
Lecture Notes in Artificial Intelligence 2061
Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen



3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo



Jürgen Richter-Gebert Dongming Wang (Eds.)

Automated Deduction
in Geometry

Third International Workshop, ADG 2000
Zurich, Switzerland, September 25-27, 2000
Revised Papers

1 3



Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Jürgen Richter-Gebert
Technische Universität München, Zentrum Mathematik, SB4
80290 München, Germany
E-mail: richter@ma.tum.de

Dongming Wang
Université Pierre et Marie Curie – CNRS
Laboratoire d’Informatique de Paris 6
4 place Jussieu, 75252 Paris Cedex 05, France
E-mail: Dongming.Wang@lip6.fr

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Automated deduction in geometry : third international workshop ; revised
papers / ADG 2000, Zurich, Switzerland, September 25 - 27, 2000. Jürgen
Richter-Gebert ; Dongming Wang (ed.). - Berlin ; Heidelberg ; NewYork ;
Barcelona ; Hong Kong ; London ; Milan ; Paris ; Tokyo : Springer, 2001
(Lecture notes in computer science ; Vol. 2061 : Lecture notes in
artificial intelligence)
ISBN 3-540-42598-5

CR Subject Classification (1998): I.2.3, I.3.5, F.4.1, I.5, G.2

ISBN 3-540-42598-5 Springer-Verlag Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg NewYork
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Steingräber Satztechnik GmbH, Heidelberg
Printed on acid-free paper SPIN: 10781608 06/3142 5 4 3 2 1 0



Preface

With a standard program committee and a pre-review process, the Third In-
ternational Workshop on Automated Deduction in Geometry (ADG 2000) held
in Zurich, Switzerland, September 25–27, 2000 was made more formal than the
previous ADG ’96 (Toulouse, September 1996) and ADG ’98 (Beijing, August
1998). The workshop program featured two invited talks given by Christoph
M. Hoffmann and Jürgen Bokowski, one open session talk by Wen-tsün Wu,
18 regular presentations, and 7 short communications, together with software
demonstrations (see http://calfor.lip6.fr/˜wang/ADG2000/). Some of the most
recent and significant research developments on geometric deduction were re-
ported and reviewed, and the workshop was well focused at a high scientific
level.

Fifteen contributions (out of the 18 regular presentations selected by the
program committee from 31 submissions) and 2 invited papers were chosen for
publication in these proceedings. These papers were all formally refereed and
most of them underwent a double review-revision process. We hope that this
volume meets the usual standard of international conference proceedings, repre-
sents the current state of the art of ADG, and will become a valuable reference for
researchers, practitioners, software engineers, educators, and students in many
ADG-related areas from mathematics to CAGD and geometric modeling.

ADG 2000 was hosted by the Department of Computer Science, ETH Zurich.
We thank all the individuals, in particular external referees and members of the
program committee, for their help with the organization of ADG 2000 and the
preparation of this volume. The next workshop ADG 2002 will take place in
Linz, Austria in September 2002. The proceedings of ADG ’96 and ADG ’98
have been published as volumes 1360 and 1669 in the same series of Lecture
Notes in Artificial Intelligence.

Jürgen Richter-Gebert
June 2001 Dongming Wang



VI Organization

Invited Speakers

Jürgen Bokowski (Darmstadt University of Technology, Germany)
Christoph M. Hoffmann (Purdue University, USA)

Open Session Speaker

Wen-tsün Wu (Chinese Academy of Sciences, China)

Program Committee

Shang-Ching Chou (Wichita, USA)
Andreas Dress (Bielefeld, Germany)
Luis Fariñas del Cerro (Toulouse, France)
Desmond Fearnley-Sander (Hobart, Australia)
Xiao-Shan Gao (Beijing, China)
Hoon Hong (Raleigh, USA)
Deepak Kapur (Albuquerque, USA)
Jürgen Richter-Gebert (Co-chair, Zurich, Switzerland)
Bernd Sturmfels (Berkeley, USA)
Dongming Wang (Co-chair, Paris, France)
Volker Weispfenning (Passau, Germany)
Neil White (Gainesville, USA)
Walter Whiteley (Toronto, Canada)
Franz Winkler (Linz, Austria)
Lu Yang (Chengdu, China)



Contents

On Spatial Constraint Solving Approaches 1
Christoph M. Hoffmann and Bo Yuan

A Hybrid Method for Solving Geometric Constraint Problems 16
Xiao-Shan Gao, Lei-Dong Huang, and Kun Jiang

Solving the Birkhoff Interpolation Problem
via the Critical Point Method: An Experimental Study 26
Fabrice Rouillier, Mohab Safey El Din, and Éric Schost

A Practical Program of Automated Proving
for a Class of Geometric Inequalities 41
Lu Yang and Ju Zhang

Randomized Zero Testing of Radical Expressions
and Elementary Geometry Theorem Proving 58
Daniela Tulone, Chee Yap, and Chen Li

Algebraic and Semialgebraic Proofs: Methods and Paradoxes 83
Pasqualina Conti and Carlo Traverso

Remarks on Geometric Theorem Proving 104
Laura Bazzotti, Giorgio Dalzotto, and Lorenzo Robbiano

The Kinds of Truth of Geometry Theorems 129
Michael Bulmer, Desmond Fearnley-Sander, and Tim Stokes

A Complex Change of Variables for Geometrical Reasoning 143
Tim Stokes and Michael Bulmer

Reasoning about Surfaces Using Differential Zero
and Ideal Decomposition 154
Philippe Aubry and Dongming Wang

Effective Methods in Computational Synthetic Geometry 175
Jürgen Bokowski

Decision Complexity in Dynamic Geometry 193
Ulrich Kortenkamp and Jürgen Richter-Gebert

Automated Theorem Proving in Incidence Geometry
– A Bracket Algebra Based Elimination Method 199
Hongbo Li and Yihong Wu

Qubit Logic, Algebra and Geometry 228
Timothy F. Havel

Nonstandard Geometric Proofs 246
Jacques D. Fleuriot



VIII Table of Contents

Emphasizing Human Techniques in Automated Geometry
Theorem Proving: A Practical Realization 268
Ricardo Caferra, Nicolas Peltier, and François Puitg

Higher-Order Intuitionistic Formalization and Proofs
in Hilbert’s Elementary Geometry 306
Christophe Dehlinger, Jean-François Dufourd, and Pascal Schreck

Author Index 325



On Spatial Constraint Solving Approaches�

Christoph M. Hoffmann and Bo Yuan

Computer Science Department
Purdue University

West Lafayette, IN 47907-1398, USA
{cmh,yuan}@cs.purdue.edu

Abstract. Simultaneous spatial constraint problems can be approached
algebraically, geometrically, or constructively. We examine how each ap-
proach performs, using several example problems, especially constraint
problems involving lines. We also prove that there are at most 12 real
tangents to four given spheres in R3.

1 Introduction

Spatial constraint solving involves decomposing the constraint schema into a
collection of indecomposable subproblems, followed by a solution of those sub-
problems. Good algorithms for decomposing constraint problems have appeared
recently, including [3,6]. The best of those algorithms are completely general,
adopting a generic degree-of-freedom reasoning approach that extends the older
approach of searching for characteristic constraint patterns from a fixed reper-
toire such as [7].

In the spatial setting, even small irreducible problems give rise to nontrivial
algebraic equation systems and yield a rich set of challenging problems. Restrict-
ing to points and planes, prior work has succeeded in elucidating and solving
with satisfactory results the class of octahedral problems. An octahedral prob-
lem is an indecomposable constraint schema on six geometric entities, points
and/or planes, with the constraint topology of an octahedron; see [1,7,10]. Such
problems have up to 16 real solutions.

When lines are added as geometric primitives, even sequential problems be-
come nontrivial, such as placing a single line at prescribed distances from four
fixed points. In [1] line problems have been investigated and solved using several
homotopy continuation techniques in conjunction with algebraic simplification.
In particular, the problem 3p3L was analyzed and solved in which three lines
and three points are pairwise constrained in the topology of the complete graph
K6. In this paper, we consider the problems 4p1L and 5p1L of placing four or
five points and one line by spatial constraints. We also contrast them to the 6p
octahedral problem. Our main purpose is to learn how successful the different
approaches to solving these problems are.
� Work supported in part by NSF Grant CCR 99-02025, by ARO Contract 39136-MA,

and by the Purdue Visualization Center.

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 1–15, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



2 Christoph M. Hoffmann and Bo Yuan

2 Three Ways to Solve Subproblems

Once a subproblem has been identified, it must be translated into a simultaneous
system of nonlinear equations, usually expressed algebraically. The system is
then solved. Due to application considerations, we are especially interested in
solution strategies that can, in principle, identify all real solutions of such a
system. Thus we exclude in particular the usual Newton iteration approach that,
beginning with a particular initial configuration, numerically determines at most
one solution of the system.

We are interested in three approaches to solving the algebraic equations that
arise when evaluating a subproblem.

1. Simplify the equations using a systematic set of techniques that are appro-
priate for the problem. This is the approach taken in, e.g., [1].

2. Apply a pragmatic mixture of geometric reasoning that simplifies the equa-
tions, in conjunction with other algebraic manipulation. This approach has
been taken in, e.g., [8,7].

3. Adopt a procedural approach in which basic geometric reasoning results in
a tractable, numerical procedure. This approach is familiar from, e.g., [5,4].

In each case, the goal is to simplify the system so that it becomes tractable to
evaluate all real solutions. Aside from the intrinsic repertoire of each of the three
approaches, we note that the choice of a coordinate system in which to solve the
system is of critical importance.

We will explore how each of these approaches performs by considering the
constraint subproblem in which 5 points and one line are to be placed subject to
constraints on them. In [1], it was argued that a good choice of the coordinate
system seeks to place the lines in a fixed position, formulating the equations on
the points and on lines that could not be placed. We have found this to be a
good idea as well. However, in the sequential line placing problem, we will see
that it is better to place the points.

In the following, we will consider three spatial irreducible constraint prob-
lems:

1. The 6p Octahedral Problem: Given six points in space and twelve pre-
scribed distances between them in the topology of an octahedron, determine
the six points relative to each other. This problem is related to the Stewart
platform [8].

2. The 4p1L Problem: Given four known points, find a line that lies at pre-
scribed distance from each of them. Equivalently, find the common tangents
to four fixed spheres [1].

3. The 5p1L Problem: Given one line and five points, and thirteen con-
straints between them in the topology shown in Figure 2, determine their
relative position.

We will see that the first problem yields to the systematic simplification ap-
proach. That it can be addressed with the second approach as well has been



On Spatial Constraint Solving Approaches 3

shown in [8], among others. An especially nice solution using the Cayley-Menger
determinant was presented by Michelucci in [10].

The second problem is amenable to the algebraic approach as well, except
that the coordinate system has to be chosen carefully. We will explain briefly
two different choices and their consequences.

Finally, the third constraint problem has not yielded to the first two con-
straint solving approaches, and the only satisfactory approach we have found so
far is the computational one.

3 The Spatial Constraint Problems

We explain each constraint problem we consider in turn, in increasing order of
complexity.

3.1 The 6p Octahedral Problem

We are given six points and twelve distance constraints, as indicated in Figure 1.
The position of the points relative to each other, or with respect to a global coor-
dinate system, is not known. As noted in [7], this problem has several instances

p1 p2

p4

p5

p6

p3

Fig. 1. The 6p Octahedral Problem: Graph vertices represent points, graph edges dis-
tance constraints

when replacing some of the points with planes and considering angle constraints
between planes. In every case, the problem cannot be further decomposed and
requires solving a simultaneous system of nonlinear equations. A solution is a
coordinate assignment to the points that satisfies all twelve distance constraints.
As we will explain, this problem yields to both the algebraic and to the reasoning
approach.



4 Christoph M. Hoffmann and Bo Yuan

3.2 4p1L – Common Tangent to Four Spheres

We are given four points in fixed location in a global coordinate system. We are
asked to find a line in space that lies at prescribed distance from each of the four
points. Equivalently, we are given four fixed spheres in 3-space, not necessarily
of the same radius, and are asked to find a line that is tangent to each sphere.

This problem is a sequential construction problem. A line has four indepen-
dent coordinates, so four conditions such as the required distances determine its
position. Suppose that we have a constraint problem in which each geometric
element can be placed in a global coordinate system one-by-one in some order.
If we admit as possible elements points, lines and planes, then this subproblem
arises naturally. Note that geometric constraint problems that can be solved by
such a sequential procedure are among the simplest problems.

We will discuss an algebraic approach to solving this problem that relies on
a good choice of the coordinate system. Geometric reasoning approaches appear
to fail to lead to more simplification.

3.3 The Problem 5p1L

Consider a configuration of five points and one line in 3-space that is constrained
as shown in Figure 2. All constraints are distances. The subgraph of the five

p5

p2

p1

p3

p4

L

Fig. 2. The 5p1L Problem: Graph vertices represent points and a line, graph edges
distances.

points has the topology of a square pyramid and is therefore not rigid. The point
p5 is the apex of the pyramid. In all, the configuration requires 19 generalized
coordinates subject to 13 constraints, and is therefore generically a rigid body
in 3-space.



On Spatial Constraint Solving Approaches 5

4 Solving Strategies

4.1 Algebraic Approach

In the algebraic approach, we choose a coordinate system and formulate a set of
algebraic equations based on that choice. The equations are then simplified and
brought into a form that gives greater insight into the number of distinct solu-
tions and is sufficiently simple that root finding or reliable numerical techniques
can be applied to solve the system. Ideally, the approach follows a systematic
generic framework for manipulating the equations.

The 6p – Octahedral Problem The octahedral problem 6p has an elegant
solution discovered by Michelucci [10] that is based on the Cayley-Menger deter-
minant. Recall that the determinant relates the squared distances between five
points in space. Consider the two unknown diagonal distances d13 = d(p1, p3)
and d24 = d(p2, p4). Choosing the five points {p1, p2, p3, p4, p5}, a quadratic
relationship between d2

13 and d2
24 is obtained from the determinant. A similar

relationship is obtained from the set {p1, p2, p3, p4, p6}. Thus, we obtain two
quartic equations in two unknowns, a system of total degree 16.

Michelucci’s solution is independent of a coordinate system choice, a strong
point, but it does not follow a systematic procedure. A systematic framework
was developed by Durand in [1,2]. Choosing to place one point at the origin,
one point on the x-axis, and one point in the positive quadrant of the xy-plane,
the initial system consists of nine quadratic equations in nine unknowns. This
system is then simplified by the following steps:

1. Gaussian elimination.
2. Solving univariate equations.
3. Parameterization of variables in bilinear and biquadratic equations.

The resulting system for 6p are three quartic equations in three variables, a
system of total degree 64. By applying techniques from homotopy continuation,
the final system required evaluating only 16 roots, of which, in the examples
studied, 8 were real and 8 were complex.

4p1L – Tangent to Four Spheres The problem would appear to be classi-
cal, but we did not find much helpful literature on it. A systematic algebraic
treatment of the problem was given by Durand in [1]. Durand found an equation
system of degree 64 (the BKK bound) and experimentally determined that 40 of
the 64 paths led to infinity. Thus, only 24 paths had to be explored. We improve
this result now.

Placing three points at the origin, on the x-axis, and in the xy-plane, our
initial equation system consists of six quadratic equations in six unknowns, (1–
6). The unknowns are the point (x, y, z) nearest to the origin on the sought line,
and the unit length tangent (u, v, w) of the line. Assume that ri is the distance



6 Christoph M. Hoffmann and Bo Yuan

of point i from the line, and that the point coordinates are (ai, bi, ci). Then the
initial equation system is

x2 + y2 + z2 − r2
1 = 0 (1)

(a2 − x)2 + y2 + z2 − (a2u)2 − r2
2 = 0 (2)

(a3 − x)2 + (b3 − y)2 + z2 − (a3u + b3v)2 − r2
3 = 0 (3)

(a4 − x)2 + (b4 − y)2 + (c4 − z)2 − (a4u + b4v + c4w)2 − r2
4 = 0 (4)

xu + yv + zw = 0 (5)
u2 + v2 + w2 − 1 = 0 (6)

We use equation (1) to eliminate the terms x2, y2 and z2 from equations (2–
4). Then those equations can be solved symbolically, yielding a solution that
expresses the variables x, y and z as a quadratic expression in u, v and w. This
eliminates x, y and z from equations (5) and (6) and factors out a subsystem
of three equations in u, v, w of degree 2, 3 and 4, respectively. Thus, a degree
reduction to 24 has been accomplished.

We note that for each solution (x, y, z, u, v, w) of the system (x, y, z,−u, −v,
−w) is also a solution.1 Geometrically, this says that the orientation of the lines
is immaterial, which one expects. Therefore, the 24 solutions of the system,
counted by Bezout’s theorem, reduce to 12 geometric solutions. That this is the
smallest number possible follows from the result by Theobald et al. [9]. They
prove there are up to 12 distinct real tangents when all radii are equal, that is,
when r1 = r2 = r3 = r4 = r.

It would seem that one could place the unknown line on the x-axis and seek
equations to place the four points as a rigid structure subject to the distance con-
straints. Doing so yields equations with a high degree of symmetry and structure,
but we have not found an attractive simplification of those equations.

5pL1 We can choose a coordinate system in which the line L is on the x-axis
and the point p5 on the z-axis as shown in Figure 3. We denote the distance
between L and the point pi with ri, i = 1, . . . , 5. The distance between and
point p5 and pi, i = 1, . . . , 4, is denoted di, and the distance between points pi

and pj with dij . This choice leads to a system consisting of 12 equations in 12
unknowns:

y2
i + z2

i = r2
i i = 1, . . . , 4

x2
i + y2

i + (zi − r5)2 = d2
i i = 1, . . . , 4

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 = d2
ij ij = 12, 23, 34, 41

(7)

Naive counting of the number of possible solutions would yield 4096. Using the
multi-homogeneous Bezout theorem of [11], a tighter bound of 512 finite solutions
1 This is clearly true for the original system. Moreover, the expressions substituted for

x, y and z also exhibit the sign symmetry; hence the claim is true for the resulting
system of degree 24.



On Spatial Constraint Solving Approaches 7

x

y

z

p5

L

r5

Fig. 3. Coordinate Assignment for the 5p1L Problem

is obtained. That bound does not make it practical to explore all solutions.
Moreover, the system of equations resisted meaningful simplification, both ad-
hoc manipulations as well as the systematic simplification steps developed before.

We could choose to place the coordinate system such that three points are
put into a special position, say one point at the origin, one on the x-axis, and
one in the xy-plane, but doing so did not lead to better equations.

4.2 Geometric Reasoning to Assist Simplification

In this approach we try to introduce auxiliary geometric structures, such as
the curves described by a particular point when restricting to a subset of the
constraints, especially if this can lead to a reasonable parameterization. Often,
one can then introduce the additional constraints and derive a simpler equation
system.

6p – Octahedron Geometric reasoning was used in [7] to yield a system of
equations that, in conjunction with resultant techniques, succeeded in deriving
a univariate polynomial of degree 16. It improves on the systematic approach by
a factor of 4 and matches the Cayley-Menger solution.

4p1L – Sphere Tangents Presently, we do not have a good solution that
exploits the geometry of the configuration. We believe that it should be possible
to find one of total degree to 24 or less.

5p1L Placing the coordinate system as before, with the line on the x-axis and
the point p5 on the z-axis, we could proceed by parameterizing the locus of the
point p1 as function of the z-coordinate Z. From the distance constraints r1 and



8 Christoph M. Hoffmann and Bo Yuan

d1 we obtain for the point p1:

p1 =




x1(t) = ±
√

d2
1 − r2

1 − r2
5 + 2r5t

y1(t) = ±
√

r2
1 − t2

z1(t) = t

(8)

We can then construct the remaining points whose coordinates are now a func-
tion of the parameter t, using the distance constraints for r2, d2, and d12 for p2,
the distance constraints r4, d4 and d41 for p4. Finally, point p3 is constructed us-
ing r3, d3 and d23. This leaves the distance constraint d34 to be used to determine
the parameter t. The equations so derived have the following form:




−4d2
2x1(t)x2 + 8x1(t)y1(t)x2y2 − 8r5x1(t)z1(t)x2

−8r5y1(t)z1(t)y2 + 4x1(t)2x2
2 + 4y1(t)2y2

2 + 8r2
5x1(t)x2

−4d2
1x1(t)x2 + 4d2

12x1(t)x2 − 4d2
2y1(t)y2 + 8r2

5y1(t)y2 − 4d2
1y1(t)y2

+4d2
12y1(t)y2 + 4d2

2r5z1(t) − 4d2
12r5z1(t) − 8r5z1(t)y2

2 + 4r2
5z1(t)2

−8r3
5z1(t) + 4z1(t)2y2

2 + 4r2
5y

2
2 − 4r2

2z1(t)2 + 8r5r
2
2z1(t) = D1

−z1(t)x2
2 + r5x

2
2 − 2r5x1(t)x2 − 2r5y1(t)y2 + 2r2

5z1(t)
+d2

2z1(t) − r2
5z1(t) − r2

2z1(t) = D2

−4d2
4x1(t)x4 + 8x1(t)y1(t)x4y4 − 8r5x1(t)z1(t)x4 − 8r5y1(t)z1(t)y4

+4x1(t)2x2
4 + 4y1(t)2y2

4 + 8r2
5x1(t)x4 − 4d2

1x1(t)x4 + 4d2
41x1(t)x4

−4d2
4y1(t)y4 + 8r2

5y1(t)y4 − 4d2
1y1(t)y4 + 4d2

41y1(t)y4 + 4d2
4r5z1(t)

−4d2
41r5z1(t) − 8r5z1(t)y2

4 + 4r2
5z1(t)2 − 8r3

5z1(t)
+4z1(t)2y2

4 + 4r2
5y

2
4 − 4r2

4z1(t)2 + 8r5r
2
4z1(t) = D3

−z1(t)x2
4 + r5x

2
4 − 2r5x1(t)x4 − 2r5y1(t)y4 + 2r2

5z1(t) + d2
4z1(t)

−r2
5z1(t) − r2

4z1(t) = D4

−12z1(t)x2x3 + 12r5x2x3 − 4r5x1(t)x2 − 4r5y1(t)y2 + 4r2
5z1(t)

+4r5z1(t)z3 − 4r2
5z3 + 2d2

2z1(t) + 2d2
3z1(t)

+2d2
23z1(t) − 4r2

5z1(t) = D5

4z1(t)x3x4 − 4r5x3x4 + 4z1(t)y3y4 − 4r5y3y4 − 4x1(t)x4z3

−4y1(t)y4z3 + 2d2
4z3 + 2d2

1z3 − 2d2
41z3 + 4r5x1(t)x4 + 4r5y1(t)y4

−4r5z1(t) − 2d2
3z1(t) − 2d2

4z1(t) + 2d2
34z1(t) + 4r2

5z1(t) = D6

y2
3 + z2

3 = D7

x2
3 − 2r5z3 = D8

(9)
where D1, D2, D3, D4, D5, D6 are constants. The system is unattractive.

4.3 Construction by Computation

The closed-form algebraic expressions for the point coordinates of the 5p1L prob-
lem that were obtained by the geometric reasoning described before, do not seem



On Spatial Constraint Solving Approaches 9

to be simple enough to lead to further massive algebraic simplification. However,
they are very easy to evaluate computationally, and can be used to define numer-
ically a curve in a 2D coordinate space defined by the parameter and the distance
d34. When the curve is intersected with the nominal distance line, the real solu-
tions are obtained. As illustrated in Figure 4, p10 is on line L and p10p1 ⊥ L, the
angle between p10p1 and the xy-plane is θ. We use θ as parameter to calculate
point p1:

x

y

z

p5

d5

L θ

p1

p10

Fig. 4. Parameterization with θ

p1 =




x1(θ) = ±
√

d2
1 − r2

1 − r2
5 + 2r1r5 sin(θ)

y1(θ) = r1 cos(θ)
z1(θ) = r1 sin(θ)

(10)

For practical purposes, the approach is satisfactory, since it gives a system-
atic, and sufficiently simple, procedure to find all real solutions. Moreover, the
solutions so found can be further refined with other numerical processes, since
they provide good starting points. From a theoretical perspective, the draw-back
of the procedural approach is its inability to produce, with certainty, a bound on
the number of solutions. Here are the details for our 5p1L problem, and several
example solutions.

p2 can be solved using the constraints dist(L, p2) = r2, dist(p5, p2) = d2
and dist(p1, p2) = d12. As illustrated in Figure 5, the point ps = (xs, ys, zs) in
triangle �p1p2p5 is on the line p1p5 and p2ps ⊥ p1p5. So, we have

s = |psp5| =
(d2

1 + d2
2 − d2

12)
2d1

h = |psp2| =
√

d2
2 − s2

We obtain
ps = p5 +

s

d1
(p1 − p5)



10 Christoph M. Hoffmann and Bo Yuan

p2

p5p1

d2
d12

s
d1

ps

h

Fig. 5. Triangle p1p2p5

Consider the vector w = p1−p5
|p1−p5| = p1−p5

d1
. We define a plane Π through the point

ps perpendicular to w. Since dist(L, p2) = r2, the point p2 is on the cylinder
Σ : y2 + z2 = r2

2 whose axis is the line L and whose radius is r2. Let pc be the
interaction point of line L and plane Π, then pc = (xc, yc, zc) where

xc = xs + wy

wx
ys + wz

wx
zs

yc = 0
zc = 0

Using the vectors
v = w×L

|w×L|
u = v × w

we set up a local coordinate system: (o′,x′,y′,z′), where

o′ = pc

x′ = u
y′ = v
z′ = w

The matrix transform from the global coordinate system (o,x,y,z) to the local
system (o′,x′,y′,z′) is

M =




ux uy uz 0
vx vy vz 0
wx wy wz 0
0 0 0 1







1 0 0 −xc

0 1 0 −yc

0 0 1 −zc

0 0 0 1


 (11)

Figure 6 illustrates the local coordinate system (o′,x′,y′,z′) situated in the
global system (o,x,y,z).

From the construction process we know that the point p2 lies on a circle
in the plane Π with radius h. Let p′

s = Mps, in the local coordinate system
(o′,x′,y′,z′). Then the equation of the circle is

(x′ − x′
s)

2 + (y′ − y′
s)

2 = h2 (12)



On Spatial Constraint Solving Approaches 11

x

y

z

p5

p1

L
w

v

u

pc
o

psΠ

Fig. 6. Local Coordinate System (o′, x′, y′, z′)

Now the vector along line L is L : (1, 0, 0), the angle between L and w is β, and
the intersection of plane Π and cylinder Σ is an ellipse on plane Π. In the local
system (o′,x′,y′,z′), the ellipse equation is

x′2

r2
2 csc2(β)

+
y′2

r2
2

= 1 (13)

Solving equations (12) and (13) simultaneously, we get p′
2 and from it, in turn,

p2:
p2 = (x2(θ), y2(θ), z2(θ))

Note that there are up to 4 real solutions for p2.
Similarly, we compute p4 from its constraints with the line L and the points

p1 and p5. Finally, we compute p3 from the constraints with line L and points
p2 and p5

p3 = (x3(θ), y3(θ), z3(θ))
p4 = (x4(θ), y4(θ), z4(θ))

d34(θ) is a complicated curve in a coordinate space defined by the parameter θ
and the distance dist(p3(θ), p4(θ)). The curve would be hard to express symbol-
ically. However, we can trace it numerically.

Given a step length dθ, we calculate d34(θ) for every step θ = θ + dθ, and
so obtain the curve Cθ : d34(θ) − θ numerically. Let the absolute error of d34(θ)
and the nominal distance line d34 be

ρ(θ) = |d34(θ) − d34|
Obviously, the smaller ρ(θ) is, the nearer θ is to a real solution of the 5pL1
problem. Call a point (θ, d34(θ)) a coarse solution if θ satisfies

d34(θ) < δ



12 Christoph M. Hoffmann and Bo Yuan

Table 1. An Constraint Set of the 5p1L Problem

r1 5.12863551744133
r2 3.4797204504532
r3 5.12009033478805
r4 4.48866237372967
r5 0.854823450422681
d1 5.40391247291482
d2 4.92751853999451
d3 6.556901760918
d4 5.04776146732994
d12 2.49916074098941
d23 9.55687124240852
d34 9.15
d41 7.1858882412183

for a chosen tolerance δ. The coarse solution set Sδ is then

Sδ = {qθ = (θ, d34(θ))|ρ(θ) < δ, qθ ∈ Cθ}

δ is the threshold of the coarse solutions, and the size of |Sδ| diminishes with
δ. The coarse solutions can be further refined with Newton-Raphson iteration
since they provide good starting points.

4.4 An Example

Table 1 gives an example of constraint set of 5pL1 problem, by defining dθ =
1.0o, Figure 7 gives the discrete curve. In our example, if δ = 0.1, |Sc| = 108,
if δ = 0.2, |Sc| = 224. When δ = 0.1 we can get 20 refined real solutions; when
δ = 0.2 we can get 24 refined real solutions; when δ > 0.2 we have more than 224
coarse solutions but the refined real solution number is still 24. Therefore, the
maximum real solution number of the example is 24. The circles on the nominal
distance line in Figure 7 represent the real solutions, Table 2 gives all the 24
real solutions of this example.

The computation was carried out using a tolerance-driven search for potential
solutions followed by a Newton iteration refining the initial values. On a PC with
a 500MHz Pentium 3 the initial search took 100 milliseconds with a tolerance
of 0.2, and the subsequent refinement took an additional 233 ms. This contrasts
favorably with the computation times obtained by Durand on a Sun SPARC 20
using homotopy continuation where 24 paths were evaluated in approximately
30 sec. The homotopy evaluation on the slower machine was a completely general
implementation, while our computation of the solution was specifically designed
for this particular problem. It would be interesting to test this problem on general
multi-variate interval Newton solvers.



On Spatial Constraint Solving Approaches 13

Fig. 7. d34(θ) − θ Curve

5 Further Discussion

The Construction by Computation approach can be used more generally. Let
F (X) = 0 be a system of n nonlinear equations F = {f1, . . . , fn} with n
unknowns X = {x1, . . . , xn}. To find all real solutions of F (X) = 0, we can
choose a real parameter set T = {t1, . . . , tk}k<n such that X can be solved as
X(T ) = {x1(T ), . . . , xn(T )} by using n − k equations

Fn−k = {f i|f i ∈ F, 1 ≤ i ≤ n − k} ⊂ F

Let
Fk = F − Fn−k = {f j |f j �∈Fn−k, f j ∈ F, 1 ≤ j ≤ k} ⊂ F

and define
ρ(T ) =

max
∀f j ∈ Fk

(|f j |)

Let domain of T be DT = [t1min, t1max] × · · · × [tkmin, tkmax], and for every
ti ∈ T define a step size dti such that we can calculate ρ(T ) on DT numerically
for every [t1 = t1 + dt1] × · · · × [tk = tk + dtk]. Obviously, T × ρ(T ) ⊂ �k+1

is a hypersurface. Given a small positive real number δ, we can get the Coarse
Solution Set

Sc = {qT = (T, ρ(T ))|ρ(T ) < δ, qT ∈ T × ρ(T )}



14 Christoph M. Hoffmann and Bo Yuan

Table 2. Real Solution Set of the Example

p1 p2 p3 p4

1 (2.06,4.98,1.21) (3.30,3.46,-0.34) (-4.87,2.43,4.51) (3.45, -1.36, 4.28)
2 (-2.06,4.98,1.21) (-3.30,3.46,-0.34) (4.87, 2.43, 4.51) (-3.45, -1.36,4.28)
3 (2.28,4.81,1.77) (3.85,2.88,1.96) (-2.79,1.73,-4.82) (-3.46,1.30,4.30)
4 (-2.28, 4.81,1.77) (-3.85,2.88,1.96) (2.79,1.73,-4.82) (3.46,1.30,4.30)
5 (2.93,3.48,3.77) (3.72,3.18,1.42) (-4.95,1.29,4.95) (-0.37,3.65,-2.61)
6 (-2.93,3.48,3.77) (-3.72,3.18,1.42) (4.95,1.29,4.95) (0.37,3.65,-2.61)
7 (3.04,3.04,4.13) (4.14,0.94,3.35) (-4.93,-1.65,4.85) (-1.58,4.32,-1.23)
8 (-3.04,3.04,4.13) (-4.14,0.94,3.35) (4.93,-1.65,4.85) (1.58,4.32,-1.23)
9 (3.26,1.39,4.94) (4.01,2.20,2.70) (-3.22,3.90,-3.32) (-3.47,-1.07,4.36)
10 (-3.26,1.39,4.94) (-4.01,2.20,2.70) (3.22,3.90,-3.32) (3.47,-1.07,4.36)
11 (3.29,0.79,5.07) (4.15,-0.84,3.38) (-4.92,1.82,4.79) (1.72,4.39,-0.95)
12 (-3.29,0.79,5.07) (-4.15,-0.84,3.38) (4.92,1.82,4.79) (-1.72,4.39,-0.95)
13 (3.29,-0.79,5.07) (4.15,0.84,3.38) (4.92,-1.82,4.79) (1.72,-4.39,-0.95)
14 (-3.29,-0.79,5.07) (-4.15,0.84,3.38) (4.92,-1.82,4.79) (-1.72,-4.39,-0.95)
15 (3.26,-1.39,4.94) (4.01,-2.20,2.70) (-3.22,-3.90,-3.32) (-3.47,1.07,4.36)
16 (-3.26,-1.39,4.94) (-4.01,-2.20,2.70) (3.22,-3.90,-3.32) (3.47,1.07,4.36)
17 (3.04,-3.04,4.13) (4.14, -0.94,3.35) (-4.93,1.65,4.85) (-1.58,-4.32,-1.23)
18 (-3.04, -3.04,4.13) (-4.14,-0.94,3.35) (4.93,1.65,4.85) (1.58,-4.32,-1.23)
19 (2.93,-3.48,3.77) (3.72,-3.18,1.42) (-4.95,-1.29,4.95) (-0.37,-3.65,-2.61)
20 (-2.93,-3.48,3.77) (-3.72,-3.18,1.42) (4.95,-1.29,4.95) (0.37,-3.65,-2.61)
21 (2.06,-4.98,1.21) (3.30,-3.46,-0.34) (-4.87,-2.43,4.51) (3.45,1.36,4.28)
22 (-2.06,-4.98,1.21) (-3.30,-3.46,-0.34) (4.87,-2.43,4.51) (-3.45,1.36,4.28)
23 (2.28,-4.81,1.77) (3.85,-2.88,1.96) (-2.79,-1.73,-4.82) (-3.46,-1.30,4.30)
24 (-2.28,-4.81,1.77) (-3.85,-2.88,1.96) (2.79,-1.73,-4.82) (3.46,-1.30,4.30)

For every qT ∈ Sc we can get an starting point X0. Using Newton-Raphson
iteration, we may refine the starting point to a real solution of F (X) = 0. After
calculating all qT ∈ Sc we can get the real solution set Sr. If the step sizes
dti, i = 1, . . . , k, are small enough and δ is large enough, we can find all real
solutions of F (X) = 0.

References

1. C. Durand. Symbolic and Numerical Techniques for Constraint Solving. PhD thesis,
Purdue University, Dept. of Comp. Sci., 1998.

2. C. Durand and C.M. Hoffmann. A systematic framework for solving geometric
constraints analytically. J. of Symbolic Computation, 30:483–520, 2000.

3. I. Fudos and C.M. Hoffmann. A graph-constructive approach to solving systems
of geometric constraints. ACM Trans on Graphics, 16:179–216, 1997.

4. X.S. Gao and C.C. Zhu. Geometric constraint solving with linkages and geometric
method for polynomial equations-solving. In MM Research Preprints 18, pages
48–58. Academia Sincica, Institute of Systems Science, 1999.

5. J.X. Ge, S.C. Chou, and X.S. Gao. Geometric constraint satisfaction using opti-
mization methods. Computer Aided Design, 31:867–879, 1999.



On Spatial Constraint Solving Approaches 15

6. C.M. Hoffmann, A. Lomonosov, and M. Sitharam. Geometric constraint decompo-
sition. In Geometric Constraint Solving and Applications, pages 170–195. Springer-
Verlag, New York, 1998.

7. C.M. Hoffmann and P. Vermeer. Geometric constraint solving in R2 and R3. In
Computing in Euclidean Geometry, pages 170–195. World Scientific Publishing,
Singapore, 1995.

8. D. Lazard and J.P. Merlet. The (true) Stewart platform has 12 configurations.
In Proceedings IEEE International Conference on Robotics and Automation, pages
2160–2165. IEEE, 1994.

9. I.G. Macdonald, J. Pach, and Th. Theobald. Common tangents to four unit balls
in R3. Discrete and Comp. Geometry, to appear.

10. D. Michelucci. Using Cayley Menger determinants. Web document available from
http://www.emse.fr/˜micheluc/MENGER/index.html.

11. A. Morgan. A homotopy for solving general polynomial systems that respects m-
homogeneous structures. Applied Mathematics and Computation, 24:101–113, 1987.



A Hybrid Method
for Solving Geometric Constraint Problems�

Xiao-Shan Gao, Lei-Dong Huang, and Kun Jiang

Institute of Systems Science
Academy of Mathematics and System Sciences

Academia Sinica
Beijing 100080, China
xgao@mmrc.iss.ac.cn

Abstract. We propose an algorithm for solving geometric constraint
problems. The algorithm has linear complexity for constrained systems
without loops, and is of quadratic complexity for constraint problems
with loops. This algorithm is complete for constraint problems about
simple polygons. The key of the algorithm is to combine the idea of graph
based methods for geometric constraint solving and geometric transfor-
mations from rule-based methods.

1 Introduction

Geometric constraint solving (GCS) is the central topic in much of the current
work of developing parametric and intelligent CAD systems. It also has applica-
tions in mechanical engineering, linkage design, computer vision and computer
aided instruction. There are four main approaches to GCS: the graph analy-
sis approach [6,2,16,13], the rule-based approach [1,3,14,11,17,9,18], the numer-
ical computation approach [5,7,12,15], and the symbolic computation approach
[4,10]. In practice, most people use a combination of these approaches to get the
best result.

The basic idea of the graph analysis approach is to represent the geometric
constraints with a graph and then use algorithms from graph theory to transform
the drawing problem into certain constructive forms, like constructive forms with
ruler and compass. In [16], graph decomposition algorithms are used to divide
a constraint problem into three parts, to solve the parts separately, and then to
assemble the three parts together to form the final diagram. In [2], geometric
diagrams are divided into clusters and clusters are merged into larger clusters
until a single cluster is obtained. In [13], graph methods are used to decide
whether the the constraint problems are well-, under- or over-constrained. In
particular, Hoffmann et al. presented an algorithm to decompose any constraint
problem into constructible sub-graphs, called dense sub-graphs [8]. In most cases,
� This work is supported in part by a “973” project and by CNSF under an outstanding

youth grant (NO. 69725002).

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 16–25, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



A Hybrid Method for Solving Geometric Constraint Problems 17

this decomposition provides a computational procedure for the corresponding
GCS problem.

However, the GCS problem is not solved perfectly. The basic steps of graph
analysis methods are first decomposing a large constraint problem into smaller
ones and then assembling them together. In this process, we need to solve systems
of simultaneous equations. In the 2D case, if the maximal number of equations
to be solved is equal to or less than two, then the problem is called a constraint
problem without loops. Otherwise, it is called a constraint problem with loops.
For constraint problems with loops, we need to solve a simultaneous equation
system, which could be a difficult task. Therefore, it is still worth to find fast
methods which may transfer constraint problems with loops to constraint prob-
lems without loops.

In this paper, we present a graph analysis method of GCS. For a constraint
problem without loops, the method has linear complexity and can be used to
solve problems involving geometric objects and geometric constraints of any
degree of freedom (DOF). So the algorithm works for both 2D and 3D cases.
Also, the method works for well and under constraint problems. For a constraint
problem with loops, the method has quadratic complexity and is complete for
constraint problems of simple polygons. Generally speaking the graph analysis
methods have lower complexities and the rule-based approaches can solve more
types of loops by using geometric transformations. The key idea of our method
is to combine these two approaches to obtain a fast and powerful loop breaking
method.

The rest of the paper is organized as follows. In Section 2, we will present
the graph representation for the three geometric transformations. In Section 3,
we will present the algorithm. In Section 4, we will present the conclusion.

2 Graph Representation of Geometric Transformations

2.1 Graph Representation of Constraint Problems

A constraint problem can be represented by a weighted graph [8]. The graph
vertices represent the geometric objects, edges represent geometric constraints.
The weight of a vertex is the DOF of the represented object. The weight of an
edge represents the DOF eliminated by the represented constraint. For instance,
Fig. 2 is the graph representation for the constraint problem in Fig. 1. Note that
the weights for the vertices and edges are not marked explicitly. In 2D case, most
constraints have one DOF and most objects have two DOFs.

For the convenience of complexity analysis, an adjacent list representation
of graphs is used. Fig. 3 is the representation of the graph in Fig. 2, where the
nodes in the first column are called head nodes.

2.2 Geometric Transformations

Geometric transformations are used to solve constraint problems with loops in
rule based methods [3,17,18]. Here, we will give the graph representation for three



18 Xiao-Shan Gao, Lei-Dong Huang, and Kun Jiang

P 2 P 3

P 4

P 1

L 4

L 1

L 3

L 2

Fig. 1. Lengths of four edges
and angle (L2, L4) are given

P 1 P 4

L 4

L 2

P 2 P 3

L 1 L 3

Fig. 2. The graph represen-
tation

Fig. 3. Adjacent list representation of graphs

geometric transformations, which will be used to solve all constraint problems
about simple polygons.

– Rigid Body Transformation.
If there exists a well-constrained sub-graph which can be solved sequentially
by ruler and compass, then this sub-graph represents a rigid body in the
original constrained diagram. In certain cases, we may represent this rigid
body by a simpler geometric object.
The following special form of this transformation is especially useful in
solving constraint problems about polygons. Constraint sets like {|AB| =
d1, � ABC = α, |BC| = d2}, {|AB| = d1, |BC| = d2, |CA| = d3} and
{� ABC = α, |BC| = d2, � ACB = β} are called called sas, sss, and asa
constraints respectively. A series of sas, sss or asa constraints may determine
a rigid body which can be replaced by a segment if only the two ending
points are connected to other geometric objects. Such an example is given
in Fig. 6, which can be solved by using two sas transformations.
We give a precise description for the sas transformation below. Descrip-
tions for other transformations are omitted. For an object v, let LDEG(v)



A Hybrid Method for Solving Geometric Constraint Problems 19

l i l 1 l 2 l j

P1

P2 P3

Fig. 4. Before the sas trans-
formation

l i

l 3

l j

P2 P3

Fig. 5. After the sas trans-
formation

and PDEG(v) be the numbers of lines and points connected to v in the
constraint graph respectively. We need to find a sub-graph satisfying the
following conditions (Fig. 4).

• |P0P1|, |P1P2| and � P0P1P2 are known.
• LDEG(P1) = 2, PDEG(P1) = 2.
• PDEG(l1) = 2, PDEG(l2) = 2.

Then we may delete P1, l1, l2 and add a new line l3 = P0P2 and a new
constraint |P0P2|. Note that all other constraints about l1, l2 are angle con-
straints and can be converted to constraints about l3.

P 1

P 2

P 3

P 5

P 4

L 2

L 3

L 4

L 5L 1

Fig. 6. A problem
using the sas trans-
formation

P 1

P 4

P 2 P 3

Fig. 7. A problem
using the angle trans-
formation

P 2 P 3

P 4

P 1

L 4

L 1

L 3

L 2

P 2’

Fig. 8. A problem
using the parallel
transformation

– Angle Transformation. Angle transformations can be used to solve many
constraint problems with loops. In Fig. 7, since three inner angles of the
quadrilateral are known, its fourth inner angle at point P1 is also known.
With this angle known, the sas transformation can be used to solve the
constraint problem.
In general, we may use the concept of full-angles [20] for angle transforma-
tion. We use [Li,Lj ] to represent the full-angle from line Li to line Lj , which
satisfies the following properties

[Li, Lj ] = −[Lj , Li],
[Li, Lj ] = [Li, Lk] + [Lk, Lj ].



