AnB= {a$laEA,/3EB}. 

Then AxB is a double coset of A and B in G. Two double cosets AlrB and AtyB are 
either disjoint or equal. The cardinality of AnB is given by 

THEOREM 2.3 ([13, Theorem 1.7.11). (ATBI = (A\ . IBI/IA” n Bl. 

In particular, the double coset AB, i.e., the double coset AxB where II = ( ), has 
the cardinality ) AB / = (A / . 1 B l/l A n B I. 

A group G may be partitioned into double cosets of A and B. Define an 
equivalence relation on G by n = w if there exists a E A and p E B. such that 
rc = all/P. The double cosets of A and B are then the equivalence classes in G. 

Note that double cosets need not be of uniform cardinality, and so there is no 
equivalent of Lagrange’s Theorem for double cosets. Computationally, double cosets 
appear to be difficult objects. In Section 3, we discuss the basic computational 
questions associated with double cosets and interpret double cosets as isomorphism 
classes of certain structures. 

2.6. Graphs 

We consider directed graphs. A directed graph is a pair X = (V, E), where V is a 
finite set of vertices, and E is a subset of V x V. If (u, w) E E, then (v, w) is a 
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directed edge from vertex v to vertex w. We only consider graphs without selfloops, 
i.e., there are no edges (u, v). In the following, graph will always mean directed 
graph, unless specifically stated otherwise. 

A directed multigraph is a pair X = (V, E), where V is a finite set of vertices and E 
is a finite multiset of ordered pairs (u, w), where u and w are distinct vertices in V. A 
multigraph differs from a graph in that multiple edges from u to w are possible. In 
Section 4, we show that the centralizer of any permutation group G arises as the 
automorphism group of an edge-colored multigraph. 

Let X = (V, E) be a graph, u E V a vertex of X. The indegree of u is the number of 
edges (u, v) in E, and the outdegree of u is the number of edges (0, w) in E. 
Intuitively, the indegree is the number of edges ending in a vertex, the outdegree the 
number of edges originating in a vertex. 

Let X = (V, E) be a graph, v and w vertices in X, not necessarily distinct. A path 
between v and w in X is a sequence of graph vertices U, , u2 ,..., uk, 1 < k, such that 
u=u,, w=u/(, and X has edges (ui, ui+ ,) or (ui+, , u,), 1 ,< i < k. If, furthermore, 
there are edges (ui, ui+ ,) for all i < k, then u,, uz,..., uk is a directedpath from v to w 
in X. If k = 1, then the path is trivial. If the ui are all distinct vertices of X, then the 
path is simple. A cycle is a directed path u, ,..., uk, such that u, = uk and u, ,..., uk-, is 
a simple path. 

Let X = (V, E) be a graph, V’ a subset of V and E’ a subset of E. If Y = (V’, E’) 
is a graph, then Y is called a subgruph of X. A graph X is a connected graph if, for 
every two vertices u and w of X, there is a path in X between u and w. Further, X is 
strongly connected if, for any two vertices v and w of X, there is a directed path in X 
from u to w and a directed path from w to v. 

Let X = (V, E) be a graph, Y = (V’, E’) a subgraph of X. Then Y is a component 
of X, if Y is a connected graph and, for every vertex v in Y and w in X but not in Y, 
there is no path in X between v and w. The components of any graph can be found in 
O(l VJ + IEI) steps. 

We shall consider the problem of testing certain graphs for isomorphism, and the 
problem of determining their automorphism group. 

Let X = (V, E) and X’ = (V’, E’) be two graphs. Then X and X’ are isomorphic if 
there is a bijective map z from V onto V’ such that (v, w) is in E whenever (Us, w’) is 
in E’. Note that u’ denotes the image of v under z. A bijective map rc from V onto V 
( i.e., a permutation 71 of V) is an automorphism of X if (v, w) is an edge of X 
whenever (un, wz) is also an edge of X. The set of all automorphisms of a graph X is 
a permutation group acting on the vertex set of X, and is denoted Aut(X). The group 
Aut(X) is called the automorphism group of X. If X’ = (V, E’) is a graph isomorphic 
to X = (V, E), where both graphs have the same vertex set, then the set of all distinct 
isomorphisms from X to X’ is a right coset of Aut(X) [23]. 

2.7. Computational Techniques from Previous Related Work 

When investigating the complexity of algorithms for permutation groups, one of 
the most fundamental issues which needs to be addressed is how to represent groups. 
Since the order of a permutation group G of degree n may be as large as n!, it is 
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obviously not advantageous to represent G by a list of its elements, except when G is 
known to be of small order. It turns out, however, that G always has a succinct 
generating set (Theorem 2.4 below). So, we may wish to learn which computations in 
permutation groups can be carried out efficiently, based on representing groups by 
succinct generating sets. In this section, we summarize previous results pertaining to 
that question, to the extent required for our paper. 

THEOREM 2.4. If G is a permutation group of order m, then G is generated by a 
subset K of G of size at most [log ml. 

The theorem is easy to prove and is well known. As a consequence of Theorem 2.4. 
any permutation group of degree n can be generated from O(n . log n) permutations. 

Previous work on the complexity of determining groups from generating sets of 
permutations 127, 281 has resulted in 

THEOREM 2.5 (Sims, Furs& Hopcroft, Luks). Let G be a permutation group of 
degree n. Then there is a generating set K, of G of size at most O(n’) with the 
following properties: 

(1) Every element of G can be expressed uniquely as product of exactly n 
elements of K,. 

(2) From K,, membership in G can be tested in O(n) steps. 

(3) The order of G can be determined in O(n’) steps. 

The special generating set K,, of Theorem 2.5 may be chosen to consist precisely of 
complete right transversals for the groups G”’ ‘) in G”‘. i < n, in the tower 

I= G(“+‘) < G(“) < ,.. < G”‘= G, 

where G” “) is the pointwise stabilizer of (l,..., i) in G. The set K,, can be found 
using 

THEOREM 2.6 (Sims, Furst, Hopcroft, Luks). Let G be a permutation group of 
degree n given by the generating set K. Then the set K, of Theorem 2.5, generating G 
as well, can be found in O(n* . 1 K\ + n’) steps. 