20 Xiao-Shan Gao, Lei-Dong Huang, and Kun Jiang

With the above property, we may easily divide the lines into equivalent
classes such that the angle between any two lines in the same class is known
or can be calculated. It is clear that we may find all such equivalent classes
in linear time of the number of geometric objects and geometric constraints.

– Parallel Transformation. The problem in Fig. 1 cannot be solved with the
above transformations, neither by Hoffmann and Owen’s graph triangle de-
composition methods. The methods reported in [8,14] may solve this prob-
lem. But in these methods, we need to solve equation systems with more
than two equations. In other words, the loop in this problem is not broken.
In [3,17], the loop in this problem can be broken by introducing auxiliary
points. The solution is given in Fig. 8, where line segment P2P3 is translated
to P1P

′
2. Since � P4P1P

′
2 is the same as the angle formed by lines P1P4 and

P2P3, we may solve the problem with an sas transformation.

P0 P1

l 1

P2

l 2

P3

l 3

P4

l 4

P0 P1

l 1

P2’

l 4’

P3’

l 2’

P4

l 3’

P0 P2’

l 1’

P3’

l 2’

P4

l 3’

Fig. 9. Parallel transformation

In general, the parallel transformation works as follows. Let P0, P1, . . . , Pk

be points in a constraint problem such that

1. Angle [P0P1, Pk−1Pk] is known.
2. |P0P1|, |P1P2|, . . . , |Pk−1Pk| are known.
3. The only geometric objects connecting Pi, i = 1, . . . , k − 1 are points

Pi−1, Pi+1 and lines Pi−1Pi, PiPi+1.
4. There are no points on lines PiPi+1, i = 0, . . . , k−1 besides Pi and Pi+1.

Fig. 9 gives an example for k = 4, where the dotted lines mean that they
may not exist. If the above conditions are met, we may make parallelograms
P1P2P

′
3P

′
2, P2P3P

′
4P

′
3, . . . , Pk−2Pk−1PkP ′

k−1. Now replacing P2, . . . , Pk−1
by P ′

2, . . . , Pk−1′ in the original problem to obtain a new constraint problem
(Fig. 9, middle). It is clear that



A Hybrid Method for Solving Geometric Constraint Problems 21

1. All the constraints about P2, . . . , Pk−1 can be converted to constraints
about P ′

2, . . . , P
′
k−1. In particular, � P0P1P

′
2 is known.

2. If P ′
2, . . . , P

′
k−1 are constructed, we may construct P2, . . . , Pk−1 by com-

puting the intersections of lines.
Furthermore, we may do an sas transformation for P0, P1, P

′
2 to obtain the

final result of the parallel transformation (Fig. 9, right).
Suppose that the above Pi have been found. Then we need O(n + e) steps
to do the parallel transformation.

3 The Algorithm and Applications

3.1 The Algorithm

For any vertex v in the graph, let DEG(v) be the sum of the weights of all the
edges connecting to this vertex. Then, a vertex can be determined explicitly by
the constraints involving it if the following condition is satisfied:

DEG(v) ≤ DOF(v). (1)

The basic idea of the algorithm is to repeatedly remove those vertices satisfying
this condition. The problem has no loops if and only if all the vertices of the
graph can be removed in this way. If the problem has loops, we will use one of
the three transformations to reduce the problem to a smaller one.

1. Generate the adjacent list representation for the constraint graph and DEG(v)
for each head node v.

2. Do the angle transformation to find all the equivalent classes L1, . . . , Ls such
that the angle between two lines in the same class can be computed.

3. Let v point to the first head node.
4. If v is not an empty node then goto the next step. Otherwise we are at the

end of the graph. There are two cases. If all objects are removed from the
adjacent list, the problem can be solved by the algorithm, because each time
we remove an object from the list, we actually give a construction method
for it. If there are still nodes in the list, we cannot solve the problem.

5. Remove those nodes v satisfying (1) from the graph and for each node w in
the adjacent liet of v, minus one from DEG(w). To ensure that the complexity
of this step is linear, we will find the next node satisfying (1) from the
neighboring nodes of v. If all nodes are removed in this way, goto Step 4.
Otherwise, goto the next step.

6. If v is a line satisfying
– There are only two points P0 and P1 on it and
– |P0P1| is known,

do the next step. Otherwise set v to be the next head node and goto Step 4.
7. Staring from P1 (or P0), find points P2, . . . , Pk satisfying the conditions of

the parallel transformation.
8. If k = 1, nothing need to be done. Let v to be the next head node and go

back to Step 4.



22 Xiao-Shan Gao, Lei-Dong Huang, and Kun Jiang

9. If k = 2, we may do an sas transformation to P0, P1, P2. Put the new intro-
duced line P0P2 into the equivalent class of P0P1 and also at the end of the
adjacent list. Let v be the next head node and go to Step 4.

10. Do a parallel transformation to P0, P1, . . . , Pk and update the constraint
graph. Put the new introduced line P0P

′
2 into the equivalent class of P0P1

and also at the end of the adjacent list. Let v to be the next head node and
go to Step 4.

Let n be the number of geometric objects and e the number of constraints in
the problem. The main loop of the algorithm starts from Step 4. There are four
possibilities for each loop. (1) Do nothing. (2) Remove several nodes in Step 4. (3)
Do an sas transformation. (4) Do a parallel transformation. In cases (2), (3) and
(4), the number of geometric objects in the adjacent list will strictly decrease.
Therefore, the maximal number of this loop is the number of the geometric
object, n.

We will show that the complexity of each loop is O(n+ e). Also, Steps 1 and
2 have complexity O(n + e). Therefore, the complexity of the algorithm would
be O(n2 + ne). In Step 5, we may eliminate at most n nodes. For each node
eliminated, we need to search its adjacent list. Let di, i = 1, . . . , n be the steps
needed to eliminate the i-th node. Then di is actually propotional to the number
of constraints involving the i-th node plus a constant. Then the complexity of
this step is

∑n
i=1 di = O(n + e). The complexity of Step 5 is (e). In Step 6, we

need to find a path P0P1 · · ·Pk in the graph, each Pi, 1 ≤ i ≤ k − 1 does not
connect to other points. We may do this in O(n + e) steps. The sas and parallel
transformations need O(n+ e) steps. Therefore, each loop will finish in O(n+ e)
steps.

From the above analysis, if a constraint problem has no loops, then it can be
solved by the above algorithm in linear time. The quadratic complexity is mainly
due to the fact that no backtracking is needed in Step 4 of the algorithm. We
need to show that all possible sas and parallel transformations will be executed
in the algorithm. This is because after each sas or parallel transformation, two
equivalent classes for lines will not be merged. Therefore, if we cannot do sas
and parallel transformations for a line before another transformation, we cannot
do that after the transformation.

3.2 Constraint Problems for Simple Polygons

We will show that the algorithm reported in Section 3.1 can be used to solve all
constraint problems for simple polygons. Let P0, P1, . . . , Pn−1 be n points in
the plane. The constraint problem for simple polygon with Pi as vertices consists
of two types of constraints only:

1. Edge constraints, i.e., |PiPi+1| is known, where the subscripts are understood
to be mod n.

2. Angle constraints, i.e., the angle formed by PiPi+1 and PjPj+1 is known.

In [17], it is pointed out that all constraint problems about simple polygons can
be solved by the parallelogram rules. This method is based on deductive rules



A Hybrid Method for Solving Geometric Constraint Problems 23

and has no complexity analysis. Our algorithm is a graph based theory and is of
quadratic complexity.

We first consider well-constrained problems for simple polygons which have
2n − 3 constraints. We divide the problem into three cases.

1. The problem has n edge constraints and n − 3 angle constraints. Since the
lengths of all edges are known, we may construct the diagram with sas and
parallel transformations.

2. The problem has n − 1 edge constrains and n − 2 angle constraints. Since
the length of one edge is unknown, parallel transformations may be used to
each pair of the edges. After a series of parallel and sas transformations, the
problem becomes one of the following cases.
(a) Both of the two unknown angles involving the edge whose length is

unknown, Fig. 10(a). This is a problem without loops.
(b) One of the two unknown angles involving the edge whose length is un-

known, Fig. 10(b). This problem may be solved with one sas transfor-
mation.

(c) The lengths for all the edges involving the two unknown angles are
known, Fig. 10(c). This problem may be solved as follows. By an an-
gle transformation, the angle formed by l1 and l2 is known. Now, this
problem can be solved by a parallel transformation. Notice that this
problem can also be solved by the methods in [2,16,3].

(a) (b)

l 1 l 2

(c)

Fig. 10. Constraint problems for simple polygons

3. The problem has n − 2 edge constraints and n − 1 angle constraints. Us-
ing angle transformations, angles formed by any two edges are known. The
lengths of two edges are unknown. These two edges divide the vertices into
two sets such that two vertices in the same set can be connected with a series
of edges with known lengths. Therefore, we may use parallel transformations
to the two sets. By a series of parallel and sas transformations, the problem
becomes one of the following cases.
(a) The two edges with unknown lengths have a common end point, Fig.

11(a). This is a problem without loops.
(b) The two edges with unknown lengths have no common end point, Fig.

11(b). This problem can be solved similar to Fig. 9 by a parallel trans-
formation about l1 and l2 since the angle between them are known. Note



24 Xiao-Shan Gao, Lei-Dong Huang, and Kun Jiang

that in the current case, |P1P2| in Fig. 9 is not known. But we may still
use the parallel transformation to solve it. We may add this diagram as
a special case to our general algorithm. This problem can also be solved
by the methods in [2,16,3].

(a)

l 1

l 2

(b)

Fig. 11. Constraint problems for simple polygons

For an under-constrained problem, we may first transform it into a well-
constrained problem by adding a proper number of constraints [13], and then
solve it with the method presented in this paper.

4 Conclusion

The algorithm proposed in this paper uses a hybrid method by combining the
graph analysis approach and the rule-based approach. As a result, it has the
advantage of both approaches: it is fast and capable of solving a large number of
constraint problems with loops. Actually, it is complete for all constraint prob-
lems of simple polygons. We believe that this approach has more potential due
to the fact that there should exist many techniques of geometric constructions
in the classical geometry, which are useful to GCS. One possible extension is to
introduce more transformations such that the algorithm may solve all the prob-
lems within the scope of Hoffmann-Owen’s triangle decomposition approaches
and is still of quadratic complexity.

References

1. Dufourd, J.-F., Mathis, P., and Schreck, P.: Geometric Construction by Assembling
Solved Subfigures. Artificial Intelligence, 99(1998), 73–119.

2. Fudos, I. and Hoffmann, C. M.: A Graph-Constructive Approach to Solving Sys-
tems of Geometric Constraints. ACM Transactions on Graphics, 16(1997), 179–
216.

3. Gao, X.-S. and Chou, S.-C.: Solving Geometric Constraint Systems I. A Global
Propagation Approach. Computer Aided Design, 30(1998), 47–54.

4. Gao, X.-S. and Chou, S.-C.: Solving Geometric Constraint Systems II. A Symbolic
Approach and Decision of Rc-constructibility. Computer Aided Design, 30(1998),
115–122.



A Hybrid Method for Solving Geometric Constraint Problems 25

5. Ge, J.-X., Chou, S.-C., and Gao, X.-S.: Geometric Constraint Satisfaction Using
Optimization Methods. Computer Aided Design, 31(1999), 867–879.

6. Hendrickson, B.: Conditions for Unique Realizations. SIAM J. Computing, 21
(1992), 65–84.

7. Heydon, A. and Nelson, G.: The Juno-2 Constraint-Based Drawing Editor. SRC
Research Report 131a (1994).

8. Hoffmann, C. M., Lomonosov, A., and Sitharam, M.: Finding Solvable Subsets of
Constraint Graphs. LNCS, vol. 1330, Springer-Verlag, Berlin Heidelberg (1997),
163–197.

9. Joan-Arinyo, T. and Soto-Riera, A.: Combining Constructive and Educational Geo-
metric Constraint-Solving Techniques. ACM Trans. on Graphics, 18(1999), 35–55.

10. Kondo, K.: Algebraic Method for Manipulation of Dimensional Relationships in
Geometric Models. Computer Aided Design, 24(1992), 141–147.

11. Kramer, G.: Solving Geometric Constraint Systems. MIT Press, Cambridge (1992).
12. Lamure, H. and Michelucci, D.: Solving Geometric Constraints by Homotopy. IEEE

Trans on Visualization and Computer Graphics, 2(1996), 28–34.
13. Latheam, R. S. and Middleditch, A. E.: Connectivity Analysis: A Tool for Process-

ing Geometric Constraints. Computer Aided Design, 28(1994), 917–928.
14. Lee, J. Y.: A 2D Geometric Constraint Solver for Parametric Design Using Graph

Reduction and Analysis. Automated Deduction in Geometry, LNAI, vol. 1669,
Springer-Verlag, Berlin Heidelberg (1999), 258–274.

15. Light, R. and Gossard, D.: Modification of Geometric Models Through Variational
Geometry. Geometric Aided Design, 14(1982), 208–214.

16. Owen, J.-C.: Algebraic Solution for Geometry from Dimensional Constraints. Proc.
1st Symp. Solid Modeling Foundations & CAD/CAM Applications, ACM Press,
New York (1991), 379–407.

17. Verroust, A., Schonek, F., and Roller, D.: Rule-Oriented Method for Parameterized
Computer-Aided Design. Computer Aided Design, 24(1992), 531–540.

18. Sunde, G.: Specification of Shape by Dimensions and Other Geometric Constraints.
Geometric Modeling for CAD Applications, M. J. Wozny et al., eds., North Holland
(1988), 199–213.

19. Wang, D.: Reasoning about Geometric Problems Using an Elimination Method.
Automated Practical Reasoning: Algebraic Approaches, Pfalzgraf, J. and Wang, D.,
eds., Springer, Wien New York (1995), 147–185.

20. Wu,W.-T.: Mechanical Theorem Proving in Geometries:Basic Principles. Springer-
Verlag, Wien New York (1994).



Solving the Birkhoff Interpolation Problem
via the Critical Point Method:

An Experimental Study

Fabrice Rouillier1, Mohab Safey El Din2, and Éric Schost3

1 LORIA, INRIA-Lorraine, Nancy, France
Fabrice.Rouillier@loria.fr

2 CALFOR, LIP6, Université Paris VI, Paris, France
Mohab.Safey@lip6.fr

3 Laboratoire GAGE, École Polytechnique, Palaiseau, France
schost@gage.polytechnique.fr

Abstract. Following the work of Gonzalez-Vega, this paper is devoted
to showing how to use recent algorithmic tools of computational real
algebraic geometry to solve the Birkhoff Interpolation Problem. We recall
and partly improve two algorithms to find at least one point in each
connected component of a real algebraic set defined by a single equation
or a system of polynomial equations, both based on the computation of
the critical points of a distance function.
These algorithms are used to solve the Birkhoff Interpolation Problem in
a case which was known as an open problem. The solution is available at
the U.R.L.: http://www-calfor.lip6.fr/˜safey/applications.html.

1 Introduction

The problem of interpolating a function f : R −→ R by a univariate polynomial
from the values of f and some of its derivatives on a set of sample points is one
of the main questions in Numerical Analysis and Approximation Theory.

Let χ = {x1, . . . , xn} be a set of real numbers such that x1 < · · · < xn, r an
integer, and let I ⊂ {1, . . . , n}×{0, . . . , r} be the set of pairs (i, j) such that the
value fi,j = f (j)(xi) is known. The problem of determining the existence and
uniqueness of a polynomial Q in R[X] of degree bounded by r such that

∀(i, j) ∈ I, Q(j)(xi) = fi,j

is called the Birkhoff Interpolation Problem.
In [17], Gonzalez-Vega focuses on determining, for fixed integers n and r,

the family of I’s for which this question is solvable for any choice of χ and the
values fi,j . To this end, he shows that the problem can be reduced to deciding
if some hypersurfaces contain real points with non-zero coordinates. In [17] the
cases n = 2, r ∈ {1, . . . , 6}, n = 3, r ∈ {1, 2, 3} and n = 4, r ∈ {1, . . . , 4} are
solved, using techniques adapted from the Cylindrical Algebraic Decomposition.

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 26–40, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Solving the Birkhoff Interpolation Problem via the Critical Point Method 27

In 1998, the case n = 5 and r = 4 was presented as an open problem in [18].
The aim of the paper is to show how we have solved this case.

The most popular algorithm deciding the emptiness of semi-algebraic sets —
as a particular case of deciding the truth of a first order formula — is Collins’
Cylindrical Algebraic Decomposition (CAD) [12,11] whose complexity is doubly
exponential in the number of variables in terms of basic arithmetic operations
and size of output.

In Grigoriev and Vorobjov’s paper [16] appeared new algorithms, based on
the critical point method. These algorithms have a single exponential complexity
in the number of variables, in terms of basic arithmetic operations and size of
output. Still, in [20], Hong shows that the algorithms proposed in the papers
[24] and [16] are not usable in practice. According to the experiments in [31],
the same conclusions apply for more recent methods given in [9,30,19]. These
algorithms adopt strategies of the following kind:

– In the first place, solve the problem in favorable cases, such as a compact
and smooth variety.

– Get back from general situations to the favorable cases using various tricks,
such as infinitesimal deformations or sums of squares.

The papers of the TERA group [7,8] treat the case of a smooth complete inter-
section variety, and propose an algorithm based on evaluation techniques, whose
complexity is polynomial in terms of intrinsic real degrees. Still, these favorable
situations, in particular compactness, are not easily detectable, and systemati-
cally applying the tricks above makes the computations difficult in practice.

In the papers [28,6], two algorithms inspired by the ideas in [16,19,24,9,30] are
proposed. Both of them are based on the computation of the critical points of a
distance function (thus avoiding the hypothesis of compactness) and improve the
aforementioned algorithms. The first algorithm [28] computes at least one point
in each connected component of a real algebraic set defined by a single equation.
The second [6] applies to a real algebraic set defined by a polynomial system,
in the spirit of [10,13]. The experiments in [28,6] show that these strategies
are competitive with the CAD on small examples and allow to deal with more
significant ones, unreachable with the CAD.

In this paper, we pursue the investigations of [20] by analyzing the practical
behavior of these two recent algorithms on the Birkhoff Interpolation Problem. In
sections 3, 4 and 5, we recall the algorithm given in [28], our contribution being a
new way to solve a system with infinitesimal parameters arising in its course, and
then the algorithm given in [6]. We conclude this paper with our experimental
results, which solve the case n = 5, r = 4 of Birkhoff’s problem. This gives us
the opportunity to compare the size of the outputs and computational times of
both algorithms.

Throughout this paper, the base field is the rational field Q. The algorithms
presented here generalize to the case of an ordered field K, replacing the field R

by the real closure of K and the complex field C by its algebraic closure.



28 Fabrice Rouillier, Mohab Safey El Din, and Éric Schost

2 The Birkhoff Interpolation Problem

2.1 Formulation

We want to determine the sets I for which the Birkhoff Problem Interpolation
admits a unique solution for all choices of χ and of the fi,j . To this end, we
follow closely [17], and adopt its convenient matricial formulation.

Consider the matrix E = (ei,j) with n rows and r + 1 columns [17], filled
with 0’s and 1’s, such that ei,j = 1 if and only if (i, j) ∈ I. The problem admits
a solution only if E has as many 1’s as columns. This amounts to saying that
the coefficients of the interpolating polynomial Q are solution of a linear square
system, with associated matrix ME . This matrix is parametrized by χ and its
shape depends on E . We are interested in determining the matrices E for which
the determinant of ME is non-zero for all χ, in which case the matrix E is said
to be poised.

Example 1. Let n = 4 and r = 3 and consider the matrix:

E =


1 1 0 0

0 0 1 0
0 1 0 0




Let Q(x) = a0+a1x+a2x
2+a3x

3 be the generic polynomial of degree 3. Writing
Q(j)(xi) = fi,j if and only if ei,j = 1, we obtain the following linear system:




a0 + a1x1 + a2x
2
1 + a3x

3
1 = f1,1

a1 + 2a2x1 + 3a3x
2
1 = f1,2

a1 + 2a2x3 + 3a3x
2
3 = f3,2

2a2 + 6a3x2 = f3,2

whose matrix is: 


1 x1 x2
1 x3

1
0 1 2x1 3x2

1
0 1 2x3 3x2

3
0 0 2 6x2




The interpolation problem is solvable if and only if

12x3x2 + 6x2
1 − 12x2x1 − 6x2

3

does not vanish for all values x1, x2, x3 satisfying x1 < x2 < x3.

In [17], Gonzalez-Vega shows that the question can be reduced to testing if a
particular factor of the determinant of the matrix ME has real roots with non-
zero coordinates. Replacing (x1, . . . , xn) by (x1, x1 + t21, . . . , x1 + t21 + . . .+ t2n−1)
yields a homogeneous polynomial in (t1, . . . , tn−1). Letting t1 = 1, we are brought
to test if a hypersurface defined by a polynomial P ∈ R[t2, . . . , tn−1] has real
roots with non-zero coordinates.



Solving the Birkhoff Interpolation Problem via the Critical Point Method 29

2.2 Sketch of the Resolution

In order to determine all the poised matrices in the case n = 5 and r = 4, we
have to study quasi-algebraic sets defined by a unique equation in R[t2, t3, t4] and
several inequations. While algorithms deciding the emptiness of real algebraic
sets have known recent significant progress [13,28,6], more algorithmic work is
necessary in the semi-algebraic case [9].

We thus treat this question using and adapting the algorithms for the al-
gebraic case described in [28] and [6]. The algorithm described in [28] will be
named Algorithm 1. It takes as input a single polynomial equation and returns
at least one point in each connected component of the real algebraic variety de-
fined by the equation. The algorithm described in [6] will be named Algorithm
2. It takes as input a polynomial system of equations and returns at least one
point in each connected component of the real algebraic variety defined by the
system.

To solve our problem, given a polynomial P in Q[t2, t3, t4], we adopt the
following scheme.

First Step. We study the hypersurface defined by P = 0, using either Algo-
rithm 1 or Algorithm 2. If this subroutine returns no real point, or a real point
with non-zero coordinates, we can give a positive (resp. negative) answer to the
Interpolation Problem.

Second Step. We are in the case when all the real points we obtained have at
least one coordinate equal to zero. Using Algorithm 1, we study the hypersurface
defined by P 2 + (Tt1t2t3 − 1)2 = 0; when Algorithm 2 we study the polynomial
system P = 0 and Tt1t2t3 − 1 = 0.

Note that in some situations, we can avoid such extra computations, using
for example the following result:

Lemma 1. Let P ∈ R[t1, . . . , tn] and V(P ) the hypersurface defined by P = 0.
Let M = (µ1, . . . , µn) ∈ V(P )∩Rn such that gradM(P ) �=0, and I ⊂ {1, . . . , n}
the set of indexes for which µi is zero. If gradM(P ) is collinear to none of the
axes (ti)i∈I , then there exists a point M ′ in V(P )∩Rn with non-zero coordinates.

3 Preliminary Results

This section describes the basics of the critical point method, valid for both
Algorithm 1 and Algorithm 2.

Let P be a square-free polynomial in Q[x1, . . . , xn], and V(P ) ⊂ Cn the
complex variety defined by P = 0. Our strategy to compute at least one point in
each connected component of V(P )∩Rn relies on the computation of the critical
points on V(P ) ∩ Rn of a “distance function”. Given a point A = (a1, . . . , an)
in Rn, the function dA : M �→ ||AM||2 admits a minimum on each connected
component of V(P ) ∩ Rn. These minima are solutions of the system

S(P,A) =
{
P (M) = 0, gradM(P )//AM

}
,



30 Fabrice Rouillier, Mohab Safey El Din, and Éric Schost

where the condition gradM(P )//AM is expressed by setting the determinants
to zero. The set of all complex roots of this system is denoted by C(P, A).

Two cases will be distinguished, according to the dimension of the singular
locus of V(P ). The following result from [28] deals with the first case, where
there is a finite number of singularities:

Theorem 1. Let P be a square-free polynomial in Q[x1, . . . , xn]. If V(P ) con-
tains a finite number of singular points, there exists a Zariski-dense set F ′ ⊂ Cn

such that for A in F ′, the system S(P,A) is zero-dimensional.
Moreover, if V(P ) is a smooth hypersurface, there exists a Zariski-dense set

F ⊂ Cn such that for A in F , the system S(P,A) is zero-dimensional and
radical.

Hence, if V(P ) contains a finite number of singular points, one can choose
a point A such that S(P,A) is zero-dimensional. Since S(P,A) intersects each
semi-algebraically connected component of V(P )

⋂
Rn, the problem is reduced

to isolate the real roots of S(P,A).
Throughout this paper, we will represent the solutions of a zero-dimensional

system with coefficients in a field k using primitive element techniques, in a way
that can be traced back to Kronecker [22]. Such a representation consists in:

– a linear form u =
∑

uixi which separates the zeros of the system1;
– its minimal polynomial q in k[t] and the parameterizations (v1, . . . , vn) in

k[t]n, where deg vi < deg q, such that the zeros of the system are described
by

q(t) = 0,




q̃(t)x1 = v1(t),
...

q̃(t)xn = vn(t),

where q̃(t) is the derivative of the square-free part of q(t). We will denote
this kind of representation (u, R), where R is the vector [q, v1, . . . , vn].

Modern presentations and algorithms include the Rational Univariate Rep-
resentation [26,25] or the Geometric Resolution [14,15], which coincide in the
case of radical ideals of dimension zero. Such representations are useful, in that
they allow to count and isolate the real roots of the system using for instance
Sturm-Habicht sequences [30].

When the singular locus of V(P ) is of positive dimension, difficulties arise, as
the system S(P,A) is also of positive dimension for any choice of the point A. In
the following sections, we focus on this case, and present in turn the strategies
used in Algorithms 1 and 2.

– The algorithm described in [28] performs an infinitesimal deformation on the
hypersurface V(P ) to get back to a smooth situation; the required informa-
tion is extracted from the solution of the deformed problem.

– The approach from [6] is based on the iterated study of singular loci, as
varieties of lower dimension.

1 The image of two distinct zeros by u are distinct.



Solving the Birkhoff Interpolation Problem via the Critical Point Method 31

4 Algorithm 1: Using Infinitesimal Deformations

In the first subsection, we recall the main steps of the algorithm in [28], to which
we refer for further details. We then present our solution to the specific sub-
problem of computing a univariate representation depending on the deformation
parameter.

4.1 Overview of the Algorithm

Let ε be an infinitesimal; we denote by C〈ε〉 the algebraically closed field of
algebraic Puiseux series with coefficients in C. The sub-ring of elements of non-
negative valuation (called “bounded elements”) is naturally equipped with the
operation denoted limε→0. If C is a set of elements of C〈ε〉, limε→0 C denotes the
set of the limits of the bounded of elements of C. Finally, if x is

∑
i≥i0

aiε
i/q ∈

C〈ε〉, where i0 ∈ Z, q ∈ Q, ai ∈ C, we denote by o(x) the rational number i0/q.
The following result [28] shows that the study of S(P −ε,A) enables to solve

the original problem.

Proposition 1. The set (limε→0 C(P − ε,A)) ∩ Rn intersects each connected
component of V(P ) ∩ Rn.

Since V(P − ε) ⊂ C〈ε〉n is smooth, Theorem 1 implies that for a generic
choice of the point A, the system S(P − ε,A) is radical of dimension zero. In
this case, its solutions can be described by a univariate representation (u, R),
with coefficients in Q(ε). The paper [28] then gives an algorithm to compute the
limits of the bounded solutions it describes, when u is a well separating element.
This is the case when:

– for all α ∈ C(P − ε,A), o(u(α)) = min(o(Xi(α)), i = 1, . . . , n),
– for all (α, β) ∈ C(P − ε,A)2, u(α) and u(β) are infinitesimally close if and

only if α and β are infinitesimally close.

Indeed, from a univariate representation associated to a well separating element

q(ε, t) = 0,




q̃(ε, t)x1 = v1(ε, t),
...

q̃(ε, t)xn = vn(ε, t),

if q1q
2
2 . . . qm

m is the square-free decomposition of q(0, t), then, ∀j ∈ {1, . . . , m},
one can compute polynomials q̃(j) and v

(j)
i such that the limits of the bounded

solutions are represented by
qj(t) = 0,




q̃(j)(0, t)x1 = v
(j)
1 (0, t),

...
q̃(j)(0, t)xn = v

(j)
n (0, t).




j∈{1,...,m}

We can now give the first algorithm, which is the synthesis of all the previous
points:



32 Fabrice Rouillier, Mohab Safey El Din, and Éric Schost

Algorithm 1

Input: A squarefree polynomial P
Output: At least one point on each connected component of V(P )

1. Find by trial and error a point A such that S(P − ε,A) is zero-dimensional
and radical.

2. Compute a parametric resolution (u,R) of its roots, with coefficients in Q(ε).
3. If u is a well-separating element for S(P − ε,A), compute the limits of the

bounded solutions described by R as ε→ 0.
4. else change u, check if it is a separating element for S(P − ε,A) and return to

step 3.

We detail a solution to point 1 above. In [28] the authors have proved the
following results:

Lemma 2. If G is a Gröbner basis of the system S(P −ε,A) in Q[ε, x1, . . . , xn],
for a block-ordering such that [ε] < [x1, . . . , xn], then G is a non-reduced Gröbner
basis of S(P − ε,A) in Q〈ε〉[x1, . . . , xn].

If there exists a value ε0 in Z which doesn’t cancel any of the leading coeffi-
cients of the polynomials in G, and such that the system S(P − ε0,A) is radical
of dimension zero, then S(P − ε,A) is radical of dimension zero. Moreover, for
such ε0 and A, if u is a separating element for S(P −ε0,A) then u is a separating
element for S(P − ε,A).

Given any point A that fits the hypothesis of Theorem 1, one can show that
only a finite number of ε0 will not fit the conditions of Lemma 2. Hence, a
simultaneous search by trial and error of A ∈ Zn and ε0 ∈ Z can be performed
to obtain a point A such that S(P −ε,A) is radical. For a given A, this requires
to compute the basis G; testing that S(P − ε0,A) is radical can be done using
Hermite’s quadratic form (see [26] for example).

4.2 Computing a Parametric Resolution

We now turn to the second of the tasks mentioned above, namely computing a
resolution parametrized by ε. In [33], Schost proposes a probabilistic algorithm
to do so, based on the work of the TERA group [14,3,15]. The algorithm relies on
a formal Newton approximation process, which is an analog of numerical root-
finding techniques, and reminiscent of Hensel lifting methods. In the sequel, we
first recall the main steps of this algorithm, then provide solutions to certify its
output in our case (radical and zero-dimensional ideal).

Overview of the Algorithm. For a random choice of ε0 in Q, given any resolution
(u, R0) of the system S(P −ε0,A), there exists a resolution (u, R) of the system
S(P − ε,A) with coefficients in Q(ε) whose specialization at ε0 is (u, R0). The
strategy presented in [33] consists in approximating the solution (u, R) starting
from (u, R0).



Solving the Birkhoff Interpolation Problem via the Critical Point Method 33

The output R can be rewritten in terms of ε′ = ε − ε0, as a vector R′ of
polynomials in Q(ε′)[t], where none of the denominators of the expressions in
ε′ vanishes at zero. Denote by R′

i the vector of polynomials of Q[[ε′]][t], where
all coefficients are expanded at precision 2i. The initial value is obtained by
solving the system S(P −ε0,A); the formal Newton operator, denoted Lift(R′

i)
computes R′

i+1 from the argument R′
i.

The whole algorithm is organized around a while loop. Each pass begins by
computing the resolution R′

i+1, of precision 2i+1. The RationalReconstruction
subroutine then computes Padé approximants [35] of all the coefficients, as ra-
tional functions in ε′, with numerators and denominators of degree at most 2i; a
boolean value b indicates success. If the reconstruction is possible, the subroutine
StopCriterion, detailed below, tests if the resolution, rewritten in terms of ε,
is correct. If this is not the case, we go trough another loop.

A Certified Result. The probabilistic aspect of the algorithm in [33] is twofold: it
lies in the choice of the specialization value ε0, and in the test StopCriterion.
We provide here certified versions of these subroutines.

The value ε0 must satisfy some genericity conditions: the system S(P −ε0,A)
must be zero-dimensional, its roots must be simple and in maximal number. The
algorithm in [33] is based on the fact that all choices of ε0 but a finite number
fulfill these conditions, and that a bound on the number of bad values is readily
available. Instead, we use the following result: if ε0 cancels none of the leading
coefficients of the polynomials in the basis G computed above, and if the system
S(P − ε0,A) is radical, then ε0 satisfies the genericity conditions.

Finally, to check that a solution (u =
∑

uixi,R) is the correct solution, it
is enough to check that the minimal polynomial and the parameterizations in
R, with t evaluated at

∑
uixi, reduce to zero modulo the basis G. This implies

that the resolution R describes a set of points containing C(P − ε,A). As these
two sets have the same cardinality, we are done.

The output is a list of polynomials in Q(ε)[t]. The degree in t, the degrees in
ε of the numerators and the denominators of the coefficients are bounded by the
Bézout number dn, where d is the degree of the polynomial P [33]. The “size”
of the output is thus O(n(d + 1)2n) elements of the base-field Q.

The details of the computations done in Newton’s operator are given in [15,33].
Following the usual numeric Newton operator, they rely on the evaluation of the
vector Jac(S(P − ε,A))−1S(P − ε,A) in suitable quotient rings, where Jac(S)
denotes the jacobian matrix of the system S.



34 Fabrice Rouillier, Mohab Safey El Din, and Éric Schost

Computing the parametric resolution

Input: a point A such that the roots of the system S(P − ε,A) are simple.
a Gröbner basis G of S(P − ε,A) in Q〈ε〉[x1, . . . , xn].

Output: a parametric resolution (u,R) of S(P − ε,A)

1. Find by trial and error a random rational number ε0 such that the system
S(P − ε0,A) is zero-dimensional and has simple roots, in maximal number.

2. Compute a univariate representation R′
0 of the roots of S(P − ε0,A)

3. Use the Newton-Hensel lifting process to compute the successive approxima-
tions R′

i:

i← 0; finished ← false
while not finished do
R′

i+1 ← Lift(R′
i)

b,R′ ← RationalReconstruction(R′
i+1)

if b then
R ← Substitute ε′ by ε + ε0 in R′

finished ← StopCriterion(R)
end if
i← i + 1

end while

4. return (u,R)

As in [7,15,8], we use the Straight-Line Program model to encode the input
polynomial P . In this model, the complexity of the whole lifting process is poly-
nomial in the size of the output, in the number of variables n, and the number of
operations L necessary to evaluate the polynomial P [33]. Still, the whole algo-
rithm requires the precomputation of the Gröbner basis G, and the subroutine
StopCriterion relies on normal form computations. This part dominates the
whole cost of the algorithm.

5 Algorithm 2: Iterated Study of Singular Loci

The second approach generalizes the critical point methods used here to the case
of polynomial systems. In the presence of infinitely many singular points, the
infinitesimal deformation is avoided by studying the singular locus as a variety
of lower dimension.

Let V ⊂ Cn be an equidimensional algebraic variety of dimension d and
P = {P1, . . . , Ps} polynomials in Q[x1, . . . , xn] such that I(V) = (P1, . . . , Ps).
Following the notation of the two previous sections, given any point A in Cn,
we define the polynomial system:

S(P,A) =
{

P1(M) = . . . = Ps(M) = 0,
rank(gradM(P1), . . . ,gradM(Ps),AM) ≤ n − d

}
,



Solving the Birkhoff Interpolation Problem via the Critical Point Method 35

where the rank condition is expressed by setting to zero the (n−d+1)×(n−d+1)
minors of the matrix [Jac(P ),AM]. The roots of this system form a set denoted
C(V,A).

The algorithm proposed in [6] is based on the following theorem:

Theorem 2. The set C(V,A) meets every connected component of V∩Rn. More-
over, there exists a Zariski-dense subset F of Cn such that, for all A in F ,
C(V,A) can be written Sing(V) ∪ V0, where

– V0 is a finite set of points in Cn,
– Sing(V) = {M ∈ V | rank(gradM(P1), . . . ,gradM(Ps)) < n − d}.

In particular, in this case, dim(C(V,A)) < dim(V).

Suppose that V ⊂ Cn and A ∈ Rn satisfy the conditions of Theorem 2,
and that V1 is a finite set of points that meets each connected component of
Sing(V) ∩ Rn. Theorem 2 implies that V1 ∪ V0 meets each connected component
of V ∩ Rn. The set V1 can in turn be obtained by applying Theorem 2 to each
equidimensional component of Sing(V). The algorithm in [6] consists in applying
inductively the above process, performing at each step equidimensional decom-
positions of intermediate varieties C(Vi,Ai). In the end, we obtain a family of
zero-dimensional sets which meets each connected component of V ∩ Rn.

At each step, we need to apply a subroutine taking as input a polynomial
system S and returning a set of generators of radical equidimensional ideals
whose intersection is

√
S. This can be done using the algorithms mentioned in

[4,31] or by performing a decomposition into regular and separable triangular
sets [5,23,21,34] and computing a Gröbner basis of the saturated ideal of each
triangular set. We denote by EquiDimDecomposition such a radical equidimen-
sional decomposition algorithm.

Algorithm 2

Input: A polynomial system P
Output: At least one point on each connected component of V(P )

1. list← EquiDimDecomposition(P ), result← []
2. while list �= [] do

– P̃ ← first(list) and remove P̃ from list,
– if dim(P̃ ) = 0 then result← result ∪ P̃

– else find by trial and error a point A such that dim(C(V(P̃ ),A)) < dim(P̃ )
and list← list ∪ EquiDimDecomposition(S(P̃ ,A))

3. count and isolate the real roots of all the polynomial systems in result.

6 Experimental Results

6.1 Methodology and Basic Algorithms

Both algorithms presented above have been implemented, using the following
software tools:



36 Fabrice Rouillier, Mohab Safey El Din, and Éric Schost

– Gb/AGb: implemented in C++ by J.-C. Faugère [4] and devoted to Gröbner
basis computations;

– RS: implemented in C by F. Rouillier, devoted to computing Rational Uni-
variate Representations, and to counting and isolating real roots of univariate
polynomials;

– Kronecker: implemented in Magma by G. Lecerf [15], devoted to computing
Geometric Resolutions, from which we borrowed the formal Newton iterator.

The subroutine EquiDimDecomposition was implemented using Maple and a file
connection with Gb, following the algorithm described in [31] and based on the
results in [5,23].

All the computations were done on the computers of the UMS MEDICIS [2],
on a PC Pentium II 400 MHz with 512 MB of RAM.

6.2 Solution of the Problem

The case n = 5, r = 4 of Birkhoff’s problem generates 53130 matrices, which
produces as many hypersurfaces of C3 to study.

– 42925 of these hypersurfaces are defined by constant polynomials.
– For the non-constant polynomials, to avoid unnecessary computations, we

specialized all variables but one at random non-zero values and applied Us-
pensky’s algorithm on the univariate polynomials we obtained, looking for
non-zero real roots. At the end of this preprocessing, about one thousand
hypersurfaces remained to study.

– About 900 of these hypersurfaces had zero or a finite number of singularities.
In all these cases, the first step given in section 2.2 was sufficient to conclude:
the situation where C(P,A) had exclusively real roots with a coordinate
equal to zero was never encountered.

On a PC bi-Pentium 400 MHz with 512 MB of RAM, 4 hours are necessary to
perform these 3 steps for all hypersurfaces.

– There remained 102 hypersurfaces containing an infinity of singularities. We
will see below that our implementation of Algorithm 1 can not solve all of
them, whereas Algorithm 2 succeeded in all cases. In 60 out of these 102
cases, we had to go through the second step given in section 2.2.
On the same machine, 2 additional hours are necessary to perform this final
step with Algorithm 2.

As a conclusion, 19092 out of the 53130 matrices are poised. Their complete
list can be found in Maple format at the web page [1].

6.3 Comparing Algorithm 1 and Algorithm 2

We give a more detailed account of the behavior of Algorithms 1 and 2 on a
sample of the family of hypersurfaces with infinitely many singularities. These



Solving the Birkhoff Interpolation Problem via the Critical Point Method 37

hypersurfaces are denoted Birk.3-1,...,Birk3-15. All of them have degree less than
8; the whole list can be found at the web page [1].

Table 1 summarizes our results on this family. The sign ∞ indicates that the
computations were stopped after 24 hours.

– Algorithm 1: The first column gives the number of bounded roots we ob-
tain, which is a measure of the size of the output. The second and third
columns give the degrees in t and ε of the generic resolution, which is a
measure of the size of intermediate data. The last column gives the time
necessary to perform all computations, in seconds.

– Algorithm 2: The first column gives the sum of the degrees of the zero-
dimensional systems produced in the course of the computations; the second
indicates the total time of computations, given in seconds.

Table 1. Algorithms 1/2: Size of the output and computation times

Hypersurface Algorithm 1 Algorithm 2
Birk.3-1 12 16 3 5.6 12 0,08
Birk.3-2 7 16 3 5.2 7 0,13
Birk.3-3 25 34 5 32 25 0,37
Birk.3-4 16 36 5 46 16 0,18
Birk.3-5 31 40 5 116 31 0,46
Birk.3-6 37 52 7 149 37 0,86
Birk.3-7 38 52 7 115 38 0,72
Birk.3-8 45 130 19 3927 45 7,11
Birk.3-9 47 132 19 2945 47 7,88
Birk.3-10 48 136 31 18843 48 8,04
Birk.3-11 50 138 31 26536 50 8,88
Birk.3-12 50 138 31 17508 50 10,01
Birk.3-13 32 252 29 ∞ 32 9,26
Birk.3-14 60 264 31 ∞ 60 67
Birk.3-15 60 272 31 ∞ 60 83

For the last examples, the time spent in Algorithm 1 in the checking phase
becomes largely predominant. Other strategies to certify this output, based on
a sufficient number of sample checks, could lower this time. Even without this
certification phase, the computation is longer than with Algorithm 2. Still, with
regard to the degrees in t and ε of the parametric resolution, we consider that
our implementation of Algorithm 1 shows good performance.

A relevant criterion to analyze the algorithms based on the critical point
method is the degrees of the zero-dimensional systems they produce. For Algo-
rithm 1, this is the cardinality of the set of bounded roots limε→0 C(P − ε,A).
To this regard, the outputs of Algorithm 1 and Algorithm 2 are of similar size.
The size of the intermediate data in Algorithm 1, such as the degree of the para-
metric resolution, is bigger, as several points of C(P − ε,A) collapse on a same
point when ε → 0.



38 Fabrice Rouillier, Mohab Safey El Din, and Éric Schost

Nevertheless, the degrees of the output and of the intermediate bivariate
polynomials in Algorithm 1 are bounded by dn, while we have no similar bound
for Algorithm 2. An open problem is to precise such a bound for Algorithm 2.
In all these examples, the dimension of the singular locus was 1, so that there
was at most one recursive call in Algorithm 2. Experiments with more intricate
singular loci should tell us more about this question.

7 Conclusions

The case n = 5 and r = 4 of the Birkhoff Interpolation Problem is now automat-
ically solved. The case n = 6 and r = 5 requires to study 1947792 hypersurfaces
in C4; this combinatorial number is now the limiting factor. More research on
qualitative nature should be devised to have a better control on this number; in
this sense, the conclusions and suggestions in [17] are still a topical question.

This problem gave us the opportunity to compare two recent algorithms
of computational real algebraic geometry and illustrate their practical use. It
appears that the algorithms based on the critical point method can now solve
application problems.

In particular, we have implemented computations with an infinitesimal, con-
sidering it as a parameter. Another approach consists in implementing an in-
finitesimal arithmetic; we refer to [27] for such a realization in Axiom. Never-
theless, obtaining good performance in practice using this type of arithmetic is
still a computer science challenge.

Besides, the use of infinitesimals in computational real algebraic geometry is
not exclusive to the desingularization of hypersurfaces: they are required in sev-
eral algorithms to decide the emptiness of semi-algebraic sets, such as [19,9,30].

References

1. http://www-calfor.lip6.fr/˜safey/applications.html
2. http://www.medicis.polytechnique.fr
3. http://www.tera.medicis.polytechnique.fr
4. http://www-calfor.lip6.fr/˜jcf
5. P. Aubry, Ensembles Triangulaires de Polynômes et Résolution de Systèmes

Algébriques, Implantations en Axiom, PhD thesis, Université Paris VI, 1999.
6. P. Aubry, F. Rouillier, M. Safey El Din, Real Solving for Positive Dimen-

sional Systems, Research Report, Laboratoire d’Informatique de Paris VI, March
2000.

7. B. Bank, M. Giusti, J. Heintz, M. Mbakop, Polar Varieties and Efficient Real
Equation Solving, Journal of Complexity, Vol. 13, pages 5–27, 1997; best paper
award 1997.

8. B. Bank, M. Giusti, J. Heintz, M. Mbakop, Polar Varieties and Efficient Real
Elimination, to appear in Mathematische Zeitschrift (2000).

9. S. Basu, R. Pollack, M.-F. Roy, On the Combinatorial and Algebraic Complex-
ity of Quantifier Elimination. Journal of the Association for Computing Machinery,
Vol. 43, pages 1002–1045, 1996.



Solving the Birkhoff Interpolation Problem via the Critical Point Method 39

10. E. Becker, R. Neuhaus, Computation of Real Radicals for Polynomial Ideals,
Computational Algebraic Geometry, Progress in Math., Vol. 109, pages 1–20,
Birkhäuser, 1993.

11. G. E. Collins, H. Hong, Partial Cylindrical Algebraic Decomposition, Journal
of Symbolic Computation, Vol. 12, No. 3, pages 299–328, 1991.

12. G. E. Collins, Quantifier Elimination for Real Closed Field by Cylindrical Alge-
braic Decomposition, Lectures Notes in Computer Science, Vol. 33, pages 515–532,
1975.

13. P. Conti, C. Traverso, Algorithms for the Real Radical, Unpublished manu-
script.

14. M. Giusti, J. Heintz, La Détermination des Points Isolés et de la Dimension
d’une Variété Algébrique Réelle peut se faire en Temps Polynomial, Computational
Algebraic Geometry and Commutative Algebra, Symposia Matematica, Vol. 34,
D. Eisenbud and L. Robbiano (eds.), pages 216–256, Cambridge University Press,
1993.

15. M. Giusti, G. Lecerf, B. Salvy, A Gröbner Free Alternative for Solving Poly-
nomial Systems, Journal of Complexity, Vol. 17, No. 1, pages 154–211, 2001.

16. D. Grigor’ev, N. Vorobjov, Solving Systems of Polynomial Inequalities in
Subexponential Time, Journal of Symbolic Computation, Vol. 5, No. 1–2, pages
37–64, 1988.

17. L. Gonzalez-Vega, Applying Quantifier Elimination to the Birkhoff Interpolation
Problem, Journal of Symbolic Computation Vol. 22, No. 1, pages 83–103, 1996.

18. M.-J. Gonzalez-Lopez, L. Gonzalez-Vega, Project 2: The Birkhoff Interpola-
tion Problem, Some Tapas of Computer Algebra, A. Cohen (ed.), pages 297–310,
Springer, 1999.

19. J. Heintz, M.-F. Roy, P. Solerno, On the Theoretical and Practical Complexity
of the Existential Theory of the Reals, The Computer Journal, Vol. 36, No. 5, pages
427–431, 1993.

20. H. Hong, Comparison of Several Decision Algorithms for the Existential Theory
of the Reals, Research Report, RISC-Linz, Johannes Kepler University, 1991.

21. M. Kalkbrener, Three Contributions to Elimination Theory, PhD thesis, RISC-
Linz, Johannes Kepler University, 1991.

22. L.Kronecker,Grundzüge einer arithmetischen Theorie der algebraischen Größen,
Journal Reine Angew. Mathematik, Vol. 92, pages 1–122, 1882.

23. M. Moreno Maza, Calculs de Pgcd au-dessus des Tours d’Extensions Simples
et Résolution des Systèmes d’Equations Algébriques, PhD thesis, Université Paris
VI, 1997.

24. J. Renegar, On the Computational Complexity and Geometry of the First Order
Theory of the Reals, Journal of Symbolic Computation, Vol. 13, No. 3, pages
255–352, 1992.

25. F. Rouillier, Algorithmes Efficaces pour l’Étude des Zéros Réels des Systèmes
Polynomiaux, PhD thesis, Université de Rennes I, 1996.

26. F. Rouillier, Solving Zero-Dimensional Systems through the Rational Univariate
Representation, Applicable Algebra in Engineering Communications and Comput-
ing, Vol. 9, No. 5, pages 433–461, 1999.

27. R. Rioboo, Computing with Infinitesimals, Manuscript.
28. F. Rouillier, M.-F. Roy, M. Safey El Din, Finding at Least One Point in

Each Connected Component of a Real Algebraic Set Defined by a Single Equation,
Journal of Complexity, Vol. 16, No. 4, pages 716–750, 2000.

29. F. Rouillier, P. Zimmermann, Efficient Isolation of a Polynomial Real Roots,
Research Report, INRIA, No. RR-4113, 2001.



40 Fabrice Rouillier, Mohab Safey El Din, and Éric Schost

30. M.-F. Roy, Basic Algorithms in Real Algebraic Geometry: From Sturm Theorem
to the Existential Theory of Reals, Lectures on Real Geometry in memoriam of
Mario Raimondo, Expositions in Mathematics, Vol. 23, pages 1–67, Berlin, 1996.

31. M. Safey El Din, Résolution Réelle des Systèmes Polynomiaux en Dimension
Positive, PhD thesis, Université Paris VI, 2001.

32. É. Schost, Computing Parametric Geometric Resolutions, Preprint, École Poly-
technique, 2000.

33. É. Schost, Sur la Résolution des Systèmes Polynomiaux à Paramètres, PhD
thesis, École Polytechnique, 2000.

34. D. Wang, Computing Triangular Systems and Regular Systems, Journal of Sym-
bolic Computation, Vol. 30, No. 2, pages 221–236, 2000.

35. J. Von Zur Gathen, J. Gerhardt, Modern Computer Algebra, Cambridge Uni-
versity Press, 1999.



A Practical Program of Automated Proving
for a Class of Geometric Inequalities�

Lu Yang1 and Ju Zhang2

1 Chengdu Institute of Computer Applications, Chinese Academy of Sciences
2 GCTECH Info. Tech. Ltd., Beijing 100013, China

Abstract. An inequality-proving algorithm based on cell decomposition
and a practical program written in Maple are presented, which can ef-
ficiently treat inequality-type theorems involving radicals, especially, a
class of geometric inequalities including most of the theorems in a well-
known book on the subject.

1 Introduction

In the last 20 years, the efficiency of automated theorem proving for equality-
type theorems has increased greatly leaving behind inequality-type theorems,
especially, for geometric theorems. This work is an effort to shorten the distance.

Automated theorem proving on inequalities is always considered a difficult
topic in the area of automated reasoning. Relevant algorithms depend funda-
mentally on real algebra and real geometry, and the computational complexity
increases very quickly with the dimension, that is, the number of parameters.
Besides the memory saving, the speed improvement in theorem proving some-
times is also of importance. When a problem requires verification of a batch
of non-trivial propositions, an inefficient algorithm cannot handle it within the
time allowed by human patience. For recent progress made in this aspect, see
[3,4,2,8,11,12,14,15].

When the hypotheses contain polynomial equations, one may think about
eliminating some variables to make the dimension lower. However, we usually
have to deal with irrational algebraic functions, such as parametric radicals.

Example 1a. Given real numbers x, y, z, u1, u2, u3, u4, u5, u6 satisfying the fol-
lowing 15 conditions




(xy + yz + xz)2u2
1 − x3(y + z)(xy + xz + 4 yz) = 0,

(xy + yz + xz)2u2
2 − y3(x + z)(xy + yz + 4 xz) = 0,

(xy + yz + xz)2u2
3 − z3(x + y)(yz + xz + 4 xy) = 0,

(x + y + z)(u2
4 − x2) − xyz = 0,

(x + y + z)(u2
5 − y2) − xyz = 0,

(x + y + z)(u2
6 − z2) − xyz = 0,

x > 0, y > 0, z > 0,
u1 > 0, u2 > 0, u3 > 0, u4 > 0, u5 > 0, u6 > 0, (1)

prove that u1 + u2 + u3 ≤ u4 + u5 + u6.
� The work is supported in part by NKBRSF-(G1998030602). Lu Yang is concurrently

at Guangzhou University, Guangzhou 510405, China.

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 41–57, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



42 Lu Yang and Ju Zhang

Eliminating u1, . . . , u6 from (1) by solving the 6 equations, we convert the
proposition to the following inequality which appeared as a conjecture in refer-
ence [10].

Example 1. Show that
√

x3(y + z)(xy + xz + 4 yz)
xy + yz + xz

+

√
y3(x + z)(xy + yz + 4 xz)

xy + yz + xz
+√

z3(x + y)(yz + xz + 4 xy)
xy + yz + xz

≤√
x2 +

xyz

x + y + z
+

√
y2 +

xyz

x + y + z
+

√
z2 +

xyz

x + y + z
(2)

where x > 0, y > 0, z > 0.
This includes 3 variables but 6 radicals, while (1) includes 9 variables.

A dimension-decreasing algorithm introduced by the authors can efficiently
treat parametric radicals and maximize reduction of the dimensions. Based on
this algorithm, a generic program called “BOTTEMA” was implemented on a
PC computer. More than 1000 algebraic and geometric inequalities including
hundreds of open problems have been verified in this way. The total CPU time
spent for proving 100 basic inequalities1 from Bottema et al.’s monograph [1]
“Geometric Inequalities” on a Pentium III/550 was 10-odd seconds only. It can
be seen later that the inequality class, to which our algorithm is applicable, is
very inclusive.

The paper is organized as follows. Section 2: illustrate fundamental notions
with examples; Section 3: sketch an inequality-proving algorithm which can treat
radicals efficiently; Section 4: introduce a transformation of variable which helps
reduce the degrees of some polynomials concerned in proving a class of inequali-
ties on triangles, that class contains most of the inequalities in book [1]; Section
5: commands and syntax for running the program BOTTEMA; Section 6: show
the performance of the program with a series of examples; Section 7: conclusion.

2 Fundamental Definitions

Before we sketch the so-called dimension-decreasing algorithm, some definitions
should be introduced and illustrated.

Definition 1. Assume that l(x, y, z, . . .) and r(x, y, z, . . .) are continuous alge-
braic functions of x, y, z, . . .. We call

l(x, y, z, . . .) ≤ r(x, y, z, . . .) or l(x, y, z, . . .) < r(x, y, z, . . .)

1 which include some classical results such as Euler’s Inequality, Finsler-Hadwiger’s
Inequality, and Gerretsen’s Inequality.



A Program of Automated Proving for a Class of Geometric Inequalities 43

an algebraic inequality in x, y, z . . ., and l(x, y, z, . . .) = r(x, y, z, . . .) an algebraic
equality in x, y, z, . . ..

Definition 2. Assume that Φ is an algebraic inequality (or equality) in x, y, z,
. . . . L(T ) is called a left polynomial of Φ, provided that

– L(T ) is a polynomial in T , its coefficients are polynomials in x, y, z, . . . with
rational coefficients;

– the left-hand side of Φ is a zero of L(T ).

The following item is unnecessary for this definition, but it helps to reduce the
computational complexity in the process later.

– Amongst all the polynomials satisfying the two items above, L(T ) is what
has the lowest degree in T .

According to this definition, L(T ) = T if the left-hand side is 0, a zero polyno-
mial. The right polynomial of Φ, namely, R(T ), can be defined analogously.

Definition 3. Assume that Φ is an algebraic inequality (or equality) in x, y, . . .
etc., L(T ) and R(T ) are the left and right polynomials of Φ, respectively. By
P (x, y, . . .) denote the resultant of L(T ) and R(T ) with respect to T , and call
it the border polynomial of Φ, and the surface defined by P (x, y, . . .) = 0 the
border surface of Φ, respectively.

The notions of left and right polynomials are needed in practice for computing
the border surface more efficiently. In Example 1, we set

f1 = (xy + yz + xz)2u2
1 − x3(y + z)(xy + xz + 4 yz),

f2 = (xy + yz + xz)2u2
2 − y3(x + z)(xy + yz + 4 xz),

f3 = (xy + yz + xz)2u2
3 − z3(x + y)(yz + xz + 4 xy),

f4 = (x + y + z)(u2
4 − x2) − xyz,

f5 = (x + y + z)(u2
5 − y2) − xyz,

f6 = (x + y + z)(u2
6 − z2) − xyz,

then the left and right polynomials of (2) can be found by successive resultant
computation:

resultant(resultant(resultant(u1 + u2 + u3 − T, f1, u1), f2, u2), f3, u3),
resultant(resultant(resultant(u4 + u5 + u6 − T, f4, u4), f5, u5), f6, u6).

Removing the factors which do not involve T , we have

L(T ) = (x y + x z + y z)8 T 8 − 4(x4 y2 + 2 x4 y z + x4 z2 + 4 x3 y2 z + 4 x3 y z2

+ x2 y4 + 4 x2 y3 z + 4 x2 y z3 + x2 z4 + 2 x y4 z + 4 x y3 z2 + 4 x y2 z3

+ 2 x y z4 + y4 z2 + y2 z4)(x y + x z + y z)6 T 6 + · · · ,



44 Lu Yang and Ju Zhang

R(T ) = (x + y + z)4 T 8 − 4(x3 + x2 y + x2 z + x y2 + 3 x y z + x z2 + y3 + y2 z

+ y z2 + z3) (x + y + z)3 T 6 + 2(16 x y z4 + 14 x y2 z3 + 14 x y3 z2 + 16 x y4 z

+ 14 x2 y z3 + 14 x2 y3 z + 14 x3 y z2 + 14 x3 y2 z + 16 x4 y z + 3 x6 + 5 x4 y2

+ 5 x4 z2 + 5 x2 y4 + 5 x2 z4 + 5 y4 z2 + 5 y2 z4 + 21 x2 y2 z2 + 3 y6 + 3 z6

+ 6 x5 y + 6 x5 z + 4 x3 y3 + 4 x3 z3 + 6 x y5 + 6 x z5 + 6 y5 z + 4 y3 z3 + 6 y z5)
(x + y + z)2 T 4

− 4(x + y + z)(x6 − x4 y2 − x4 z2 + 2 x3 y2 z + 2 x3 y z2 − x2 y4 + 2 x2 y3 z

+ 7 x2 y2 z2 + 2 x2 y z3 − x2 z4 + 2 x y3 z2 + 2 x y2 z3 + y6 − y4 z2 − y2 z4 + z6)
(x3 + 3 x2 y + 3 x2 z + 3 x y2 + 7 x y z + 3 x z2 + y3 + 3 y2 z + 3 y z2 + z3) T 2

+ (−6 x y2 z3 − 6 x y3 z2 − 6 x2 y z3 − 6 x2 y3 z − 6 x3 y z2 − 6 x3 y2 z + x6

− x4 y2 − x4 z2 − x2 y4 − x2 z4 − y4 z2 − y2 z4 − 9 x2 y2 z2 + y6 + z6 + 2 x5 y

+ 2 x5 z − 4 x3 y3 − 4 x3 z3 + 2 x y5 + 2 x z5 + 2 y5 z − 4 y3 z3 + 2 y z5)2.

The successive resultant computation for L(T ) and R(T ) spent CPU time 0.51s
and 0.08s, respectively, on a Pentium III/550 with Maple V.5.1. And then, It
took us 111.21s to obtain the border polynomial of degree 100 with 2691 terms.

We may of course reform (2) to the equivalent one by transposition of terms,
e.g.

√
x3(y + z)(xy + xz + 4 yz)

xy + yz + xz
+

√
y3(x + z)(xy + yz + 4 xz)

xy + yz + xz
+√

z3(x + y)(yz + xz + 4 xy)
xy + yz + xz

−
√

x2 +
xyz

x + y + z
−

√
y2 +

xyz

x + y + z

≤
√

z2 +
xyz

x + y + z
. (3)

However, the left polynomial of (3) cannot be found on the same computer (with
memory 256 Mb) by a Maple procedure as we did for (2),

f:=u1+u2+u3-u4-u5-T;
for i to 5 do f:=resultant(f,f.i,u.i) od;

after running 1066.52s, the screen shows “Error, object too large” at last.

One might try to compute the border polynomial directly without employing
left and right polynomials, that is, using the procedure

f:=u1+u2+u3-u4-u5-u6;
for i to 6 do f:=resultant(f,f.i,u.i) od;

but the result is not better. After running 1453.67s, the screen shows “Error,
object too large” once again.

Example 2. Given an algebraic inequality in x, y, z,

ma + mb + mc ≤ 2 s (4)



A Program of Automated Proving for a Class of Geometric Inequalities 45

where

ma =
1
2

√
2 (x + y)2 + 2 (x + z)2 − (y + z)2,

mb =
1
2

√
2 (y + z)2 + 2 (x + y)2 − (x + z)2,

mc =
1
2

√
2 (x + z)2 + 2 (y + z)2 − (x + y)2,

s = x + y + z

with x > 0, y > 0, z > 0, compute the left, right and border polynomials.

Let

f1 = 4 m2
a + (y + z)2 − 2 (x + y)2 − 2 (x + z)2,

f2 = 4 m2
b + (x + z)2 − 2 (y + z)2 − 2 (x + y)2,

f3 = 4 m2
c + (x + y)2 − 2 (x + z)2 − 2 (y + z)2

and do successive resultant computation

resultant(resultant(resultant(ma + mb + mc − T, f1, ma), f2, mb), f3, mc),

we obtain a left polynomial of (4):

T 8 − 6 (x2 + y2 + z2 + x y + y z + z x) T 6 + 9(x4 + 2 x y z2 + y4 + 2 x z3

+ 2 x3 y + z4 + 3 y2 z2 + 2 y2 z x + 2 y3 z + 2 y z3 + 3 x2 z2 + 2 x3 z + 2 x2 y z

+ 2 x y3 + 3 x2 y2)T 4 − (72 x4 y z + 78 x3 y z2 + 4 x6 + 4 y6 + 4 z6 + 12 x y5

− 3 x4 y2 − 3 x2 z4 − 3 x2 y4 − 3 y4 z2 − 3 y2 z4 − 3 x4 z2 − 26 x3 y3 − 26 x3 z3

− 26 y3 z3 + 12 x z5 + 12 y5 z + 12 y z5 + 12 x5 z + 12 x5 y + 84 x2 y2 z2

+ 72 x y z4 + 72 x y4 z + 78 x y3 z2 + 78 x y2 z3 + 78 x2 y z3 + 78 x3 y2 z

+ 78 x2 y3 z)T 2 + 81 x2 y2 z2 (x + y + z)2. (5)

It is trivial to find a right polynomial for this inequality because the right-hand
side contains no radicals. We simply take

T − 2 (x + y + z). (6)

Computing the resultant of (5) and (6) with respect to T , we have

(144 x5 y + 144 x5 z + 780 x4 y2 + 1056 x4 y z + 780 x4 z2 + 1288 x3 y3

+ 3048 x3 y2 z + 3048 x3 y z2 + 1288 x3 z3 + 780 x2 y4 + 3048 x2 y3 z

+ 5073 x2 y2 z2 + 3048 x2 y z3 + 780 x2 z4 + 144 x y5 + 1056 x y4 z

+ 3048 x y3 z2 + 3048 x y2 z3 + 1056 x y z4 + 144 x z5 + 144 y5 z + 780 y4 z2

+ 1288 y3 z3 + 780 y2 z4 + 144 y z5)(x + y + z)2.



46 Lu Yang and Ju Zhang

Removing the non-vanishing factor (x + y + z)2, we obtain the border surface

144 x5 y + 144 x5 z + 780 x4 y2 + 1056 x4 y z + 780 x4 z2 + 1288 x3 y3

+ 3048 x3 y2 z + 3048 x3 y z2 + 1288 x3 z3 + 780 x2 y4 + 3048 x2 y3 z

+ 5073 x2 y2 z2 + 3048 x2 y z3 + 780 x2 z4 + 144 x y5 + 1056 x y4 z

+ 3048 x y3 z2 + 3048 x y2 z3 + 1056 x y z4 + 144 x z5 + 144 y5 z + 780 y4 z2

+ 1288 y3 z3 + 780 y2 z4 + 144 y z5 = 0. (7)

3 A Sketch to Dimension-Decreasing Algorithm

In the present paper, we deal with a class of propositions which take the following
form (though the algorithm is applicable to a more extensive class):

Φ1 ∧ Φ2 ∧ · · · ∧ Φs ⇒ Φ0,

where Φ0, Φ1, . . . , Φs are algebraic inequalities in x, y, z, . . . etc., the hypothesis
Φ1∧Φ2∧· · ·∧Φs defines either an open set2 or an open set with the whole/partial
boundary.

Example 1 may be written as (x > 0) ∧ (y > 0) ∧ (z > 0) ⇒ (2), where the
hypothesis (x > 0) ∧ (y > 0) ∧ (z > 0) defines an open set in the parametric
space R3, so it belongs to the class we described, so does Example 2. This class
covers most of inequalities in Bottema et al.’s book [1] and Mitrinovic et al.’s [9]
“Recent Advances in Geometric Inequalities”. In fact, Example 2 is a geometric
inequality encoded in x, y, z, see [1].

We take the following procedures when the conclusion Φ0 is of type ≤. (As
for Φ0 of type <, what we need do in additional is to verify if the equation
l0(x, y, . . .) − r0(x, y, . . .) = 0 has no real solutions under the hypothesis, where
l0(x, y, . . .) and r0(x, y, . . .) denote the left- and right-hand sides of Φ0, respec-
tively.)

– Find the border surfaces of the inequalities Φ0, Φ1, . . . , Φs.
– These border surfaces decompose the parametric space into a finite number of

cells. Among them we just take all the connected open sets, D1, D2, . . . , Dk,
and discard the lower dimensional cells. Choose at least one test point in
every connected open set, say, (xν , yν , . . .) ∈ Dν , ν = 0, 1, . . . , k. This step
can be done by an incomplete cylindrical algebraic decomposition which
is much easier than the complete one since all the lower dimensional cells
were discarded. Furthermore, we can make every test point a rational point
because it is chosen in an open set.

– We need only check the proposition for such a finite number of test points,
(x1, y1, . . .), . . ., (xk, yk, . . .). The statement is true if and only if it holds over
these test values.

2 may be disconnected.



A Program of Automated Proving for a Class of Geometric Inequalities 47

The proof of the correctness of the method is sketched as follows.
By lµ(x, y, . . .), rµ(x, y, . . .) and Pµ(x, y, . . .) = 0 denote the left-, right-hand

sides and border surface of Φµ, respectively, and

δµ(x, y, . . .) def= lµ(x, y, . . .) − rµ(x, y, . . .),

for µ = 0, . . . , s.
The set of real zeros of all the δµ(x, y, . . .) is a closed set, so its complementary

set, say ∆, is an open set. On other hand, the set

D
def= D1 ∪ · · · ∪ Dk

is exactly the complementary set of real zeros of all the Pµ(x, y, . . .).

We have D ⊂ ∆ since any zero of δµ(x, y, . . .) must be a zero of Pµ(x, y, . . .).
By ∆1, . . . , ∆t denote all the connected components of ∆, so each one is a con-
nected open set. Every ∆λ must contain a point of D for an open set cannot be
filled with the real zeros of all the Pµ(x, y, . . .). Assume that ∆λ contains a point
of Di, some connected component of D. Then, Di ⊂ ∆λ because it is impossible
that two different components of ∆ both intersect Di. By step 2, Di contains
a test point (xi, yi, . . .). So, every ∆λ contains at least one test point obtained
from step 2.

Thus, δµ(x, y, . . .) keeps the same sign over ∆λ as that of δµ(xiλ
, yiλ

, . . .)
where (xiλ

, yiλ
. . .) is a test point in ∆λ, for λ = 1, . . . , t; µ = 0, . . . , s. Otherwise,

if there is some point (x′, y′, . . .) ∈ ∆λ that δµ(x′, y′, . . .) has the opposite sign to
δµ(xiλ

, yiλ
, . . .), connecting two points (x′, y′, . . .) and (xiλ

, yiλ
, . . .) with a path Γ

such that Γ ⊂ ∆λ, then there is a point (x̄, ȳ, . . .) ∈ Γ such that δµ(x̄, ȳ, . . .) = 0,
a contradiction!

By A ∪ B denote the set defined by the hypothesis, where A is an open set
defined by

(δ1(x, y, . . .) < 0) ∧ · · · ∧ (δs(x, y, . . .) < 0),

that consists of a number of connected components of ∆ and some real zeros
of δ0(x, y, . . .), namely A = Q ∪ S where Q = ∆1 ∪ · · · ∪ ∆j and S is a set of
some real zeros of δ0(x, y, . . .). And B is the whole or partial boundary of A,
that consists of some real zeros of δµ(x, y, . . .) for µ = 1, . . . , s.

Now, let us verify whether δ0 < 0 holds for all the test points in A, one by one.
If there is a test point whereat δ0 > 0, then the proposition is false. Otherwise,
δ0 < 0 holds over Q because every connected component of Q contains a test
point and δ0 keeps the same sign over each component ∆λ, hence δ0 ≤ 0 holds
over A by continuity, so it also holds over A ∪ B, i.e., the proposition is true.

The above procedures sometimes may be simplified. When the conclusion Φ0
belongs to an inequality class called “class CGR”, what we need do in step 3 is
to compare the greatest roots of left and right polynomials of Φ0 over the test
values.



48 Lu Yang and Ju Zhang

Definition 4. An algebraic inequality is said to belong to class CGR if its
left-hand side is the greatest (real) root of the left polynomial L(T ), and the
right-hand side is that of the right polynomial R(T ).

It is obvious in Example 1 that the left- and right-hand sides of the inequality
(2) are the greatest roots of L(T ) and R(T ), respectively, because all the radicals
have got positive signs. Thus, the inequality belongs to class CGR. What we
need do is to verify whether the greatest root of L(T ) is less than or equal to
that of R(T ), that is much easier than determine which is greater between two
complicated radicals, in the sense of accurate computation.

If an inequality involves only mono-layer radicals, then it always can be
transformed into an equivalent one which belongs to class CGR by transposition
of terms. Actually, most of inequalities in [1] and [9], including the examples in
the present paper, belong to class CGR. For some more material, see [13].

4 Inequalities on Triangles

An absolute majority of the hundreds inequalities discussed in [1] are on trian-
gles, so are the thousands appeared in various publications since then.

For geometric inequalities on a single triangle, usually the geometric invari-
ants are used as global variables instead of Cartesian coordinates. By a, b, c
denote the side-lengths, s the half perimeter, i.e. 1

2 (a + b + c), and x, y, z denote
s−a, s− b, s− c, respectively, as people used to do. In additional, by A, B, C the
interior angles, S the area, R the circumradius, r the inradius, ra, rb, rc the radii
of escribed circles, ha, hb, hc the altitudes, ma, mb, mc the lengths of medians,
wa, wb, wc the lengths of interior angular bisectors, and so on.

People used to choose x, y, z as independent variables and others dependent.
Sometimes, another choice is better for decreasing the degrees of polynomials
occurred in the process.

An algebraic inequality Φ(x , y , z ) can be regarded as a geometric inequality
on a triangle if

– x > 0, y > 0, z > 0;
– the left- and right-hand sides of Φ, namely l(x, y, z) and r(x, y, z), both are

homogeneous;
– l(x, y, z) and r(x, y, z) have the same degree.

The item 1 means that the sum of two edges of a triangle is greater than the third
edge. The items 2 and 3 means that a similar transformation does not change
the truth of the proposition. For example, (4) is such an inequality for its left-
and right-hand sides, ma + mb + mc and 2 s, both are homogeneous functions
(of x, y, z) with degree 1.

In addition, assume that the left- and right-hand sides of Φ(x , y , z ), namely,
l(x, y, z) and r(x, y, z), both are symmetric functions of x, y, z. It does not
change the truth of the proposition to replace x, y, z in l(x, y, z) and r(x, y, z)
with x′, y′, z′ where x′ = ρ x, y′ = ρ y, z′ = ρ z and ρ > 0.



A Program of Automated Proving for a Class of Geometric Inequalities 49

Clearly, the left and right polynomials of Φ(x ′, y ′, z ′), namely, L(T, x′, y′, z′)
and R(T, x′, y′, z′), both are symmetric with respect to x′, y′, z′, so they can be
re-coded in the elementary symmetric functions of x′, y′, z′, say,

Hl(T, σ1, σ2, σ3) = L(T, x′, y′, z′), Hr(T, σ1, σ2, σ3) = R(T, x′, y′, z′),

where σ1 = x′ + y′ + z′, σ2 = x′y′ + y′z′ + z′x′, σ3 = x′y′z′.

Setting ρ =
√

x+y+z
x y z , we have x′y′z′ = x′ + y′ + z′, i.e., σ3 = σ1. Further,

letting
s = σ1(= σ3), p = σ2 − 9,

we can transform L(T, x′, y′, z′) and R(T, x′, y′, z′) into polynomials in T, p, s,
say, F (T, p, s) and G(T, p, s). Especially if F and G both have only even-degree
terms in s, then they can be transformed into polynomials in T, p and q where
q = s2 − 4 p − 27. Usually the degrees and the numbers of terms of the latter
are much less than those of L(T, x, y, z) and R(T, x, y, z). We thus construct
the border surface which is encoded in p, s or p, q, and do the decomposition
described in last section on (p, s)-plane or (p, q)-plane instead of R3. This may
reduce the computational complexity considerably for a large class of geometric
inequalities. The following example is also taken from [1].

Example 3. By wa, wb, wc and s denote the interior angular bisectors and half
the perimeter of a triangle, respectively. Prove

wbwc + wcwa + wawb ≤ s2.

It is well-known that

wa = 2

√
x (x + y)(x + z)(x + y + z)

2 x + y + z
,

wb = 2

√
y (x + y)(y + z)(x + y + z)

2 y + x + z
,

wc = 2

√
z (x + z)(y + z)(x + y + z)

2 z + x + y
,

and s = x + y + z. By successive resultant computation as above, we get a left
polynomial which is of degree 20 and has 557 terms, while the right polynomial
T − (x+y+z)2 is very simple, and the border polynomial P (x, y, z) is of degree
15 and has 136 terms. By this routine, the whole proving process take us 2697
sec on a Pentium III/550 computer.

However, if we encode the left and right polynomials in p, q, we get

(9 p + 2 q + 64)4 T 4 − 32
(4 p + q + 27) (p + 8) (4 p2 + p q + 69 p + 10 q + 288) (9 p + 2 q + 64)2 T 2

− 512 (4 p + q + 27)2 (p + 8)2 (9 p + 2 q + 64)2 T + 256(4 p + q + 27)3

(p + 8)2 (−1024 − 64 p + 39 p2 − 128 q − 12 p q − 4 q2 + 4 p3 + p2 q)



50 Lu Yang and Ju Zhang

and T − 4 p − q − 27, respectively, hence the border polynomial

Q(p, q) = 5600256 p2 q + 50331648 p + 33554432 q + 5532160 p3

+ 27246592 p2 + 3604480 q2 + 22872064 p q + 499291 p4 + 16900 p5

+ 2480 q4 + 16 q5 + 143360 q3 + 1628160 p q2 + 22945 p4 q

+ 591704 p3 q + 11944 p3 q2 + 2968 p2 q3 + 242568 p2 q2 + 41312 p q3

+ 352 p q4

which is of degree 5 and has 20 terms only. The whole proving process in this
way spend about 0.10s on the same machine.

5 Commands and Syntax

As a prover, the whole program is written in Maple V.5.1 including the cell
decomposition, without external packages employed.

On verifying an inequality with BOTTEMA, we need only type in a proving
command, then the machine will do everything else. If the statement is true,
the computer screen will show “The inequality holds”; otherwise, it will show
“The inequality does not hold” with a counter-example. There are three kinds
of proving commands: prove, xprove and yprove.

prove – prove a geometric inequality on a triangle, or an equivalent algebraic
inequality.

Calling Sequence:

prove(ineq);
prove(ineq, ineqs);

Parameters:

ineq – an inequality to be proven, which is encoded in the geometric invariants
listed later.

ineqs – a list of inequalities as the hypothesis, which is encoded as well in
the geometric invariants listed later.

Description:

– The command ‘prove’ is valid to a geometric inequality on a triangle that
must be of type ‘≤’ or ‘≥’, with a set of inequalities ‘ineqs’ as the hypothesis
which defines either an open set or an open set with the whole/partial bound-
ary; and ‘ineq’ and ‘ineqs’, must be represented by the rational functions and
radicals in the geometric invariants listed below.

– The command ‘prove’ also valid to a statement whose hypothesis and thesis,
‘ineqs’ and ‘ineq’, all are homogeneous algebraic inequalities represented by
the rational functions and radicals in x, y, z provided x > 0, y > 0, z > 0,
and of the required types as above. This is equivalent to a geometric one, as
shown in last section.



A Program of Automated Proving for a Class of Geometric Inequalities 51

– The following list of geometric invariants is extendable.

Geometric Invariants on a Triangle: (extendable)

a, b, c, lengths of sides of a triangle ABC
s, s:=(a+b+c)/2, half the perimeter
x, y, z, x:=s-a, y:=s-b, z:=s-c
S, Area of the triangle
R, circumradius
r, inradius
ra, rb, rc, radii of escribed circles
ha, hb, hc, altitudes
ma, mb, mc, medians
wa, wb, wc, interior-angle-bisectors
p, p:=4*r*(R-2*r)
q, q:=sˆ2-16*R*r+5*rˆ2
HA, HB, HC, distances from orthocenter to vertices
IA, IB, IC, distances from incenter to vertices
sin(A), sin(B), sin(C), sines of the interior angles
cos(A), cos(B), cos(C), cosines of the interior angles
tan(A), tan(B), tan(C), tangents of the interior angles
cot(A), cot(B), cot(C), cotangents of the interior angles
sec(A), sec(B), sec(C), secants of the interior angles
csc(A), csc(B), csc(C), cosecants of the interior angles
sin(A/2), sin(B/2), sin(C/2),
cos(A/2), cos(B/2), cos(C/2),
tan(A/2), tan(B/2), tan(C/2),
cot(A/2), cot(B/2), cot(C/2),
sec(A/2), sec(B/2), sec(C/2),
csc(A/2), csc(B/2), csc(C/2),

Examples:

> read bottema;
> prove(aˆ2+bˆ2+cˆ2>=4*sqrt(3)*S+(b-c)ˆ2+(c-a)ˆ2+(a-b)ˆ2);

The theorem holds

> prove(cos(A)>=cos(B),[a<=b]);

The theorem holds

xprove – prove an algebraic inequality with positive variables.

Calling Sequence:

xprove(ineq);
xprove(ineq, ineqs);



52 Lu Yang and Ju Zhang

Parameters:

ineq – an algebraic inequality to be proven, with positive variables.
ineqs – a list of algebraic inequalities as the hypothesis, with positive vari-

ables.

Description:

– The command ‘xprove’ is valid to an algebraic inequality ‘ineq’ which must
be of type ‘≤’ or ‘≥’, with a set of inequalities ‘ineqs’ as the hypothesis which
defines either an open set or an open set with the whole/partial boundary.

– All the hypothesis and thesis must be represented by the rational functions
and radicals.

– All the variables appear in ‘ineq’ are supposed always positive that conditions
need not be explicitly included.

Examples:

> read bottema;
> xprove(sqrt(uˆ2+vˆ2)+sqrt((1-u)ˆ2+(1-v)ˆ2)>=sqrt(2),
[u<=1,v<=1]);

The theorem holds

> f:=(x+1)ˆ(1/3)+sqrt(y-1)+x*y+1/x+1/yˆ2:
> xprove(f>=42496/10000,[y>1]);

The theorem holds

> xprove(f>=42497/10000,[y>1]);

with a counter example
[

x =
29
32

, y =
294117648
294117647

]

The theorem does not hold

yprove – prove an algebraic inequality in general.

Calling Sequence:

yprove(ineq);
yprove(ineq, ineqs);

Parameters:

ineq – an algebraic inequality to be proven.
ineqs – a list of algebraic inequalities as the hypothesis.

Description:

– The command ‘yprove’ is valid to an algebraic inequality ‘ineq’ which must
be of type ‘≤’ or ‘≥’, with a set of inequalities ‘ineqs’ as the hypothesis which
defines either an open set or an open set with the whole/partial boundary.



A Program of Automated Proving for a Class of Geometric Inequalities 53

– All the hypothesis and thesis must be represented by the rational functions
and radicals.

Examples:

> read bottema;
> f:=xˆ6*yˆ6+6*xˆ6*yˆ5-6*xˆ5*yˆ6+15*xˆ6*yˆ4-36*xˆ5*yˆ5+15*xˆ4*yˆ6

+20*xˆ6*yˆ3-90*xˆ5*yˆ4+90*xˆ4*yˆ5-20*xˆ3*yˆ6+15*xˆ6*yˆ2
-120*xˆ5*yˆ3+225*xˆ4*yˆ4-120*xˆ3*yˆ5+15*xˆ2*yˆ6+6*xˆ6*y
-90*xˆ5*yˆ2+300*xˆ4*yˆ3-300*xˆ3*yˆ4+90*xˆ2*yˆ5-6*x*yˆ6+xˆ6
-36*xˆ5*y+225*xˆ4*yˆ2-400*xˆ3*yˆ3+225*xˆ2*yˆ4-36*x*yˆ5+yˆ6
-6*xˆ5+90*xˆ4*y-300*xˆ3*yˆ2+300*xˆ2*yˆ3-90*x*yˆ4+6*yˆ5+15*xˆ4
-120*xˆ3*y+225*xˆ2*yˆ2-120*x*yˆ3+15*yˆ4-20*xˆ3+90*xˆ2*y
-90*x*yˆ2+20*yˆ3+16*xˆ2-36*x*y+16*yˆ2-6*x+6*y+1:

> yprove(f>=0);

The theorem holds

6 More Examples

The well-known Janous’ inequality [5] which was proposed as an open problem
in 1986 and solved in 1988.

Example 4. By ma, mb, mc and 2 s denote the three medians and perimeter of
a triangle, show that

1
ma

+
1

mb
+

1
mc

≥ 5
s
.

The left-hand side of the some difficult inequality implicitly contains three
radicals. BOTTEMA automatically interprets the geometric proposition to al-
gebraic one before proves it. The total CPU time spent for this example on a
Pentium III/550 is 29.22s.

The next example was proposed as an open problem, E. 3146∗, in the Amer.
Math. Monthly 93:(1986), 299.

Example 5. By a, b, c and s denote the side-lengths and half perimeter of a
triangle, respectively. Prove or disprove

2 s(
√

s − a +
√

s − b +
√

s − c) ≤ 3 (
√

bc(s − a) +
√

ca(s − b) +
√

ab(s − c)).

The proof took us 48.60s on the same machine.
The following open problem appeared as Problem 169 in Mathematical Com-

munications (in Chinese).

Example 6. By ra, rb, rc and wa, wb, wc denote the radii of the escribed circles
and the interior angle bisectors of a triangle, respectively. Prove or disprove

3
√

rarbrc ≤ 1
3
(wa + wb + wc).



54 Lu Yang and Ju Zhang

In other words, the geometric average of ra, rb, rc is less than or equal to the
arithmetic average of wa, wb, wc.

The right-hand side of the inequality implicitly contains 3 radicals. BOT-
TEMA proved this conjecture on a Pentium III/550 with CPU time 96.60s. One
more conjecture proposed by J. Liu [10] was proven on the same machine with
CPU time 375.14s. That is:

Example 7. By a, b, c, ma, mb, mc and wa, wb, wc denote the side lengths,
medians and interior-angle-bisectors of a triangle, respectively. Prove or disprove

a ma + b mb + c mc ≤ 2√
3

(w2
a + w2

b + w2
c ).

The following conjecture was first proposed by J. Garfunkel at Crux Math.
in 1985, then re-proposed twice again in [9] and [6].

Example 8. By A, B, C denote the three angles of a triangle. Prove or disprove

cos
B − C

2
+ cos

C − A

2
+ cos

A − B

2
≤

1√
3

(cos
A

2
+ cos

B

2
+ cos

C

2
+ sin A + sin B + sin C ).

It was proven on a Pentium III/550 with CPU time 163.54s.
A. Oppenheim studied the following inequality [9] in order to answer a prob-

lem proposed by P. Erdös.

Example 9. Let a, b, c and ma, mb, mc denote the side lengths and medians of
a triangle, respectively. If c = min{a, b, c}, then

2 ma + 2 mb + 2 mc ≤ 2 a + 2 b + (3
√

3 − 4) c.

The hypothesis includes one more condition, c = min{a, b, c}, so we type in

prove(2*ma+2*mb+2*mc<=2*a+2*b+(3*sqrt(3)-4)*c, [c<=a,c<=b]);

This took us 547.65s on the same machine. If we type in

prove(2*ma+2*mb+2*mc<=2*a+2*b+(3*sqrt(3)-4)*c);

without the additional condition, the screen will show “The inequality does not
hold” with a counter-example, [a = 203, b = 706, c = 505].

A problem of positive semi-definite decision is originated from one of the
conjectures proposed by B. Q. Liu [7]:

Example 10. Assume that x > 0, y > 0, z > 0. Prove

2187(y4z4(y + z)4(2 x + y + z)8 + x4z4(x + z)4(x + 2 y + z)8 +
x4y4(x + y)4(x + y + 2 z)8) − 256(x + y + z)8(x + y)4(x + z)4(y + z)4 ≥ 0.



A Program of Automated Proving for a Class of Geometric Inequalities 55

The polynomial after being expanded is of 201 terms with the largest coefficient
(absolute value) 181394432. Usually it is non-trivial to decide a polynomial to be
positive semi-definite or not, but this one took us CPU time 2.23s only, because
of the homogeneity and symmetry which can help decrease the dimension and
degree concerned.

There are two well-known geometric inequalities. One is the so-called “Euler’s
Inequality”, R ≥ 2 r, another is ma ≥ wa. They are often cited in illustration of
various algorithms [2,11,12] for inequality proving. The following example makes
a comparison between the two differences, R − 2 r and ma − wa.

Example 11. By R, r denote the circumradius and inradius of a triangle, and
ma, wa the median and the interior angle bisector on a certain side; prove

ma − wa ≤ R − 2 r.

It took us 15.73s.
The geometric inequalities which can be verified by the program, of course,

are not limited to those on triangles. To prove the so-called “Ptolemy Inequality”,
we will use Cartesian coordinates instead of geometric invariants.

Example 12. Given four points A, B, C, D on a plane, by AB, AC, AD, BC,
BD,CD denote the distances between the points, respectively. Prove

AB · CD + BC · AD ≥ AC · BD. (8)

Put A = (−1
2 , 0), B = (x, y), C = ( 1

2 , 0), D = (u, v), and convert (8) to
√

(−1
2

− x)2 + y2

√
(
1
2

− u)2 + v2 +

√
(x − 1

2
)2 + y2

√
(−1

2
− u)2 + v2

≥
√

(x − u)2 + (y − v)2. (9)

We need just type in “yprove(%)” where % stands for inequality (9). The screen
shows “The inequality holds” after running 2.70s.

According to our record, the CPU time spent (on a Pentium III/550) and
the numbers of the test points for above examples are listed as follows.