The method was originally discovered by Sims, e.g., 128 1. The analysis is due to 
Furst et al. (8 1, who rediscovered the method independently. We interpret Theorems 
2.5 and 2.6 as saying that the representation of a permutation group by a small 
generating set is useful for determining, computationally, the most basic properties 01 
the group. 

Given generating sets for groups G, H < S,, it is an open problem whether 
generators for G n H can be found in polynomial time (Problem 3.5). But there are a 
number of special situations for which there exist efficient intersection algorithms (8. 
15, 211. We shall need here our algorithm for intersecting with a normalizing group 
I15 I. 
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THEOREM 2.7. Let G, H < S, be permutation groups of degree n presented by 
generating sets of size O(n’). Then 

(1) In O(n6) steps, we can test whether G normalizes H. 

(2) Zf G normalizes H, then generators for G n H can be found in O(n”) steps. 

We shall use this result in Section 4. In conclusion, we make the following simple 
observations: 

PROPOSITION 2.1. rf G = (KG), H = (KH), then (G, H) = (K, u KM). 

PROPOSITION 2.2. Zf G < S,, 7~ E S,, and G = (K), then G” = (K”). 

As a consequence, we can determine the group-theoretic union and conjugate 
groups in polynomial time, using the techniques of Theorems 2.5 and 2.6. 

3. GROUP-THEORETIC PROBLEMS GENERALIZING GRAPH ISOMORPHISM 

We examine group-theoretic problems which are at least as hard as graph 
isomorphism, since graph isomorphism can be polynomial time reduced to every one 
of them. All problems to be discussed are clearly in NP. Furthermore, the existence 
problems are polynomial time equivalent to the associated counting problems. For 
NP-complete existence problems, the associated counting problems are believed to be 
more difficult [ 12,291. Therefore, we do not believe that these problems are NP- 
complete. 

We divide our exposition into subsections. In the tirst subsection, we state the 
double coset membership problem, and explain why this problem generalizes graph 
isomorphism. We prove that for this problem, counting and existence are polynomial 
time equivalent. In the second subsection, we state the group intersection problem and 
several problems polynomially equivalent to it. Double coset membership and group 
intersection are shown to be polynomial time equivalent. 

In Subsection 3.3, we give a group-theoretic formulation of graph automorphism. 
While this problem is clearly reducible to the preceding problems, we have not been 
able to find a polynomial time reduction in the converse direction, and we suspect 
that the problems in Subsections 3.1 and 3.2 are harder. We further remark on this 
conjecture in Subsection 3.4. 

Throughout this section, we assume that groups are presented by generating sets of 
size polynomial in the degree of the groups. Because of Theorems 2.4-2.6, this 
constitutes no loss of generality. 

3.1. Double Coset Problems 

Recall from Subsection 2.5 that double cosets may be understood as the 
equivalence classes of an equivalence relation induced on S, by the subgroups A and 
B of S,. That is, Z, w E S, are equivalent iff there exist a E A and /3 E B such that 
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v/ = ar$. A natural question to ask is the complexity of testing equivalence of w and 
rr, given generating sets for A and for B. We call this test the Double Coser 
Membership Problem. The problem is a generalized isomorphism question with 
instances arising in combinatorial counting problems, and we explain this inter- 
pretation below. Double coset membership is clearly in NP. 

As a subproblem, we consider testing whether rr is equivalent to the identity 
permutation ( ), i.e., whether 71 = c@ for some a E A, /I E B. We will show that this 
Group Factorization Problem is of difficulty equal to double coset membership. 

The counting problem associated with group factorization is to determine the 
number of distinct factorizations aipi of 71 over A and B. We show that this problem 
is no harder than group factorization. 

There are no known NP-complete existence problems whose associated counting 
problems are also NP-complete. Furthermore, the counting problems associated with 
many NP-complete existence problems have been shown to be #P-complete. We 
therefore view the polynomial time equivalence of group factorization and its 
associated counting problem as evidence against the possibility that the double coset 
membership problem is NP-complete. 

PROBLEM 3.1 (Double Coset Membership). Given the groups A, B < S,, by 
generating sets and the permutations rc, w E S,, test whether v/ E AnB. 

PROBLEM 3.2 (Group Factorization). Given the groups A, B < S, by generating 
sets and the permutation z E S,, test whether there are a E A, j3 E B, such that 
x= c@. Equivalently, test whether rc E AB. 

PROBLEM 3.3 (Number of Factorizations). Given the groups A, B < S,, by 
generating sets and the permutation rr E S,, determine the number k > 0 of distinct 
factorizations n = a/I of 71, where a E A, /I E B. 

For completeness sake, we formally state the obvious. 

PROPOSITION 3.1. Problem 3.1 is in NP. 

Problem 3.1 has the following instance familiar from combinatorics. We are given 
a combinatorial structure X with n points, where X has the known automorphism 
group B. For example, X could be a graph with n vertices and with the automorphism 
group B. Furthermore, we are given a partition of n into k positive numbers n,, i.e., 
n=n,+n,+...+n,. We wish to color the points of X with k distinct colors ci 
forming the color set C = {c, ,..., ck}. 

Let us call a coloring (X, A) of the points of X admissible if I is a map from the 
points of X into C such that exactly n, points of X are mapped into ci. We consider 
the question whether two admissible colorings (X, A) and (X,,U) are equivalent in the 
sense that there is a symmetry p E B of X such that j3 maps the colored structure 
(X, A) into (X, ,u). That is, for all points z in X, the color n(z) should be ,u(z~). 



344 CHRISTOPH M.HOFFMANN 

FIGURE 3.1 

EXAMPLE 3.1. Let X be the graph shown below in Fig. 3.1; it has 6 vertices. We 
consider the partition 3 + 3 of 6. The two admissible colorings shown in Fig. 3.2 are 
equivalent, whereas the two admissible colorings in Fig. 3.3 are not. I 

To see the relationship between equivalent admissible colorings and double coset 
membership, we let permutations 71 E S, specify admissible colorings as follows: The 
permutation rc E S, will specify the labelling (X, A) by prescribing that the points 
1 n, 2”,..., n; of X are mapped into the color c, , points (n, + l)“,..., (n, + n$ into cl, 
etc. It is clear that this labelling is admissible. Equivalently, we may think of the 
labelling specified by 71 as arising by superimposing a label structure Y with n points 
on the structure X, where Y consists just of n distinct points with points { 1, L.., n, ) 

FIGURE 3.2 

0 0 
FIGURE 3.3 
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being of color ci , points {n, + l,..., n, + n,} of color c2, etc., and points 
(n - nk + l,..., n} of Y being of color ck. Now rr specifies how to superimpose Y on 
X. 

Recall that B < S, is the symmetry group of X, and let A < S, be the symmetry 
group of Y. In our example, A is the direct product of symmetric groups of degree 
nll n2,-, nk9 respectively. For a E A, it is clear that an and 1~ specify the same 
labelling of X, thus II and an are equivalent labellings. Furthermore, for /I E B, 71 and 
n/3 must specify equivalent labellings. Now it is not hard to see that the double coset 
AzB specifies all admissible labellings of X equivalent to n. 

Therefore, in general, AlrB contains all isomorphic ways of superimposing a 
structure Y with automorphism group A on a structure X with automorphism group 
B. We amplify on this interpretation by explaining how graph isomorphism may be 
so formulated. 

Let X = (V, F) and X’ = (V, F’) be two (undirected) graphs with the vertex set 
v= { l,..., n} and an equal number of edges. Consider the complete graph 
K, = (V, E,) and note that both X and X’ arise from K, when labelling each edge in 
E, with one of the two colors: edge and not an edge. 

Let B be the permutation group induced in Sym(E,) by the action of S, on the 
edges of the complete graph K,. Consider the partition of E, = F + F, and let rc be 
any permutation in the group A = Sym(F) x Sym(F). Note that rc specifies the graph 
X in the sense of superimposing the partition F + F of E, as a labeling structure on 
the edges of K,. Next, let v be any permutation in Sym(E,) which maps F onto F’ 
and F onto F’, where F’ = E, -F’. Note that w specifies the graph X’. Moreover. the 
groups A and B, as well as the permutations ?I and v/, are easily obtained from the 
graphs X and X’. Then w E AzB iff X and X’ are isomorphic graphs. That is, graph 
isomorphism is a special case of the double coset membership problem. Thus, we 
may consider double cosets as abstract isomorphism classes. 

We now show that Problems 3.1-3.3 are of equal difficulty, i.e., polynomial time 
equivalent. 

THEOREM 3.1. Problems 3.1 and 3.2 are polynomial time equivalent. 

Proof. Since Problem 3.2 is a special case of Problem 3.1, we only need to reduce 
Problem 3.1 to Problem 3.2. For this reduction, we observe first that the elements a@ 
of A7cB may be put into l-l correspondence with the elements 7~~ ‘a@ of A”B. Thus. 
w E AnB iff ;rr-‘w E A”B. By Theorems 2.5, 2.6, and Proposition 2.2, this establishes 
a polynomial time reduction. 4 

In order to show the polynomial time equivalence of Problems 3.2 and 3.3. we 
need 

LEMMA 3.1. Zf ~=a,/?, =a2Pz = -.. =akPk, aiG A, pi E B, are the distinct 
factorizations of n over A and B, then k = IA f7 B 1. 

ProoJ Let C = A n B. Since aiPi = a,,pj, we have a,: ‘ai = pip; ‘, and so pi and Pi 
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are in the same right coset of C. Furthermore, if X= afl and y E C, then also 
71 = ay-‘yp = a/P’, thus the pi form a right coset of C. Finally, observe that ai is 
uniquely determined by rz and pi, thus k = ] C]. 1 

THEOREM 3.2. Problems 3.2 and 3.3 are polynomial time equivalent. 

Proof: It is clear that we can reduce Problem 3.2 to Problem 3.3, in polynomial 
time. 

We establish the opposite reduction by a two-step algorithm. First, test whether 
7c E AB using the algorithm for Problem 3.2, This determines whether to output zero 
or a positive number. Second, if rr E AB, determine ] C] with the algorithm below, 
which makes repeated calls on the algorithm for Problem 3.2. 

Let C = A f7 B, and let Ati’, BCi’, and C”’ be the pointwise stabilizers of 
{ 19-7 i - 1) in A, B, and C, respectively. Here A”’ = A, B”’ = B, C”’ = C, and 
A(“t1’=B(“t~‘=C(n+l’_ -I. By Theorem 2.6, we may assume that we have 
constructed complete right transversals Vi and Vi for A”+” in A”’ and for B”+” in 
B(“‘, respectively, in polynomial time. We shall determine the orbit di of i in C”‘. 
Note that (di ( < n - i + 1. Having done so, we can determine ] C] from the formula 
( C] = JJr=, Idi], in polynomial time. 

Let rri E U, be a right coset representative for A”+” in A”’ mapping i into j, i.e., 
with ini =j. We do the following: 

(a) Find vi E Vi such that iOi = j. If there is no such vi, then j cannot be in di. 
(b) Let x=rriw;i, where vi was found in Step (a). Then j E di iff 

x E A'it l’B”+ I’ 

The correctness of Step (a) follows trivially from C”’ = A”’ n B”’ and Theorem 2.2. 
For Step (b), observe that j E di iff there are representatives rck E U, and v/k E V,, 
i < k < n, such that 

Thus, j E di iff 

x=qw;‘=q’, . . . q.ly/ny/-l sm. w~+,=~‘w’EA”+“B”+“. 

For the timing of this reduction, observe that we test at most n - i + 1 products 
rci I,U; ’ for membership in A(‘+ “B” + “, thus the reduction is polynomial time. I 

The significance of Theorem 3.2 is that it can be interpreted as technical evidence 
against the possibility that Problems 3.1 and 3.2 are NP-complete (cf. [ 12, 29]), as 
discussed above. 