Example 1 702.15s 23 test points
Example 2 0.18s 1 test point
Example 3 0.10s 1 test point
Example 4 29.22s 12 test points
Example 5 48.60s 135 test points
Example 6 96.60s 4 test points
Example 7 375.14s 3 test points
Example 8 163.54s 121 test points
Example 9 547.65s 287 test points
Example 10 2.23s 2 test points
Example 11 15.73s 22 test points
Example 12 2.70s 48 test points



56 Lu Yang and Ju Zhang

The time listed above includes that spent for everything, finding the left, right
and border polynomial, cell decomposition, one-by-one sample point test, etc.

7 Conclusion

– This program is applicable to any inequality-type theorem whose hypothesis
and thesis all are inequalities in rational functions or radicals, but the thesis
is of type “≤” or “≥”, and the hypothesis defines either an open set or an
open set with the whole/partial boundary.

– It is beyond the capacity of this prover to deal with the algebraic functions
other than the rational ones and radicals.

– It runs in a completely automatic mode, without human intervention.
– It is especially efficient for geometric inequalities on triangles. The input, in

this case, is encoded in geometric invariants.

We will make the package available publicly as soon as possible. The inter-
ested reader may contact us by e-mail luyang@guangztc.edu.cn or cdluyang@
mail.sc.cninfo.net for further information.

Acknowledgements

The authors would like to thank the anonymous referees to this paper for their
valuable suggestions.

References

1. Bottema, O., Dordevic, R. Z., Janic, R. R., Mitrinovic, D. S. & Vasic, P. M., Ge-
ometric Inequalities, Wolters-Noordhoff Publishing, Groningen, The Netherlands,
1969.

2. Chou, S. C., Gao, X. S. & Arnon, D. S., On the mechanical proof of geometry
theorems involving inequalities, Advances in Computing Research, 6, JAI Press
Inc., pp. 139–181, 1992.

3. Dolzmann, A., Sturm, T. & Weispfenning, V., A new approach for automatic
theorem proving in real geometry, Journal of Automated Reasoning , 21(3), 357–
380, 1998.

4. Dolzmann, A., Sturm, T. & Weispfenning, V., Real quantifier elimination in prac-
tice, Algorithmic Algebra and Number Theory , B. H. Matzat, G.-M. Greuel & G.
Hiss (eds.), Springer-Verlag, Berlin Heidelberg, pp. 221–247, 1998.

5. Janous, W., Problem 1137, Crux Math., 12, 79, 177, 1986.
6. Kuang, J. C. Applied Inequalities (in Chinese), 2nd ed., Hunan Educational Pub-

lishing House, China, 1993.
7. Liu, B. Q., A collection of geometric inequalities discovered with BOTTEMA (in

Chinese), Research Communications on Inequalities, 31, 2001 (to appear).
8. McPhee, N. F., Chou, S. C. & Gao, X. S.: Mechanically proving geometry theorems

using a combination of Wu’s method and Collins’ method. Proc. CADE-12 , LNCS
814, Springer-Verlag, Berlin Heidelberg, pp. 401–415, 1994.



A Program of Automated Proving for a Class of Geometric Inequalities 57

9. Mitrinovic, D. S., Pecaric, J. E. & Volenec, V., Recent Advances in Geometric
Inequalities, Kluwer Academic Publishers, Boston Dordrecht, 1989.

10. Shan, Z. (ed.), Geometric Inequality in China (in Chinese), Jiangsu Educational
Publishing House, China, 1996.

11. Wu W.-t., On a finiteness theorem about problem involving inequalities, Sys. Sci.
& Math. Scis., 7, 193–200, 1994.

12. Wu W.-t., On global-optimization problems, Proc. ASCM ’98 , Lanzhou University
Press, Lanzhou, pp. 135–138, 1998.

13. Yang, L., Recent advances in automated theorem proving on inequalities, J. Com-
put. Sci. & Technol., 14(5), 434–446, 1999.

14. Yang, L., Hou, X. R. & Xia, B. C., Automated discovering and proving for geo-
metric inequalities, Automated Deduction in Geometry , X. S. Gao, D. Wang & L.
Yang (eds.), LNAI 1669, Springer-Verlag, Berlin Heidelberg, pp. 30–46, 1999.

15. Yang, L., Hou, X. R. & Xia, B. C., A complete algorithm for automated discovering
of a class of inequality-type theorems, Science in China, Series F 44(1), 33–49,
2001.



Randomized Zero Testing of Radical Expressions
and Elementary Geometry Theorem Proving

Daniela Tulone1,�, Chee Yap2,��, and Chen Li2

1 Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
daniela@research.bell-labs.com

2 Department of Computer Science, Courant Institute, New York University,
251 Mercer Street, New York, NY 10012

{yap,chenli}@cs.nyu.edu

Abstract. We develop a probabilistic test for the vanishing of radical
expressions, that is, expressions involving the four rational operations
(+, −, ×, ÷) and square root extraction. This extends the well-known
Schwartz’s probabilistic test for the vanishing of polynomials. The prob-
abilistic test forms the basis of a new theorem prover for conjectures
about ruler & compass constructions. Our implementation uses the Core
Library which can perform exact comparison for radical expressions.
Some experimental results are presented.

1 Introduction

Several approaches to proving theorems in Elementary Geometry using con-
structive methods in Computer Algebra were proposed in the 1980s [7]. These
were much more successful than earlier approaches based on purely logical or
axiomatic approaches. Thus, Kutzler, Stifter [14] and Kapur [12] proposed meth-
ods based on Gröbner Bases. Carrà and Gallo [1,8] devised a method using the
dimension underlying the algebraic variety. Hong [11] introduced semi-numerical
methods (“proof by example” techniques) based on gap theorems. An acclaimed
approach in this area is due to Wu [21,23,22] who applied the concept of charac-
teristic sets to geometric theorem proving. Extensive experimentation with Wu’s
method were reported by Chou [3,5].

All these algebraic approaches begin by translating the geometric statements
into algebraic ones. A proposed geometry theorem (also called a conjecture) is
translated algebraically into two parts: a system H of multivariate polynomials
called the hypothesis, and a single polynomial T called the thesis. The conjecture
is true if the vanishing of the hypothesis system implies the vanishing of the thesis
polynomial. From the viewpoint of algebraic geometry, proving the conjecture
amounts to showing that V ar(H) ⊆ V ar(T ) where V ar(S) is the algebraic
variety defined by a set S of polynomials. This basic formulation must be refined
in order to handle degeneracy conditions.
� This work was performed while Daniela Tulone was at NYU.

�� This work is supported in part by NSF Grant #CCR 9402464.

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 58–82, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Randomized Zero Testing of Radical Expressions 59

Wu’s “basic method” computes the pseudo-remainder of the polynomial the-
sis with respect to the Wu-Ritt extended characteristic set of the hypotheses sys-
tem. If the pseudo-remainder vanishes, then the conjecture is true provided the
initials of the extended characteristic set do not vanish. Wu’s basic method has
been successfully used to prove many classical and some new theorems in plane
analytic geometry. The basic method fails if the variety V ar(H) is reducible.
To handle this, Wu’s “complete method” begins by decomposing V ar(H) into
irreducible components and applying the basic method to each component. A
drawback in Wu’s method is that it works with an algebraically closed field.
In particular, it is not a complete method for the real algebraic varieties. The
present paper addresses a special case of real algebraic varieties.

Gröbner bases methods can be doubly exponential in the worst case [17,24].
The complexity for Wu’s method is somewhat better but remains an issue. To
circumvent the high complexity, we investigate probabilistic methods [20] com-
bined with “proof by example” techniques [11]. In probabilistic theorem proving,
we do not prove the validity of a conjecture in the classical sense. Instead, we
either prove the invalidity of a conjecture (by showing a counter example) or
else classify the conjecture as “true with the high probability 1− ε”. This latter
classification must be properly understood since, classically, it is nonsense to say
that a theorem is true with some probability. What is meant is that, relative to
a set of experiments we conduct, the probability that the conjecture is false and
we failed to discover this, is less than ε.

An interesting approach along these lines was given by Carrà, Gallo and
Gennaro [2]. They applied the Schwartz-Zippel [20,27] probabilistic test for the
vanishing of pseudo-remainders in Wu’s method. They considered conjectures in
the classical setting of ruler & compass constructions. Such conjectures are ex-
amined by testing the vanishing of Wu’s pseudo-remainder for randomly chosen
examples. Each example is specified by a random choice of values for its param-
eters. The random choices come from some suitable test set whose cardinality
depends on the degree of the pseudo-remainder. The extended characteristic set
as well as the pseudo-remainder are computed. If the pseudo-remainder is zero,
then the example is successful; otherwise, as in Wu’s method, further investiga-
tion is called for. While implementing their method, one of us (D.T.) discovered
a serious efficiency issue. The degree of the pseudo-remainder is very high: if the
conjecture involves C ruler & compass construction steps, then, the degree of
the pseudo-remainder in [2] (following [9,10]) has the following bound:

D = 2O(C3)CO(C2) .

The cardinality of the test set is 2D, which is too large in practice. This bound
applies to the test for “generic truth”. For “universal truth”, D can be improved
to 2P ·3C+1 where P is the number of points in the construction. Unfortunately,
practically no classical theorems are universal truths.

Summary of New Results. (1) We develop an extension of the Schwartz-
Zippel probabilistic zero test. While the Schwartz-Zippel test is applicable to



60 Daniela Tulone, Chee Yap, and Chen Li

polynomials, we treat radical expressions by admitting the additional operations
of division and square-roots. This adds considerable complexity to the proofs.
Furthermore, for efficiency considerations, we use straight line programs to rep-
resent radical expressions. The asymptotic time complexity of our probabilistic
test is a low-order polynomial. Since radical expressions are common in many
applications, we expect this new test to be generally useful.

(2) We address the problem of computer proofs of geometric conjectures
about ruler & compass constructions. The zero test of radical expressions is tailor
fitted for this problem. Moreover, we combine randomness with the numerical
approach of Hong to give additional efficiency. Thus, our approach appears to
be intrinsically more efficient than previous general approaches (e.g., Wu’s or
Gröbner bases).

(3) Our prover is implemented using the Core library [15,13,19]. This is
an unexpected application of our library, which was designed as a general C++-
package to support the Exact Geometric Computation [26,25] approach to robust
algorithms. Preliminary experimental results are quite promising. We expect
further improvements by fine-tuning our library for this specific application.
Our prover is currently distributed with version 1.3 of the Core library (Aug.
15, 2000) and available from http://cs.nyu.edu/exact/core/.

Overview. The paper is organized as follows: Section 2 gives an overview of
geometric conjectures about ruler & compass constructions. Section 3 gives our
extension of Schwartz’s probabilistic test to radical expressions. Section 4 ad-
dresses the application of our new probabilistic test to theorem proving. We
conclude in Section 5.

2 Theorem Proving for Ruler & Compass Constructions

We follow the algebraic approach which has been well-summarized by Chou
[5]. Ruler & compass operations may be seen as constructing lengths, points,
lines and circles, collectively called geometric objects. A collection of such geo-
metric objects will be called a geometric scene. We consider geometric scenes
that are constructed incrementally using ruler & compass operations. The al-
gebraic analogue of constructing a geometric object O amounts to introducing
a pair of variables (x, y) and corresponding polynomial equations hi(x, y, z, . . .)
(i = 1, 2, . . .) that must be satisfied if (x, y) lies on O. Here, hi may involve other
variables z, . . ., from previously constructed objects. We shall classify the vari-
ables introduced by our constructions into two sorts: independent and dependent
variables. For short, the independent variables will be called parameters. It is
instructive to give a concrete example (Figure 1 from [5]).

Example 1 (Pascal’s Theorem). Let A, B, C, D, F and E be six points on a
circle centered at O. Let P = AB

⋂
DF , Q = BC

⋂
FE and S = CD

⋂
EA.

Show that P , Q and S are collinear.



Randomized Zero Testing of Radical Expressions 61

B

O

A

E

F

D

C

Q

S

P

Fig. 1. Pascal’s Theorem.

Let A = (0, 0), O = (u1, 0), B = (x1, u2), C = (x2, u3), D = (x3, u4),
F = (x4, u5), E = (x5, u6), P = (x7, x6), Q = (x9, x8), and S = (x11, x10). This
gives the following equations for the hypotheses.

Equation Geometry Remark

h1 : x2
1 − 2u1x1 + u2

2 = 0 [OA ≡ OB] Introduces x1, u2

h2 : x2
2 − 2u1x2 + u2

3 = 0 [OA ≡ OC] Introduces x2, u3

h3 : x2
3 − 2u1x3 + u2

4 = 0 [OA ≡ OD] Introduces x3, u4

h4 : x2
4 − 2u1x4 + u2

5 = 0 [OA ≡ OF ] Introduces x4, u5

h5 : x2
5 − 2u1x5 + u2

6 = 0 [OA ≡ OE] Introduces x5, u6

h6 :
(u5 − u4)x7 + (−x4 + x3)x6+
u4x4 − u5x3 = 0 [P ∈ DF ] Introduces x6, x7

h7 : u2x7 − x1x6 = 0 [P ∈ AB] Constrains x6, x7

h8 :
(u6 − u5)x9 + (−x5 + x4)x8+
u5x5 − u6x4 = 0 [Q ∈ FE] Introduces x8, x9

h9 :
(u3 − u2)x9 + (−x2 + x1)x8+
u2x2 − u3x1 = 0 [Q ∈ BC] Constrains x8, x9

h10 : u6x11 − x5x10 = 0 [S ∈ AE] Introduces x10, x11

h11 :
(u4 − u3)x11 + (−x3 + x2)x10+
u3x3 − u4x2 = 0 [S ∈ CD] Constrains x10, x11

The conclusion that P, Q, S are collinear can be translated into the following
polynomial:

g = (x8 − x6)x11 + (−x9 + x7)x10 + x6x9 − x7x8 = 0.



62 Daniela Tulone, Chee Yap, and Chen Li

In general, we get a system of polynomial equations, h1 = h2 = · · · = h� =
0 where hi ∈ R[u1, . . . , um, x1, . . . , xn] (R is the field of real numbers), the
u1, . . . , um are parameters, and the x1, . . . , xn are dependent variables. The con-
jecture has the form:

(∀u,x)[h1 = h2 = · · · = h� = 0 ⇒ g = 0] (1)

where u = (u1, . . . , um), x = (x1, . . . , xn) and g = g(u,x) ∈ R[u,x].

Degeneracy and Generic Truth. A theorem of the form (1) is called a uni-
versal truth. It turns out that the classical notion of theoremhood is more sub-
tle, and this led Wu to formulate the notion of generic truth. We formalize it
as follows: let ∆1, . . . , ∆k be predicates on the variables u,x. We call each ∆i

a non-degeneracy condition. The conjecture (1) is generically true relative to
{∆1, . . . , ∆k} if

(∀u,x)[∆1, ∆2, . . . , ∆k, h1 = h2 = · · · = h� = 0 ⇒ g = 0]. (2)

Classical ruler-and-compass theorems are indeterminate in that they do not ex-
plicitly specify the degenerate conditions. Hence part of “proving a classical the-
orem” involves discovering a suitable set of non-degeneracy conditions. Hopefully
the set is minimal is some sense (but not necessarily unique). The simplest kind
of non-degeneracy condition has the form

∆ : d �= 0

where d is a polynomial. Call this the first kind of non-degeneracy condition. The
degree of the ∆ is equal to the total degree of d. If each ∆i has degree di, then
the degree of {∆1, . . . , ∆k} is

∑k
i=1 di. Typical examples of the first kind of non-

degeneracy may require two points to be distinct or two lines to be non-parallel.
It is easy to see that both have degree 2.

Example 1 (continued). The non-degeneracy conditions require the intersection
points P, S and Q be not at infinity. Equivalently, the following pairs of lines
are not parallel: {AB, DF}, {BC,FE}, {CD, EA}. So the degree of these non-
degeneracy conditions is 6.

Second Kind of Degeneracy. The second kind of non-degeneracy condition
arises for theorems in the real field. For example, when we define a point by the
intersection of two circles, we require that these two circles intersect. Or, when
we define three collinear points A, B and C, we may require B to lie between
the other two points. Such non-degeneracy conditions have the form

∆ : d ≥ 0

where d is a polynomial. We can modify this condition using a well-known trick:

∆′ : ∃z, d− z2 = 0



Randomized Zero Testing of Radical Expressions 63

where z is a new variable. The existential quantifier on z can be pulled out as
a prenex universal quantifier. Thus, we can formulate the conjecture as

(∀u,x, z) (∆′, H ⇒ T ).

In practice, there may be other ways to handle this: in the Pascal example, such
non-degeneracies demand that the parameters uj (for j = 2, 3, 4, 5, 6) satisfy
|uj | ≤ |u1|. Our prover can handle non-degeneracy conditions of the second kind
when put in this form. Indeed, in all the examples we looked at in [5], such a
formulation is possible.

Reduction to Radical Expressions. In a ruler & compass construction, each
dependent variable is a radical function of the previously introduced variables.
As exemplified by Pascal’s Theorem, all the dependent variables are introduced
either (i) singly by a single equation (e.g., x1 is introduced by h1 = 0) or (ii)
in pairs by two equations (e.g., x6, x7 are introduced by h6 = h7 = 0). As all
equations are at most quadratic, the xi’s can be replaced by radical expres-
sions involving the uj ’s. Let G = G(u) be the radical expression after such a
substitution into g(u,x). The universal truth conjecture (1) now says

(∀u)[G = 0],

with an analogous statement for generic truth. Another issue arises: each radical
is determined only up to a ± sign. Hence, if there are r radicals in G, we must
replace G = 0 by the system of 2r radical expressions, G1 = G2 = · · · = G2r = 0,
in which each of the 2r possible sign combinations are used. If a single function
G∗(u) is desired, we can use G∗ =

∑2r

i=1 G2
i . The appearance of “2r” in this

expression may be disturbing from a complexity viewpoint. Several observations
suggest that this is not serious in practice. First, r is typically small (r = 5 in
Pascal’s theorem). Next, we can reduce the number of summands in G∗ from
the worst case of 2r terms. There are two ways this can happen: (A) Symmetries
in the problem may arise so that many of the Gi’s can be omitted. (B) Certain
sign combinations may be excluded by the nature of the construction and/or
theorem so that G∗ may represent a sum of less than 2r radical expressions.
In particular, using (A) and (B), we can always omit half of the summands in
standard geometric theorems. Thus, 2r−1 terms suffice in G∗.

Example 2 (Butterfly Theorem). We illustrate the reduction in the number of
terms in G∗ using the Butterfly Theorem in [5, Example 2.4, p. 9]. The theorem
concerns 4 co-circular points A, B, C and D. Let O be the center of this circle
and E be the intersection of AC and BD. The points A, B, C, D, E form a
“butterfly”. If the line perpendicular to OE and passing through E intersects
the lines AD and BC at G and F (respectively), then the theorem says that
segments EF and EG have the same length. There are 3 quadratic equations
in formulating this theorem (so r = 3). In the construction described by Chou,
the point E is placed at the origin (0, 0) and O is placed at (u1, 0). A is freely
placed at (u2, u3). The point C is now completely determined, and has two



64 Daniela Tulone, Chee Yap, and Chen Li

possible solutions. In one solution, C and A coincide, and the nature of the
theorem excludes this case. Next, the points B is freely chosen on the circle (and
this introduces one parameter). Again there are two possible solutions. But it
is clear by symmetry that we can arbitrarily choose one of them without loss of
generality. Therefore, G∗ only needs two terms (corresponding to choosing the
2 solutions for D).

The fact that our prover can address theorems about real geometry is illus-
trated by the following simple example.

Example 3 (Triangle Bisectors). Let A, B, C be three non-linear points, and
D be the intersection point of the angle bisectors of ∠A and ∠B in the triangle

ABC . We want to prove that D must be on the bisector of ∠C in 
ABC .

A B

C

D

Fig. 2. Coincidence of three angle bisectors.

Let A = (0, 0), B = (u1, 0), C = (u2, u3), D = (x4, x5). This gives the
following equations for the hypotheses.

Equation Geometry Remark

h1 : x2
1 − u2

1 = 0, x1 ≥ 0 [x1 ≡ ‖AB‖] Introduces x1

h2 : x2
2 − u2

2 − u2
3 = 0, x2 ≥ 0 [x2 ≡ ‖AC‖] Introduces x2

h3 : x2
3 − (u1 − u2)2 − u2

3 = 0, x3 ≥ 0 [x3 ≡ ‖BC‖] Introduces x3

h4 : (x1u2 − x2u1)x4 + x1u3x5 = 0 [D ∈ bisector(∠A)] Constrains x4, x5

h5 : [(u2 − u1)x1 + u1x3](x4 − u1) +
x1u3x5 = 0

[D ∈ bisector(∠B)] Constrains x4, x5

The conclusion that D is on the bisector of angle ∠C can be formulated as
the following thesis:

g = (x4 − x2)(u1x2 − u2x2 + u2x3)− (x5 − x3)(x3 − x2)u3 = 0

The formulation explicitly introduces inequalities for x1, x2, x3 to pick the
internal angle bisectors. When regarded as a complex theorem, no such inequal-
ities are allowed. In this case, each “bisector” can refer to either the internal
or external bisector of an angle, so there are a total of 8 = 23 choices for these
bisectors. The “thesis” is true for exactly four of these choices, which also means



Randomized Zero Testing of Radical Expressions 65

that the theorem is false in complex geometry. Let G(u) be the radical expres-
sion after eliminating the dependent variables from g. The 8 choices of bisectors
correspond to different assignment of signs to the three radicals in G(u). Our
prover can be used to test the validity of each choice.

3 Randomized Zero Testing for Radical Expressions

3.1 Straight Line Programs

We need to generalize expressions to straight line programs (SLP). A SLP π is
a sequence of steps where each step is an assignment to a new programming
variable. The ith step of a SLP has one of the forms

zi ← xi ◦ yi, (◦ ∈ {+,−,×,÷}) (3)
zi ← √xi (4)

where zi is a newly introduced programming variable, xi and yi are either real
constants, input variables or programming variables introduced in some earlier
steps. Alternatively, we call an input variable an independent variable (or, pa-
rameter) and a programming variable a dependent variable. These xi and yi are
said to be used in the ith step. The last introduced variable is called the main
variable and it is never used. In general, a SLP can have branching steps. But
this possibility is not considered in this paper.

An expression is a SLP where, with the exception of the main variable, each
programming variable is used exactly once. Underlying each SLP is a labeled and
ordered dag (directed acyclic graph) defined in the obvious way: each node corre-
sponds to a constant or variable in the SLP. We often use the terms “nodes” and
“variables” interchangeably. For the steps in (4) (resp., (3)), we introduce edges
that are directed from xi (resp., xi and yi) to zi. We use standard graph-theoretic
terminology to talk about this dag: sinks, sources, predecessor/successor nodes,
etc. If (u, v) is an edge of the dag, we call u the predecessor of v, and call v the
successor of u. The nodes labeled by input variables or constants are source nodes
while the non-source are labeled by programming variables. The sources may be
called leaves in case the dag is a tree. The non-source nodes are associated with
an operation (±,×,÷,

√·) – so we may speak of “radical nodes”, “multiplication
nodes”, etc. Variables that are not used correspond to sink nodes in the dag. The
main variable corresponds to a sink node which we call root. The radical depth of
a node u is the maximum number of radical nodes in a path from u to any root
node, inclusive of the end points. Thus, if u is a radical node, then the radical
depth of u is at least 1. For each node u, its induced dag is the subdag comprising
all the nodes that can reach u along a path. A SLP is said to be rooted if the
root is the unique sink. The dags corresponding to expressions are ordered trees
(hence rooted). Our SLP’s are assumed rooted unless otherwise noted.

Values. Let u = (u1, . . . , um) be the input variables. For each variable u in
a SLP π, we inductively define its value to be an appropriate element valπ(u)



66 Daniela Tulone, Chee Yap, and Chen Li

in an algebraic extension of Q(u). The extension is obtained by adjunction of
square roots. The value of π is the value of its main variable. More precisely, let
Q0 = Q(u) and define the tower of extensions defined by π to be

Q0 ⊆ Q1 ⊆ Q2 ⊆ · · · ⊆ Qr (5)

where Qi :=Qi−1(
√

αi) and the ith square-root in π has operand αi ∈ Qi−1. A
SLP π is also said to compute a collection V ⊆ Qr of values provided each v ∈ V
is the value of some variable in π.

Rational Degrees. Let x be a node in a SLP π. We define the rational degree
rdegπ(x) of x (the subscript π is usually dropped). We need some auxiliary no-
tions. For any node or variable x, let RAD(x) denote the set of radical nodes in
the subdag of π rooted at x. Write RAD(x, y) for RAD(x) \RAD(y) (set differ-
ence). Also let ρ(x) := |RAD(x)| and ρ(x, y) := |RAD(x, y)|. We will inductively
define rdeg(x) to be a pair of natural numbers (a, b) ∈ N2, but usually write it
as “a : b”. These two numbers are the “upper” and “lower” degrees of x and
denoted udeg(x) and ldeg(x). Thus,

rdeg(x) = udeg(x) : ldeg(x).

Assuming rdeg(x) = ax : bx and rdeg(y) = ay : by, we inductively define rdeg(z)
using the table:

z udeg(z) ldeg(z)
constant 0 0
parameter 1 0
x× y ax2ρ(y,x) + ay2ρ(x,y) bx2ρ(y,x) + by2ρ(x,y)

x÷ y ax2ρ(y,x) + by2ρ(x,y) bx2ρ(y,x) + ay2ρ(x,y)

x± y max(ax2ρ(y,x) + by2ρ(x,y), bx2ρ(y,x) + ay2ρ(x,y)) bx2ρ(y,x) + by2ρ(x,y)
√

x ax bx

The rational degree of the SLP π is defined to be a : b where a = maxx udeg(x),
b = maxx ldeg(x), and x ranges over the nodes in π. Note that if π is division-free,
then ldeg(x) = 0 for all x.

Alternative Approach. It is useful to have an alternative approach to rdeg
which does not involve ρ(x, y) or ρ(y, x). In particular, we define rdeg2(z) =
udeg2(z) : ldeg2(z) inductively using the following table: as before, we assume
rdeg2(x) = ax : bx and rdeg2(y) = ay : by.

z udeg2(z) ldeg2(z)
constant 0 0
parameter 1 0
x× y ax + ay bx + by

x÷ y ax + by bx + ay

x± y max{ax + by, bx + ay} bx + by√
x ax

2
bx

2



Randomized Zero Testing of Radical Expressions 67

Notice that these degrees are no longer natural numbers but binary fractions.
The following lemma gives the connection between the two definitions of rdeg.

Lemma 1. For any variable z in a SLP, we have

udeg(z) = 2ρ(z) udeg2(z), ldeg(z) = 2ρ(z) ldeg2(z).

3.2 Equivalent Transformations

Two variables (resp. SLP’s) are said to be equivalent if they have the same
value. Transformations of an SLP that do not change its value are called equiv-
alent transformations (but the set of computed values may change). Equivalent
transformations may change the rational degree, as when applying the distribu-
tive law:

z(x + y)⇒ zx + zy. (6)

It is easy to verify that the rational degree of the left-hand side is at most that
of the right-hand side. We next show that the rational degree is preserved in the
absence of division (but allowing radicals):

Lemma 2. If π is division-free, then the transformation (6) preserves rdeg of
π. In particular,

rdeg(z(x + y)) = rdeg(zx + zy).

Proof. We only need to consider the upper degrees. With udeg(x) = ax, etc, as
before, we have

udeg(z(x + y)) = 2ρ(xy,z)az + 2ρ(z,xy) max{ax2ρ(y,x), ay2ρ(x,y)}
while

udeg(zx + zy) = max{azx2ρ(zy,zx), azy2ρ(zx,zy)}
= max{(az2ρ(x,z) + ax2ρ(z,x))2ρ(zy,zx), (az2ρ(y,z) + ay2ρ(z,y))2ρ(zx,zy)}.

The lemma follows if we now verify the following:

RAD(xy, z) = RAD(x, z) � RAD(zy, zx),
RAD(xy, z) = RAD(y, z) � RAD(zx, zy),

RAD(z, xy) � RAD(y, x) = RAD(z, x) � RAD(zy, zx),
RAD(z, xy) � RAD(x, y) = RAD(z, y) � RAD(zx, zy).

Our notation here, A � B, refers to disjoint union of the sets A and B. Let us
only prove the first equation: the RHS is equivalent to RAD(x, z)�RAD(y, zx).
We may verify that the union is indeed disjoint, and equal to RAD(xy, z). The
other equations can be proved similarly. We omit the details here.

Next, we show that applying the associative laws for multiplication and addition
does not affect rational degree. This follows from the following general result:



68 Daniela Tulone, Chee Yap, and Chen Li

Lemma 3. Let xi be variables in π and ri = |RAD(x1, . . . , xk) \ RAD(xi)|.
Then

rdeg(
k∏

i=1

xi) =
k∑

i=1

rdeg(xi)2ri

udeg(
k∑

i=1

xi) =
k

max
i=1
{udeg(xi)2ri +

k∑
j=1,j�=i

ldeg(xj)2rj}

ldeg(
k∑

i=1

xi) =
k∑

i=1

ldeg(xi)2ri

The above lemma justifies a generalization of SLP’s in which we allow addi-
tion nodes and multiplication nodes to take an arbitrary number of arguments.
These are called “sum” or

∑
-nodes, and “product” or

∏
-nodes, respectively.

Such an SLP is called a generalized SLP. A path in a generalized SLP dag is
said to be alternating if along the path, no two consecutive nodes are

∑
-nodes

and no two consecutive nodes are
∏

-nodes. The SLP is alternating if every path
is alternating. Clearly, any SLP can be made alternating without changing its
rational degree. We can eliminating any non-alternating path in the SLP by
aggregating the consecutive additions (or multiplications) using the

∑
(or

∏
)

operations. This process will terminate because each elimination reduces the
number if nodes in a SLP.

3.3 Preparation

A SLP in which the last three steps has the form

· · ·
x← √wC

y ← x× wB

z ← y + wA

is said to be prepared (or in prepared form). Here wA, wB , wC are variables or
constants. Thus z is the main variable, and x is the last radical variable to be
introduced. Intuitively, the radical x has been brought up as close to the root
as possible, in preparation for a transformation (to be introduced) to remove
the radical. We also call x the prepared variable. If the values of wA, wB , wC

are given by the expressions A, B, C (resp.) then the value of z is given by the
expression

A + B
√

C.

Note special forms of this expression when A = 0 or B = 1, or both. If the SLP
has no square roots, it is considered prepared already. Our goal is to prepare a
given SLP, and to bound the resulting rational degree.



Randomized Zero Testing of Radical Expressions 69

Let us now prepare a radical node A0 with radical depth 1. Assume the SLP
is division-free. Let An, Bn be expressions (n ≥ 0). The expressions En, for n ≥ 0
is defined inductively as follows: E0 = A0 ×B0, and for n ≥ 1,

En = (En−1 + An)Bn = ((En−2 + An−1)Bn−1 + An)Bn = · · · .

To show the dependence of En on the An’s and Bn’s, we may also write En =
En(A0, B0, A1, B1, . . . , An, Bn). Viewed as a tree, En is essentially a single al-
ternating path from the root down to A0. This path is left-branching only and
the root is a ×-node. Also write: B(n) :=

∏n
j=0 Bj .

Lemma 4. For n ≥ 1, the expression En(A0, B0, . . . , An, Bn) is equivalent to
the expression

E′
n :=(A0 ×B(n)) + En−1(A1, B1, . . . , An, Bn)

Moreover, if En is division-free, then rdeg(En) = rdeg(E′
n).

Proof. Proof by induction. When n = 1,

E1 = (A0 ×B0) + A1)×B1

= (A0 ×B0 ×B1) + A1 ×B1.

Assume that this lemma is held for n ≤ k, then for n = k + 1,

Ek+1 = (Ek + Ak+1)×Bk+1

= ((A0 ×B(k)) + Ek−1(A1, B1, . . . , Ak, Bk) + Ak+1)×Bk+1

= (A0 ×B(k+1)) + Ek(A1, B1, . . . , Ak+1, Bk+1).

Thus we know the equivalence of this transformation is held for any n ∈ N.
In both cases, we only apply the distributive and associative laws, which do

not change the rational degree when En is division free.

This is illustrated in the case n = 2 by Figure 3. Note that the variable A0
is prepared in E′

n. Actually, En in this lemma can be a generalized SLP so that
the Ai, Bi’s need not be distinct and the nodes can be

∑
- and

∏
-nodes. Then

there is a corresponding equivalent SLP E′
n; this is the version that we will use

in the next theorem.
We address the problem of multiple uses of a node. A node u is used k times

if there are k distinct paths from the root to u. If a radical node u of radical
depth 1 is used k times, then if we judiciously apply the previous lemma k times,
each time eliminating one “use” of u, we obtain:

Theorem 1. Suppose π is a division-free SLP and u is a radical node in π with
radical depth of 1. Then we can transform π into an equivalent SLP π′ such that
udeg(π) = udeg(π′). Moreover, either no node in π′ has the value valπ(u) or
else, there is a node u′ in π′ with the following properties:



70 Daniela Tulone, Chee Yap, and Chen Li

B0 A1

∗

+

A2

B1

B2
+

∗

B1

B2

∗

A0

A0

B0

A1

A2

B1

B2
+

∗

+

∗

Fig. 3. The Transformation E2 �→ E′
2.

1. u′ is the prepared variable in π′
2. u′ is the unique node in π′ with value valπ(u).

Proof. We may assume that π is a generalized, alternating SLP. Fix any path p
from u to the root and we may assume that this alternating sum-product path
has the same form as the path from A0 to the root of En in lemma 4. We then
apply the previous lemma in which u now plays the role of the node A0 in En.
This collapses the path p to length 2, as in the lemma and the resulting SLP is
in a prepared form E′ = u × A + B. If the variable u is used in A and/or B,
then we can repeat this process for another path p′ (if any) in A or B. We can
repeat this process for the subexpressions A and/or B, if they contain references
to the node u as well. There are two cases:

1. u is used in A, then A is transformed to A′ = u × A1 + B1 and E′ =
u×B1+(A1u

2+B). Remember that u is a square root and thus the expression
u2 effectively eliminates the square root operation here;

2. u is used in B, then B is transformed to B′ = u × A2 + B2 and E′ =
u× (A + A2) + B2.

In both cases, we can see that E′ is still in a prepared form. We keep this process
until there is no use of u except the one that is in the prepared position and has
a unique path to the root with length 2. Since there must be a finite number
of uses of u, this iterative process will eventually terminate. At that point, the
resulting SLP π′ has the desired form: π′ is prepared and u is the main prepared
variable. It is also clear that if there are other nodes with the same value as u,
they can also be merged with u by the same process. Hence, u will be the unique
node with value valπ(u).

Note that we apply the commutative, associative and distributive laws in
these transformations. The commutative and associative transformations do not
change the rational degree. Since π is division free, Lemma 2 tells us that the dis-
tributive transformation preserves the rational degree too. Therefore, the prepa-
ration transformation does not change the rational degree of π.

We say that π′ is obtained by the process of “preparing” u in π.



Randomized Zero Testing of Radical Expressions 71

3.4 Main Result

Let π be a SLP whose value is V = V (u) ∈ Qr (see (5)). We define the real
function fπ : Rm → R where fπ(a1, . . . , am) is the value of the main variable in
π when we evaluate each dependent variable at a = (a1, . . . , am) ∈ Rm, following
π in a step-by-step fashion. The domain of fπ comprises those a ∈ Rm where
fπ(a) is defined. Similarly, we define an associated real function fV : Rm → R.
Note that the domain of fπ is always a subset of fV . The following example
shows that it may be a proper subset: let π compute the value V =

∑n−1
i=0 xi

using Horner’s rule, and let π′ compute the same V using the formula V = xn−1
x−1 .

Then π and π′ are equivalent, but π(1) = n while π′(1) is undefined. The domain
of π (and V ) is R but the domain of π′ is R− {1}.
Theorem 2. Suppose V = V (u) is the non-zero value of a rooted division-free
SLP π. Then there exists a non-zero polynomial P (u) such that Zero(V ) ⊆
Zero(P ) with deg P (u) ≤ udeg(π).

Proof. We show the existence of the polynomial P (u) by induction on the num-
ber r of square roots in π. For r = 0, the result holds because V is already a
polynomial of degree udeg(π).

Assume r > 0 and let u be a radical node of radical depth 1 in π. We
prepare u, leading to an equivalent SLP (which we still call π). The udeg of π
is unchanged by this transformation. If C is the value of u, then the value of π
can be written as

V = A + B
√

C

where A, B, C belongs to Qr−1 (recall that values of programming variable in-
troduced before the rth root extraction belongs to the field Qr−1, by definition
of Qr−1). If B = 0 then V = A and the result is true by the inductive hypothesis
applied to A (which has ≤ r − 1 square roots). Otherwise, by applying some
further (obvious) transformations, we transform π to some π′ whose value is

V ′ = A2 −B2C. (7)

Note that π′ has ≤ r− 1 square-roots. If V ′ = 0 then 0 = V ′ = (A + B
√

C)(A−
B
√

C). Since Qr is a UFD and V = A+B
√

C �= 0 (by assumption), we conclude
that A−B

√
C = 0, i.e.,

√
C = A/B ∈ Qr−1. Thus V = A+B

√
C = 2A. Then V

can be computed by some SLP with ≤ r− 1 square-roots, and the result follows
by inductive hypothesis.

So assume V ′ �= 0. By induction,Zero(V ′) = Zero(A2 − B2C) ⊆ Zero(P )
for some P with deg(P ) ≤ udeg(V ′). Since Zero(V ) ⊆ Zero(V ′), it remains to
show that udeg(V ′) ≤ udeg(V ). We have

udeg(V ) = udeg(A + B
√

C)

= max{udeg(A)2ρ(B
√

C,A), udeg(B
√

C)2ρ(A,B
√

C)}
≥ max{udeg(A)21+ρ(B2C,A),

[
udeg(B)2ρ(

√
C,B) + udeg(C)2ρ(B,

√
C)

]
2ρ(A,B2C)}



72 Daniela Tulone, Chee Yap, and Chen Li

= max{2 udeg(A)2ρ(B2C,A),

[
udeg(B2)

2
21+ρ(C,B2)+udeg(C)2ρ(B2,C)

]
2ρ(A,B2C)}

≥ max{udeg(A2)2ρ(B2C,A),
[
udeg(B2)2ρ(C,B2) + udeg(C)2ρ(B2,C)

]
2ρ(A2,B2C)}

= udeg(A2 −B2C) = udeg(V ′).

3.5 Presence of Division

What if the SLP is not division-free? Note that the presence of division is very
common. For instance, when we intersect two lines in the construction, it gives
rise to an expression with division. There is a well-known transformation to
move all divisions towards the root, merging them as we go. An instance of this
transformation is

A

B
+

A′

B′ ⇒
AB′ + A′B

BB′ .

Unfortunately, the number of radical nodes may be doubled because if we move
a division node past a radical node, we obtain two radical nodes:

√
A

B
⇒
√

A√
B

. (8)

Hence we give two versions of this transformation in the following lemma: in
version (i) we do not move any division node past a radical node, and in version
(ii) we remove all but at most one division node.

Lemma 5 (Elimination of Division). Let π be a rooted SLP.
(i) There is an equivalent SLP π′ in which each division node is either the root
of π or the child of a radical node. Moreover, rdeg(π′) = rdeg(π) and π′ has the
same number of radical nodes as π.
(ii) There is an equivalent SLP π′′ with only one division node which is also the
root. In this case rdeg(π′′) ≤ 2r rdeg(π).

The proof of (ii) exploits the alternative definition of udeg(u). Because the jus-
tification of the alternative definition is long, we only refer to the details in
[15].

The value of the SLP π′′ has the form A/B where A, B are division-free.
Intuitively, to check if A/B = 0, we check if A = 0 subject to B �= 0. SinceA
is division-free, we may apply main theorem (see next Section). This effectively
amounts to doubling the number of square roots to prove a theorem involving
division.

3.6 Improved Square Root Transformation

It turns out that we can exploit another trick motivated by [18] in order to avoid
the doubling of the number of square roots. Instead of (8), we use the following



Randomized Zero Testing of Radical Expressions 73

transformation to extract division out of square roots:

√
A

B
⇒




√
AB
B if udeg(A) ≥ udeg(B),

A√
AB

if udeg(A) < udeg(B).
(9)

Suppose our transformations for eliminating divisions, using the new rule (9),
transform an arbitrary expression z into U(z)/L(z) where U(z), L(z) are divi-
sion free. Let uz and �z denote the udeg(U(z)) and udeg(L(z)). To exploit the
advantages of this new rule, we now give an explicit set of inductive rules for
computing uz and �z:

z uz lz

constant 0 0
parameter 1 0
x× y ux + uy lx + ly
x÷ y ux + ly lx + uy

x± y max{ux + ly, lx + uy} lx + ly
√

x
1
2 (ux + lx), (ux ≥ lx);
ux, (ux < lx).

lx, (ux ≥ lx);
1
2 (ux + lx), (ux < lx).

Note that [18] only uses one of two clauses in (9) unconditionally. But the
effect of using the two conditional clauses is that the resulting bound uz is never
worse than 2r udeg(z), which is the bound in Lemma 5. The proofs may be found
in [15].

4 Proving by Random Examples

We show how to use our main result to prove theorems about ruler & compass
constructions. According to Section 2, this amounts to verifying if a radical
expression G∗(u) is identically zero (subject to non-degeneracy conditions). Let
π(u) be the natural SLP which computes the values of all the dependent variables
in a ruler & compass construction, and whose value is the polynomial thesis
G∗(u). We give a simple upper estimate on the rdeg of each node in π.

Each “stage” of our construction introduces new points, lines or circles. Let
us now be more precise: assume that our system maintains three kinds of geo-
metric objects: points, lines and circles. These are constructed as follows:

– Points: There are three cases. Case 0: We can introduce an arbitrary point,
P . Then P.x and P.y are free variables (i.e., parameters). Case 1: We can
introduce an arbitrary point, P on an existing line L or circle C. We may
specify either P.x or P.y to be a parameter. The other coordinate is therefore
a dependent variable, constrained by an equation. Case 2: We can introduce
a point P that arises from the intersection of a line/circle with another
line/circle. In this case, P.x and P.y are both dependent variables constrained



74 Daniela Tulone, Chee Yap, and Chen Li

by a pair of simultaneous equations. There is a variation of Case 2, which
arises when at least one of the two intersecting objects is a circle. In this
case, we allow the user to obtain both the points of intersection1.

– Lines: Given two existing points, we can construct the line through them.
– Circles: Given three points P, Q, R, we can construct the circle centered at

P of radius equal to the distance between Q and R. As a special case, if P
is equal to Q or R, we can just use two arguments for this construction.

Lemma 6. If the dependent variable x is introduced at stage i , then rdeg2(x) ≤
85i, i.e., udeg2(x) ≤ 85i, ldeg2(x) ≤ 85i.

Proof. Proof by induction. Let Sk be the set of objects (points, lines, etc.) avail-
able after k construction stages. This lemma is trivially true when k = 0 because
S0 is empty.

Let rk = 85k. By the induction hypothesis, we assume that the coordinate
(e.g., for points) or coefficient (e.g., in a line or circle equation) variables for all
the objects in Sk have rational degrees at most rk.

Let us first consider the construction of lines and circles. Recall that in our
system, a line refers to one that is constructed by linking two points in Sk; while
a circle means one that is constructed with the center in Sk and the radius being
the length of some segment between two points in Sk. We represent a line by a
linear equation ax + by + c = 0. It is easily verified that the rational degrees of
a, b and c are at most 2rk, 2rk and 6rk, respectively. Similarly, we represent a
circle by an equation in the form of (x− a)2 + (y − b)2 = c2 where the rational
degrees of a, b and c are at most rk, rk and 4rk, respectively.