A problem not considered here but related to Problem 3.1 is the question of deter- 
mining the number of double cosets AlrB into which S, is partitioned. This is the 
combinatorial question of how many nonisomorphic ways exist of superimposing the 
labelling structure Y with symmetries A on the structure X with symmetries B. A 
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special case of this problem is the question of how many nonisomorphic graphs with 
n vertices and p edges exist. At present, we do not know if this question is even in 
NP. An obviously exponential algorithm for the problem is contained in [ 5 1. 

3.2. Intersection Problems 

There is a l-l correspondence between the right cosets of A contained in the 
double coset AB and the right cosets of A n Z3 in B, which gives rise to Theorem 2.3 
and to Lemma 3.1. This relatedness of AB and A n B is also reflected in the inter- 
pretation of double cosets and of group intersection, for group intersection may be 
interpreted as constructing the automorphism group of the structure resulting from 
superimposing a structure Y with automorphism group A on a structure X with 
automorphism group B. 

We have exploited the relationship between AB and A n B in the reduction given 
in the proof of Theorem 3.2, when determining \A n B(. A little additional effort can 
produce a polynomial time reduction of the problem of determining generators for 
A n B to Problem 3.2, in Theorem 3.3 below. The reduction in the opposite direction 
uses as intermediate steps the Coset Intersection Triviality and the Setwise Stabilizer 
Problems. Note that there are other group-theoretic problems which seem to lie on 
the same level of difficulty [22]. 

PROBLEM 3.4 (Coset Intersection Triviality). Given the groups A, B < S, by 
generating sets, and given a permutation II E S,, test whether Ax n B is empty. 

PROBLEM 3.5 (Group Intersection). Given the groups A, B < S, by generating 
sets, determine a generating set for C = A n B. 

PROBLEM 3.6 (Setwise Stabilizer). Given the group A < S, by a generating set, 
and given a subset X of {l,..., n}, determine a generating set for A,, the setwise 
stabilizer of X in A. 

PROBLEM 3.7 (Centralizer in Another Group). Given the groups A, B < S, by 
generating sets, determine a generating set for gA(B), the centralizer of B in A. 

THEOREM 3.3. Problem 3.5 can be reduced to Problem 3.1 in polynomial time. 

Proof. We shall extend the algorithm of the proof of Theorem 3.2 and determine 
generators for C = A n B. As before, let A (i), B”‘, and C”’ denote the pointwise 
stabilizers of ( l,..., i - 1) in A, B, and C, respectively, and recall that A”’ = A, 
B”‘=B C’” = C A(“+l) =B(“+l) 

transversals for ,4’lt ‘) in A”’ 
= Cc”+‘) = I. Let Ui and Vi be complete right 

and for BCi+‘) in B”‘. We will determine complete right 
transversals Wi for C”+” in Ci), where 1 < i < n. The algorithm to be described has 
much similarity with Sims’ backtracking algorithm for intersecting permutation 
groups, [ 15,281. However, by using an algorithm for Problem 3.1 as a subroutine, we 
can eliminate the backtracking. 
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For each rri E Vi, we determine first whetherj = i” ’ is a point in di, the orbit of i in 
C”‘. We use here Steps (a) and (b) from the proof of Theorem 3.2. We outline how to 
find a coset representative pi E W, mapping i intoj whenever Step (b) determines that 
j is in di. Let ni and Wi be the representatives found in Step (b), and recall that 

x= 71iw,;1 ~A(i+l)B(i+l) $f q y/i 1 = n,7+11 q+‘* . . . n; 1 y, . . . WitZWitl' 

where xi + k E Vi + k and ‘yi + k E Vi + k. Therefore, 

xi=niv,;l EA(i+l)jj(i+l) 

iff 

Xi+k= 
--I 

ai+kkitk-l **’ niwi 
. . . w,:;k-,w,;;k EA(i+k+l)B(i+k+l). 

We therefore proceed as follows: Let xi = rri I,v:’ E A”+ ‘)B”+ ‘) be the product of the 
pair of coset representatives determined by Step (b), and set k to i. 

(C) Find a Pair $+[E uk+l, vk+,E vk+ly such that 7Zk+1xkvk;lI E 
A (kt *)Bckt *I. Note that such a pair must always exist and that it can be found by 
making at most n - k calls to the algorithm for Problem 3.1. 

Repeat Step (c), letting xk+, = zk+ rxk w;+r, for the found pair, and increase k until 
we have determined xn = ( ). The desired coset representative is now rtn 7c,, _ 1 ..a rci, 
where the rrk have been found in Step (c) above. 

This procedure makes at most O(n”) calls on the algorithm for Problem 3.1. 
Therefore, we can determine the sets Wi forming a generating set for C by a 
polynomial time reduction to Problem 3.1. I 

For the reduction establishing that Problem 3.2 can be polynomial time reduced to 
Problem 3.5, we proceed in the following steps: First, we show that Problems 3.2 and 
3.4 are polynomially equivalent. Next, we observe that Problem 3.6 is a special case 
of Problem 3.5, and finally, we show how to reduce Problem 3.4 to Problem 3.6. 

PROPOSITION 3.2. Problems 3.2 and 3.4 are polynomially equivalent. 

Proof If II E AB, then n = a/I, hence a-’ 71 E B, and so AxfT B is not empty. 
Conversely, if v, E Ax n B, then v, = arc = p, for some a E A and some /3 E B, hence 
TTEAB. 1 

PROPOSITION 3.3. Problem 3.6 can be polynomial time reduced to Problem 3.5. 

Proof: Observe that for A < S,, X a proper subset of {l,..., n} and X = 
{ l,..., n} -X, A, = A n Sym(X) X Sym(@. m 

THEOREM 3.4 (Lipton, Kannan). Problem 3.4 can be reduced to Problem 3.6 in 
polynomial time. 

Proof (Luks). We wish to test whether Ann B is empty, given an algorithm for 
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Problem 3.6. We assume that A, B < Sym(X), and consider the group D = 
((a, /I) ] a E A, /3 E B} acting on X x X by the rule (x, JJ)‘“.~’ = (x”, y4). Consider the 
sets Z= ((x,x)]xEX} andZ’= {(x”~‘, x) ] x E X}. We test in the manner described 
below whether D contains an element 6 such that Zs = Z’ using the algorithm for 
Problem 3.6. Clearly this is the case iff Ann B is not empty. 

So, consider the problem of finding an element 6 in the group D < Sym(Y) which 
maps the subset Z of Y onto the subset Z’ of Y. Here we construct the group G as 
the wreath product, D 2 C,, of D by the cyclic group of order 2. Recall that G has 
D x D as subgroup of index 2, the setwise stabilizer of Y, in G. 

Using an algorithm for Problem 3.6, we determine a generating set for the 
subgroup G’ of G which stabilizes setwise Z, U Z;, where Z, is the subset Z in the 
copy Y,, Z; the subset Z’ in the copy Y, of Y. Let H = G’ ~7 D x D be the setwise 
stabilizer of Y, in G’. Since (G: D X D) = 2, the index of H in G’ is at most 2. 
Therefore, using the techniques of [8], we can determine H from a generating set for 
G’. We conclude the proof of the theorem by showing that (G’ : H) = 2 iff D 
contains an element 6 which maps Z onto Z’. 

Assume there exists an element 6 E D such that Z6 = Z’. Then w = (6,6 ’ ; (1, 2)) 
must exchange Z, with Z;, hence v E G’. Since v does not stabilize Y, , the index of 
H in G’ must be 2. Conversely, let (G’ : H) = 2 and consider an element w E G’ 
which is not in H. Then y must be of the form (6, y; (1, 2)). Since Z, c Y, and 
Zi c Yz, Zf must be Zi , i.e., 6 is the desired element of D. fl 

It is interesting to note the similarity in character between the proof of 
Theorem 3.4 and the proof that graph isomorphism is polynomially reducible to 
graph automorphism. For graphs Z and Z’, one forms the disjoint union Z + Z’ of 
the two graphs and determines separately the orders of the automorphism groups, 
I .WZ)l, I Aut(Z’)I, and ]Aut(Z + Z’)]. Then it is easy to see that Z and Z’ are 
isomorphic iff 1 Aut(Z + Z’)( = 2 . ( Aut(Z)/ . (Aut(Z’)/. In case the graphs are 
isomorphic, Aut(Z + Z’) is isomorphic to the wreath product of Aut(Z) by C1. 
Hence the reduction determines whether the subgroup Aut(Z) x Aut(Z’) has index 2 
in Aut(Z + Z’). 

We finally establish the polynomial time equivalence of Problem 3.7 with Problems 
3.4-3.6. Our first step will be to give a polynomial time reduction of Problem 3.7 to 
Problem 3.5, group intersection. For this, we need to understand the structure of the 
centralizer (in S,) of a cyclic group Z generated by a permutation rr E S,. The 
structure of yyn(Z) is derived using elementary combinatorial arguments which seem 
somewhat tedious in detail. For this reason, we give examples following each of the 
key lemmas to illustrate the constructions. 

LEMMA 3.2. Let 71, w E S, be permutations, where 7c, in cycle notation, is E= 
(i , ,..., i,Y)(i, + , ,..., i,) . . . (i, ,..., i,). Then the conjugate of n under w is the permutation 
7~” = (iy ,..., il)(i:+ , ,..., iy) . . . (iz ,..., i:). 

ProoJ: (13, Lemma 5.1.11. 
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EXAMPLE 3.2. Let R = (1,2)(3,4)(6, 7,9) and w = (1, 2,3,4)(5, 6) be 
permutations in S,. Then 71” = (l”, 2”‘)(3@, 4@)(6”‘, 7@, 9”) = (2, 3)(4, 1)(5, 7, 9) 
which is readily verified. 1 

LEMMA 3.3. Let A < S, be generated by {a,, az,..., a,,}, and let Ci be the set of 
all permutations in S, which commute with ai, i.e., Ci = {x E S, 1 x-lain = ai). Then 
@s’,,(A) = fly= 1 Ci* 

Proof: It is easy to see that the sets Ci are groups. Therefore, D = nf’= 1 Ci is also 
a group. Let y E D, a E A. Since a is a finite product of the ai, clearly y-lay = a, 
thus y E 5Fs,(A). Conversely, let y E g’“(A). Since ai E A, y-‘aiy = ai, 1 < i ,<p, thus 
y E D. Therefore, Fsn(A) = D. I 

As a consequence of the lemma, Ci = GFsn(ai) = ?iFsn(Zi), where Zi is the cyclic 
group generated by a,. 

LEMMA 3.4. Let 7c E S, be a permutation, Z = (n) the cyclic group generated by 
R. Then generators for the centralizer tFsn(Z) can be determined in polynomial time. 

ProojI Let 72 be written in cycle notation with the distinct cycle lengths 
1, 7 1, ,*.., I,., and with mi cycles of length li. Here we also consider cycles of length 1. 
Then w E S, commutes with n iff z”’ = K’ = 1~. By Lemmas 3.2 and 3.3, we 
therefore look for all those permutations IJ/ such that conjugation under w rotates the 
cycles of rr and/or exchanges cycles of equal length. Since the cycle notation is 
unique up to those two rewriting rules, gsn(Z) must consist precisely of those per- 
mutations. 

For each i < r, we examine the cycles of length li. By inspection, we shall produce 
a set Ki of permutations generating all those permutations I+U which commute with 71 
and are such that all points which lie in cycles of n of length other than li are fixed 
by w. 

Let J, ,..., J,,,, be all the cycles in n of length li. The set Ki will consist of 
permutations &, I ,..., ci,+ and two permutations ai and pi; the set Ki contains no other 
permutation. We let h,, = J,, 1 < s < m,. Furthermore, if J, = (j,, I ,js,* ,..., js,,,), then 
7; =,“*;7fz:I’ *** (.i, ,li9 ~Z,,,)~ and Pi= (jl,lrj2,1’““jrni,I)(jl.Z,...,jmi,,> “’ 

I,/,,“‘, m,,l, * 

Note that S, is generated by a = (1, 2) and p = (1, 2,..., n). Thus, it is clear that ai 
and /Ii generate permutations w which conjugate rr by permuting the order of the 
cycles of length Ii in all possible ways. Since the &k generate all rotations of these 
cycles, Ki generates all permutations w E S, such that conjugation under I,V fixes all 
cycles in rc of length other than li and rearranges and/or rotates the cycles of length li 
in all possible ways. By Lemma 3.3, therefore, (UT=, Ki) = g’“(Z). 