Next, we consider the construction of points. As discussed above, we can have
one of the three types of construction (Cases 0, 1, 2) in stage (k + 1). Case 0 is
trivial because all the parameters have the rational degree 1 : 0. Case 1 can be
viewed as a simplified Case 2. In the following, we focus on the more interesting
Case 2 constructions.

There are three possible constructions in a Case 2 stage.
First, we consider the intersection of two lines L1 : a1x + b1y + c1 = 0 and

L2 : a2x + b2y + c2 = 0 where a’s, b’s and c’s can be at most rk. We obtain the
intersection point (x, y) of these two lines as follows,

(
c1b2 − c2b1

a1b2 − a2b1
,
c1a2 − c2a1

a2b1 − a1b2
).

From the definition (see Section 3.1), the rational degrees for x and y are at
most 8rk.

Next, let us consider the intersection of a line L : a1x + b1y + c1 = 0 and a
circle C : (x−a2)2 +(y−b2)2 = c2

2. We eliminate y and get a quadratic equation
1 It should be possible to allow the user to pick one of the two points using some

criteria, but we defer this to a future paper on implementation. This additional
power is sometimes needed in ruler-and-compass theorems.



Randomized Zero Testing of Radical Expressions 75

for x as follows:

(1 +
a2
1

b2
1
)x2 + (−2a2 + 2

a1

b1
(
c1

b1
+ b2))x + ((

c1

b1
+ b2)2 + a2

2 − c2
2) = 0.

Let A, B and C be the three coefficients in the above equation. It can be shown
that the rational degrees of them can at most be 4rk, 6rk and 10rk respectively.
From the above equations, we get x = −B±√

B2−4AC
2A and y = −a1x+c1

b1
. Thus,

rdeg2(x) ≤ 23rk and rdeg2(y) ≤ 26rk.
Thirdly, we consider the intersection of two circles: C1 : (x−a1)2+(y−b1)2 =

c2
1 and C2 : (x− a2)2 + (y − b2)2 = c2

2. We subtract them first to obtain a linear
equation first. Then by arguments similar to those used for the intersection of a
line and a circle, we can show that the rational degrees for x and y are at most
69rk and 85rk, respectively.

Therefore, we know that rdeg2(x) ≤ 85i for all the nodes at the stage i.

REMARK: The constant 85 in the above lemma is clearly very conservative.
This bound can be refined, for example, by classifying the stages into the various
types of construction.

Corollary 1. Let the thesis polynomial be g(u,x) with deg(g) = d, and G(u) be
any of the 2r radical expressions derived from g(u,x) by eliminating dependent
variables. Then rdegπ(G) ≤ td2r85k where g(u,x) has t terms and k is the
number of construction stages.

Proof. For Lemma 6, we know that the rational degrees for all the dependent
and independent variables are at most 85k. The thesis G has t terms with total
degree at most d. By the inductive definitions of rational degrees, we know that
rdegπ(G) ≤ td2r85k.

Assume an incremental construction with m parameters, n dependent vari-
ables, k stages, and r quadratic equations. Note that t is at most

(
m+n+d

d

)
.

Moreover, d ≤ 2 in most classical geometric theorems. In our implementation,
instead of relying on this crude upper bound, we actually compute the actual
bounds on rdeg to achieve better performance. By applying Lemma 5(ii) to π,
we obtain π′′ with one division at the root, and rdeg(π′′) ≤ 2r rdeg(π). Now the
value of π′′ (which is G∗) has the form A/B where A, B are division-free. More-
over, rdegπ′′(G∗) ≤ td22r85k. Clearly, Zero(A/B) ⊆ Zero(A). Without loss of
generality, assume A �= 0. By our main theorem,Zero(A) ⊆ Zero(P ) for some
polynomial P of degree ≤ td22r85k. Then we invoke a simple form of Schwartz’s
lemma:

Fact 1. Let P (u) be a non-zero polynomial of degree at most D. If each ai

(i = 1, . . . , m) is randomly chosen from a finite set S ⊆ R. Then the probability
that P (a1, . . . , am) = 0 is at most D/|S|.
If we randomly pick the values a = (a1, . . . , am) ∈ Sm, and |S| = td2c+2r85k (for
any c ≥ 1) then the “error probability” of our procedure is given by Pr{A(a) =



76 Daniela Tulone, Chee Yap, and Chen Li

0} ≤ Pr{P (a) = 0} ≤ 2−c. This constitutes our probabilistic verification of the
universal truth of “G∗(u) = 0”.

An alternative to testing G∗(u) = 0 is viewing the problem as testing the
simultaneous vanishing of a set of polynomial G :={G1(u), . . . , G2r (u)}. This
reduces the complexity in two ways:

– The root bound (which determines the precision necessary to numerically
determine the sign of radical expressions in the Core Library) is smaller.

– The size of the test set S is smaller.

We also have a further choice when testing G: we can randomly choose some
Gi to test for its vanishing, or we can choose to randomly test all the Gi’s for
their vanishing. However, the random choice of Gi does not seem to be the most
efficient way to test a theorem.

Degeneracies of the First Kind. We now address the generic truth of
“G∗(u) = 0”. The notion of “error probability” becomes an interesting issue.
First consider only non-degeneracy conditions of the first kind, ∆ : δ �= 0. For
simplicity, assume the ith ruler & compass construction step introduces exactly
one such condition, δi �= 0, of degree≤ 2. Since there are k stages of construc-
tion, the non-degeneracy condition becomes δ∗ := δ1δ2 · · · δk �= 0. The degree of
δ∗ is thus at most 2k.

There are two natural models of what it means to have an “error probability”
≤ 2−c: (A) The “strict model” says that our sample space is now restricted to
Sm \ {a : δ(a) = 0}. (B) Alternatively, we can say that the sample space is still
Sm but the theorem is trivially true at Sm ∩ {a : δ(a) = 0}. Given a finite test
set S, the possible zeros of δ∗ (i.e., degenerate configurations) in Sm is at most
22r udeg(δ∗)|S|m−1. With a large enough test set S, we can make the probability
that degenerate cases are chosen in the test (i.e., 22r udeg(δ∗)/|S|) arbitrarily
small. We adopt the model A in the next theorem:

Theorem 3. Conjectures about ruler & compass constructions with s non-dege-
nerate conditions of the first kind can be verified with error probability ≤ 2−c

in time polynomial in the parameters 2r, 2s, k, c, lg(t) and lg(d), where r is the
number of square roots in the thesis radical expression G(u), k is the number
of construction stages, t is the number of monomials in the thesis polynomial
g(u,x), and d is the total degree of g.

Proof. Each construction introduces a constant number of new operations into
the final radical thesis expression G∗(a). Thus, the cost to construct the the-
sis expressions G∗(a) is bound by O(k). Next, let us consider the complex-
ity in verifying G(a) for some sample configuration a = (a1, a2, . . . am) ran-
domly chosen from a finite test set S with a cardinality of 22r+c85ktd. From
the discussion above, we know that the failure probability of this test is at most
2−c. Without loss of generality, we can assume all the elements in S are in-
tegers. So the bit length of each instance value is bounded by L = lg(|S|) =
O(r + c + lg(t) + lg(d) + k). In our root bound based approach to determine



Randomized Zero Testing of Radical Expressions 77

the exact sign of an algebraic expression [16], the number of bits which need to
compute in the verification is bounded by O(pL22r), where p is the total num-
ber of operations in G∗ which is bounded by O(k). It is known that the time
complexity of arithmetic operations among multiple precision numbers are no
more than O(�2) where � is the bit length of operands. We have a total of 2r

radical thesis expressions to verify. So the complexity to verify the vanishing of
G∗, when exact arithmetic is employed, is polynomial in 2r, k, c, lg(t) and lg(d).

In presence of s non-degeneracy conditions of the first kind, let ∆(u) be the
product of all of them. It is a radical expression in u. By our main theorems, the
number of zeros of ∆ in Sm, N , is polynomial in 2s and 2r. In the worst case,
we may meet at most N degenerate cases before we get the first non-degenerate
one. So the worst case complexity for our complete method is polynomial in
2r, 2s, k, c, lg(t) and lg(d).

Degeneracies of the Second Kind. As noted, degeneracies of the second
kind can often be reduced to simple constraints on the domains of the param-
eters, possibly depending on the values of other parameters. For instance, we
noted that in Pascal’s Theorem, the parameters ui (i = 2, . . . , 6) must satisfy
|ui| ≤ |u1|. Our prover can handle such degeneracies by exploiting the following
more general form of fact 1: define the generalized degree of p(x1, . . . , xn) to be
(d1, . . . , dn) where the degree of p is d1 when viewed as a polynomial in x1 and
its leading coefficient inductively has generalized degree (d2, . . . , dn). Suppose
S1, . . . , Sn are finite sets of real numbers, then it can be shown that if we choose
(u1, . . . , un) randomly from S1×S2×· · ·×Sn, the probability that p is non-zero
and p(u1, . . . , un) = 0 is at most

d1

|S1| + · · ·+
dn

|Sn| .

The main extra complexity caused by this version of our prover is that we
need to evaluate the parameters at rational values (instead of just at integer
values).

The current implementation does not handle the second kind of degeneracy in
the above way, but we plan to rectify this in the future. Instead, it detects when
an example a ∈ Sm is degenerate, discards it and generates another example,
etc. Under probability model (A) above, this means that we do not have an á
priori bound on the running time, but the error probability is correct. Of course,
under model (B), there is no need to generate another example; but this does
not seem like a reasonable model.

Degenerate Ruler-and-Compass Constructions. Certain theorems amount
to detecting the validity of construction steps. We give a simple example from
[6] of a theorem true in real geometry but false in the complex geometry. The
construction amounts to picking two points P1(0, 0) and P2(u, 0) where u is a
free parameter. Also let P3 be the midpoint of P1P2, and P4 the midpoint of



78 Daniela Tulone, Chee Yap, and Chen Li

P1P3. Let L be the bisector of the segment P1P2, and C be the circle centered
at P1 with radius P1P4. Let P5 be the intersection of L and C. The thesis is
P1 = P2 or equivalently u = 0. This conjecture is true in real geometry, but it is
false in the complex plane because u =

√−1 is a solution. This is an interesting
example because the thesis does not depend on the construction at all. It is an
indirect way of asserting the validity of the construction steps. In implementing
a prover that takes inputs from the user, we need to guard against being asked
to prove such theorems. This amounts to an extreme form of the second kind of
degeneracy.

Timing. The following table lists some theorems from Chou [5]. However, the
last row (Tri-Bisector theorem) is the real geometry example from Section 2. The
timings are for two values of c (this means the probability of error is at most
2−c). We also arbitrarily “perturb” the hypothesis of each theorem by randomly
changing one coefficient of one of the input polynomials, and report their timings
as well. These are all false theorems, naturally. Our tests were performed on a
Sun UltraSPARC-IIi (440 MHz, 512 MB). The times are all in seconds, and
represent the average of 6 runs each. The prover uses Core Library, Version 1.3.
Actually, the library is directly modified so that we compute the exact rational
degrees of the expressions (rather than use the estimates of the Lemma 6). For
comparison, we include the timings reported by Chou [5] using the approaches of
Wu and of Gröbner Bases. The final column in the table gives the page number
in Chou’s book [5].

No. Theorem c = 10 c = 20 Perturbed Char Set Gröbner Page

1 Pappus 0.020 0.020 0.007 1.52 33.32 100
2 Pappus Point 0.110 0.113 0.023 4.87 67.62 100
3 Pappus-dual 0.020 0.020 0.013 1.45 25.53 111
4 Nehring 8.300 8.390 0.107 4.15 159.3 115
5 Chou-46 0.070 0.073 0.020 88.13 37.65 124
6 Ceva 0.030 0.033 0.017 1.12 3.47 264
7 Simson 193.22 262.49 0.023 1.22 5.02 240
8 Pascal 1715.8 2991.6 0.037 29.6 >14400 103
9 Tri-Bisector 20.027 38.350 0.010 – – –

Let r be the number of square roots in the radical expression representing a
theorem. If r = 0, we say the theorem is linear. A large part2 of the 512 theorems
in Chou’s book are linear. Only the last two theorems (Simson and Pascal) in
the above list are non-linear, with r = 1 and r = 5, respectively. Evidently non-
linear theorems represent a challenge for our current system. Recall that there
are 2r (or 2r−1 by symmetry) possible sign assignments to the radicals in G(u).
2 The theorems in Chou’s book include an original list of 366 theorems from [4], of

which 219 are reported to be linear [5, p. 12].



Randomized Zero Testing of Radical Expressions 79

Our prover has three verification modes: (1) random mode, (2) exhaustive mode,
and (3) specified mode. These correspond, respectively, to testing (1) a random
sign assignment, (2) all sign assignments and (3) a user-specified assignment. For
linear theorems, these modes are irrelevant. In the above table, we test Simson’s
theorem in the exhaustive mode, Pascal’s theorem in the random mode and Tri-
bisector in the specified mode. So our timing for Pascal’s theorem should really
be multiplied by 24 = 16.

It is interesting to note that we have never observed a single wrong conclu-
sion from our probabilistic tests – all true theorems are reported as true, and
all perturbed theorems are reported as false. In some sense, that is not surpris-
ing because the probabilistic bounds based on Schwartz’s lemma seem overly
conservative in all real situations.

The running times for linear theorems are pretty consistent across different
runs. However, for the non-linear theorems, the timing can show much more
variation. This is not unexpected since the running time depends on the bit size
of the random example. A more prominent behavior comes from the clustering of
times around certain values. For instance, for Simson (c = 20), the times cluster
around 10 seconds and around 70 seconds. This “multimodal” behavior of the
timings are again seen in Pascal. This can be attributed to the random choice
of signs for the radicals in non-linear theorems. This may also account for the
curious relative times for Simson c = 10 and c = 20.

The performance of our library is critically dependent of good root bounds
(an area of research that we are actively working on [16]). It should be possible
to exploit prover-specific techniques to improve the speed, but this has not been
done. There are several issues to bear in mind when comparing our method with
Wu’s method:

– Chou’s timings would look considerably better using hardware available to-
day.

– The actual theorems proved by Wu’s method are not strictly comparable to
ours in two important aspects: Wu’s method proves theorems about complex
geometry while ours is about real geometry. On the other hand, Chou’s
algorithm is deterministic while ours is probabilistic.

– Our method is extremely effective for discarding wrong or perturbed con-
jectures. It is unclear if Wu’s method will be much faster for perturbed
theorems, since the algorithm would still have to execute the same basic
steps. The ability to quickly reject false theorems is extremely useful in ap-
plications where the user has many conjectures to check but most of the
conjectures are likely to be false.

– One of the strengths of Wu’s methods (as compared to Gröbner bases, say)
is its ability to discover non-degeneracy conditions. A similar capability is
embedded in our approach – this simply amounts to detecting when a con-
struction step is ill-defined.



80 Daniela Tulone, Chee Yap, and Chen Li

5 Final Remarks

In this paper, we have developed a generalization of the Schwartz-Zippel ran-
domized zero test for the class of radical expressions. Such a test is expected to
have many applications as radical expressions are quite common. Here, we focus
on their use in proving theorems about ruler & compass constructions. Some
features of our prover are:

– It proves theorems about real (rather than complex) geometry, under the
limitation that there is no inequalities appearing in the thesis.

– It is probabilistic, so that speed can be traded-off against error probability.
– It detects wrong conjectures very quickly.
– It is extremely effective for linear theorems (the majority of the theorems in

[5]).
– It exploits the special nature of ruler & compass constructions.

Because of the last feature, our approach may ultimately prove to be more
efficient for this class of problems than other more general techniques. However,
our results so far have not been conclusive in the case of non-linear theorems.
The following are some open problems:

– Improve our zero test for straight line programs that involve division.
– Develop techniques to make our approach faster for non-linear theorems.
– Extend our randomized techniques to theorems that have inequalities in the

theses. This seems to call for radically new ideas.

Acknowledgments

Daniela Tulone would like to acknowledge Alfredo Ferro and Pina Carrà for their
advice and discussions in the initial stages of this project.

References

1. G. Carrà Ferro and G. Gallo. A procedure to prove geometrical statements. In
L. Huguet and A. Poli, editors, Proc. 5th Int. Conf. on Applied Algebra, Alge-
braic Algorithms and Error-Correcting Codes, volume 356 of LNCS, pages 141–150.
Springer, Berlin, 1989.

2. G. Carrà Ferro, G. Gallo, and R. Gennaro. Probabilistic verification of elementary
geometry statements. In D. Wang, editor, Proc. Int. Workshop on Automated
Deduction in Geometry (ADG-96), volume 1360 of LNAI, pages 87–101. Springer,
Berlin, 1997.

3. S.-C. Chou. Proving elementary geometry theorems using Wu’s algorithm. In
W. W. Bledsoe and D. W. Loveland, editors, Automated Theorem Proving: Af-
ter 25 Years, volume 29 of Contemporary Mathematics, pages 243–286. American
Mathematical Society, Providence, Rhode Island, 1984.

4. S.-C. Chou. Proving geometry theorems using Wu’s method: A collection of geom-
etry theorems proved mechanically. Technical Report 50, Institute for Computing
Science, University of Texas, Austin, July 1986.



Randomized Zero Testing of Radical Expressions 81

5. S.-C. Chou. Mechanical Geomtry Theorem Proving. D. Reidel Publishing Com-
pany, 1988.

6. P. Conti and C. Traverso. Proving real geometry theorems and the computation of
the real radical. In J. Richter-Gebert and D. Wang, editors, Proc. 3rd Int. Work-
shop on Automated Deduction in Geometry (ADG 2000), pages 109–120. Zurich,
Switzerland, Sept. 2000.

7. A. Ferro and G. Gallo. Automatic theorem proving in elementary geometry. Le
Matematiche, XLIII(fasc. I):195–224, 1988.

8. G. Gallo. La Dimostrazione Automatica in Geometria e Questioni di Complessitá
Correlate. Tesi di dottorato, University of Catania, Italy, 1989.

9. G. Gallo and B. Mishra. Efficient algorithms and bounds for Wu-Ritt characteristic
sets. In F. Mora and C. Traverso, editors, Effective Methods in Algebraic Geom-
etry (Proc. MEGA’90), volume 94 of Progress in Mathematics, pages 119–142.
Birkhäuser, Boston, 1991.

10. G. Gallo and B. Mishra. Wu-Ritt characteristic sets and their complexity. In Com-
putational Geometry: Papers from the DIMACS Special Year, volume 6, pages
111–136. AMS and ACM, New York, 1991.

11. J.-W. Hong. Proving by example and gap theorem. In Proc. 27th Annual Sympo-
sium on Foundations of Computer Science, pages 107–116. IEEE, 1986.

12. D. Kapur. Using Gröbner bases to reason about geometry problems. Journal of
Symbolic Computation, 2:399–412, 1986.

13. V. Karamcheti, C. Li, I. Pechtchanski, and C. K. Yap. A core library for robust
numeric and geometric computation. In Proc. 15th ACM Symp. on Computational
Geometry, pages 351–359. ACM Press, New York, 1999.

14. B. Kutzler and S. Stifter. Automated geometry theorem proving using Buchberger’s
algorithm. In Proc. Symp. on Symbolic and Algebraic Computation, pages 209–214.
ACM Press, New York, 1986.

15. C. Li. Exact Geometric Computation: Theory and Applications. PhD thesis,
Courant Institute of Mathematical Sciences, New York University, Jan. 2001. URL:
http://www.cs.nyu.edu/csweb/Research/theses.html.

16. C. Li and C. K. Yap. A new constructive root bound for algebraic expressions. In
Proc. 12th ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), pages
496–505. ACM and SIAM, 2001.

17. E. W. Mayr and A. R. Meyer. The complexity of the word problems for commu-
tative semigroups and polynomial ideals. Advances in Mathematics, 46:305–329,
1982.

18. K. Mehlhorn and S. Schirra. A generalized and improved constructive separa-
tion bound for real algebraic expressions. Technical Report MPI-I-2000-004, Max-
Planck-Institut für Informatik, Nov. 2000.

19. K. Ouchi. Real/Expr: Implementation of an exact computation package. Master
thesis, Department of Computer Science, Courant Institute of Mathematical Sci-
ences, New York University, Jan. 1997.

20. J. T. Schwartz. Probabilistic verification of polynomial identities. J. ACM, 27(4):
701–717, 1980.

21. W.-T. Wu. On decision problem and the mechanization of theorem proving in
elementary geometry. Scientia Sinica, 21:157–179, 1978.

22. W.-T. Wu. Some recent advances in mechanical theorem proving of geometries.
In W. W. Bledsoe and D. W. Loveland, editors, Automated Theorem Proving:
After 25 Years, volume 29 of Contemporary Mathematics, pages 235–242. American
Mathematical Society, Providence, Rhode Island, 1984.



82 Daniela Tulone, Chee Yap, and Chen Li

23. W.-T. Wu. Basic principles of mechanical theorem proving in elementary geome-
tries. Journal of Automated Reasoning, 2(4):221–252, 1986.

24. C. K. Yap. A new lower bound construction for commutative Thue systems, with
applications. Journal of Symbolic Computation, 12:1–28, 1991.

25. C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 35, pages
653–668. CRC Press LLC, 1997.

26. C. K. Yap. Towards exact geometric computation. Computational Geometry: The-
ory and Applications, 7:3–23, 1997. Invited talk, Proc. 5th Canadian Conference
on Computational Geometry, Waterloo, Aug. 5–9, 1993.

27. R. Zippel. Effective Polynomial Computation. Kluwer Academic Publishers, 1993.



Algebraic and Semialgebraic Proofs:
Methods and Paradoxes�

Pasqualina Conti and Carlo Traverso

Dipartimento di Matematica
Via Buonarroti 2
I-56127 Pisa, Italy

{conti,traverso}@dm.unipi.it

Abstract. The aim of the present paper is the following:
– Examine critically some features of the usual algebraic proof protocols,
in particular the “test phase” that checks if a theorem is “true” or not,
depending on the existence of a non-degenerate component on which it
is true; this form of “truth” leads to paradoxes, that are analyzed both
for real and complex theorems.
– Generalize these proof tools to theorems on the real field; the gen-
eralization relies on the construction of the real radical, and allows to
consider inequalities in the statements.
– Describe a tool that can be used to transform an algebraic proof valid
for the complex field into a proof valid for the real field.
– Describe a protocol, valid for both complex and real theorems, in which
a statement is supplemented by an example; this protocol allows us to
avoid most of the paradoxes.

1 Introduction

The methods of algebraic proof in Euclidean geometry, notably the Wu-Ritt
characteristic set method [30] and Kapur’s Gröbner basis method [19,20], have
been a striking success, as for example testified by [8], in which hundreds of
theorems in Euclidean geometry are proved. See also [9,21,22].

These methods start from an informally and incompletely specified theorem
(i.e. a theorem in which some implicit assumptions — e.g. the three vertices of
a triangle are not aligned — are made) and, through a series of steps, obtain a
formal statement of a theorem and a proof (or a disproof) of it.

Some of the steps of an algebraic proof method can be fully automated
through completely defined sub-algorithms, and some instead require human
expertise, without excluding that an automatic equivalent may be obtained
through expert systems.

To specify a method of algebraic proof one has to specify the different steps,
the algorithmic steps and the “expertise” steps, the languages in which the
different steps are expressed, etc; we call such a specification a protocol.
� Work partly performed within the Project “Tecniche per Immagini”, cluster C15,

progetto n. 7 “Sviluppo, Analisi ed Implementazione di Metodi Matematici Avanzati
per il Trattamento di Immagini”, with the contribution of MURST.

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 83–103, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



84 Pasqualina Conti and Carlo Traverso

A common feature of many such protocols is the following: the theorem
hypothesis and thesis are translated into systems of equations between the coor-
dinates of the geometric entities involved (usually points, since all entities may
be reduced to a set of defining points); these equations define two affine alge-
braic varieties, the hypothesis variety H and the thesis variety T ; some of the
components of the hypothesis variety are considered degenerate; a theorem is
considered true if a non-degenerate component (or every non-degenerate com-
ponent, depending on the protocol) of the hypothesis variety is contained in the
thesis variety. The theorem is hence completed by adding to the hypothesis some
non-degeneracy condition (usually in the form of an inequation) that allows to
discard the components on which the thesis is not true.

One of the most used proof protocols requires us to identify a construction;
this is both a serious limitation, since many interesting theorems cannot be for-
malized in this way, and human expertise is necessary to identify the construction
steps: this is especially well explained in [8].

The algebraic proof protocols in use have often two serious drawbacks:

– it is possible to prove “intuitively false” theorems, i.e. theorems that are true
only on a component whose points are all intuitively degenerate, and false
on components whose points are intuitively non-degenerate;

– the proofs are valid on an algebraically closed field (and not on the real field).

For some classes of theorems the proof of a theorem on the real ground
field, when the theorem is true on the complex field, is straightforward, but the
problem of the identification of such classes, to our knowledge, has not been fully
addressed. Moreover there are two classes of theorems on the reals for which the
standard methods of algebraic proof are useless:

– theorems that are false on the complex field;
– theorems for which the statement is impossible over the complex field, since

the statement uses the ordering in the real field.

For these classes of theorems other protocols have been developed, for ex-
ample real quantifier elimination [11,18,14]; these methods, however, are often
much slower than the purely algebraic methods that use Wu-Ritt characteristic
sets or Gröbner bases.

The aim of the present paper is the following:

– Examine critically some features of the usual algebraic proof protocols, in
particular the “test phase” that checks if a theorem is “true” or not, de-
pending on the existence of a non-degenerate component on which it is true;
this form of “truth” leads to paradoxes, that are analyzed both for real and
complex theorems.

– Generalize these proof tools to theorems on the real field; the generalization
relies on the construction of the real radical, both of ideals and of semi-ideals,



Algebraic and Semialgebraic Proofs: Methods and Paradoxes 85

the generalization to systems of equations and inequalities to the concept of
ideal of a polynomial ring for a system of equations.

– Describe a tool that can be used to transform an algebraic proof valid for the
complex field into a proof valid for the real field. This tool may fail, without
giving a proof that the theorem is false on the real field.

– Describe a protocol, valid for both complex and real theorems, in which a
statement is supplemented by an example, and allows us to avoid most of the
paradoxes. This protocol can prove a true theorem, but may fail to disprove
a false theorem.

– Give some hints of a more difficult problem concerning real theorems that
are algebraically false but for which a semialgebraic completion and a corre-
sponding proof might be automatically determined.

We do not discuss the choice of an algorithm for the steps of the protocols
described; hence, for example, we do not take a position between different char-
acteristic set or Gröbner basis methods, as far as they are usable to perform some
commutative algebra operation such as discovering the existence of a component
of an affine algebraic variety with some property needed by a protocol. The only
exception is a sketch of an algorithm for the computation of the real radical,
since practically efficient algorithms for this computation are not present in the
literature.

Many of the items discussed in the paper are not new; many issues are already
discussed in [8,30] as well as in more recent literature; our contribution proposes
a different accent that might help expanding the automatic deduction methods
into some of the less explored regions of algebraic and semialgebraic theorems,
notably the theorems that do not correspond to a construction. In particular, we
are as much interested in disproving false “theorems” (and avoiding to “prove”
false “theorems”) as in proving true theorems; this is especially important if one
wants to establish a protocol that can mechanically produce conjectures and
prove or disprove them without further human intervention.

2 Geometric Theorems and Algebraic Proofs

2.1 Proof Protocols

An algebraic proof protocol consists in a series of steps that, starting from an
informally stated theorem, produce a formal theorem with a proof or a disproof,
completing correctly the hypothesis with additional conditions that were implicit
or overlooked in the initial statement. Some protocols moreover start from the
theorem hypothesis only, and try to discover some possible thesis that, together
with some additional conditions as above, produces a true (and non-trivial)
theorem with a proof.

The aim of an automatic proof protocol is to have as much as possible of
these steps to be carried out without human intervention. This might be espe-
cially difficult for the translation from the initial informal statement expressed
in natural language into a formalized statement; for this an expert system might



86 Pasqualina Conti and Carlo Traverso

be conceived, but seems presently beyond reach. Recognizing and re-translating
into geometric form the additional conditions needed is also difficult, especially
if an automatic translation is required, but can sometimes be done,

A proof protocol may consist, for example, in the following phases:

1. Formalization: give a formalized expression of the hypothesis and the thesis
as conjunctions of relations between geometric entities (points, lines, conics,
etc.).

2. Formalization through points: translate into a form involving only points,
(with the possible addition of auxiliary points).

3. Algebraic translation: translate into a form involving polynomial equa-
tions between the coordinates of the points.

4. Test phase: prove that the theorem can be completed with algebraic side
conditions in the form of inequations yielding a true theorem.

5. Algebraic completion: find inequations yielding a true theorem.
6. Geometric completion: find geometric conditions (side conditions) to add

to the hypothesis to ensure the truth of the theorem.
7. Formal proof : this can be either an algebraic proof (algebraic manipulation

of the coordinates) or an human-readable geometric proof, or something in
between.

As an example of an application of such a protocol, consider the theorem:

Theorem 1. The bisectors of the angles of a triangle meet in the center of the
in-circle.

This is first translated into a statement like:

Theorem 2. Let A, B, C be three points, let AB, BC, CA be lines connecting
them, let a (resp. b, c) be a line through A (resp. B,C) and a point equidistant
from AB and CA (resp. AB and BC, BC and CA); let D be a point on a and
b; then D lies on c and the circle with center D and tangent to AB is tangent
to BC and CA.

Remark here that we have avoided to quote the line, the point, etc. to avoid
implicit uniqueness assumptions: the language in which we have to specify these
translations does not allow this form of statements.

The theorem as expressed now is false for several reasons: it does not rule
out degeneracies (like the three points A, B, C being aligned) but is also false if
two bisectors are internal and one is external: this is due to a first translation
that is not clever (we cannot expect an automatic translation to be clever; a
clever translation requires a clear view of the geometric situation, and might be
available only to somebody — man or machine — that knows the proof).

The theorem is now translated, eliminating any reference to lines and circles,
into a theorem on points only of the type:

Theorem 3. Let A, B, C be points, P1 (resp. P2, P3) be a point equidistant from
the lines through A, B and A, C (resp. A, B and B,C, A, C and B,C); then
P1, P2, P3 coincide, call it D; let moreover Q1 (resp. Q2, Q3) be a point on a line



Algebraic and Semialgebraic Proofs: Methods and Paradoxes 87

passing through D and perpendicular to a line passing through A, B (resp. A, C,
B,C). Then the distances DQ1, DQ2, DQ3 coincide.

(This theorem too, being a translation of the previous theorem, is of course
logically false.)

The theorem hypothesis and thesis are now translated into sets of equations
between the coordinates of the points A, B, C, P1, P2, P3, D, Q1, Q2, Q3, and one
has to prove that a component of the hypothesis variety defined by the ideal of
the set of hypothesis equations is contained in the thesis variety. This is the test
phase.

We have then to find algebraic side conditions, and to discover that the initial
translation was incomplete: one has to avoid that A, B, C are aligned and that
c is perpendicular to the line through C and P1; hence the correct statement is

Theorem 4. Let A, B, C be three points, not aligned, let AB, BC, CA be lines
connecting them, let a (resp. b) be lines through A (resp. B) and a point equidis-
tant from AB and CA (resp. AB, BC); let a and b meet in a point D; then D
is equidistant from AC, BC, and the circle with center D and tangent to AB is
tangent to BC and CA.

This is, however, not yet an accurate translation of the initial statement,
since a conditions implicit in it (that the bisectors are internal to the triangle)
has not been taken into account; this hypothesis however cannot be formalized
algebraically, since it needs an ordering on the ground field, and the four tri-
tangent circles are in the same algebraic component anyway. We have proved
a slightly less general theorem than that we intended. In other cases, however,
we may end with a completely different theorem than the one that was initially
stated; sometimes this might end up with a proof of the truth of a theorem that
in its initial statement is intuitively false (we’ll give an example later).

The test phase is the one that is usually considered the phase providing
the proof of the truth of the theorem. Several paradoxes arise however from
considering true a theorem that has passed the test phase. The test phase usually
consists in proving that the affine algebraic variety defined by the polynomials
in which the hypothesis has been translated (the hypothesis variety) has a non-
degenerate (algebraic) component on which the theorem is true (an alternative
being to require that the theorem is true on every non-degenerate variety); the
definition of non-degeneracy is a part of the protocol.

We will not formalize further the notion of proof protocol; and we will con-
centrate mainly on the test phase.

2.2 Configuration Equational Theorems

We consider a restricted class of theorems in Euclidean geometry that we call
configuration equational theorems. These theorems have the form:

h1 ∧ h2 ∧ . . . ∧ hn ⇒ k1 ∧ k2 ∧ . . . ∧ km



88 Pasqualina Conti and Carlo Traverso

where hi,kj are algebraic relations, i.e. relations between geometric entities
(points, lines, circles, . . . ) that can be translated into the vanishing of one or
more polynomials in the corresponding coordinates.

It is usual to represent all the relations as relations between points. The
hypothesis and the thesis of a theorem of this kind are hence the conjunction
of equations between the coordinates of a set of indeterminate points. In our
examples we will use only relations of this type, but it is possible to handle
other geometric entities through their coordinates; for example, handle lines in
space through their Grassman coordinates. In this case of course the Grassman
equations have to be considered.

Some of the relations considered between points (the ones that we use in our
examples) are the following (we use the notation :≡ to denote that the right
hand side is a definition of the left hand side, and the coordinates of a point
denoted by an uppercase letter X are denoted by the corresponding lowercase
letters (x1, x2)):

– X, Y, Z are aligned:

col(X, Y, Z) :≡ det


x1 y1 z1

x2 y2 z2
1 1 1


 = 0

– Z is the midpoint of (X, Y ):

Z = mid(X, Y ) :≡ (x1 + y1 = 2z1, x2 + y2 = 2z2)

– (X, Y ) and (Z, T ) are equidistant:

XY = ZT :≡ (x1 − y1)2 + (x2 − y2)2 = (z1 − t1)2 + (z2 − t2)2

– The lines through (X, Y ) and (Z, T ) are parallel:

XY//ZT :≡ det
(

x1 − y1 z1 − t1
x2 − y2 z2 − t2

)
= 0

As a first definition of degeneracy, we consider a component of the hypothesis
variety non-degenerate if it is contained in the thesis variety; hence the test phase
has to test that a component of the hypothesis variety exists that is contained
in the thesis variety. An algebraic proof performs computations in the ideals
defined by the hypothesis and thesis conditions to prove this fact. A stricter
definition of non-degeneracy is considered in the construction protocol, that will
be defined later.

In the paper [5], in these proceedings, five different “levels of truth” are
considered; this classification can be seen as a combination of two criteria: con-
sidering a theorem true if it is verified on every (on at least one) non-degenerate
component; and defining every component non-degenerate, or use the definition
of non-degeneracy of the construction protocol. His fifth level of truth (rarely
true, when the set of points where the theorem is true is not empty) does not



Algebraic and Semialgebraic Proofs: Methods and Paradoxes 89

match our definition of truth, and every theorem that can be translated into
homogeneous algebraic equations in the coordinates is at least rarely true (being
verified at least when all the coordinates coincide).

After the test phase, one has to identify (algebraic) additional conditions (in
the form of inequations, φ(X) �= 0, whereφ is a polynomial in the coordinates)
that ensure that the thesis is verified; these are called side conditions, and usually
one aims at a geometric description of these conditions, e.g. in the form of a
statement of the form “Pi, Pj , Pk are not aligned”.

To obtain a degeneracy condition, it is sufficient to find a polynomial van-
ishing on those components that are not contained in the thesis locus. This
polynomial is of course not unique, and expressing it in an optimal way is the
key of the success of the further steps of the protocol. Hence the logically true
theorem that is obtained at the end is not unique.

2.3 Construction Protocols

A construction in dimension d is given by

– a sequence P of indeterminate points (P1, . . . , Pn), each one being a d-tuple
of indeterminate coordinates;

– for every i, 1 ≤ i ≤ n, a set Λi,1, Λi,mi of geometrical conditions on the
points P1, . . . , Pi with the restriction that for every i, the corresponding
polynomials in the coordinates of the Pi are algebraically independent on
the field generated by the coordinates of P1, . . . , Pi−1.

The case d = 2 is usual, but everything can be carried over unchanged to any d.
The construction protocol requires us to express the hypothesis of a theo-

rem in the form of a construction, and gives a corresponding definition of non-
degeneracy.

If P = (P1, . . . , Pn) is a construction, let Pi = (P1, . . . , Pi) be a sub-construc-
tion; let H be the hypothesis variety, and Hi the corresponding hypothesis va-
rieties for the sub-constructions Pi; a component H̄ of H is non-degenerate if
for every i the natural projection H̄ → Hi induced by the natural projection
(P1, . . . , Pn) → (P1, . . . , Pi) is generically surjective on a component of Hi.

The construction protocol is often specified asking us to identify a set of
free variables; our definition is more intrinsic and invariant under change of
coordinates; moreover one can include a rule to choose the free variables once
the coordinates are fixed — for example choose the first such coordinates that
are algebraically independent. This reduces the part on which human expertise
is needed to a more geometric part, leaving the algebraic specification to the
automatic phase. When free variables are chosen, one can define non-degeneracy
by a projection on the free variables (testing that the variables are parameters
in a component); this is clearly equivalent to our formulation.

A construction theorem that is true on a non-degenerate component is often
called generically true, on the ground that the construction is possible on the
generic point of the parameter space; in our opinion the term is misleading, since



90 Pasqualina Conti and Carlo Traverso

it cannot be applied outside of construction theorems, when there is no a-priori
definition of the parameters (not even of the number of parameters, since the
intuitively non-degenerate components may have different dimensions). And the
non-degeneracy of a component may depend on the choice of the construction
(we will show examples of both later).

Transforming an informally stated theorem into a construction theorem is
often hard, and sometimes impossible; in any case, human expertise is needed;
see, for example, Wu’s ingenious specification for the Morley trisector theorem
([8], p. 39; we remark, moreover, that the construction given there does not match
the definition of construction given in the same book); we quote moreover from
[8], p. 21 (immediately after having shown how to prove a false theorem):

“The experienced reader might immediately find that the second con-
struction of the configuration is absurd.
Our prover requires the user’s responsibility not to introduce “absurd”
constructions similar to above. Though for the above absurd construction
and more hidden ones, some heuristics are built into our prover to detect
them and give the user warnings, we do not have a general definition of
all “absurd” constructions. We require the user to take full responsibility.
To specify construction sequence of a geometric statement of construc-
tive type is actually to specify the exact meaning of the statement. Thus
the above requirement of the user’s responsibility by our prover is rea-
sonable, because the user should understand the meaning of the geometry
statement before starting to prove it” (our emphasis).

We will show later that transforming an hypothesis into a construction might
sometimes hide useful theorems.

3 Paradoxes

Paradox: a statement or proposition seemingly self-contradictory or ab-
surd, and yet explicable as expressing a truth. [29]

For example, Zeno’s paradox shows that if space is continuous, time should
be continuous too; and Russel’s paradox explains that extensional definitions of
sets should be bounded.

The definition of “truth” of a geometric theorem (truth on a component)
may have paradoxical consequences: it may happen that

1. p ⇒ q is true, p ⇒ r is true but p ⇒ q ∧ r is false;
2. p ⇒ q is true, q ⇒ r is true but p ⇒ r is false;
3. p ⇒ q is true but p ∧ r ⇒ q is false.

The possibility of such paradoxes is obvious; for example in the first paradox
it may happen that p is true on a component on which q is true and r is false
and conversely, but q and r may be generically incompatible (compatible on a
proper subvariety of the hypothesis variety). Nevertheless, this possibility is often



Algebraic and Semialgebraic Proofs: Methods and Paradoxes 91

overlooked: for example, some protocols consider only theorems whose thesis can
be expressed by a unique equation; but this is not always the case: for example,
to express a thesis that a point is the midpoint of two other points, more than
one condition is required, and testing the conditions separately is insufficient in
view of the first paradox.

The paradoxes as usual vanish with a proper formalization. When we state
that “p ⇒ q is true” our notation is ambiguous; if “is true” means “can be
derived by a system of axioms” then we can use the modus ponens inference
rule; if “is true” means “passes an algebraic test (on a component)” we cannot.
The paradoxes are ruled out if one defines truth as truth on every non-degenerate
component, but this throws away the possibility of proving several interesting
theorems, like the above quoted Morley trisector theorem.

A simple example of the third paradox is the following: given 4 points in
the plane, P1, P2, P3, P4, that constitute a parallelogram, (i.e. (P1P2//P3P4) ∧
(P1P3//P2P4)) then the two diagonals meet in a point that is the midpoint of
both diagonals. If we add the condition that P1, P2, P3 are aligned, the theorem
becomes false, since the diagonals coincide, and a point where they meet can be
any point on them. This example however does not correspond to a construction.

For a construction theorem we require that the thesis is verified for a non-
degenerate component. Hence a theorem may be true, but not true when con-
sidered as a construction theorem; and the truth of a construction theorem may
depend on the ordering of the set of points.

Consider the construction (P1, P2, P3, P4), with the conditions

– col(P1, P2, P3), P1P2 = P1P3;
– P4 = mid(P2, P3).

Both P4 = P1 and P4 = P2 are true, but (P4 = P1) ∧ (P4 = P2) is false. This
happens whenever there is more than one component that is non-degenerate
with respect to a construction.

Consider now (P1, P3, P2, P4) with the same conditions; this is still a con-
struction, but now the component P1 = P3 is degenerate; hence the theorem
P4 = P1 is false. Hence the truth of a construction theorem may depend on the
ordering of the points.

Consider a continuation of the construction with P5, P6, P7, and the condi-
tions:

– P1P5 = P4P5

– P1P6 = P4P6

– P1P7 = P4P7

We have now two components, one with P1 = P4 and the triangle P5, P6, P7
non-degenerate, and the other with P2 = P4 and the triangle P5, P6, P7 degener-
ate; both components are hence degenerate or non-degenerate depending on the
ordering. Moreover the component with P1 = P4 (degenerate if the constructions
starts with P1, P3, P2) supports the following useful theorem:



92 Pasqualina Conti and Carlo Traverso

Theorem 5. Let P5, P6, P7 be points in the plane, and let P1 be another point.
If P4 is a point in the plane having from P5, P6, P7 the same distances as P1
then P4 = P1 (unless P5, P6, P7 are aligned).

A further simple reasoning gives for this construction (P1, . . . , P7) a paradox
of the second type: let q be the hypothesis given by the construction, let p be
q ∧ (P1 = P4), and let r be col(P5, P6, P7); then p ⇒ q and q ⇒ r are true, but
p ⇒ r is false.

3.1 Real Theorems vs. Complex Theorems

There are several differences between theorems in complex Euclidean geometry
and theorems in real Euclidean geometry. Some are evident:

– theorems in real Euclidean geometry that use inequalities do not make sense
on the complex field;

– existence theorems true on the complex field might be false on the reals: e.g.,
“given three segments, a triangle exists having sides of the same lengths as
the three segments”.

It is less evident that there are purely equational theorems such that the truth
on the real field does not imply the truth on the complex field, and conversely.
Hence a purely algebraic proof can neither prove nor disprove a real theorem,
unless we have additional results.

In particular, the existence of purely equational theorems true over the com-
plex field and false over the real field is a paradox: the hypothesis does not have
quantifiers, all the variables are free, and adding the reality condition is hence
simply adding an hypothesis — a paradox of the type p ⇒ q is true but p∧r ⇒ q
is false, where r is the hypothesis that the free variables take real values.

3.2 A Simple Example

We give simple examples of theorems true on the real field and false on the
complex field and conversely.

Consider the following construction of 5 points:

1. P3 is the midpoint of P1 and P2;
2. P4 is the midpoint of P1 and P3;
3. P5 is equidistant from P1 and P2, and has from them distance equal to the

distance of P1 from P4.