Observe that CT=, m, . li = n, thus 1 KI is O(n), and so K can be constructed in 
polynomial time. 1 

In Section 4, we shall show that GYsn(Z) arises as the automorphism group of a very 
simple graph which can be constructed from rr in O(n) steps. 
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EXAMPLE 3.3. Let 7c = (1, 2)(3, 5, 6)(4, 7)(8, 12)(9, 11, 13)(10)(14) be a 
permutation in S,, generating the group 2. Here 71 has two cycles of length 1, three 
cycles of length 2, and two cycles of length 3. 

We consider first the cycles of length 3, which are (3, 5,6) and (9, 11, 13). We 
obtain C,,, = (3, 5,6), C,,z = (9, 11, 13)> a, = (3,9)(5, 11)(6, 13), and /I, = a,. Thus. 
K, = ii,.,, 51.21 a,}. Next, we consider the three cycles of length 2, which are (1, 2), 
(4, 7) and (8, 12). Here we obtain the set K, consisting of cZ,, = (1, 2), iz,Z = (4, 7). 
c,,z = (8, 12), a2 = (1,4)(2, 7), and /3* = (1,4, 8)(2, 7, 12). Finally, for the cycles of 
length 1, the permutations 5 are each the identity permutation, and a, = fl, = (10. 14 ). 

Together, these permutations generate @s”(Z). 1 

THEOREM 3.5. Problem 3.7 can be polynomial time reduced to Problem 3.5. 

Proof. Let A, B < S,, with known generating sets, and assume we wish to find 
generators for ‘;ka(B). We do so in two steps. 

(a) Determine generators for qy”(B). 
(b) Intersect Fsn(B) with A. 

In Section 4, we show how to do Step (a) in polynomial time. For the present, we do 
Step (a) by constructing f??““(p)) for each of the generators p of B, using Lemma 3.4, 
and then intersect these groups, obtaining gs (B) by Lemma 3.3. This reduction can 
be done in polynomial time because of our implicit assumption that we are given a 
polynomial-sized generating set for the group B. I 

THEOREM 3.6 (Luks). Problem 3.6 can be reduced to Problem 3.7 in polynomial 
time. 

Proof. Let A < S,, X a subset of { l,..., n}. We shall determine generators for A,y, 
the setwise stabilizer of X in A, using an algorithm for Problem 3.7. 

Let A’ be a group isomorphic to A acting on 

Y= ((i,j)( 1 <i<n,j= 1,2} 

constructed by associating with a E A the permutation a’ of Y, where (i, j)“’ = (i”, j). 
Let x be the permutation of Y where, for i E X, (i,j)= = (i, j), and, for i @ X, 

(i, 1)” = (i, 2), (i, 2)” = (i, 1). Let Z be the group generated by 71. Then it is easy to 
see that g’,(Z), the centralizer in A’ of Z, is isomorphic to A,. Generators for A ~ are 
easily obtained from generators for CC”,(Z). I 

We have now established the polynomial time equivalence of Problems 3.4 through 
3.7. A number of special cases of these problems are in P, and we discuss them in 
Section 4. There is also a special case of group intersection which is in NP A coNP, 
1151. 
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3.3. Isomorphism Complete Problems 

As pointed out already, graph isomorphism is a special case of the double coset 
membership problem. Since there are many publications on this problem, we can be 
very brief. 

Problems polynomial time equivalent to graph isomorphism have been called 
isomorphism complete. There are many known isomorphism complete problems, e.g., 
[4, 23, 241. One of these problems is 

PROBLEM 3.8 (Graph Automorphism). Given a graph X with n vertices, 
determine a generating set for Aut(X), the automorphism group of the graph. 

For a proof of the isomorphism completeness of Problem 3.8 see 1231. In [ 151, we 
give a proof that Aut(X) arises as the intersection of two permutation groups (of 
degree polynomial in n) for which small generating sets are known. This provides an 
alternate proof that Problem 3.8, graph isomorphism, and any other isomorphism 
complete problem can be polynomial time reduced to Problem 3.1. We have not 
found a reduction in the opposite direction. 

3.4. Remarks 

We have presented eight group-theoretic problems which are at least as hard as 
graph isomorphism. The problems are naturally related to graph isomorphism. For 
one, graph isomorphism can be reduced to each of these problems in polynomial 
time, by easy and straightforward reductions. Apparently the only previously known 
such reduction among natural problems in NP of unknown complexity status has 
been the reduction of group isomorphism to graph isomorphism [24]. Furthermore, 
as pointed out already, double coset membership is itself an abstract isomorphism 
question involving structures which are apparently more general than graphs. 

It is only recently that the complexity of these group-theoretic problems has been 
studied. In view of this, our conjecture that we have here a part of a hierarchy 
between problems in P and NP-complete problems is not compelling. It does not 
seem out of the question that these problems ultimately belong to P. However, the 
length of time that graph isomorphism, the problem on the lowest level of difficulty, 
has resisted a polynomial time solution does not suggest this possibility. 

It is also possible that double coset membership is an isomorphism complete 
problem (but does not have a polynomial time algorithm). After all, Problem 3.1 is 
essentially an isomorphism question. If, on the other hand, the problem remains 
harder than graph isomorphism, then this must mean that permutation groups of 
degree IZ are intrinsically more complicated than graphs of size polynomial in n. In 
particular, an open question closely related to the properness of the three levels in our 
hierarchy is the following: 

PROBLEM. Given a permutation group G of degree n, is there a graph X with m 
vertices such that G is isomorphic to Aut(X), the automorphism group of X, and such 
that m is polynomial in n? 
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Frucht has shown that any permutation group G arises as the automorphism group 
of a graph X, [ 111. The size of the graph X, however, is polynomial in the order of G. 
not the degree of G. Should the above question have an affirmative constructive 
answer, then it is not difficult to show that double coset membership is isomorphism 
complete. 

4. CENTRALIZER AND CENTER 

We now show that Problem 3.7, Centralizer in Another Group, has two special 
cases which are in P. Specifically, we show that we can efficiently find generators for 
the centralizer (in S,) of any permutation group G = (K), for which we have a 
generating set K. Furthermore, observing that the centralizer of G also normalizes G, 
we show how to find generators for the center of G. The major part of this section 
describes the algorithm for the centralizer, since finding the center is an application of 
our intersection algorithm from [ 151. 

We begin by reexamining the centralizer gs%;,(Z) of the cyclic group 2 generated by 
a permutation Z. Recall the proof of Lemma 3.4. We argued that I,V is in %‘Yr,((7r)) iff 
conjugation under w rearranges the ordering of cycles of equal length in 7c and/or 
rotates the individual cycles. We now show that there is a directed graph XT whose 
automorphism group is precisely @..7,,((n)) = gs,,(rr). 

DEFINITION 4.1. A cycle graph is a directed graph X = (V, E) such that, for 
every u E V, the indegree and the outdegree of L: are equal and are either 0 or 1. 

Intuitively, a cycle graph consists of disjoint directed cycles and/or isolated points. 

DEFINITION 4.2. Let R E S, be a permutation. The cycle graph 0171, denoted X, . 
is the cycle graph (V, E,), where V = ( l,..., n ), and there is an edge from i to j in El 
if i” = j. 

EXAMPLE 4.1. Let II = (1, 2)(3, 5, 6)(4, 7)(8, 12)(9, 11, 13)( lO)( 14) be the 
permutation in S,, of Example 3.3. Then X, is as shown in Fig. 4.1, m 

2 3-5 4 8 9 -11 

1 6 7 12 13 

FIGURE 4.1 
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Note that X, is unique, and that it can be constructed from 7c in O(n) steps. From 
the proof of Lemma 3.4, the following is obvious: 

LEMMA 4.1. If x E S, is a permutation and X, is the cycle graph of z, then 
Aut(X,) = 5%&). 

In Section 3, we constructed Ps,((K)) by first constructing $7~‘s,(z) for all 71 E K, 
and then intersecting these groups using Lemma 3.3. We observe now that instead of 
intersecting the groups VsJr), rr E K, we can superimpose the graphs X, resulting in 
a new graph X, whose automorphism group will be GFs%;,((K)). Here we need to color 
the edges of each graph X, uniformly to prevent an automorphism of X, from 
mapping an edge belonging to X, to an edge belonging to X,, where n # VI. 

DEFINITION 4.3. A colored cycle graph X of degree k is a directed multigraph 
(V, E) and a mapping from E into the set {c, ,..., ck} such that the subgraph obtained 
by deleting all edges in E which are not mapped into ci is a cycle graph (1 < i < k). 

Intuitively, a colored cycle graph is obtained by superimposing k cycle graphs, 
where the edges of the ith cycle graph are colored ci. Note that the resulting graph is 
a multigraph, since there may be more than one edge from a vertex u to a vertex w. 
Note, however, that two edges from u to w must be of different color. The individual 
monochromatic cycle graphs are called the color constituents of X. 

DEFINITION 4.4. Let K be a set of permutations in S,. The colored cycle graph 
X, of K is the colored cycle graph whose color constituents are the cycle graphs X,, 
n E K. 

Thus, X, is of degree (KI. Observe that we can construct X, from K in O(n . 1 K I) 
steps. 

EXAMPLE 4.2. Let G = (K), where K = { (1,2, 3,4), (2,4)). Here G = D,, the 
dihedral group of degree 4. The colored cycle graph X, of K is shown in Fig. 4.2. I 
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FIGURE 4.2 
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FIGURE 4.3 

Because of the coloring of X, and by Lemma 3.3, the following is obvious: 

LEMMA 4.2. Let G = (K), K a subset of S,. Then gs”(G) = Aut(X,), where X, is 
the cycle graph of K. 

We shall show how to test isomorphism and determine the automorphism group of 
colored cycle graphs. 

DEFINITION 4.5. Let X be a connected colored cycle graph, x and y distinct 
vertices of X. The cycle distance d(x, y) of x and y is defined by 

(1) d(x, y) = 0 iff x and y lie on a common cycle in X whose edges are of 
uniform color ci. 

(2) d(x,y) = k iff zr,..., zk is the smallest number of vertices in X such that 
d(x,z,)=O,d(zk.y)=O, andd(zi,zi+,)=O, l<i<k. 

EXAMPLE 4.3. Let X be the connected colored cycle graph shown in Fig. 4.3. 
Then d(l,2)=0, d(l,3)= 1, d(l,4)=2. I 

The isomorphism test of colored cycle graphs to be described next rests on the 
following key observation: 

THEOREM 4.1. Let X = (V,, E,) and Y = ( Vy, E, ) be isomorphic connected 
colored cycle graphs. Then every isomorphism map I from X to Y is fully determined 
by the image x’ of an arbitrary vertex x E V,. 

Proof: Without loss of generality, we assume that both X and Y have more than 
one vertex. So, let z be an isomorphism map from X to Y, x any vertex in X, and x’ 
the image of x under I in Y. Since monochromatic cycles of color ci are mapped 
again into monochromatic cycles of the same color in Y, and since cycles in every 
color constituent are disjoint, it follows that the image of every vertex u in X of cycle 
distance 0 from x is determined by x’. Since vertices z in X of cycle distance 1 from 
x have a cycle distance 0 from some other vertex u in X with d(x, u) = 0, the same 
argument shows that the image of every such z is fully determined by U’ and 
therefore by x1. Proceeding by induction on the cycle distance from x, since both X 
and Y are connected, it follows that the image of every vertex of X under z is fully 
determined by x’. I 

From Theorem 4.1, we obtain Corollaries 4.1-4.3. 
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COROLLARY 4.1. If X is a connected colored cycle graph with n vertices, then the 
order of Aut(X) is at most n. 

Prooj Any automorphism is an isomorphism from X to X. I 

In particular, the stabilizer of any vertex in Aut(X) must be the trivial group. 
Therefore, if a: E Aut(X), then the cycles in GT are all of equal length. 