The thesis that P1 = P2 is true on the real field (and false on the complex
field, it is true only on a degenerate component) since if P1 and P5 are different,
then taking P1, P5 as unit distance then P1, P2, P5 constitute a triangle with
sides of lengths 4,1,1, and this is impossible on the real field (but possible on the
complex field).



Algebraic and Semialgebraic Proofs: Methods and Paradoxes 93

Continue the construction above with one more points as follows:

1. P6 is equidistant from P1 and P2.

The thesis that P3, P5, P6 are aligned is true on the complex field: P3, P5, P6
lie on the axis of P1, P2; but it is false on the real field since the only possibility
is that P1 and P2 coincide, hence the two last conditions are empty.

The hypothesis variety on the reals has only one component, that corresponds
to a degenerate component of the complex variety.

The complex construction, while on the reals, should not be considered a
construction, since conditions involving P5 imply a condition on P1, P2; this
implication is however not equationally algebraic, depending on an inequality
(1 + 1 < 4); but a possible definition of real construction built on this consider-
ation is quite difficult to verify.

3.3 A Weird Example

We now consider a configuration that is not a construction, and that shows that
the decision on degenerate configurations is much harder: depending on the thesis
one would choose a different component as non-degenerate. The configuration
also shows an essential difference between the real and complex cases.

This theorem only requires collinearity and parallelism, hence it is an affine
configuration; it is also possible to build a more complex configuration with the
same properties that only uses collinearity, i.e. with a projective configuration.

Consider 8 points P1, . . . , P8 with the following condition (called 83):

Pi, Pi+1, Pi+3 are collinear (where Pi+8 = Pi).

The condition 83 is not a construction, and no construction can contain an
83 condition, since every point is involved in three alignment conditions.

A theorem of Maclane states that if the eight points are real and distinct,
then they are collinear.

On the complex field, the set of configurations has 10 components:

– A component H10 of dimension 10, composed of 8 aligned points.
– A component H9 of dimension 8, in which the points P1, P3, P5, P7 are arbi-

trary, and for every generic choice of them one has two possible configurations
for P2, P4, P6, P8; if P1, P3, P5, P7 are real, the two choices of P2, P4, P6, P8
are complex conjugate; the real points of H9 constitute 8 components H9,i

of codimension 7, composed of configurations in which 5 points coincide.
– Eight components Hi, 1 ≤ i ≤ 8 of dimension 8, Hi is composed of config-

urations in which Pi+1 = Pi+3, Pi+2 = Pi+7, Pi+5 = Pi+6, Pi+1, Pi+2, Pi+4
and Pi+5 are aligned, Pi is arbitrary.

See e.g. [12,10]. In any case for a real configuration the points P1, P3, P5, P7 never
constitute a proper parallelogram.

The theorem stating that P1, . . . , P8 are collinear is true on the reals (the
exceptional locus consists of the components Hi, H9,i, 1 ≤ i ≤ 8 in which the 8
points are not distinct).



94 Pasqualina Conti and Carlo Traverso

The theorem is intuitively false on the complex field, since the component H9
cannot be considered “degenerate”. But if we adhere to our definition of (alge-
braic) truth, the theorem should be considered true: an example of an obviously
false theorem that is true.

Consider now points P1, . . . P9 such that P1, . . . P8 satisfy the 83 condition,
P1, P3, P5, P7 build a parallelogram, and P9 is collinear with P1, P5 and P3, P7.
The only possible real configuration has 9 aligned points (this can be checked
considering all the possible configurations of the real theorem, see [12]).

The thesis that P9 is the midpoint of P1 and P5 is true on the complex field
and false on the real field: the complex component that corresponds to a proper
parallelogram has no real point (more precisely, its real points are contained in
another component that is not contained in the thesis locus).

4 Partial Conclusions

Here are some of the partial conclusions that we want to draw at this point:

– Testing a theorem is only a part of the way to the statement of a true
theorem; the theorem that will be eventually proved may be unexpectedly
different from the initial informal statement: we might end proving something
that is so different from the intuitive meaning of the starting formulation
that what we prove, although formally true, could be described as a “false
theorem”.

– Constructions are adequate sometimes, but not always; they are no guarantee
that a real theorem can be derived from a complex theorem.

– The result of the testing of a theorem depends from the protocol; not every
protocol is suitable for every theorem.

5 Proving Real Theorems: The Real Radical

We have seen that testing a theorem is insufficient to determine a logically true
theorem; in the rest of the paper however we will concentrate on the analysis of
some methods of algebraic proof, and on the extension of these methods to the
real ground field (or more generically to ordered fields).

5.1 Algebraic Proof Tools

We have seen that in an algebraic proof we have to show that a component of
the hypothesis variety is contained in the thesis variety.

Basic tools to identify components are transporter and saturation (see e.g.
[16,6]).

Let I, J be ideals of a noetherian ring R; the transporter I : J and the
saturation I :∗ J are defined as follows: I : J = {a ∈ R | aJ ⊆ I}; I :∗ J
denotes the (constant) ideal I : Jn for n sufficiently large. See [7] for an account
on algorithms for the computation of I : J and I :∗ J .



Algebraic and Semialgebraic Proofs: Methods and Paradoxes 95

Algebraically, I : J enlarges the primary components corresponding to associ-
ated primes containing J , and I :∗ J deletes such components; if the ground field
is algebraically closed, and R is a polynomial ring, the associated components
of the radical correspond to the irreducible components of the corresponding
variety, hence computing I : J if I is radical, or computing I :∗ J in general
corresponds to killing the components contained in the locus of J .

To prove that a theorem is true, let H be the hypothesis ideal, and T the
thesis ideal; one of the two following computations is sufficient.

– Let H ′ be the radical of H. Prove that H ′ : T �=H ′.
– Prove that H :∗ (H :∗ T ) �= (1).

Indeed, let H be the locus of H and T be the locus of T ; the locus of H ′ : T
is equal to the closure of H \ T , and the locus of H :∗ (H :∗ T ) is the closure of
H \ (H \ T ), hence coincides with the union of the components of H contained
in T .

The first computation is much harder, but can be generalized more easily.
When we are over the real field, we no longer have the correspondence be-

tween associated prime ideals of the radical and irreducible components, hence
the methods are not sufficient.

The first method however can be straightforwardly generalized to the real
case taking the real radical instead of the radical: the problem is that the com-
putation of the real radical is much harder and less known. Eventually, in Section
5.5 we will generalize the second method too.

Let K be an ordered field, and R its real closure. The real radical of an ideal
I ⊆ K[X] is the largest ideal

√
I that has the same zero set as I in R.

With this definition, the first criterion above can be generalized to the real
field:

– Let H ′ be the real radical of H. Prove that H ′ : T �=H ′.

5.2 Semi-ideals, Theorems with Inequalities

The notion of real radical can be generalized to semi-ideals, that generalize the
concept of ideal taking into account inequalities.

A sign condition is a predicate p#0 where p is a polynomial and # is one of
>,≥, <,≤, =, �=. A sign condition isstrict if # is >, < or �=.

A semi-ideal is (I, σ1 . . . , σn), where I is an ideal and the σi are sign con-
ditions. A semi-ideal defines a locus (a semialgebraic set) and one defines its
radical as the largest ideal J such that (J, σ1 . . . , σn) has the same locus.

The considerations of semi-ideals allows us to introduce inequalities in the
hypothesis of theorems; we do not investigate here the straightforward general-
ization (with some extra difficulties one can introduce inequalities in the thesis
too).

Semi-ideals are also needed in the algorithms for the real radical, even in the
case that that we only need to compute the real radical of an ideal.



96 Pasqualina Conti and Carlo Traverso

5.3 Computation of the Real Radical: An Outline

The real radical can be defined non-constructively using the theorem [4]:

Theorem 6 (Real Nullstellensatz). Let I be an ideal of R[X], and f ∈ R[X]
vanishing identically on the real locus of I; then ∃m, n ∈ N, f1, . . . , fm ∈ R[X]
such that f2n +

∑
i f2

i ∈ I.

The converse implication is of course true. This theorem, however, is non-
constructive, as opposed to the Hilbert Nullstellensatz, which implicitly gives an
algorithm to test radical membership; the algorithms for the computation of the
radical cannot be mimicked to construct the real radical or to test real radical
membership. One of the difficulties is the following: while the radical commutes
with separable extensions (if J =

√
I ⊆ K[X] and K ′ is a separable extension of

K then J ⊗ K ′ =
√

I ⊗ K ′) this is not true for the real radical: the real radical
of (x3 − 2) is (x3 − 2) or x − 3

√
2 depending on the existence of 3

√
2 ∈ K.

Algorithms for the computation of the real radical have been discovered only
recently; most of the algorithms in the literature are theoretical, and unfeasible
even for very simple examples, see [3], and [15,26]; the main concern of these
paper is just to prove complexity bounds. See however also [2], that describes a
feasible algorithm for a special class of ideals.

An algorithm that is more attentive to practical complexity than to theo-
retical complexity is described in [13]; see also [27,1,28] for an important sub-
algorithm with a slightly different approach. We outline the algorithm of [13],
which, following the classical algorithms of Morse theory [23], tries to minimize
the use of operations that, while innocent-looking from the theoretical complex-
ity point of view, may make unfeasible a computation that would be otherwise
feasible.

The computation of the real radical is much harder than the computation
of the radical; as opposed to the computation of the radical, which requires an
equidimensional decomposition, it requires an irreducible decomposition; the key
ingredient is the following theorem:

Theorem 7. Let V be a complex algebraic variety, defined and irreducible over
the real field. If V has a real point P that is non-singular as a complex point
then the set of real points is Zariski dense in V , hence the defining ideal of V
coincides with its real radical.

The proof of the theorem is simple and classical: for the implicit function
theorem the fixed locus of the complex involution at the point P ∈ V has real
dimension equal to the complex dimension of V ; hence the set of real points is
Zariski-dense.

A common feature of most algorithms for the real radical is the following:
decompose a semialgebraic set into subsets for which the defining ideal is easy
to compute; then take the intersection of these ideals.

The basic idea of our algorithm is the following: decompose V into compo-
nents Vi irreducible over the ground field, (more explicitly, find a prime decom-
position of the defining ideal) and let Si be the corresponding singular locus



Algebraic and Semialgebraic Proofs: Methods and Paradoxes 97

(algebraically defined: the locus where the rank of the Jacobin ideal of a set of
generators is not maximal); if Vi \ Si is empty, replace Vi with an irreducible
decomposition of Si. At the end we get a decomposition of the real locus of V
into irreducible algebraic varieties whose defining ideal coincides with its real
radical. The real radical of the original ideal is the intersection of these radicals.

To prove emptiness of Vi \ Si it is sufficient to prove the emptiness of Vi \ S′
i,

where S′
i is any subvariety of V of codimension 1 containing Si, since if the real

locus is contained in a 1-codimensional subset then by Theorem 7 it is contained
in the singular locus.

Vi\S′
i is defined by a semi-ideal. The proof thus reduces to a test of emptiness

for semi-ideals; this can be split in two parts:

1. Prove that the locus of the semi-ideal is compact;
2. Prove that a function has no critical point (no point where the differential

vanishes).

Since the locus of the critical points is recursively of smaller dimension (unless
the variety has a very special position, to be handled separately) the emptiness
can be handled recursively, reducing to dimension 0, where one can use methods
for real root counting, see e.g. [24,17].

The function can be any polynomial; we take a coordinate function, that
has the advantage of being linear, hence does not increase the complexity of
the calculations; if the semi-ideal is an ideal (no inequalities), a more classical
alternative (see [27,1] and also [23]) takes a non-negative function (a sum of
squares) thus avoiding the need of proving compactness. With classical methods
(Rabinowitz trick) one can transform inequalities into equalities, but at the cost
of adding a variable and a non-linear equation, hence threatening feasibility.

To prove the compactness of a semialgebraic set S defined by a semi-ideal
I = (I, σ1 . . . , σn), one can prove that it is closed in the projective space, and
for this it is sufficient to prove that it is closed in every affine chart.

Given a semi-ideal I = (I, σ1 . . . , σn), define Ij = (I, σ1 . . . , σn, σ̃j), where
σ̃j is defined as follows: let ε be a positive infinitesimal, i.e. a new indeterminate
added to the ground ordered field K, positive and smaller than any positive
element of K; then:

– if σj is gj > 0 then σ̃j is gj = ε;
– if σj is gj < 0 then σ̃j is gj = −ε;
– if σj is gj �= 0 then ˜σj is gj = ±ε;
– in every other case σ̃j is 1 = 0, i.e. Ij has empty locus.

One proves that if every Ij defines an empty semialgebraic set, then S is
closed, and if S is compact then every Ij has empty locus. Hence closedness is
recursively reduced to emptiness. This proof is the key step of the theorem; since
it mixes topological arguments with non-Archimedean arguments (use of the
infinitesimals), the Tarski-Seidenberg quantifier elimination theorem is largely
used; but this is only for the proof, no quantifier elimination is needed for the
algorithm, hence the efficiency is not impaired.



98 Pasqualina Conti and Carlo Traverso

Two remarks on combinatorial complexity:

– Every gj �= 0 gives rise to agj = ±ε, that can be reduced either to g2
j = ε2

or to two disjoint cases gj = ε and gj = −ε. The best way is the second,
although it appears of exponential complexity: the two cases gj = ε and
gj = −ε are algebraically identical, the difference being only in the real root
counting phase, that can anyway be handled simultaneously for all the signs
of the added ε. Adding a quadratic equation instead doubles the degree,
increasing the complexity of all the subsequent steps.

– There is an element of exponential growth in the recursive handling of the
affine charts; however the computations are anyway exponential in the num-
ber of variables in average case complexity, and even doubly exponential in
worst case complexity, and the recursion reduces the number of variables
cutting with a hyperplane, hence the most time-consuming parts of the al-
gorithm are the top-dimensional ones.

Moreover, in general, for evaluating the practical performance of an algorithm
requiring computations with polynomial ideals, one has to remember that the
limiting factor is usually space, not time, and computing a very large number of
small problems may succeed, while a single slightly larger problem may fail for
space problems.

A full description of the algorithm is in [13].

5.4 A Simpler Algorithm for the Proof of Real Theorems

To (algebraically) prove a theorem it is not necessary to compute the real radical:
we do not need to identify all the components of the real locus, we only need to
prove that a component is contained in the locus of the thesis. As soon as this
is achieved, we can exit the algorithm.

It is hence possible to avoid some of the more difficult points of the algorithm,
in particular to avoid finding an irreducible decomposition (an equidimensional
decomposition is sufficient, and is anyway needed for the computation of the
radical). And we do not need to investigate smaller dimensional components
when we have identified one component with smooth real points.

The algorithm strictly follows the real radical algorithm, using unchanged
some of its sub-algorithms, and simplifying it at some points. We leave the
details to a further paper.

5.5 A Criterion to Pass from a Complex Proof to a Real Proof

From the algorithms for the computation of the real radical, in particular The-
orem 7, it is clear that the following criterion holds:

Theorem 8. Let H be the hypothesis variety, and T the thesis variety of an
algebraically true complex theorem. Let Ĥ be the Zariski closure of H\T . Assume
that P is a smooth real point of the Zariski closure of H \ Ĥ. Then the theorem
is algebraically true on the real field.



Algebraic and Semialgebraic Proofs: Methods and Paradoxes 99

Indeed P is contained in a component of H that is contained in T ; this
component, having a smooth real point, is a component of the real radical.
Hence the real theorem is algebraically true.

We remark that it is not sufficient to prove that P is smooth in H and
contained in T , since it may happen that P is a smooth point of a component
on which the thesis is not generically true; nor it is sufficient to find a point
of a component of the complex variety where the theorem is true, since it may
happen that this complex component has a real locus fully contained in the
intersection with another component having real points on which the theorem is
false.

A simple example for both remarks is the following: let H = (xz, y2z + z3) =
(x, y2 +z2)∩ (z), T = (x). We have R

√
(x, y2 + z2) = (x, y, z), R

√
(z) = (z) hence

R
√

H = (z), hence the complex theorem is true and the real theorem is false; but
(0, 1, 0) is a smooth point where the thesis is true, and (0, 0, 0) is a real point of
(x, y2 + z2) that is the component of the hypothesis variety where the theorem
is true.

To check the hypothesis of Theorem 8 one has to find a defining ideal of
H\Ĥ; one such ideal in the algebraically closed case is H :∗ (H :∗ T ). This proof
criterion can hence be seen as a generalization of the second proof criterion in
Section 5.1.

Usually, it is fairly easy to provide a real point P ∈ H if the theorem is true
over the real field: it is just an example of the theorem. Checking the smoothness
is just a rank computation of the Jacobian matrix at the chosen point. We have
moreover to check that P is a point of a complex component contained in T ; this
corresponds to checking that the maximal ideal corresponding to P contains the
ideal H :∗ (H :∗ T ).

If in every component on which the thesis holds we do not have a smooth
real point, the truth of the theorem on the real field remains undecided: it may
happen that a real component of I contained in the singular locus is contained
in the thesis locus. The real theorem will be true if and only if this component
is not contained in a larger real component of H. Here are two examples:

– for the configuration of 3.2, all the real configurations are contained in the
singular locus (since otherwise they would be dense, but we have seen that
for them we have P1 = P2, that is not verified for the generic complex point).
The thesis that P1, P2, P3 are aligned is true without exceptions;

– the configuration of 3.3 is an example of the other possibility, since the
real part of the component of the complex variety satisfying the thesis is
contained in another component, composed of 9 aligned points, for which
the thesis is not verified.

To decide the issue when a smooth point is not available (either it does
not exist or we have been unable to find it) we can proceed with the following
(probabilistic) algorithm:

– compute I = H :∗ (H :∗ T ) (that is an ideal defining H \ Ĥ);



100 Pasqualina Conti and Carlo Traverso

– find g ∈ H :∗ T , g /∈ H, i.e. a polynomial vanishing on Ĥ but not identically
vanishing on H;

– consider the semi-ideal I = (H, g �= 0) and prove that the locus ofI is
non-empty.

This proves the existence of a real point P not contained in any component
where the theorem is generically false; hence in every component containing P
the theorem is true; but this neither provides an example nor proves that an
algebraically smooth example exists; it is however sufficient to test the theorem.

The algorithm can be made deterministic by repeating it for g in a set {gi}
of generators of H :∗ T . In that case if every (H, gi �= 0) is empty we have a
proof of the falseness of the theorem.

To summarize, the test method outlined in this section can be viewed as a
generalization of the second criterion in Section 5.1: after proving that the ideal
I = H :∗ (H :∗ T ) is not trivial, to test the theorem on the real field one can
either prove that a smooth real point exists, or prove that a real point that is
not a point of H :∗ T exists. In the test of a complex theorem, the second part
is unnecessary because of Hilbert’s Nullstellensatz.

6 A Protocol Proposal: Theorems with Examples

The real proof criterion of Theorem 8 suggests a slightly different specification
for configurational theorems; consider an ideal H generated by a set of configura-
tional geometric equations, and let P be a configuration satisfying the conditions
(i.e. in the locus H of H), an example. If a point P is smooth, (i.e. the local-
ization of C[X]/H at P is a regular local ring) then a unique component of the
hypothesis variety contains P, and this component is declared non-degenerate.
More generally, we may give a set Pi of examples, and consider non-degenerate
any component containing one of the smooth examples. The test points may also
be given approximately, provided that they are far from the singular locus and
near to an unique component: this can be tested numerically.

We remark that giving a smooth point allows us to find a set of parameters:
a choice of coordinates exists such that the projection at the smooth point is
a surjective diffeomorphism, and we can take these coordinates as independent
variables, the other being dependent (on the component under consideration).
This generalizes the usual construction protocol, but only on an a posteriori ba-
sis: the existence of the independent variables is a conclusion, not an hypothesis;
and if several test points are given, the set of independent variables may vary
for different components (they may even be of different cardinality — the 83
configuration is an example).

Theorems in which a unique smooth example of the hypothesis is given are
unambiguous, and all the paradoxes discussed above are solved. The praxis of
exemplifying theorems with a drawing is moreover current in Euclidean geom-
etry; a drawing is a smooth example, since (and if. . . ) it is approximate: the
points can be slightly moved provided that the geometric relations indicated by



Algebraic and Semialgebraic Proofs: Methods and Paradoxes 101

the lines and circles included in the drawing are maintained; this movement re-
alizes the representation of a Euclidean neighborhood of the example, showing
the smoothness. We remark that this protocol is already implicitly implemented
in the system Cinderella [25]: when you draw a construction this corresponds to
an example; the deductions made by the system correspond to finding a thesis
that is valid on the component of the construction defined by the example, since
the movements used to find the random examples on which the hypothesis is
tested avoid the singular locus, hence remain on the same algebraic component.

6.1 The Real Case: Further Extensions

In a theorem with example, if the complex theorem is true, and the example
point is real, the real theorem is true too.

In the real case it may be possible, following these ideas, to develop proof pro-
tocols for theorem with examples that require inequalities in the side conditions
(hence are algebraically false).

Consider for example the following theorem:

Theorem 9. In a triangle, the radius of the in-circle is not greater than half
the radius of the circumcircle.

On the complex field the theorem cannot be stated algebraically since it in-
volves inequalities; if one allows complex conjugation the theorem can be stated,
but is false since one cannot tell the difference between the four circles that are
tangent to the three sides of a triangle (it is impossible to distinguish between
the inside and the outside of the triangle, hence from in-circle and ex-circle).

The theorem is however true on the reals. In that case, the interior of the
triangle can be identified (it is the set of points where the functions defining
the lines of each side have the same sign as the opposite vertex). Hence the
inscribed circle is identified as the circle tangent to the three sides that has the
center inside the triangle.

In the set of (non-degenerate) configurations of the variety of tritangent cir-
cles, the inscribed circles are not an algebraic component; but indeed they are
a connected component: the degenerate triangles constitute a subvariety of the
non-degenerate component, and are non-smooth points (belonging to two dif-
ferent components, the non-degenerate and the degenerate). The set of config-
urations corresponding to inscribed circles is a connected component of the set
of smooth points (to pass continuously from an in-circle to an ex-circle one has
to pass through a degenerate triangle; and conversely one can pass continu-
ously from one non-degenerate triangle to another). An algebraic proof (indeed,
a semialgebraic proof. . . ) is possible: if one considers the semialgebraic set of
smooth points of the configuration, the in-circle and the ex-circles lie in differ-
ent connected components, since the degenerate triangles constitute a different
algebraic component, (one for which infinitely many circles tangent to the three
coinciding sides exist), and one can pass continuously from an in-circle to an
ex-circle only through a degenerate triangle or a complex triangle. The example



102 Pasqualina Conti and Carlo Traverso

indicates the correct connected component, that is defined from the properties
that a linear function vanishing on any two vertices has the same sign on the
third vertex and on the center of the circle (i.e. the center of the circle is internal
to the triangle).

Consider the following “theorem”:

Theorem 10. In a triangle, the radius of one of the ex-circles is smaller than
the radius of the circumcircle.

An automatic semialgebraic proof correctly and optimally completing the
hypothesis with a set of inequalities from a true example remains a challenge
(the theorem is true e.g. if one angle is obtuse, for the ex-circle opposed to the
smaller angle, and is false in a neighborhood of a regular triangle).

Acknowledgments

We want to thank Fabrizio Broglia for useful discussions and references on the
semialgebraic geometry issues discussed in this paper.

We thank the anonymous referees for many useful remarks.

References

1. P. Aubry, F. Rouillier, M. Safey El Din, Real solving for positive dimensional sys-
tems, Report LIP6, http://www.lip6.fr/reports/lip6.2000.009.html (2000).

2. E. Becker, R. Grobe, M. Niermann, Real zeros and real radicals of binomial ideals,
J. Pure Appl. Algebra 117 & 118, 41–75 (1997).

3. E. Becker, R. Neuhaus, Computation of real radicals of polynomial ideals, Com-
putational Algebraic Geometry, Progress in Math. 109, 1–20, Birkhäuser, Boston
(1993).

4. J. Bochnak, M. Coste, M.-F. Roy, Géométrie Algébrique Réelle, Erg. der Mathe-
matik 12, Springer-Verlag, Berlin Heidelberg (1987).

5. M. Bulmer, D. Fearnley-Sander, T. Stokes, The kinds of truth of geometry theorems,
Automated Deduction in Geometry (J. Richter-Gebert, D. Wang, eds.), LNAI 2061,
129–142, Springer-Verlag, Berlin Heidelberg (2001).

6. M. Caboara, P. Conti, C. Traverso, Yet another ideal decomposition algorithm,
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes — AAECC-
12 (T. Mora, H. F. Mattson, eds.), LNCS 1255, 39–54, Springer-Verlag, Berlin
Heidelberg (1997).

7. M. Caboara, C. Traverso, Efficient algorithms for ideal operations, Proc. ISSAC
98, 147–152, ACM Press, New York (1998).

8. S.-C. Chou, Mechanical Geometry Theorem Proving, D. Reidel Pub. C., Dordrecht
(1988).

9. S.-C. Chou, X.-S. Gao, Ritt-Wu’s decomposition algorithm and geometry theorem
proving, 10th International Conference on Automated Deduction (M. E. Stickel,
ed.), LNCS 449, 207–220, Springer-Verlag, Berlin Heidelberg (1990).

10. S.-C. Chou, X.-S. Gao, N. McPhee, A combination of Ritt-Wu’s method and
Collins’ method, TR-89-28, CS Department, The Univ. of Texas at Austin, USA
(1989).



Algebraic and Semialgebraic Proofs: Methods and Paradoxes 103

11. G. Collins, Quantifier elimination for real closed fields by cylindrical algebraic
decomposition, Autom. Theor. Form. Lang., 2nd GI Conf., LNCS 33, 134–183,
Springer-Verlag, Berlin Heidelberg (1975).

12. P. Conti, C. Traverso, A case study of semiautomatic proving: The Maclane 83

theorem, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes —
AAECC-11, (G. Cohen, M. Giusti, T. Mora, eds.), LNCS 948, 183–193, Springer-
Verlag, Berlin Heidelberg (1995).

13. P. Conti, C. Traverso, Algorithms for the real radical, Technical Report, http://
www.dm.unipi.it/˜traverso/Papers/RealRadical.ps (1998).

14. A. Dolzmann, T. Sturm, V. Weispfenning, A new approach for automatic theorem
proving in real geometry, J. Automat. Reason. 21 (3), 357–380 (1998).

15. A. Galligo, N. Vorobjov, Complexity of finding irreducible components of a semi-
algebraic set, J. Complexity 11, 174–193 (1995).

16. P. Gianni, B. Trager, G. Zacharias, Gröbner bases and primary decomposition of
polynomial ideals, J. Symb. Comput. 6 (2–3), 149–167 (1988).

17. L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, Symbolic recipes for real polynomial
system solving, Some Tapas of Computer Algebra (A. M. Cohen, et al., eds.), Al-
gorithms Comput. Math. 4, 121–167, Springer-Verlag, Berlin Heidelberg (1999).

18. A. Guergueb, J. Mainguené, M. F. Roy, Examples of automatic theorem proving in
real geometry, Proc. ISSAC 94, 20–23, ACM Press, New York (1994).

19. D. Kapur, Using Gröbner bases to reason about geometry problems, J. Symb. Com-
put. 2, 399–408 (1986).

20. D. Kapur, A refutational approach to geometry theorem proving, Artif. Intell. 37,
61–93 (1988).

21. B. Kutzler, Algebraic approaches to automated geometry theorem proving, Ph.D
thesis, RISC-Linz, Johannes Kepler Univ., Austria (1988).

22. B. Kutzler, S. Stifter, Collection of computerized proofs of geometry theorems, Tech.
Rep. 86-12, RISC-Linz, Johannes Kepler Univ., Austria (1986).

23. J. Milnor, Morse Theory, Annals of Mathematics Studies 51, Princeton University
Press, Princeton (1963).

24. P. Pedersen, M.-F. Roy, A. Szpirglas, Counting real zeros in the multivariate
case, Computational Algebraic Geometry (F. Eyssette, A. Galligo, eds.), 203–223,
Birkhäuser, Boston (1993).

25. J. Richter-Gebert, U. Kortenkamp, The Interactive Geometry Software Cinderella,
Springer-Verlag, Berlin Heidelberg (1999).

26. M.-F. Roy, N. Vorobjov, Computing the complexification of semialgebraic sets,
Proc. ISSAC 96, 26–34, ACM Press, New York (1996).

27. F. Rouillier, M.-F. Roy, M. Safey El Din, Testing emptiness of real hypersurfaces,
real algebraic sets and semi-algebraic sets, FRISCO Technical Report (1998).

28. F. Rouillier, M. Safey El Din, E. Schost, Solving the Birkhoff interpolation problem
via the critical point method: An experimental study, Automated Deduction in
Geometry (J. Richter-Gebert, D. Wang, eds.), LNAI 2061, 26–40, Springer-Verlag,
Berlin Heidelberg (2001).

29. New Webster’s Dictionary of the English Language, The English Language Insti-
tute of America (1971).

30. W.-t. Wu, Mechanical Theorem Proving in Geometries: Basic Principles (trans-
lated from the Chinese by X. Jin and D. Wang), Springer-Verlag, Wien New York
(1994).



Remarks on Geometric Theorem Proving

Laura Bazzotti, Giorgio Dalzotto, and Lorenzo Robbiano

Dipartimento di Matematica, Via Dodecaneso 35, 16146 Genova, Italy
{bazzotti,dalzotto}@poly.dima.unige.it, robbiano@dima.unige.it

http://cocoa.dima.unige.it

The intelligent reader clearly understands
that the work is artificial in its essence.

(Anonymous)

Abstract. The mathematical literature related to automatic methods
for proving theorems in Euclidean geometry is immense. However, it is
the opinion of the authors that the theory behind this topic would profit
from more algebraic tools and more methods from commutative algebra.
The scope of this paper is to begin to fill such a gap. In particular we
bring to the forefront important notions such as computing field, optimal
hypothesis ideal, and good set of conditions.

1 Introduction

As is well explained in the survey paper [6], the dream of deducing all the
theorems of a specific sector of mathematics from a small set of axioms has
fascinated many mathematicians not least of which David Hilbert. The dream
did not come true due to the fundamental work of Kurt Gödel, from which it
became clear that it is not possible to construct a machine which proves all
possible theorems. However, the door was left open to the possibility of using a
machine to prove some theorems.

The idea of constructing such a machine was revived by the appearance
of electronic computers, and the goal of proving theorems automatically soon
became a central part of that academic discipline, with the awe-inspiring name
of Artificial Intelligence.

Already in the early sixties, Gelernter, Hansen and Loveland in [5] introduced
a “Geometry Machine” with the purpose of proving theorems in Euclidean ge-
ometry. A major breakthrough in the subject was the work of Wen-tsün Wu
(see for instance [15–17]) and his coworkers of the Chinese school. An impressive
amount of material on the subject was collected by Shang-Ching Chou in the
book [3].

Another source of inspiration was the advent of Gröbner basis theory, due
to Bruno Buchberger (see for instance [1, 2]), and which inspired many funda-
mental contributions, such as those of Deepak Kapur (see [7] and the important
paper [8]), Bernhard Kutzler and Sabine Stifter [10], and more recently Tomas
Recio with his coworkers [12, 11] and Dongming Wang (see for instance [14]).

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 104–128, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Remarks on Geometric Theorem Proving 105

In this brief overview of the history we have clearly skipped over many im-
portant paths and omitted many authors. Fortunately, a huge list of papers on
the subject is contained in the web site managed by Dongming Wang at

http://calfor.lip6.fr/∼wang/GRBib/Welcome.html

This reference is of fundamental importance for the adventurous reader who
wants to navigate inside the huge quantity of work done on the topic of proving
theorems automatically.

The purpose of this paper is to contribute to the subject in many ways. First
of all, we want to look at the fundamentals of the theory on a purely algebraic
basis, where ideal theory provides the necessary devices. Along the way, we
introduce important notions such as computing field, optimal hypothesis ideal,
and good set of conditions.

We also provide an implementation of our method in the system CoCoA
(see [4]), which uses Gröbner bases. But, since we mainly concentrate on the rep-
resentation of knowledge, the tools for proving (Gröbner bases, Wu-Ritt bases or
other devices) are considered to be of lesser importance. Good sources of inspi-
ration for us were the papers [8, 11], where an algebro-geometric approach was
taken via the celebrated Nullstellensatz of Hilbert.

Before giving a more detailed description of the content of the paper at the
end of the introduction, we want to supply some background to help appreciate
the novelties of our approach.

We recall that the main step in proving a theorem automatically is to con-
struct an explicit representation of its hypothesis and thesis. This should be done
in such a way that the thesis follows from the hypothesis with the help of a set
of rules, and both the representation and the rules can be manipulated by a
computer.

Given a theorem in Euclidean geometry, the fundamental steps usually con-
sidered are:

a) introduce Cartesian coordinates in the Euclidean plane or space;
b) translate the hypotheses and thesis into algebraic relations among the funda-

mental geometric data such as coordinates of points and lengths of segments;
c) assuming that these algebraic relations are expressed as the vanishing of

suitable polynomials, prove the theorem by showing that the “thesis poly-
nomial” is a consequence of the “hypothesis polynomials”.
All of these steps require some clarification in order to avoid critical obstacles.

But before raising the many questions related to the concept of automatically
proving theorems, let us say that even the traditional methods are not totally
reliable, as the following beautiful example shows. We learned of and borrowed
it from the book [3].

Example 1 (A Fake Theorem). Every triangle is isosceles.

Proof. Let ABC be a triangle as shown in the picture. We want to prove that
CA = CB. Let D be the intersection of the perpendicular bisector of AB and the
internal bisector of angle ACB. Let DE ⊥ AC and DF ⊥ CB. It is easy to see



106 Laura Bazzotti, Giorgio Dalzotto, and Lorenzo Robbiano

that ∆ CDE ∼= ∆ CDF and ∆ ADE ∼= ∆ BDF . Hence CE + EA = CF + FB,
i.e. CA = CB.

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........

........

........

........

........

........

........

........

.........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

.............
.............

.............
.............

.............
.............

.............
.............

......

...............
...............

...............
...............

...............
...............

...............
...............

.............

.....................................................................................................................................................................................................................

.....................................................................................................................................................................................................................
OA B

C

D

E F

What is wrong with this proof? If you feel a little nervous about this example,
or you are simply surprised by this apparent paradox, please relax and you will
discover the trick. Mathematics is full of difficulties and also the validity of many
theorems relies more on general consensus than on the logical correctness of the
steps of a formal proof. It is not our intention to delve into these philosophical
oddities, we merely want to show that the idea of automating proofs leads to a
fair number of new and subtle problems.

To begin with, we say that it is practically almost impossible to automatize
the entire process. For instance the choice of the coordinates and some clever
simplifications of the input data are generally part of a preprocessing, which
comes before the automatic part is left to the computer.

Now, to highlight some of the problems we are going to encounter, we discuss
a number of examples.

Example 2 (Heron’s Formula). In any given triangle the area s is given by s2 =
p(p−a)(p−b)(p−c), where a, b, c are the lengths of the sides, and p = (a+b+c)/2.

................................................ .......................

........

........

........

........................

.......................

(a, 0)

(x, y)

a

bc

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.....................................................................................................................................................................................................................................................................................................................................

Can we deduce it automatically? The answer is yes and the idea is the following.
We introduce an orthogonal system of coordinates, we use the possibility of

freely choosing the system, and position the triangle as shown in the picture.
Then we use Pythagoras’ Theorem to show that b2 = (a−x)2 + y2, c2 = x2 + y2

and we observe that 2s = ay.



Remarks on Geometric Theorem Proving 107

We construct the ideal I = (b2 − (a − x)2 − y2, c2 − x2 − y2, 2s − ay)
in the polynomial ring P = R[x, y, a, b, c, s], we look for a polynomial relation
among the indeterminates a, b, c, s and we try to deduce it from the given set of
relations.

One approach is to compute I ∩R[a, b, c, s]. It works and produces a principal
ideal, whose generator can be rewritten as Heron’s Formula after the substitution
p = (a + b + c)/2.

Example 3 (Equal Cubes). Cubes of equal volume have equal sides.

This absolutely trivial theorem is not provable by using a method indepen-
dent of the base field, simply because it is false over the complex numbers. Unlike
the case of Heron’s Formula, where we want to deduce an algebraic relation from
others, we could content ourselves to check that the thesis polynomials vanish
on the common zeros of the hypothesis polynomials. A first big difficulty arises.
The Nullstellensatz translates this vanishing into an algebraic verification only
in the case of algebraically closed fields.

The thesis polynomial x − y does not follow from the hypothesis polynomial
x3 − y3, in the sense that x − y /∈

√
(x3 − y3). Then we observe that x3 − y3 =

(x − y)(x2 + xy + y2) = (x − y)(x − α1y)(x − α2y), where α1, α2 are the two
conjugate complex roots of the univariate polynomial x2 + x + 1.

This means that the hypothesis ideal has three complex components, two real
components, but the hypothesis variety has only one real component, which is
the thesis variety. Therefore the statement is true, and hence a theorem, over
the reals but it should be considered false over the complex numbers, since, for
instance

23 = (−1 +
√

3 i)3

Example 4 (Bisecting Diagonals). The diagonals of a rectangle cross each other
at their midpoint.

.......................................................... .......................

........

........

........

........................

.......................

A(0,0) B(x1,0)

C(x1,x2)D (0,x2)

O(x3,x4)

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
.....................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................

In the picture the two diagonals of the rectangle ABCD are AC and DB, while
O is their point of intersection. We have to show that AO = OC and DO = OB.
We proceed as follows. We introduce an orthogonal system of coordinates as
shown in the picture and we name the coordinates of the relevant points by
putting

A = (0, 0), B = (x1, 0), C = (x1, x2), D = (0, x2), O = (x3, x4)



108 Laura Bazzotti, Giorgio Dalzotto, and Lorenzo Robbiano

In this way we have already expressed that ABCD is a rectangle. The only
hypotheses still to be translated are that O belongs to the line AC and to the
line BD too. From elementary considerations we get

h1 = x4x1 − x3x2 and h2 = x1x2 − x2x3 − x1x4

So we produce two hypothesis polynomials, h1, h2, whose vanishing represents
the two described conditions. Analogously we produce the thesis polynomials,
t1, t2, whose vanishing represents the property that AO = OC and BO = OD.
We get

t1 = x2
1 + x2

2 − 2x1x3 − 2x2x4 t2 = x2
1 − x2

2 − 2x1x3 + 2x2x4

We have already seen that the Nullstellensatz translates the vanishing into an
algebraic verification only in the case of algebraically closed fields. However a
second important difficulty shows up. No matter over which field we work, the
statement is false.

Indeed, it is well known that many theorems from Euclidean geometry turn
out to be false in the algebraic setting, simply because the algebraic translation
of some condition can encode more cases. This certainly happens in the case of
the bisecting diagonals, but we can exhibit an even simpler example.

Suppose we want to prove the following apparently trivial theorem.
Let r be a straight line in the Euclidean plane, A, B ∈ r, and C a point in

the plane. Then C is aligned with A, B, if and only if C ∈ r.
We may try to prove the theorem in the following way. We let r be the x-axis

and A(0, 0) the origin. Then we let B(x, 0) be a point on the x-axis and C(a, y)
be a point on the plane. What is the condition which expresses the alignment
of A, B, C? A first look at the problem suggests that the answer is y = 0.
But of course there is a more complete answer, namely xy = 0, which takes
in consideration also the case A = B. Indeed in such a situation every point
is obviously aligned with A and B. If we really want to consider only the case
A �=B, then we need to disregard the case x = 0. This can be done by saturating
the hypothesis ideal I = (xy) with respect to x. The new hypothesis ideal is now
(y), and since the thesis polynomial is clearly y, the wanted conclusion follows
trivially.

Looking from the point of view of algebra, the hypothesis ideal I = (xy)
and the hypothesis ideal J = (y) are different ideals. And the consequence is
dramatic. Namely the statement is true with the hypothesis ideal J , but false
with I.

Many authors have already pointed out that it is not always easy to make
a full a priori analysis of the degenerate cases of a geometric construction (see
Example 8). But even more important is the consideration that the radical of
the hypothesis ideal need not be prime. It is perfectly legitimate to consider a
statement of the type: “Let T be a triangle which is isosceles or right angled.
Prove that . . .” In this case, even if we disregard degenerate components, the
hypothesis ideal has at least two prime components. Following this approach, we



Remarks on Geometric Theorem Proving 109

are naturally lead to consider statements which are algebraically true on some
prime components of the radical of the hypothesis ideal (see Definition 5).

Now we have seen some of the problems, so let us have a closer look at the
content of the sections.

In Section 2, following for instance the approach of [8], we restrict ourselves
to proving or disproving algebraically true statements. In this way we can stay
within the realm of commutative algebra, since the Nullstellensatz allows us to
formulate the definition of algebraically true statements in terms of the radical
of the hypothesis ideal (see Definition 1).

However, the ring on which we consider our data is a polynomial ring over
the reals, and it is well-known that R is not a computable field. With the aid of
the notion of field of definition we define a computing field for a given statement
(see Definition 3). It will play a fundamental role in the theoretical aspect of our
approach. A first result is that if K is a computing field for a statement T , then
the validity of T can be expressed completely in a polynomial ring over K (see
Thereom 2).

A careful study of the hypothesis ideal in the case of the intriguing Example 4,
shows that some statements are true on more than one component. In fact, the
final part of Section 2 is devoted to giving a graphical representation of the space
of components of our hypothesis. This space is closely related to what geometers
call realization spaces (see for instance [13]).

More algebra is needed to lay down the theoretical basis, and Section 3, which
is the heart of the paper, takes care of that. After recalling or proving some easy
facts form ideal theory, we define the condition ideal (see Definition 6) and we
prove Theorem 3 and Corollary 2, where all the facts about a statement in
Euclidean geometry are expressed in purely algebraic terms. In particular we
concentrate on the intrinsic notion of optimal hypothesis ideal (see Definition 8)
and on that of almost good and good set of conditions (see Definition 11). These
are central notions, and Proposition 2 describes a way of computing almost good
and good sets of conditions.

Then the final section treats the algorithmic part of the paper. It states and
proves the main algorithm (see Theorem 4) and describes the CoCoA code which
can be freely used. With the help of CoCoA we illustrate some examples which,
in different respects, illustrate some of the subtleties encountered in the paper.

2 Algebraically True Statements

As a first step we follow a classical approach, and define the notion of an alge-
braically true statement.

Definition 1. Let T be a statement in Euclidean geometry, whose hypothe-
ses and thesis are expressed by the vanishing of polynomials h1, . . . , hr, t in
R[x1, . . . , xn]. We assume that the ideal (h1, . . . , hr) is proper. Then it is called
the hypothesis ideal of T , and denoted by I(T ). The polynomial t is called the
thesis polynomial. We say that the statement is algebraically true if t ∈

√
I(T ).



110 Laura Bazzotti, Giorgio Dalzotto, and Lorenzo Robbiano

Likewise, we say that the statement is algebraically false if t /∈
√

I(T ). If there
is no ambiguity, we simply say that a statement is true or false.

The first simplification is that we are only going to discuss how to give
automatic proofs of algebraically true statements.

The next fundamental step, which is most of the times overlooked in the
literature, is to be able to do all the field computations inside a field which is
computable. What does it mean that a field is computable? Roughly speaking, it
means that it is possible to store an element of the field in finitely many memory
cells of the computer, that one can check in finitely many steps whether two such
representations correspond to the same field element, and there are algorithms
for performing the four basic operations +,−,×,÷.

The problem is that R is not computable. However, we may use the notion
of field of definition, which we recall briefly (see [9] Section 2.4 for more details).

Definition 2. Let K be a field, P = K[x1, . . . , xn] a polynomial ring, and I an
ideal in P .
a) Let k ⊆ K be a subfield. We say that I is defined over k if there exist elements

in k[x1, . . . , xn] which generate I as a P -module.
b) A subfield k ⊆ K is called a field of definition of I if I is defined over k and

there exists no proper subfield k′ ⊂ k such that I is defined over k′.

Theorem 1. Let I be a non-zero ideal in K[x1, . . . , xn].
a) There exists a unique field of definition of I.
b) Given any term ordering σ, let G be the corresponding reduced σ-Gröbner

basis of I. Then the field of definition of I is the field generated over the
prime field of K by the coefficients of the terms in the support of the vectors
in G.

Proof. See [9], Section 2.4.

Corollary 1. Let f1, . . . , fr be polynomials in the ring R[x1, . . . , xn] and let I
be the ideal (f1, . . . , fr). Then the field of definition of I is a finite extension of
Q, hence it is computable.

Proof. The claim follows immediately from the theorem, since the prime field of
R is Q, and a reduced Gröbner basis contains finitely many polynomials.

Definition 3. Let be given a statement T in Euclidean geometry, whose hypo-
thesis and thesis polynomials h1, . . . , hr, t lie in R[x1, . . . , xn]. A field K is called
a computing field for T , if it is finitely generated over Q and contains the field
of definition of the ideal (I(T ), t) = (h1, . . . , hr, t). It is a computable field.
The ideal generated by (h1, . . . , hr) in K[x1, . . . , xn] will be denoted by IK(T ) or
simply I(T ) or even I, if no confusion arises.

Definition 4. Let R be a commutative ring, let I and J be ideals in R. Then
the set

I : J∞ =
⋃

i∈N

I : J i = {r ∈ R | J i · r ⊆ I for some i ∈ N}

is an ideal in R. It is called the saturation of I by J .



Remarks on Geometric Theorem Proving 111

Now we need an extra piece of information. In the following, if K ⊆ L is
a field extension, and I is an ideal in K[x1, . . . , xn], we denote by Ie the ideal
generated by I in L[x1, . . . , xn].

Proposition 1. Let K ⊆ L be a field extension, I, J ideals in K[x1, . . . , xn].
Then:
a) Ie ∩ K[x1, . . . , xn] = I. In particular, we have 1 ∈ Ie if and only if 1 ∈ I.
b) For I = ∩r

i=1Ii, we get Ie = ∩r
i=1I

e
i .

c) We have Ie : (Je)∞ = (I : J∞)e.
d) If moreover K is perfect, then

√
Ie = (

√
I)e.

Proof. Claims a), b), c) are standard in commutative algebra and depend on
the faithful flatness of the homomorphism K[x1, . . . , xn] ↪−→ L[x1, . . . , xn]. The
proof of claim d) is based on its 0-dimensional version, namely on the fact that
if I is a 0-dimensional radical ideal and K is perfect, then Ie is also a radical
ideal. The proof of this fact can be found in [9], Proposition 3.7.18.

With the help the following example we illustrate the importance of the
notion of the computing field.

Example 5 (Golden Ratio, Golden Section, Golden Mean).

............................................................... .......................

........

........

........

............................

.......................

A(0,0) B(x1,0)

C(x1,
x1
2 )

E(x4,0)

D(x2,x3)

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

...........................................................................................................................................................................................................
....................

................
.............

............
...........

..........
..........
.........
.........

........

........

........

........
........
........
........
.........
.........
........

Let AB be a segment as shown in the picture. Let CB be perpendicular to AB
and such that the equality AB = 2CB holds true. Let D be the intersection of
AC with the circle centered in C and passing through B. Let E be a point on
AB such that AE = AD.

We have to show that AB, AE satisfy the golden ratio, i.e. AB
AE = 1+

√
5

2 .
We introduce an orthogonal system of coordinates as shown in the picture.

We get

A = (0, 0), B = (x1, 0), C = (x1,
x1

2
), D = (x2, x3), E = (x4, 0)

In this way we have already expressed that CB is perpendicular to AB and that
AB = 2CB. It remains to express the facts that D belongs to the line AC, that
CD = CB, and that AE = AD. We get the following hypothesis polynomials:

h1 = −1
2
x1x2+x1x3 h2 = −x2

1+2x1x2−x2
2+x1x3−x2

3 h3 = −x2
2−x2

3+x2
4



112 Laura Bazzotti, Giorgio Dalzotto, and Lorenzo Robbiano

The thesis polynomial is
t =

√
5x4 − 2x1 + x4

Therefore a computing field is Q(
√

5) and we may perform all the computations
in Q(

√
5)[x1, x2, x3, x4].

An alternative way of posing the problem is to require that AE is the golden
section of AB, i.e. that AB

AE = AE
EB . The thesis polynomial is

t = x4
1 − 2x3

1 x4 + x2
1 x2

4 − x4
4

Therefore a computing field is Q and we may work in Q[x1, x2, x3, x4]. We will
see later (see Section 4) that the two approaches lead to different computations.

In the following, we are only going to use the operations on ideals described
above. This implies that all the theory and the computation can be carried on
in the ring P = K[x1, . . . , xn], where K is a computing field for T . Since K is
computable, the procedures which we are going to develop in the paper are true
algorithms.

For the moment, we content ourselves to get the first step toward the autom-
atization of the proof of theorems in Euclidean geometry.

Theorem 2. With the above assumptions, let K be a computing field for T .
Then the following conditions are equivalent.
a) Statement T is algebraically true.
b) The thesis polynomial t is in

√
IK(T ).

Proof. Let us prove the only non trivial implication, i.e. a) ⇒ b). Let T be alge-
braically true. Then there exists d ∈ N such that td ∈ (h1, . . . , hr)R[x1, . . . , xn].
But td ∈ K[x1, . . . , xn], hence td ∈ IK(T )R[x1, . . . , xn] ∩ K[x1, . . . , xn], and the
latter is IK(T ) by Proposition 1.a. We have checked that t ∈

√
IK(T ), which

concludes the proof.

After the above discussion, we assume that for every given statement T we
work over a fixed computing field K for T , and we call IK(T ) the hypothesis
ideal of T .

Unfortunately also this simplification is not enough to avoid further diffi-
culties. Let us go back to the Bisecting Diagonals statement. We saw that the
hypothesis ideal is I = (x4x1 − x3x2, x1x2 − x2x3 − x1x4). We take the thesis
polynomials t1, t2 and check if they belong to

√
I. The answer is no. Should

we conclude that the Bisecting Diagonals statement is not a theorem? Are we
facing the same difficulty as in the example of the equals cubes?

Let us have a look at another example.

Example 6 (Trisection of Line Segment). The two straight lines passing through
a vertex of a square and the medium points of the opposite sides cut the opposite
diagonal into three equal parts.



Remarks on Geometric Theorem Proving 113

.................................................... .......................

........

........

........

............................

.......................

O(0,0) A(l,0)

B(l,l)C (0,l)

M( l
2 ,0)

N(l, l
2 )

P (x,x)

Q(l−x, l−x)

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...

We introduce Cartesian coordinates, and place the square as in the picture. Then
we have

A = (l, 0), B = (l, l), C = (0, l), M = (l/2, 0), N = (l, l/2)

Furthermore we introduce a new indeterminate x, we work in the polynomial
ring Q[l, x], and we have

P = (x, x), Q = (l − x, l − x)

In this way we have already expressed that P and Q belong to the line OB, and
that OP = BQ. The only hypotheses still to be expressed are that C, M ,P are
aligned and Q belongs to the line CN . Both lead to the polynomial h = l2 −3lx,
hence the hypothesis ideal is the principal ideal I = (h). The thesis comes from
expressing that OP = PQ, hence t = l2 − 4lx + 3x2. A computing field is Q.
We check if t ∈

√
I, the answer is no, and again we must conclude that the

statement is algebraically false.

And now we have to face the problem of discovering why this statement turns
out to be algebraically false. In this case the answer is fairly easy. The ideal I
is a principal ideal generated by l2 − 3lx = l(l − 3x). In other words it describes
two different situations. One is given by l = 0, a component over which the
statement is algebraically false, the other one is given by l − 3x = 0 and the
thesis polynomial t = l2 − 4lx + 3x2 is such that t ∈ (l − 3x).

We conclude that the statement is algebraically true (hence a theorem) if
the square is not a point. It is also interesting to observe that this case is not
a limit case of our construction, but a truly different component. This suggests
the following

Definition 5. Let T be a statement, K a computing field for T . Let I be the
hypothesis ideal of T in K[x1, . . . , xn], t its thesis polynomial, and let p1, . . . , pc

be the minimal primes of
√

I, so that p1 ∩ . . . ∩ pc is the primary decomposition
of

√
I. We say that T is algebraically true on pi if t ∈ pi.

Therefore a statement can be algebraically false, but true on a component.
This is what happens in the case of the trisection of a line segment.



114 Laura Bazzotti, Giorgio Dalzotto, and Lorenzo Robbiano

Let us consider again the case of the Bisecting Diagonals (see Example 4).
In this case it is easy to see that I =

√
I = p1 ∩ p2 ∩ p3 ∩ p4, where

p1 = (x1 − 2x3, x2 − 2x4) p2 = (x2, x4) p3 = (x1, x3) p4 = (x1, x2)

and t1, t2 ∈ p1 ∩ p4, while t1, t2 do not belong to p2 and to p3. So the statement
is algebraically true only on p1 and p4. But what is the geometric interpretation
of the hypotheses expressed by the generators of p1 and p4? For instance, it is
not so clear how to read p1 as a set of hypotheses. It is instead clear how to read
p2, p3, p4. The vanishing of p2 represents the degeneracy of the rectangle to the
line segment AB. The vanishing of p3 represents the degeneracy of the rectangle
to the line segment AD. The vanishing of p4 represents the degeneracy of the
rectangle to the point O.

So now it is clear that the vanishing of p1 represents the same hypotheses as
before (i.e. that O belongs to the line AC and to the line BD) applied to non
degenerate rectangles. This is fine. It looks like we can find good hypotheses and
good conditions, which corresponds to the obvious remark that a finite subset of
a finite set can be described as the complementary set of its complementary set.

But something even more intriguing is emerging from this example. Namely
the algebraic analysis leads to the conclusion that the statement is true (hence a
theorem) for rectangles which do not degenerate to a line segment plus rectangles
which degenerate to a point. Even more than in the case of the trisection of a
line segment, something is really defeating the intuition, namely the fact that
this strongly degenerate case is not in the limit of the other degenerate cases.

Let us explain why, with the help of the next picture, which is of a different
nature with respect to the other pictures in the paper. It represents the compo-
nents of the hypothesis ideal above. It is a homogeneous ideal, hence the four
components p1 = (x1−2x3, x2−2x4), p2 = (x2, x4), p3 = (x1, x3), p4 = (x1, x2)
represent lines in P3, which we call L1, L2, L3, L4 respectively.

(0:0:1:0)•

(2:0:1:0)
• (0:2:0:1)•

(0:0:0:1)•

L1

L2 L3

L4 ........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........

..............................................................................................................................................................................................................................................................................................

...........................................
...........................................

...........................................
...........................................

...........................................
...........................................

...........................................
..................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...

Clearly L1, L4 are skew, as well as L2, L3. The interpretation goes as follows.
The line L1 represents the component of non-degenerate rectangles. The lines

L2 and L3 represent the components of rectangles which degenerate to the side
AB and AD respectively. The line L4 represents the component of rectangles
which degenerate to the point A. The projective point (2 : 0 : 1 : 0) represents
the rectangles which degenerate to the side AB, while O is a point of the plane
(even outside AB), such that the ratio of the x-coordinates of B and O is 2.
Analogously, the projective point (0 : 2 : 0 : 1) represents the rectangles which



Remarks on Geometric Theorem Proving 115

degenerate to the side AD, while O is a point of the plane, such that the ratio of
the x-coordinates of D and O is 2. The two points (2 : 0 : 1 : 0) and (0 : 2 : 0 : 1)
are the true limits of the degeneration of the rectangle to one of its sides.

On L2, L3 the statement is false, but then the statement is again true on
L4. It represents the rectangles which degenerate to the point A. Here O can be
taken arbitrarily. We said that on L3, L4 the statement is false, but there are
exceptions represented by the projective points (0 : 0 : 1 : 0), (0 : 0 : 0 : 1).
Let us explain the first one. It represents rectangles degenerated to the point A,
with O on the x-axis. Therefore it is a limit case of the rectangles represented
by L2. Although in general the statement is false on L2, it is true on the limit,
because we keep O on the x-axis. The same explanation holds for (0 : 0 : 0 : 1).

This example shows that to investigate the situation we need more tools.
They are developed in the next section, which is the heart of the paper.

3 Optimal Hypothesis Ideals and Good Conditions

We have seen that in general the radical of the hypothesis ideal is not prime, so
it can be expressed as the intersection of several prime ideals. A way to proceed
could be the following: compute

√
I, then compute its prime decomposition, and

finally check on which prime components T is algebraically true.
This approach is impractical for two different reasons. The first reason is

the complexity of computing the prime components of the radical of I. But even
more important is the difficulty of understanding the geometric meaning of some
components. After a heavy computation we might conclude that we have proved
a theorem, but we do not know which.

Let us go back for a moment to the Bisecting Diagonals, and suppose we
decide to exclude a priori the degenerate cases x1 = 0 and x2 = 0. Then our
hypothesis ideal becomes

I : (x1x2)∞ = (x1 − 2x3, x2 − 2x4)

on which it is immediate to verify that the statement is true. We can safely say
that the statement is verified under the condition that x1 �= 0 andx2 �= 0. It
means that it is verified providing the rectangle is truly a rectangle. With this
condition it is a theorem.

Another possibility which may happen is that t does not belong to any of
the prime components of the hypothesis ideal. Then the statement should be
considered to be absolutely false.

To clarify these situations we need more technical devices from Commutative
Algebra.

Lemma 1. Let R be a noetherian ring, I an ideal in R, f, f1, . . . , fr ∈ R \ {0},
and J = (f1, . . . , fr). Then
a) I : f∞ = IRf ∩ R

b) I : J∞ =
r
∩

i=1
I : f∞

i



116 Laura Bazzotti, Giorgio Dalzotto, and Lorenzo Robbiano

Proof. The proof of these elementary facts can be found for instance in [9],
Section 3.5.

Lemma 2. Let R be a noetherian ring, I an ideal in R, and f, g ∈ R \ {0}.
Then the following conditions are equivalent:
a) g ∈

√
I : f∞

b) f ∈
√

I : g∞
c) 1 ∈ I : (fg)∞

Proof. Let us prove a) ⇒ c). Using g ∈
√

I : f∞ we deduce that there exists a
natural number d such that gd ∈ I : f∞, hence there exists a natural number e
such that (gf)e ∈ I, which implies that 1 ∈ I : (fg)e. Conversely, if 1 ∈ I : (fg)e,
then ge ∈ I : f∞, hence g ∈

√
I : f∞. Condition c) is symmetric on f and g,

therefore the proof is complete.

Lemma 3. Let R be a noetherian ring, let I, J be ideals in R, and let g ∈ R.
Then
a)

√
I : J∞ =

√
I : J =

√
I :

√
J

b) I : J∞ = (1) if and only if J ⊆
√

I
c) I : g∞ ⊆

√
I if and only if g � 0 mod

√
I

Proof. Let us prove the first equality of a). To show that
√

I : J∞ ⊆
√

I : J ,
we pick an element a ∈

√
I : J∞. There exists a natural number d such that

ad ∈ I : J∞, hence there exists a natural number e such that (aJ)e ∈
√

I.
Therefore aJ ⊆

√
I, and we may conclude that a ∈

√
I : J . Conversely, let

a ∈
√

I : J . Then there exists a natural number e such that (aJ)e ∈ I. Therefore
a ∈

√
I : Je ⊆

√
I : J∞.

To prove the second equality, it suffices to show that
√

I : J ⊆
√

I :
√

J ,
since the other inclusion is obvious. For aJ ⊆

√
I there exists a natural number

d such that (aJ)d ⊆ I. We have to show that for b ∈
√

J , then ab ∈
√

I. Now,
for b ∈

√
J there exists a natural number e such that be ∈ J , hence (abe)d ∈ I,

hence ab ∈
√

I.
It is clear that b) follows from a), since I : J∞ = (1) is equivalent to√

I : J∞ = (1).
Finally we prove c). From I : g∞ ⊆

√
I we deduce that

√
I : g∞ ⊆

√
I,

therefore
√

I : g =
√

I, by a). Conversely, if g � 0 mod
√

I, then
√

I : g =
√

I,
which implies

√
I : g∞ =

√
I, by a). The conclusion is that I : g∞ ⊆

√
I.

Lemma 4. Let R be a noetherian ring, let I be an ideal in R, and let g ∈ R.
Assume that

√
I = p1 ∩ . . . ∩ ps ∩ q1 ∩ . . . ∩ qt is a minimal prime decomposition

of
√

I, where g ∈ p1 ∩ . . . ∩ ps, and g /∈ qj for j = 1, . . . , t. Then
a)

√
I : g∞ = q1 ∩ . . . ∩ qt

b)
√

I : (I : g∞)∞ = p1 ∩ . . . ∩ ps

Proof. To show a), we recall from Lemma 3.a that
√

I : g∞ =
√

I : g, and the
claim follows easily. Now let us prove b). We use again Lemma 3.a to see that√

I : (I : g∞)∞ =
√

I :
√

(I : g∞). The assumption and a) imply that we have
to show the equality (p1 ∩ . . . ∩ ps ∩ q1 ∩ . . . ∩ qt) : (q1 ∩ . . . ∩ qt) = p1 ∩ . . . ∩ ps,
whose proof is immediate.



Remarks on Geometric Theorem Proving 117

In the following we let h1, . . . , hr, t be polynomials in R[x1, . . . , xn]. Then we
let T be a statement in Euclidean geometry, whose hypothesis ideal is the ideal
in R[x1, . . . , xn] generated by (h1, . . . , hr), and whose thesis polynomial is t. Let
K be a computing field for T and let I(T ) be the ideal generated by h1, . . . , hr

in P = K[x1, . . . , xn].
Due to Proposition 1, all the operations described in the above lemmas can

be considered in a polynomial ring over K.
To say that t ∈

√
I(T ) : f∞ means that T is algebraically true under the

condition f �= 0, as we can see from Lemma 1. Therefore Lemma 2 shows that√
I(T ) : t∞ is the container of all the conditions. We see the ideal I(T ) : t∞

becoming an important actor. It deserves a name.

Definition 6. The ideal I(T ) : t∞ is called the condition ideal of T . It is de-
noted by Ic(T ) or simply by Ic if no confusion arises.

Definition 7. Let J = (f1, . . . , fs) be an ideal in P . A statement T is called
algebraically true under the conditions expressed by J (or algebraically true
if at least one of the conditions f1 �= 0, . . . , fs �= 0 holds true), if the revised
statement, whose hypothesis ideal is I(T ) : J∞ and whose thesis polynomial
is t, is algebraically true. A statement T is called absolutely false if the thesis
polynomial does not belong to any minimal prime of the hypothesis ideal.

Theorem 3. Let T be a statement in Euclidean geometry, whose hypothesis
and thesis are expressed by the vanishing of polynomials h1, . . . , hr, t. Let K be
a computing field for T and let I(T ) be the proper ideal generated by h1, . . . , hr

in K[x1, . . . , xn]. Then the following facts hold true.
a) We have t ∈

√
I(T ) : Ic(T )∞.

b) The following are equivalent.
1) The statement T is algebraically true.
2) Ic(T ) = (1)
3)

√
I(T ) : Ic(T )∞ =

√
I(T )

c) The following are equivalent.
1) The statement T is absolutely false.
2) Ic(T ) ⊆

√
I(T )

3) I(T ) : Ic(T )∞ = (1)
d) If the statement T is neither algebraically true nor absolutely false, then we

have the chain of strict inclusions
√

I(T ) ⊂
√

I(T ) : Ic(T )∞ ⊂ (1).

Proof. Claim a) is immediate from the definition. We prove Claim b). From
Theorem 2 and Lemma 3.b we deduce the equivalence between 1) and 2). Since
2) ⇒ 3) is clear, it remains to show that 3) ⇒ 1). This implication follows
directly from a).

Now we prove c). From Definition 7 and Lemma 3.c. we see the equivalence
between 1) and 2). The equivalence between 2) and 3) is clear.

Finally we prove d). From 3) of b) we get the first strict inclusion, from 3)
of c) the second one.



118 Laura Bazzotti, Giorgio Dalzotto, and Lorenzo Robbiano

The above theorem indicates that most of the information about the validity
of T is stored in the ideal I(T ) : Ic(T )∞. In particular we see that if T is
neither algebraically true nor absolutely false, then what is algebraically true
is the revised statement, whose hypothesis ideal is I(T ) : Ic(T )∞, and thesis
polynomial is t. But we can say more with the help of Lemma 4.

Definition 8. An ideal which contains the hypothesis ideal I, and whose prime
components are exactly those on which T is algebraically true is called an optimal
hypothesis ideal for T .

Corollary 2. With the same assumptions as in Theorem 3, an optimal hypothe-
sis ideal for T is the ideal I(T ) : Ic(T )∞.

Proof. The proof follows immediately from Lemma 4.b.

This fact motivates the following definition

Definition 9. The ideal I(T ) : Ic(T )∞ will be denoted by Iop(T ).

What happens if there are more than one thesis polynomials? Suppose that
there are r > 1 thesis polynomials ti. In that case it is easy to see that the
following equality Ic(T ) = I(T ) : (t1, . . . , tr)∞ holds true.

Remark 1. With this terminology some parts of Theorem 3 can be rephrased in
the following way.

The statement T is algebraically true if and only if
√

Iop(T ) =
√

I(T ).
The statement T is absolutely false if and only if Iop(T ) = (1).

This could be the final point of our investigation. However, if we do the
computation in the case of the Bisecting Diagonals Theorem, we get that the
optimal hypothesis ideal (I : (I : (t1, t2)∞)∞) is equal to

(x2
1 − 2x1x3, x1x2 − 2x1x4, x2

2 − 2x2x4, x2x3 − x1x4)

We are unable to read these hypotheses. As we had warned before, we have
proved a theorem, but we do not know exactly which. Even if we are able to
decompose this ideal, we get the two components p1 = (x1 − 2x3, x2 − 2x4),
p4 = (x1, x2). As we observed, we understand p4, but it is not clear how to
interpret p1.

This fact suggests the idea that sometimes it could be better to describe the
validity of a statement not by describing the components on which it is true,
but by listing the components on which it is algebraically false. The advantage is
that we can do that by throwing away hypersurfaces, i.e. by imposing conditions.
The disadvantage can be, as it happens in the case of the Bisecting Diagonals
Theorem when we put x1x2 �= 0, that we throwaway even a good component.
This is life.

In any event, it is better to further investigate conditions.



Remarks on Geometric Theorem Proving 119

Remark 2. We recall that in the paper [11] a polynomial f is called an irrelevant
condition for T , if (I, f) = (1). Now, either T is algebraically true or not. In
the latter case Ic �= (1) by Theorem 3.a. If f ∈ Ic is a condition, then we
get (I, f) ⊆ (Ic, f) ⊆ Ic �= (1), hencef is not an irrelevant condition. This
observation implies that there is no need to consider irrelevant conditions. This
observation was already stated in [11] (see Exercise 4.7).

Inside the ideal Ic(T ) we may encounter polynomials fi ∈
√

I(T ) and poly-
nomials fj /∈

√
I(T ). A polynomial fi of the first type should be considered

useless, since I(T ) : f∞
i = (1), so that if we consider the statement under the

condition fi �= 0, there is no statement anymore. These conditions are called
trivial in [11]. Let us formalize this notion.

Definition 10. A condition f ∈ Ic(T ) is called trivial if f ∈
√

I(T ).

We observe that if f is a non-trivial condition (hence T is not algebraically
true), then

√
I(T ) : f∞ =

√
I(T ) : f is a proper ideal which contains

√
I(T )

strictly. Therefore the condition deletes some but not all of the prime components
of

√
I(T ), possibly some good ones. A first simplification can be done in the

following way. We decide to sacrifice the possibility of checking the validity of T
on all the components, by imposing all the non-degeneracy conditions, which can
be spotted immediately from the assumptions. For instance in Example 6 it is
clear that we may assume l �= 0. The observation suggests that we can substitute
the hypothesis ideal I = (l2 −3lx) with the new hypothesis ideal I : l∞, and this
choice leads immediately to the conclusion that the statement is algebraically
true.

Now the next question is: can we find a good set S of conditions, i.e. a set
S with good properties, and such that Iop(T ) = I(T ) : Ic(T )∞ = I(T ) : (S)∞?
We propose the following definition.

Definition 11. Given a set of generators Σ of Ic(T ), a subset S ⊆ Σ is called
an almost good set of conditions for T if
a) Iop(T ) = I(T ) : (S)∞

b) For every pair (f, g) of elements in S, such that I(T ) : f∞ �=I(T ) : g∞,
there is no inclusion relation between I(T ) : f∞ and I(T ) : g∞.

It is called a good set of conditions for T if
a) It is almost good.
b) For every pair (f, g) of elements in S, I(T ) : f∞ �=I(T ) : g∞ holds true.

Proposition 2. With the same assumptions as in Theorem 3, let G be a set of
generators of the ideal Ic. We define a partial ordering on G by putting a ≺ b
if I : a∞ ⊂ I : b∞. We let S′ be the subset of G of the minimal elements. Then
we consider the equivalence relation on S′ which is defined by putting a ≡ b if
I(T ) : a∞ = I(T ) : b∞. Let S be a set of representatives of the equivalence
classes.
a) The set S′ is an almost good set of conditions for T .



120 Laura Bazzotti, Giorgio Dalzotto, and Lorenzo Robbiano

b) The set S is a good set of conditions for T .
c) If T is not absolutely false, then S does not contain trivial conditions.

Proof. The first two claims follow from the definitions, so let us prove the third.
If T is not absolutely false, then Ic �⊆

√
I by Theorem 3.c.2, hence there exists

at least one non-trivial condition b among the elements in G. Let a be a trivial
condition in G. Then I : a∞ = (1), while I : b∞ ⊂ (1), so that a is discarded.

Remark 3. It is possible to get better set of conditions, by imposing the following
constraints
a) Iop(T ) = I(T ) : (S)∞

b) ∩
j�=i

(I(T ) : f∞
j ) �⊆I(T ) : f∞

i , for every i = 1, . . . , s.

Such a set can be called an optimal set of conditions. However, the experience
shows that to find optimal set of conditions is too demanding from the compu-
tational point of view.

Remark 4. While optimal hypothesis ideals depend only on the data of the prob-
lem, good and optimal sets of conditions depend on the chosen set of generators
of Ic(T ), so that they are not intrinsic to the problem. Nevertheless good sets
of conditions play an important role in the algorithms which we are going to
describe in the next section.

4 The Algorithms, the CoCoA Code and Some Examples

At this point we have the possibility of describing an algorithm, which largely
automatizes the process of proving that a statement in Euclidean geometry is a
theorem. The beginning of the process is a step which aims at optimizing the
hypotheses. However, it may delete some degeneracy components on which the
statement is true.

Theorem 4. Let T be a statement in Euclidean geometry, whose hypothesis
and thesis are expressed by the vanishing of polynomials h1, . . . , hr, t. Let K
be a computing field for T and let I be the ideal generated by h1, . . . , hr in
P = K[x1, . . . , xn]. Consider the following sequence of instructions.
0) (Optional preprocessing) Let g be the product of all the degeneracy conditions

to be excluded a priori. Compute I : g∞, and call this ideal I again.
1) Compute Ic.
2) If 1 ∈ Ic, then return ‘‘The statement is algebraically true" and

stop.
3) Let G be a set of non-zero generators of Ic.
4) Compute I : f∞ for every f ∈ G. If 1 ∈ I : f∞ for all f ∈ G, then return

‘‘The statement is absolutely false" and stop.
5) Consider the partial order on G given by a ≺ b if I : a∞ ⊆ I : b∞, and let S′

be the set of the minimal elements of G with respect to ≺. Then consider the
equivalence relation on S′ given by a ≡ b if I : a∞ = I : b∞, and let S ⊆ S′

be a subset of representatives of the equivalence classes.



Remarks on Geometric Theorem Proving 121

6) Compute J = I : I∞
c

7) Return J , S and stop.
This is an algorithm which decides whether T is algebraically true or absolutely
false. In the case that T is neither algebraically true nor absolutely false, the
algorithm finds an optimal hypothesis ideal and a good set of conditions for T .

Proof. The first instruction requires the computation of Ic. If Ic = (1) then T is
algebraically true by Theorem 3.a. If Ic is a proper ideal, then there exist non-
constant polynomials f1, . . . , fs such that Ic = (f1, . . . , fs). Let us consider the
ideals I : f∞

i . We know that fi ∈ Ic hence fi ∈
√

Ic =
√

I : t∞. Then Lemma 3
implies that t ∈

√
I : f∞

i . Since we know that t /∈
√

I, we may conclude that√
I : f∞

i , which is equal to
√

I : fi by Lemma 3.a, is strictly bigger than
√

I.
If all the fi belong to

√
I, then Ic ⊆

√
I and T is absolutely false by Theo-

rem 3.b.
It remains to show that if T is neither algebraically true nor absolutely false,

then S is a good set of conditions for T . This fact follows from Proposition 2.

Remark 5. It is clear how to modify Step 5 to get optimal sets of conditions
instead of good sets of conditions. It is also clear that Steps 5, 6 can be used
interchangeably. If one deletes step 5, then Step 7 reads: Return J and stop. If
one deletes step 6, then Step 7 reads: Return S and stop.

Now we illustrate the CoCoA code, which transforms the algorithm described
above into an executable code. We insist on the notion of good set of conditions,
which is the most important from a computational point of view.

Algorithm: Almost Good Set of Conditions

Define AlmostGoodSetOfConditions(L)
AlmostGood := [];
Foreach ElementOfL In L Do
Inserted := FALSE;
I := 1;
While I <= Len(AlmostGood) And Not Inserted Do
If AlmostGood[I].Ideal = ElementOfL.Ideal Then
Append(AlmostGood[I].Polys, ElementOfL.Poly);
Inserted := TRUE;

ElsIf AlmostGood[I].Ideal > ElementOfL.Ideal Then
AlmostGood[I] := Record(Ideal=ElementOfL.Ideal,

Polys=[ElementOfL.Poly]);
Inserted := TRUE;

ElsIf AlmostGood[I].Ideal < ElementOfL.Ideal Then
Inserted := TRUE;

EndIf;
I := I+1;

EndWhile;
If Not Inserted Then
Append(AlmostGood, Record(Ideal=ElementOfL.Ideal,

Polys=[ElementOfL.Poly]));
EndIf;



122 Laura Bazzotti, Giorgio Dalzotto, and Lorenzo Robbiano

EndForeach;
Return [X.Polys | X In AlmostGood]

EndDefine; -- AlmostGoodSetOfConditions

Algorithm: Proving

Define Proving(Hypothesis,Thesis)
ConditionsIdeal := Saturation(Hypothesis,Ideal(Thesis));
If ConditionsIdeal=Ideal(1) Then
Return Record(Statement=TRUE);

EndIf;
Conditions := Gens(ConditionsIdeal);
ConditionsIdealList :=

[ Record(Ideal=Saturation(Hypothesis,Ideal(C)), Poly=C) |
C In Conditions];

If [ X In ConditionsIdealList | X.Ideal<>Ideal(1) ] = [] Then
Return Record(Statement=FALSE, Conditions=[]);

EndIf;
Return Record(Statement=FALSE, Conditions =

AlmostGoodSetOfConditions(ConditionsIdealList));
EndDefine; -- Proving

or

Return Record(Statement=FALSE, OptimalHypothesisIdeal =
IntersectionList([I.Ideal | I In ConditionsIdealList]));

Remark 6. It should be noticed that Algorithm Proving does not return the good
set of conditions S, as described in Theorem 4, Step 5. It returns an almost good
set of conditions S′. The transition from S′ to S is done by human judgment, so
it belongs to a phase which could be called postprocessing, as we shall see with
the help of some examples.

The first example that we are going to investigate is Example 5.

Example 5 (continued). In the preprocessing phase we decide to exclude the
possibility that the segment AB degenerates to a point. We do that by replacing
the hypothesis ideal (h1, h2, h3) with the new hypothesis ideal I = (h1, h2, h3) :
(x1)∞. Then we compute a set of conditions by using Algorithm Proving, and
get

[x3 x4 − 1/10
√

5x2
1 − 1/10

√
5x1 x4 + 1/10

√
5x2

4 − 1/10x2
1 − 1/2x1 x4 − 1/10x2

4 ,√
5x2

1 x4 +
√

5x1 x2
4 −

√
5x3

4 + 2x3
1 + x2

1 x4 − 3x1 x2
4 + x3

4 ,√
5x3

1 − 2
√

5x1 x2
4 +

√
5x3

4 − x3
1 + 2x2

1 x4 + 4x1 x2
4 − 3x3

4 ].

All the conditions are equivalent. We conclude that a good set of conditions
is

{
√

5x2
1 x4 +

√
5x1 x2

4 −
√

5x3
4 + 2x3

1 + x2
1 x4 − 3x1 x2

4 + x3
4 }

We can factor the polynomial and get

(
√

5x4 + 2x1 − x4)(x1 + 1/2x4 −
√

5/2x4)(x1 + 1/2x4 +
√

5/2x4)



Remarks on Geometric Theorem Proving 123

We conclude that the statement is algebraically true under the conditions that
x1
x4

�=−1−√
5

2 , 1−√
5

2 ,
√

5−1
2 . The last condition excludes the situation where B is

external to the segment AC.

You remember that a proposed alternative way was to impose that AE is
the golden section of AB. In this way we were able to use Q as the computing
field.

Then we compute a set of conditions by using Algorithm Proving, and get

[x2
1 + x1 x4 − x2

4 ,
x3 − 2/5x1 − 1/5x4 ,
x2 − 4/5x1 − 2/5x4 ]

All the conditions are equivalent. We conclude that the statement is alge-
braically true under one of these conditions. The last two are not clearly inter-
pretable. However, if we work in Q[

√
5][x1, x2, x3, x4], we factor x2

1 +x1 x4 −x2
4 =

(x1 +1/2x4 +
√

5x4)(x1 +1/2x4 −
√

5x4). We can conclude that the statement is
algebraically true under the condition x1

x4
�=−1−√

5
2 ,

√
5−1
2 . As before, the second

condition excludes the situation where B is external to the segment AC.

Example 7 (Isosceles or Right-angled Triangles). Let be given a triangle which is
isosceles or right-angled. Show that the center of the circumscribed circle belongs
to one of the sides of the triangle.

................................................................................ .......................

........

........

........

........

........

........

........

........................

.......................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
....

....................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................
......................

.................
...............

.............
............
...........
...........
..........
..........
..........
.........
.........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.........
.........
.........
.........
.........
..........
..........

...........
...........

............
.............

..............
................

....................
..............................

.....................................................................................................................................................................................................................................................................................................................................................................................

A (0,0) B(x1,0)

C(x2,x3)

D(x4,x5)

We introduce Cartesian coordinates, and place the triangle as in the picture.
Then we have

A = (0, 0), B = (x1, 0), C = (x2, x3), D = (x4, x5)

DA = DB yields the polynomial h1 = 2x1x4 − x2
1.

DA = DC yields the polynomial h2 = x2
2 + x2

3 − 2x2x4 − 2x3x5.
We assume that the triangle is isosceles or right-angled in C.

AC = CB or AC ⊥ CB yields the polynomial h3 = x3
1x2 − 3x2

1x
2
2 + 2x1x

3
2 −

x2
1x

2
3 + 2x1x2x

2
3.



124 Laura Bazzotti, Giorgio Dalzotto, and Lorenzo Robbiano

The thesis D ∈ AB yields the polynomial t = x1x5. Therefore a computing
field is Q and we may work in the polynomial ring Q[x1, x2, x3, x4, x5].

We run Algorithm Proving without any preprocessing, and get the following
almost good set of conditions
[x3x4 − x3x2, x3

3 − x3x
2
4 − 2x2

3x5].
The statement is not a theorem. Using the equivalence relation introduced

in Theorem 4, Step 5, we check that the two conditions found are equivalent.
Therefore a good set of conditions is a single polynomial, and we can choose
between x3x4 − x3x2 and x3

3 − x3x
2
4 − 2x2

3x5.
We enter the phase of the postprocessing. We observe that it is easier to

interpret the first condition. It means that the statement is algebraically true
under the conditions that x3 �= 0 andx4 �=x2. Clearly, x3 �= 0 excludes the
degenerate case that the triangle degenerates to the segment AB, while x4 �=x2
excludes the case that the triangle is isosceles.

We run the second variant of the Algorithm Proving and get the Optimal
Hypothesis Ideal

(x2
2 + x2

3 − 2x2x4 − 2x3x5, x2
1 − 2x1x4, x1x5)

As it happens frequently, the optimal hypothesis ideal is difficult to read. In
this case we can understand why. Namely, in this case we can compute

√
I = p1 ∩ p2 ∩ p3 ∩ p4 ∩ p5

where

p1 = (x1, x
2
2 + x2

3 − 2x2x4 − 2x3x5) p2 = (x3, x1 − x2, 2x4 − x1)
p3 = (x3, x2, 2x4 − x1) p4 = (x4 − x2, x

2
3 − x2

4 − 2x3x5, 2x4 − x1)
p5 = (x5, x

2
2 + x2

3 − 2x2x4, 2x4 − x1)

It is easy to check that t ∈ p5 e t ∈ p1, but t /∈ p2, t /∈ p3, t /∈ p4.
In conclusion the statement is true on the component which represents the

right-angled triangles, and on the component which represents the triangles
which degenerate to the segment AC. This is why the optimal hypothesis ideal
is complicated.

We could follow a different path by doing some preprocessing. Suppose we
want to avoid the cases where the triangle degenerates to a segment. This means
that the ideal I should be replaced by the ideal I : (x1x3)∞ and t = x5. Let us
do that. We compute and get

I : (x1x3)∞ = (x1−2x4, x2x5−x4x5, x2
2+x2

3−2x2x4−2x3x5, x2
3x5−x4

4x5−2x3x
2
5)

We run Algorithm Proving on this new ideal, and get the following set of
almost good conditions [x2 − x4, x2

3 − x2
4 − 2x3x5].

Again we check that the two conditions are equivalent, we use the first and
conclude that the statement is true unless the triangles are isosceles, hence it is
true for right-angled triangles. The optimal hypothesis ideal turns out to be

(x5, x1 − 2x4, x2
2 + x2

3 − 2x2x4)



Remarks on Geometric Theorem Proving 125

Now it should be clear that it expresses that the triangle is right-angled in C.

Example 8 (Tangent and Secant). Let be given a circle C and an external point
P . Through P consider a tangent line l and a secant line s to the circle. Then
the square of the distance of P to the point of contact of l with C is equal to
the product of its distances to the intersection points of s with C.

.................................................... .......................

........

........

........

............................

.......................

•

• •

•

M(a,b)

P (0,0)
A(x1,0) B(x2,0)

T (x3,y)

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
......

........................................................................................................................................................................................................................................................................................................................................
...................

..............
.............
...........
..........
..........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
.........
.........
.........
..........
..........

...........
............

..............
................

........................
...........................................................................................................................

We introduce Cartesian coordinates, and place the axes as in the picture. Then
we have

P = (0, 0), A = (x1, 0), B = (x2, 0), M = (a, b), T = (x3, y)

TM = AM yields the polynomial h1 = (x3 − a)2 + (y − b)2 − (x1 − a)2 − b2.
AM = BM yields the polynomial h2 = (x1 − a)2 − (x2 − a)2.
PT ⊥ MT yields the polynomial h3 = x3(x3 − a) + y(y − b).

The thesis PT
2

= PA · PB yields the polynomial x2
3 + y2 − x1x2.

Therefore a computing field is Q and we may work in the polynomial ring
Q[x1, x2, x3, y, a, b].

We run Algorithm Proving without any preprocessing, and get the following
good set of conditions [x1 − x2].

This comes somehow as a little surprise. It means that the statement is false
on the component determined by the choice A = B, i.e. when we do not specify
that A, B are the two points of intersections of the secant line with the circle.

It is a typical situation where it is very easy to overlook a degeneracy condi-
tion.

Example 9 (Feet and Midpoints). In every triangle the circle passing through the
feet of the three altitudes intersects the sides of the triangle in their midpoints.

We introduce Cartesian coordinates, and place the geometric objects as in
the picture. Then we have that A = (0, 0), B = (x1, 0), C = (x2, x3) are the
vertices of the triangle, D = (x2, 0), E = (x4, x5), F = (x6, x7) are the feet of
the altitudes. Finally let O = (x8, x9) be the center of the circle, M = (x1/2, 0)
the medium point of AB.
F ∈ AC yields the polynomial h1 = −x3x6 + x2x7,
AC ⊥ FB yields the polynomial h2 = x1x2 − x2x6 − x3x7,
E ∈ CB yields the polynomial h3 = −x1x3 + x3x4 + x1x5 − x2x5,



126 Laura Bazzotti, Giorgio Dalzotto, and Lorenzo Robbiano

AE ⊥ BC yields the polynomial h4 = −x1x4 + x2x4 + x3x5,
OE = OD yields the polynomial h5 = −x2

2 + x2
4 + x2

5 + 2x2x8 − 2x4x8 − 2x5x9,
OD = OF yields the polynomial h6 = x2

2 − x2
6 − x2

7 − 2x2x8 + 2x6x8 + 2x7x9.

.................................................... .......................

........

........

........

............................

.......................

A(0,0) B(x1,0)

C(x2,x3)

M( x1
2 ,0)

O(x8, x9)

D(x2,0)

E(x4,x5)

F (x6,x7)

•

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................... ...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.......................................................................................................................................................................................................................................................................................................
................

.............
...........
..........
.........
.........
.........
........
........
........
........
........
........
........
.........
.........
..........
..........

............
..............

...................
...........................................................................................................................................................................................................................................................................................

The thesis OM = OD yields the polynomial t = 1/4x2
1 − x2

2 − x1x8 + 2x2x8.
Therefore a computing field is Q and we may work in the polynomial ring
Q[x1, x2, x3, x4, x5, x6, x7, x8, x9]. In the preprocessing phase we decide to ex-
clude some degenerate cases. Namely we exclude the possibility that the triangle
degenerates to a segment, by replacing the hypothesis ideal (h1, h2, h3, h4, h5, h6)
with the new hypothesis ideal I = (h1, h2, h3, h4, h5, h6) : (x1x3)∞.

Then we compute an almost good set of conditions by using Algorithm Prov-
ing, and get

[x5x7x8 − 2x5x6x9 + x4x7x9 − 2x7x8x9 + 2x6x
2
9,

x2
6x

2
7 + x4

7 − 2x6x
2
7x8 − 2x3

7x9 + 4x6x7x8x9 − 4x2
6x

2
9,

x1x5 + x5x6 − x4x7 − 2x5x8 + 2x7x8 − 2x1x9 + 2x4x9 − 2x6x9,
x3x5 + 2x2x8 − 2x4x8 − 2x5x9,
x3x6 − x4x7,
x4x6 − x2

6 + x5x7 − x2
7,

x1x3 − x4x7 − 2x3x8 + 2x7x8 − 2x1x9 + 4x2x9 − 2x6x9,
x2x4 − x2

6 − x2
7 − 2x2x8 + 2x6x8 + 2x7x9,

x3x4 − 2x5x6 − 2x3x8 + 2x5x8 + 4x2x9 − 2x4x9,
x1x2 − x2

6 − x5x7 − x2
7 − 2x2x8 + 2x6x8 + 2x7x9,

x2x5 − x5x6,
x2x6 − x2

6 + x5x7 − x2
7,

x3x7 − 2x5x7 − 2x2x8 + 2x6x8 + 2x7x9,
x2x7 − x4x7,
x5x6x7 − 2x5x6x9,
x2

5x7 − 2x5x7x9,
x4x5x7 − 2x5x6x9,
x5x

2
7 − 2x5x7x9,

x4x
2
7 − 2x2

7x8 − 2x4x7x9 + 2x6x7x9 + 4x7x8x9 − 4x6x
2
9,

x5x
2
6 − 1/2x2

6x7 − 1/2x3
7 − x5x6x8 + x6x7x8 − x2

6x9 + x5x7x9,



Remarks on Geometric Theorem Proving 127

x2
5x6 − 2x5x6x9,

x1x
2
7 − 2x2

7x8 − 2x1x7x9 + 2x6x7x9 + 4x7x8x9 − 4x6x
2
9]

All the conditions are equivalent. We conclude that a good set of conditions
is {x2x5−x5x6}, and that the statement is algebraically true under the condition
that x2x5 −x5x6 �= 0, which means that the triangle should not be right-angled.