COROLLARY 4.2. If X and Y are connected colored cycle graphs of degree k with 
n vertices each, then isomorphism of X and Y can be tested in O(n* . k) steps. 

Proof: Let x be a fixed arbitrary vertex of X. In O(n . k) steps we can test, for 
each vertex y in Y, whether mapping x into y determines an isomorphism. i 

COROLLARY 4.3. If X is a connected colored cycle graph of degree k with n 
vertices, then generators for Aut(X) can be determined in O(n’ . k) steps. 

Proof: Immediate from Corollaries 4.1 and 4.2. I 

We show how to test isomorphism of colored cycle graphs which are not 
necessarily connected. Intuitively, we split the graphs X and Y into components, and 
test isomorphism of each component. Having classified the components into 
isomorphism classes, it is clear that X and Y are isomorphic iff exactly half the 
components in each isomorphism class belong to X. 

THEOREM 4.2. Let X and Y be colored cycle graphs of degree k with n vertices 
each. Then we can test isomorphism of X and Y in O(n* . k) steps. 

Proox In O(n . k) steps we can find the components of X and Y. If X and Y do 
not have an equal number of components of equal size, then they cannot be 
isomorphic. So, let X and Y each have pi components of size m,, 1 < i < r. We test at 
most pt components of size m, for isomorphism. By Corollary 4.2, this requires a 
total of O(pf . mt . k) steps. Since ET=1 pi . m, = n, isomorphism of X and Y can be 
tested in O(n* . k) steps. It is clear that we can construct an isomorphism map in the 
same time bound. I 

We therefore obtain 

COROLLARY 4.4. If X is a colored cycle graph of degree k with n vertices, then 
generators for Aut(X) can be found in O(n* . k) steps. 

ProoJ Aut(X) is generated by a set K, UK,, where K, generates all 
automorphisms which fix setwise the vertices of each component of X, and K, 
generates all possible permutations of isomorphic components of X. 

Let X have pi components of size mi, 1 < i < r. We can find these components in 
O(n . k) steps. By Corollary 4.3, we find the set K, in O((CT,, pi . mf) - k) steps, 
which is dominated by O(n* . k). 

By Theorem 4.2, we can classify the components of X into isomorphism classes in 
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4-3 

FIGURE 4.4 

O(n’ . k) steps, and can find, in every isomorphism class, an isomorphism map from 
an arbitrary representative component to each component in the class. It is trivial to 
produce the set K, from these maps. 

Note that both JK,\ and IK,I are O(n). @ 

EXAMPLE 4.4. Let K = ((1, 2, 3,4)(5, 6, 7, S), (2,4)(5, 7)j. The colored cycle 
graph X, is of degree 2 and is shown in Fig. 4.4. The graph X, has two isomorphic 
components with I = (1, 6)(2, 7)(3, 8)(4, 5) establishing the isomorphism. Note that I 
is completely determined by (1,6). Furthermore, the automorphisms stabilizing 
setwise the component vertices are generated by 01 = (1, 3)(2.4) and /3 = (6, 8)(5, 7). 
Thus, Aut(X,) = (I, a, j3). 1 

COROLLARY 4.5. Let K be a set of permutations in S, generating a group G. 
Then generators for Fs',,(G) can be found in O(n2 . lK\) steps. 

Proof. This result is immediate from Corollary 4.4 and Lemma 4.2. # 

We can exploit the geometric presentation of %Ysn(G) to prove directly a few results 
about the structure of centralizers. We state these results informally, since they follow 
so easily from the representation of gsn((K)) as automorphism group of the graph 
x,. 

We split X, into its components, which we then classify into the isomorphism 
classes .I , ,..., J,. Since components in distinct classes are not isomorphic, it follows 
that Aut(X,) and therefore gsn((K)) are the direct product 

w, x w, x *-. x w, 

of certain groups Wi which act, respectively, on the vertices of the components in the 
class Ji. 

Next. let Ji consist of m, components. Since these components are isomorphic 
graphs, they can be permuted, setwise, in all mi! ways. Furthermore, since the 
automorphism groups of isomorphic graphs are isomorphic, it follows that the group 
Wi is isomorphic to the wreath product of a group G, by the symmetric group S,,,,. 
Here the group Gi is the automorphism group of a representative component in the 
class Ji. 
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The groups G, are, by Corollary 4.2, of order not exceeding n,, where n, is the 
number of vertices of each component in the class Ji. Thus, the order of Wi is at 
most nI?i. (mi!), thus ]%‘s’s,(G)] ,< ni= ,(/I;’ * (m,!)). Note that Cf=, n, . mi = n. 
Furthermore, by Theorem 4.1, the groups G, contain only permutations a such that a 
consists of cycles of equal length. Consequently, the group Gi is isomorphic to each 
of its transitive constituents, which are, in turn, regular groups. 

We remark without proof that in light of these structural results it is easy to 
modify the method of Corollary 4.4, so as to determine a strong generating set for 
SYSn(G), in the same time bound (cf. [28]). The significance of this is that a strong 
generating set permits an O(n’) membership test in the generated group. For other 
generating sets, the membership test requires a preprocessing computation of cost 
O(n”) steps. Thus, it appears that determining the centralizer of (K) is 
computationally less expensive than determining (K) itself. 

We conclude by showing how to use the centralizer algorithm for determining 
generators for the center of a permutation group. 

LEMMA 4.3. Let G < S, be a permutation group. Then E’s”(G) normalizes G, i.e., 
for all 71 E %‘sJG), KG = Gz 

The lemma is obvious from the definition of g”,,(G). Applying a result from [ 151, 
we obtain 

THEOREM 4.3. Let G < S, be a permutation group of degree n generated by a set 
K of permutations. Then we can determine a generating set for gJG), the center of 
G, in O(n2 . IKI + n”) steps. 

Proof: Using Corollary 4.5, we construct a generating set K’ of size O(n’) for 
gS (G) in O(n2 . ]K]) steps. By Lemma 4.3, we can intersect g,,(G) with G using our 
O(?) algorithm for intersecting with a normalizing group. 1 
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