In this case the Optimal Hypothesis Ideal is difficult to read.

Example 10 (Parallelogram). Given a parallelogram, the intersection point of
the diagonals lies on a side.

.................................................... .......................

........

........

........

............................

.......................

A(0,0) B(x1,0)

C(x2,x3)

O(x6,x7)

D(x4,x5)

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

........................
........................

.....................................................................................................................................................................................................................................................................................................................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................

We introduce Cartesian coordinates, and place the geometric objects as in the
picture. Then we have that A = (0, 0), B = (x1, 0), C = (x2, x3), D = (x4, x5)
are the vertices of the parallelogram, and O = (x6, x7) is the intersection point
of the diagonals.

AB ‖ DC yields the polynomial h1 = −x1x3 + x1x5,
AD ‖ BC yields the polynomial h2 = −x3x4 − x1x5 + x2x5,
O ∈ AC yields the polynomial h3 = −x3x6 + x2x7,
O ∈ DB yields the polynomial h4 = −x1x5 + x5x6 + x1x7 − x4x7.

The thesis O ∈ AB yields the polynomial t = x1x7. Therefore a computing
field is Q and we may work in Q[x1, x2, x3, x4, x5, x6, x7].

Then we compute an almost good set of conditions by using Algorithm Prov-
ing, and get

[x2
1 − x2

4 − 2x1x6 + 2x4x6,
x1x2 − x1x6 − x2x6 + x4x6,
x2

2 − 2x2x6,
x2x4 + x1x6 − x2x6 − x4x6]

This is a case where, no matter which condition we take, its understanding
is not trivial. However, we may compute the Optimal Hypothesis Ideal and get
that the Optimal Hypothesis Ideal is the ideal

(x1x5, x1x3, x5x6 − x4x7, x3x6 − x2x7, x3x4 − x2x5, x1x7)

whose meaning is clear. We conclude that the statement is algebraically true for
the parallelograms which degenerate into a segment.

In this case the possibility of working with two options was useful for the
correct interpretation of the output.



128 Laura Bazzotti, Giorgio Dalzotto, and Lorenzo Robbiano

References

1. B. Buchberger, On Finding a Vector Space Basis of the Residue Class Ring Mod-
ulo a Zero-dimensional Polynomial Ideal (in German), PhD Thesis, Universität
Innsbruck, Innsbruck (1965).

2. B. Buchberger, Gröbner Bases: An Algorithmic Method in Polynomial Ideal The-
ory, Chapter 6 in N. K. Bose ed., Multidimensional Systems Theory, pp. 184–232,
D. Reidel Publ. Comp., Dordrecht (1985).

3. S.-C. Chou, Mechanical Geometry Theorem Proving (Mathematics and Its Appli-
cations 41), D. Reidel Publ. Comp., Dordrecht (1988).

4. A. Capani, G. Niesi, L. Robbiano, CoCoA, a System for Doing Computations in
Commutative Algebra. Version 4.0 is available at http://cocoa.dima.unige.it.

5. H. Gelernter, J. R. Hansen, D. W. Loveland, Empirical Exploration of the Geometry
Theorem Proving Machine, in A. Feigenbaum, A., J. Feldman eds., Computer and
Thought, pp. 153–163, McGraw–Hill, New York (1963).

6. F. De Giovanni, T. Landolfi, Le Dimostrazioni di Teoremi fondate sull’uso del
Calcolatori, Bollettino U.M.I., La matematica nella Società e nella Cultura (8)
2-A: 69–81 (1999).

7. D. Kapur, Using Gröbner Bases to Reason about Geometry Problems, J. Symb.
Comp. 2: 399–408 (1986).

8. D. Kapur, A Refutational Approach to Geometry Theorem Proving, Artificial In-
telligence 37: 61–93 (1988).

9. M. Kreuzer, L. Robbiano, Computational Commutative Algebra 1, Springer-
Verlag, Berlin Heidelberg (2000).

10. B. Kutzler, S. Stifter, On the Application of Buchberger’s Algorithm to Automated
Geometry Theorem Proving, J. Symb. Comput. 2: 389–397 (1986).

11. T. Recio, H. Sterk, M. Pilar Vélez, Automatic Geometry Theorem Proving, in
A. Cohen, H. Cuypers, H. Sterk eds., Some Tapas of Computer Algebra (Algo-
rithms and Computation in Mathematics 4), pp. 276–296, Springer-Verlag, Berlin
Heidelberg (1999).

12. T. Recio, M. Pilar Vélez, Automatic Discovery of Theorems in Elementary Geom-
etry, J. Automat. Reason. 23: 63–82 (1999).

13. J. Richter-Gebert, Realization Spaces of Polytopes (Lecture Notes in Mathematics
1643), Springer-Verlag, Berlin Heidelberg (1996).

14. D. Wang, Gröbner Bases Applied to Geometric Theorem Proving and Discovering,
in B. Buchberger and F. Winkler eds., Gröbner Bases and Applications (London
Mathematical Society Lecture Notes Series 251), pp. 281–301, Cambridge Univer-
sity Press, Cambridge (1998).

15. W.-T. Wu, On the Decision Problem and the Mechanization of Theorem Proving
in Elementary Geometry, Scientia Sinica 21: 150–172 (1978).

16. W.-T. Wu, Toward Mechanization of Geometry — Some Comments on Hilbert’s
“Grundlagen der Geometrie”, Acta Math. Scientia 2: 125–138 (1982).

17. W.-T. Wu, Basic Principles of Mechanical Theorem Proving in Elementary Ge-
ometries, J. Syst. Sci. Math. Sci. 4: 207–235 (1984).



The Kinds of Truth of Geometry Theorems

Michael Bulmer1, Desmond Fearnley-Sander2, and Tim Stokes3

1 University of Queensland, Queensland, Australia
mrb@maths.uq.edu.au

2 University of Tasmania, Tasmania, Australia
Desmond.FearnleySander@utas.edu.au

3 Murdoch University, Western Australia, Australia
stokes@prodigal.murdoch.edu.au

Abstract. Proof by refutation of a geometry theorem that is not uni-
versally true produces a Gröbner basis whose elements, called side poly-
nomials, may be used to give inequations that can be added to the hy-
potheses to give a valid theorem. We show that (in a certain sense) all
possible subsidiary conditions are implied by those obtained from the
basis; that what we call the kind of truth of the theorem may be derived
from the basis; and that the side polynomials may be classified in a useful
way. We analyse the relationship between side polynomials and kinds of
truth, and we give a unified algorithmic treatment of side polynomials,
with examples generated by an implementation.

1 Algebraic Preliminaries

Throughout, let n be a positive integer and L a fixed field containing the field
Q of rational numbers. Let Q[Xn] be the ring of polynomials with n-variable set
Xn = {x1, x2, . . ., xn} over Q.

Let F ⊆ Q[Xn] and f ∈ Q[Xn]. We call (F, f) a possible theorem. (F )Xn

denotes the ideal generated by F in Q[Xn]. For a ∈ Ln we denote by f(a) the
result of substituting a for their corresponding variables in f and evaluating.

For F ⊆ Q[Xn], let

CXn(F ) = {f ∈Q[Xn] | for all a ∈Ln, h(a) = 0 for all h ∈F implies f(a) = 0},

an ideal of Q[Xn] as is easily checked. If the choice of polynomial ring is clear we
often write just C(F ). The ideal CXn(F ) depends on the field L. For example if
n = 1 and F = {x3+x}, then if L = R is the field of real numbers, CX1(F ) = (x),
because x3 + x has only one root x = 0 in R. If L = C, the field of complex
numbers, then CX1(F ) = (x3 + x), because x3 + x has three roots x = 0, i,−i in
C. If L is algebraically closed, then by Hilbert’s Nullstellensatz, CXn(F ) = {f ∈
Q[Xn] | fk ∈ (F )Xn}, the radical ideal generated by F in Q[Xn].

Dually, for F ⊆ Q[Xn], let

VXn(F ) = {a | a ∈ Ln, f(a) = 0 for all f ∈ F},

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 129–142, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



130 Michael Bulmer, Desmond Fearnley-Sander, and Tim Stokes

the variety associated with F ⊆ Q[Xn]. Again, we often write just V(F ) if the
context is clear, and if F = {f}, a singleton set, we shall often write VXn(f) (or
just V(f)) rather than VXn({f}). Varieties are closed under arbitrary intersec-
tions and finite unions.

There is a familiar dual isomorphism between the lattices of varieties of the
form VXn(G) and ideals of the form CXn(G), G ⊆ Q[Xn]. Because the lattice
of varieties is distributive and satisfies the descending chain condition, every
variety V has a unique decomposition

V = V1 ∪ V2 ∪ · · · ∪ Vn

into distinct irreducible components (varieties which cannot themselves be ex-
pressed non-trivially as unions of two or more proper subvarieties).

2 The Kind of Truth of a Possible Theorem

In geometrical theorem proving, the higher level statement of a valid geometry
theorem naturally translates into an equational implication involving polyno-
mials, with geometrical predicates such as “points A, B and C are collinear”
becoming polynomial equations via coordinatisation. Further, one can require
that certain variables be treated as independent, in the sense that no algebraic
relations are assumed to hold amongst them. Chou has argued in [2] that the
specification of the independent variables in a geometry theorem is an integral
part of the algebraic formulation: such variables are chosen according to a no-
tional “construction” that takes place when the geometry theorem hypotheses
are read in order. It is this approach we adopt.

Formally, suppose the variables in U ⊆ Xn are specified as being independent;
view Q[U ] as a subring of Q[Xn]. We say that a variety V is U -generic (or
simply generic if the choice of U is clear) if no polynomial in Q[U ] is zero on
all of V. If L is algebraically closed, then VXn(F ) is U -generic if and only if
(F )Xn ∩Q[U ] = {0}; this is called U -independence in [5]. Let GXn(F ) denote the
union of all U -generic irreducible components of VXn(F ).

We can now define the four basic kinds of truth of a possible theorem: for
F ∪ {f} ⊆ Q[Xn], we say the possible theorem (F, f) is

1. universally true if f is zero on all of VXn(F ), that is, f(a) = 0 for all a ∈
VXn(F );

2. generically true if f is zero on GXn
(F );

3. generically conditionally true if there exists an irreducible component of
GXn(F ) on which f is zero but f is not zero on all of GXn(F );

4. generically false there is no irreducible component of GXn(F ) on which f is
zero.

We are further able to separate the final category into two subcategories. A
generically false possible theorem is:



The Kinds of Truth of Geometry Theorems 131

– degenerately true if there is no irreducible component of GXn(F ) on which f
is zero, yet there is at least one irreducible component of VXn(F ) on which
f is zero;

– rarely true if there is no irreducible component of VXn(F ) on which f is zero.

We call these kinds of truth 1 to 4 respectively, with kind 4 split into 4(a)
and 4(b) as above. Note that a possible theorem is of at least one of these five
types, and exactly one of types 2 to 4 (b). We shall show how to determine the
kind of truth of a possible theorem using Gröbner bases for the case where L is
algebraically closed.

Generic truth reflects the idea that the conclusion holding on the generic
irreducible components of the hypotheses is what is “really intended” by the
author of a theorem. Generically conditional truth occurs when there is some
ambiguity in the hypotheses of the theorem and the conclusion will not hold
on all generic irreducible components; this is in practice a rare situation but
can occur as illustrated in [2] and elsewhere. Generic falsity occurs when the
conclusion is valid on no generic irreducible components. In contrast to rare
truth, degenerate truth is at least a form of conditional truth, and the fact that
it can be algorithmically distinguished from rare truth has led us to define it
separately.

Most of these kinds of truth have in essence been considered elsewhere along
with algorithmic ways of determining the kind of truth of a possible theorem (see
[2,1] and more recently [7,6] for instance). However, so far as we know, no unified
algorithmic treatment of the kind presented here, applying to all the kinds of
truth discussed here and providing a complete set of side polynomials for each,
has appeared previously.

3 Side Polynomials and Kinds of Truth

For the remainder of the article, F and f will be an arbitrary subset and an
element of Q[Xn] respectively.

In [4], a method described by Kapur as refutational theorem proving was
considered for proving geometry theorems translated into polynomial equations
in this way. Kapur’s approach was based on the idea of considering the conjunc-
tion of the hypotheses of the theorem with the negation of the conclusion (in a
certain sense), forming a Gröbner basis and determining if it was (1)Xn ; if so,
then the theorem was validated and if not the polynomials in the basis could be
used to give side conditions in the form of inequations which could be added to
the hypotheses in order to give a valid theorem.

Such side conditions prove necessary because most standard Euclidean ge-
ometry “theorems”, as normally stated, are not universally true, owing to the
absence from the hypotheses of certain additional non-degeneracy conditions
that may be represented algebraically as inequations. These may correspond to
hypotheses of the form “points A, B and C are not collinear”, and so forth. Of-
ten, such extra hypotheses are not easy to guess, as is discussed at length in



132 Michael Bulmer, Desmond Fearnley-Sander, and Tim Stokes

[2], although synthetic proofs of geometry theorems make at least tacit use of
them. Note that any finite number of inequations may be expressed as a single
inequation.

We show that all possible side conditions (in a certain natural sense) are
implied by those obtained from the Gröbner basis used in Kapur’s method, and
that the kind of truth of the theorem may be derived from this basis; moreover,
the side polynomials may be classified in a useful way.

Formally, we say that g ∈ Q[Xn] is a side polynomial for (F, f) if f(a) = 0
for all a ∈ V(F ) for which g(a) �= 0. Let the set of all side polynomials for (F, f)
be denoted side(F, f).

Theorem 1. For the possible theorem (F, f), C(side(F, f)) = (side(F, f))Xn =
side(F, f).

Proof. Now of course side(F, f) ⊆ (side(F, f))Xn ⊆ C(side(F, f)). Suppose
h ∈ C(side(F, f)) and that h(a) �= 0 for somea ∈ V(F ). Then because h ∈
C(side(F, f)), by definition there exists g ∈ side(F, f) such that g(a) �= 0, so
f(a) = 0. Hence h ∈ side(F, f) by definition, and so C(side(F, f)) ⊆ side(F, f).
Hence the two sets are equal. �

For example, letting F = {x1x2} and f = x1, one element of side(F, f) is
g = x2, since for c, d ∈ L, if cd = 0 and d �= 0, then necessarilyc = 0. In other
words, for all a ∈ L2, if a ∈ V(F ) and g(a) �= 0, thenf(a) = 0. In fact in this
case, side(F, f) = (x2), the ideal generated by x2 in Q[X2].

There are various kinds of side polynomial, corresponding to the various kinds
of truth as we shall show. Thus a side polynomial g for (F, f) is

1. generic if g ∈ Q[U ];
2. generically resolving if g �∈Q[U ] and (F, g) is not generically true;
3. degenerate if g �∈Q[U ] and (F, g) is generically true;
4. extraneous if g �∈Q[U ] and (F, g) is universally true.

Theorem 2. The possible theorem (F, f) is

1. universally true if and only if every polynomial is a side polynomial;
2. generically true if and only if there exists a generic side polynomial;
3. generically conditionally true if and only if there exist no generic side poly-

nomials, but there does exist a generically resolving side polynomial;
4. degenerately true if and only if there exist no generic or generically resolving

side polynomials, but there does exist a degenerate side polynomial;
5. rarely true if and only if all side polynomials are extraneous.

Proof. Condition 1 is immediate, and condition 2 is proved in [2].
Now suppose (F, f) has no generic or generically resolving side polynomials.

If g ∈ side(F, f) then (F, g) is generically true, so if h(a) = 0 for all h ∈ F
and g(a) �= 0 thena �∈ G(F ). Suppose h �∈Q[U ] and h is a non-degenerate
side polynomial for (F, f); hence fh is zero on V(F ), so certainly fh is zero on
GXn(F ), so GXn(F ) ⊆ V(fh) = V(f)∪V(h). Hence GXn(F ) = [GXn(F )∩V(f)]∪



The Kinds of Truth of Geometry Theorems 133

[GXn(F ) ∩ V(h)]. But h is non-degenerate, so h is not zero on all of GXn(F ), so
GXn(F ) �⊆ V(h), so GXn(F ) ∩ V(h) ⊂ GXn(F ), and so GXn(F ) ∩ V(f) is a finite
non-empty union of irreducible components of GXn(F ): let V(G′) be one of these
irreducible components. Then V(G′) is a generic irreducible component of V(F )
also, and because V(G′) ⊆ GXn(F ) ∩ V(f) ⊆ V(f), it follows that f is zero on
V(G′). Hence (F, f) is not generically false.

Conversely, suppose (F, f) is not generically false. Now V(F ) �=∅, so C(F ) �=
Q[Xn]. Suppose f is zero on the generic irreducible component V(F ′) of V(F );
then V(F ′) ⊆ V(f). If V(F ) has only one irreducible component (namely itself),
then V(F ) = V(F ′) and then f is zero on V(F ) and so any polynomial h �∈
C(F ) is a non-degenerate side polynomial for (F, f); these exist because C(F ) �=
Q[Xn]. On the other hand, if V(F ) has more than one irreducible component,
let V(H) be the union of the irreducible components of V(F ) other than V(F ′).
Let h ∈ C(H)\C(F ′); such a non-zero h exists since V(F ′) �⊆ V(H), so C(H) is
not a subset of C(F ′), and C(H) is non-empty. Further, if F (a) = 0 yet h(a) �= 0
then a ∈ V(F )\V(H) ⊆ V(F ′) ⊆ V(f), so h ∈ side(F, f). But h �∈C(F ′) and
V(F ′) ⊆ GXn(F ), so h does not vanish on GXn(F ) and so the possible theorem
(F, h) is not generically true. Hence h is a non-degenerate side polynomial for
(F, f). Thus every side polynomial for (F, f) is degenerate if and only if (F, f)
is generically false.

Let U ′ = ∅. Then all irreducible components of V(F ) are U ′-generic, (F, g) is
U ′-generically true if and only if (F, g) is universally true, and a side polynomial
is U ′-degenerate if and only if it is extraneous. Then (F, f) is rarely true if and
only if (F, f) is U ′-degenerately or rarely true if and only if every side polynomial
for (F, f) is U ′-degenerate, that is to say, extraneous.

Finally, there is at least one generically resolving side polynomial for (F, f)
yet no generic side polynomials for (F, f) if and only if (F, f) is not generically
true and (by the above) neither degenerately nor rarely true, that is, if and only
if (F, f) is generically conditionally true. �

4 Proof by Refutation and the Kind of Truth

Because of Hilbert’s Nullstellensatz, algebraically closed fields are algorithmically
convenient to work with, and we frequently assume algebraic closure of L in
what follows; moreover all fields have characteristic zero since we work with
polynomials over the rational numbers. When L is the field of real numbers, a
geometry theorem being true in any of the senses just defined means that it
is true in the theory of Euclidean geometry. Of course, if a possible theorem is
universally true over an algebraically closed field of characteristic zero, then it
is true over the complex numbers and hence over the reals also. Although the
converse fails, it seems to do so rarely, a fact which apparently generalises to
the other kinds of truth as we see in examples to follow. Certainly any side
polynomial over algebraically closed L is a side polynomial over the reals also.
Thus the assumption that L is algebraically closed is not totally artificial and
corresponds to a certain well-defined level of geometrical reasoning which in



134 Michael Bulmer, Desmond Fearnley-Sander, and Tim Stokes

practice seems only a little weaker than full Euclidean geometry, namely metric
geometry. We recommend the book [2] to the reader interested in a more detailed
account of some of these matters, which have been discussed by many authors.

There are methods which allow one to test whether a given guess is a side
polynomial for a possible theorem (and these are considered in detail in [4]),
but guessing side polynomials is generally difficult. Furthermore, the existence
of (say) a resolving side polynomial for (F, f) does not preclude the existence of
generic side polynomials, so the kind of truth is not necessarily established by
a correctly guessed side polynomial. Moreover, one can never be sure of having
a complete set of side polynomials (so that the disjunction of the associated
inequations covers all possibilities for side conditions) using such an approach.
A method which is able both to produce a complete set of side polynomials and
then to read off the kind of truth of the possible theorem is desirable. It turns
out that the set obtained using Kapur’s method in [4], based on constructing
the Gröbner basis of F ∪ {fz − 1}, does this job.

Recall from Theorem 1 that C(side(F, f)) = side(F, f). We shall call any set
of polynomials G ⊆ Q[Xn] for which C(G) = side(F, f) a complete set of side
polynomials for (F, f). Then certainly, for any a ∈ Ln, h(a) = 0 for all h ∈ F
and g1(a) �= 0∨g2(a) �= 0∨· · ·∨gk(a) �= 0 implyf(a) = 0, and moreover any side
polynomial p is such that p(a) �= 0 impliesg1(a) �= 0∨g2(a) �= 0∨· · ·∨gk(a) �= 0.
So the disjunction of the side conditions of the form gi �= 0 is the weakest possible
such disjunction. We similarly define a complete set of generic side polynomials
for (F, f) to be any finite G ⊆ Q[U ] for which C(G) ∩ Q[U ] = side(F, f) ∩ Q[U ].

For F ∪{f} ⊆ Q[Xn] and U a non-empty subset of Xn, let (F : f∞)U be the
ideal (F ∪ {fz − 1})Xn∪{z} ∩ Q[U ]. (If U = Xn, this is the saturation of f with
respect to the ideal (F )Xn .)

Results similar to the following have already appeared in the literature.

Theorem 3. For the possible theorem (F, f), side(F, f) = CXn∪{z}(F ∪ {fz −
1}) ∩ Q[Xn].

Proof. Let B(F, f) = CXn∪{z}(F∪{fz−1})∩Q[Xn]. The following are equivalent.

– g ∈ B(F, f);
– g ∈ Q[Xn], and if a ∈ VXn(F ) and f(a)b = 1 for some b ∈ L, then g(a) = 0;
– g ∈ Q[Xn] and if a ∈ VXn(F ) and f(a) �= 0, theng(a) = 0;
– g ∈ Q[Xn] and if a ∈ VXn(F ) and g(a) �= 0, thenf(a) = 0;
– g ∈ side(F, f).

Hence side(F, f) = B(F, f). �

Theorem 4. Suppose that L is algebraically closed. Then side(F, f) = C((F :
f∞)Xn), and if a lexicographic order is used in which z is the biggest variable
and the variables in U are all ordered below those in Xn\U , then GB(F ∪{fz −
1}) ∩ Q[U ] is a complete set of generic side polynomials for (F, f).



The Kinds of Truth of Geometry Theorems 135

Proof.

CU ((F : f)U ) = CU ((F ∪ {fz − 1})Xn∪{z} ∩ Q[U ])
⊆ CXn∪{z}((F ∪ {fz − 1})Xn∪{z} ∩ Q[U ]) ∩ Q[U ]
⊆ CXn∪{z}((F ∪ {fz − 1})Xn∪{z}) ∩ Q[U ]
= CXn∪{z}(F ∪ {fz − 1}) ∩ Q[U ]
= side(F, f)

from Theorem 3. (Note that this part of the argument works even if L is not
algebraically closed.)

Conversely, if L is algebraically closed and g ∈ side(F, f) ∩ Q[U ], then by
Theorem 3, g ∈ CXn∪{z}(F∪{fz−1})∩Q[U ], so by Hilbert’s Nulltellensatz, there
exists n > 0 for which gn ∈ (F ∪{fz−1})Xn∪{z} and hence gn ∈ CU ((F : f∞)U ),
so by Hilbert’s Nullstellensatz, g ∈ CU ((F : f)U ). Hence side(F, f) ∩ Q[U ] ⊆
CU ((F : f)U ) and so side(F, f) = CU ((F : f)U ).

From the theory of Gröbner bases, if a lexicographic order is used in which
the variables in U are all ordered below those in Xn ∪ {z}\U , then GB((F ∪
{fz − 1}) ∩ Q[U ]) = GB(F ∪ {fz − 1}) ∩ Q[U ], which is therefore a generating
set for the ideal (F : f∞)U and hence is a complete set of side polynomials for
(F, f), since if an ideal I is a complete set of side polynomials for (F, f) then so
is any generating set for I. �

The following is immediate if one lets U = Xn.

Corollary 1. Suppose L is algebraically closed. If a lexicographic order is used
in which z is the biggest variable, then GB(F ∪ {fz − 1}) ∩ Q[Xn] is a complete
set of side polynomials for (F, f).

This generalises a result in [4], where it was shown that if a side polynomial
h consistent with the hypotheses (in other words a non-extraneous side polyno-
mial) exists, then there will be one in GB(F ∪{fz−1})∩Q[Xn]. Our result shows
that GB(F ∪ {fz − 1}) ∩ Q[Xn] spans all possible side conditions in the natural
sense described earlier, and moreover this extends to generic side polynomials.

Suppose L is algebraically closed. Let G(F, f) = GB(F ∪ {fz − 1}) ∩ Q[Xn],
computed with respect to a fixed lexicographic order in which z is the biggest
variable and the variables in U are all ordered below those in Xn\U .

Let

G1 = G(F, f) ∩ Q[U ],
G2 = {g | g ∈ G(F, f), g �∈Q[U ], G(F, g) ∩ Q[U ] = ∅},

G3 = {g | g ∈ G(F, f), g �∈Q[U ], G(F, g) ∩ Q[U ] �=∅, G(F, g) �={1}},

G4 = {g | g ∈ G(F, f), g �∈Q[U ], G(F, g) = {1}}.

We need the condition g �∈Q[U ], in the definitions of G2, . . . , G4 in order that
the sets Gi are disjoint. G1 consists of a complete set of generic side polynomials
as we have just shown, G2 consists of generically resolving side polynomials,



136 Michael Bulmer, Desmond Fearnley-Sander, and Tim Stokes

G3 consists of non-extraneous degenerate side polynomials and G4 consists of
extraneous side polynomials. Thus the Gi partition G(F, f): G = ∪4

i=1Gi and
Gi ∩ Gj = ∅ for i �=j.

Theorem 5. Suppose L is an algebraically closed field and U ⊆ Xn is a set of
independent variables. The possible theorem (F, f) is

1. universally true if and only if G1 = {1};
2. generically true if and only if G1 �=∅;
3. generically conditionally true if and only if G1 = ∅, G2

emptyset;
4. degenerately true if and only if G1 = G2 = ∅, G3 �=∅;
5. rarely true if and only if G1 = G2 = G3 = ∅, G4 �=∅.

Proof. Since L is algebraically closed, by Corollary 1, G(F, f) = GB(F ∪ {fz −
1}) ∩ Q[Xn] is a complete set of side polynomials for (F, f). Consequently, for
any side polynomial h for (F, f), there exists k ∈ G(F, f) such that h(a) �= 0
implies k(a) �= 0,a ∈ Ln. Hence k is zero on no more irreducible components of
VXn(F ) than is h.

If (F, f) is generically true, then by Theorem 4, G1 �=∅; the converse is
obvious.

Suppose (F, f) is generically conditionally true. Then G1 = ∅ as otherwise
there would be a generic side polynomial for (F, f). Furthermore, there exists a
side polynomial h for (F, f) which is generically resolving. Hence by the above,
there exists k ∈ G(F, f) which vanishes on no more irreducible components of
V(F ) than does h. Hence k is either generically resolving or generic. It cannot
be generic since G1 = ∅, so k ∈ G2 and so G2 �=∅.

Conversely, suppose G1 = ∅, G2 �=∅. Then (F, f) is not generically true
since G1 is a complete set of generic side polynomials, but there is a generically
resolving side polynomial, so (F, f) is generically conditionally true.

Suppose (F, f) is degenerately true. Then as above, G1 = G2 = ∅. Also
as above, because there is a degenerate side polynomial for (F, f), there must
be one in G(F, f), and so G3 �=∅. Conversely, if G1 = G2 = ∅ and G3 �=
∅, then (F, f) is certainly not generically true since G1 = ∅, but neither is
it generically conditionally true, as if it were, G2 �=∅ from earlier in the proof.
Thus (F, f) is degenerately true since there are no generic or generically resolving
side polynomials, but there is at least one degenerate side polynomial.

Suppose (F, f) is rarely true. Then, again, G1 = G2 = G3 = ∅ yet G4 �=∅.
Conversely, if G1 = G2 = G3 = ∅, G4 �=∅, then, as above, (F, f) is not generically
true, nor generically conditionally true, nor degenerately true, and hence is rarely
true. �

Thus G(F, f) provides a complete set of side polynomials for (F, f) from
which the kind of truth may be determined along with the relevant side polyno-
mials and, with luck, a geometrical interpretation of each such side polynomial,
leading to a geometrical side condition for each. Such computations are illus-
trated in the following section.



The Kinds of Truth of Geometry Theorems 137

5 Implementation and Examples

The classification procedure given by Theorem 5 can be attached to a standard
implementation of a refutational prover for algebraic geometry theorems. This
has been coded in Mathematica using the following algorithm:

1. Translate geometric predicates in the hypotheses and conclusion to alge-
braic polynomials, giving F ⊆ Q[X] and f ∈ Q[X], respectively. For exam-
ple, Collinear[a,b,c] (meaning that the points a, b, and c are collinear)
translates to the coordinate polynomial

(x[a] − x[b])(y[b] − y[c]) − (y[a] − y[b])(x[b] − x[c]).

Additionally, the construction sequence is used to determine which variables
are independent, the elements of U ⊆ X, as described in [2].

2. Compute the Gröbner basis G(F, f) = GB(F ∪ {fz − 1}) ∩ Q[X], removing
the polynomials involving z.

3. Split G(F, f) into the four sets G1, G2, G3, G4, as defined in the preamble to
Theorem 5. This involves additional Gröbner basis computations.

4. If G1 = {1} then return True. Otherwise, attempt to translate the polynomi-
als back into geometric predicates using pattern matching. (If no predicate
can be determined then the polynomial is returned for inspection by the
user.)

The Mathematica code for our implementation can be downloaded from

http://www.maths.utas.edu.au/People/dfs/dfs.html

We now give some simple examples to show the kinds of truth of geometry
theorems and the results of this algorithm.

Parallel Pappus

A
B

C

D E F

Fig. 1. The Parallel Pappus Theorem.

The following is a famous theorem of Pappus:

Hyps[Pappus] = { Collinear[A,B,C], Collinear[D,E,F],
Parallel[A,E,B,F], Parallel[B,D,C,E] };

Conc[Pappus] = Parallel[A,D,C,F];



138 Michael Bulmer, Desmond Fearnley-Sander, and Tim Stokes

The function Prove[F,f] returns the kind of truth of the possible theo-
rem (F, f) as a 4-tuple {generic, conditional, degenerate, extraneous} of sets of
equations. In the case where the first of these equals {1} with all others empty,
the output is rendered as True.

Prove[Hyps[Pappus],Conc[Pappus]]

True

Thus this possible theorem is universally true. Any instance of the hypotheses
is an instance of the conclusion, without restriction. Universal truth is an uncom-
monly strong property of possible theorems. It means that the entailment holds
for arbitrary choices of the points. For example, the Parallel Pappus theorem
holds even when all the points are collinear.

Collinearity Theorem

Consider the following statement carefully:

Hyps[CollinearityThm] = { Collinear[A,B,C], Collinear[A,B,D] };
Conc[CollinearityThm] = Collinear[B,C,D];

Here the prover chooses U = {xA, yA, xB , yB , xC , xD} from the construction
and computes

G(F, f) = {−yA + yB , xA − xB}.

Each polynomial is in Q[U ] and so G1 = G(F, f), G2 = G3 = G4 = ∅. Invoking
Prove gives the partition of G(F, f) and interprets the polynomials:

Prove[Hyps[CollinearityThm],Conc[CollinearityThm]]

{{!Identical[A, B]}, {}, {}, {}}

Thus we have a generic side polynomial for the possible theorem. The theorem
is generically true, and the associated side condition asserts that points A and
B are not identical. The prover has established that !Identical[A, B] is a
weakest possible (generic) side condition: any other side condition is at least as
strong. (Readers should draw a diagram for the case where A and B coincide to
see the problem.)

Parallelogram Theorem

The following possible theorem says that the diagonals of a parallelogram bisect
each other.

Hyps[ParallelogramThm] = { Parallel[A,B,D,C],
Parallel[D,A,C,B], Collinear[O,B,D], Collinear[O,A,C] };

Conc[ParallelogramThm] = EqualLength[A,O,O,C];



The Kinds of Truth of Geometry Theorems 139

A B

C
D

O

Fig. 2. The Parallelogram Theorem.

Here the predicate EqualLength[a,b,c,d] says that the line segments ab
and cd are of equal length.

The prover chooses U = {xA, yA, xB , yB , xC , yC} from the construction and
computes

G(F, f) =




−xByA + xCyA + xAyB − xCyB − xAyC + xByC ,
xCyB − xOyB − xByC + xOyC + xByO − xCyO,
−xCyA + xOyA + xAyC − xOyC − xAyO + xCyO,
xCyB − xDyB − xByC + xDyC + xByD − xCyD,
−xCyA + xDyA + xAyC − xDyC − xAyD + xCyD,
−xDyC + xOyC + xCyD − xOyD − xCyO + xDyO




.

Here

G1 = {−xByA + xCyA + xAyB − xCyB − xAyC + xByC},

G2 =




xCyB − xOyB − xByC + xOyC + xByO − xCyO,
xCyB − xDyB − xByC + xDyC + xByD − xCyD,
−xCyA + xDyA + xAyC − xDyC − xAyD + xCyD,
−xDyC + xOyC + xCyD − xOyD − xCyO + xDyO




,

G3 = ∅,

G4 = {−xCyA + xOyA + xAyC − xOyC − xAyO + xCyO}.

Again Prove gives this partition and interprets the side conditions:

Prove[Hyps[ParallelogramThm],Conc[ParallelogramThm]]

{{!Collinear[A,B,C]},
{!Collinear[A,C,D],!Collinear[B,C,D],!Collinear[B,C,O],
!Collinear[C,D,O]},
{},
{!Collinear[A,C,O]}}

This theorem is generically true: the associated side condition states that the
points A, B, and C are not collinear, and again, any other generic side condition is
at least as strong as this one. We also have five non-generic side conditions. One of
these, the side condition Collinear[A, C, O] is a consequence of the hypothe-
ses and hence is extraneous. The remaining four side conditions are generically
resolving.



140 Michael Bulmer, Desmond Fearnley-Sander, and Tim Stokes

Isosceles Theorem

In this example, EqualAngle[a, b, c, d, e, f] says that the angle ∠abc is equal to
the angle ∠def .

Hyps[IsoscelesThm] = {EqualAngle[A,B,C,C,A,B]};
Conc[IsoscelesThm] = EqualLength[A,C,B,C];

We obtain

Prove[Hyps[IsoscelesThm],Conc[IsoscelesThm]]

{{}, {!Collinear[A, B, C]}, {}, {}}

So the possible theorem is generically conditionally true. The conditional
predicate !Collinear[A, B, C] identifies which of the two generic components
gives a theorem.

A Rarely True Theorem

Rarely true theorems are not of great interest, but here is an example. Letting
Midpoint[a,b,c] be the predicate that the midpoint of the line segment between
a and b is the point c, we obtain the following:

Hyps[NonThm] = {Midpoint[A,B,C]};
Conc[NonThm] = Midpoint[A,C,B];

Prove[{Midpoint[A,B,C]},Midpoint[A,C,B]]

{{}, {}, {}, {!Midpoint[A,B,C]}}

Thus any side conditions for the possible theorem are at least as strong as the
negation of the hypothesis! That is, there is no component of the hypothesis on
which the conclusion holds. The theorem fails to hold in a most comprehensive
way.

6 Conclusion

Universal truth was considered in [2,3], as was the Gröbner basis characterisation
given above. Universal and conditional truth were also considered by Wang [8].
The definitions of generic truth and non-degeneracy conditions originate with
Wu [9,10], and have been considered also by Chou in [2], where a variant on the
Gröbner basis method using fields of rational functions is featured. Conditional
truth in general (meaning neither universal truth nor rare truth) was considered
in [3] along with the Gröbner basis method of proof. Generically conditional
truth was considered in [2] though no Gröbner basis method was given. In [1],
two strengths of generic truth were defined in terms of the highest dimension



The Kinds of Truth of Geometry Theorems 141

irreducible components of the hypothesis variety, an approach often giving a
different notion of generic truth to the one used here and one which Chou argues
in [2] is not always the one intended by the user. The notion of a complete set
of side polynomials, though hinted at in [3], seems not to have been explicitly
considered elsewhere.

More recently, the article [7] takes a similar approach to ours, in that a possi-
ble theorem (F, f) is classifiable as universally true (called “geometrically true”
in [7]), generically true, neither generically true nor generically false (generi-
cally conditionally true in our terms), and generically false. However, this is
done by computing with both (elimination ideals generated by) F ∪ {fz − 1}
and F ∪ {f}, whereas our approach considers only Gröbner bases of the former
kind of set (that is, side polynomial calculations). The approach in [7] does not
seem to be able to provide information in the generically conditionally true case
(other than to flag the need for a decomposition), whereas our approach is able
to provide side polynomials which eliminate the generic irreducible components
on which the conclusion fails to hold. An advantage of the approach in [7] is the
possibility of generating additional hypotheses of equational type (rather than
just inequations) in the generically false case, although the approach is not guar-
anteed to do this. Nonetheless, it would be possible to use a combination of the
approach in [7] and our approach in such cases: first, that a theorem is generi-
cally false could be established using our approach, and then F ∪ {f} could be
considered in an attempt to obtain sufficient additional equational hypotheses.

The main contribution of the current work is to bring together facts which
show that a single Gröbner basis calculation for F ∪{fz−1} yields a complete set
of side polynomials {g1, g2, . . . , gk} for the possible theorem (F, f), and moreover
that this (plus perhaps similar calculations of Gröbner bases for some of the
F ∪ {giz − 1}) is all that is needed to classify the kind of truth of the theorem
and to provide the appropriate complete set of side conditions.

Acknowledgements

We thank Professor Giuseppa Carrà Ferro for advice on the paper. The com-
ments of anonymous referees were also very helpful. The work reported here was
partially supported by Australian Research Council Large Grants A49132001
and A49331346.

References

1. Carrà Ferro, G. and Gallo, G.: A Procedure to Prove Geometrical Statements,
Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, AAECC-5
(L. Huguet and A. Poli, eds.), Lecture Notes in Computer Science 356, Springer-
Verlag (1989), 141–150.

2. Chou, S.-C.: Mechanical Geometry Theorem Proving, D. Reidel (1988).
3. Kapur, D.: Geometry Theorem Proving Using Hilbert’s Nullstellensatz, Proceedings

of the 1986 Symposium on Symbolic and Algebraic Computation (Waterloo, July
21–23, 1986), ACM Press, 202–208.



142 Michael Bulmer, Desmond Fearnley-Sander, and Tim Stokes

4. Kapur, D.: A Refutational Approach to Theorem Proving in Geometry, Artificial
Intelligence 37 (1988), 61–93.

5. Kutzler, B. and Stifter, S.: Automated Geometry Theorem Proving Using Buch-
berger’s Algorithm, Proceedings of the 1986 Symposium on Symbolic and Algebraic
Computation (Waterloo, July 21–23, 1986), ACM Press, 209–214.

6. Recio, T., Sterk, H. and Velez, M.: Automatic Geometry Theorem Proving, Some
Tapas of Computer Algebra (A. M. Cohen, H. Cuipers and H. Sterk, eds.), Algo-
rithms and Computation in Mathematics 4, Springer-Verlag (1999), 276–296.

7. Recio, T. and Velez, M.: Automatic Discovery of Theorems in Elementary Geom-
etry, Journal of Automated Reasoning 23 (1999), 63–82.

8. Wang, D.: Elimination Procedures for Mechanical Theorem Proving in Geometry,
Annals of Mathematics and Artificial Intelligence 13 (1995), 1–24.

9. Wu, W.-t.: On the Decision Problem and the Mechanization of Theorem Proving
in Elementary Geometry, Scientia Sinica 21 (1978), 157–179.

10. Wu, W.-t.: Mechanical Theorem Proving in Geometries: Basic Principles, Springer-
Verlag (1994).



A Complex Change of Variables
for Geometrical Reasoning

Tim Stokes1 and Michael Bulmer2

1 Murdoch University, Western Australia, Australia
stokes@prodigal.murdoch.edu.au

2 University of Queensland, Queensland, Australia
mrb@maths.uq.edu.au

Abstract. We use complex vectors in geometrical reasoning, specifically
automated theorem proving. The calculations are embedded in Clifford
algebras, but commutative polynomial techniques can be used. Using
the Gröbner basis package in the computer algebra package Maple, this
approach is shown to have efficiency benefits in situations where distance
and angle relations amongst geometrical entities predominate.

1 Introduction

The connection between the complex numbers with conjugation, C, and the
orthogonal transformations of R2 is well-known, and leads to an algebraic rep-
resentation of geometrical quantities involving plane vectors. The key to this is
that the inner product of two plane vectors u, v ∈ C is given by (uv̄ + ūv)/2
where ū is the usual complex conjugate of u. Thus commonly used geometri-
cal relations may be expressed in terms of this complex number formalism, and
the algebraic forms are often more natural and succinct than the correspond-
ing forms involving coordinates. We shall exploit this natural advantage for the
purpose of automated reasoning about geometrical configurations.

We give below a comparison of three formalisms in expressing a number
of basic geometrical relations and quantities. A point A will have coordinate
representation (a1, a2) ∈ R2 and vector representation a = a1 + a2i ∈ C. One
expression can be obtained from the other using the relations

a ↔ a1 + a2i, ā ↔ a1 − a2i,

a1 ↔ 1
2
(a+ ā), a2 ↔ 1

2i
(a− ā),

and dividing through by i if necessary (although in practice, this last step is
scarcely ever needed). This is not simply a linear change of variables since the
imaginary unit lies outside the scalar domain.

We also consider a Clifford algebra representation A = a1X + a2Y , where
X,Y are orthogonal unit vectors (X2 = Y 2 = 1 and XY = −Y X) in the rank
two real Clifford algebra.

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 143–153, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



144 Tim Stokes and Michael Bulmer

The complex vector representation can also be thought of as derived from
the Clifford algebra representation; indeed the complex numbers are naturally
embedded in the rank two real Clifford algebra, by virtue of the fact that the sub-
algebra of bivectors (which contains all reals as squares of vectors) is isomorphic
to the complex numbers (see [7] for the details of the gemoetrical significance of
this in terms of angles). Thus an arbitrary vector X of length 1 (X2 = 1 in the
algebra) is chosen, and for any other vector A, the product XA is represented by
a ∈ C while AX is represented by ā ∈ C. Since X2 = 1, all expressions can be
rewritten to allow this transformation: for example, AB is rewritten as AXXB
which becomes āb in the complex representation.

2 Geometrical Statements in Various Formalisms

The following list gives examples of geometrical quantities and relations ex-
pressed in the three formalisms. The standard coordinate form is given first in
each case, followed by the Clifford form and then the complex vector form. Of
interest is the number of terms in each polynomial.

1. The length of segment AB.
(a) (a1 − b1)2 + (a2 − b2)2, yielding an expression consisting of six terms on

expansion.
(b) (A−B)2, yielding four terms on expansion.
(c) (ā− b̄)(a− b), yielding four terms on expansion.

2. The tangents of the angles ABC and DEF are equal.
(a) [(a2−b2)(c1−b1)−(c2−b2)(a1−b1)][(d1−e1)(f1−e1)+(d2−e2)(f2−e2)] =

[(d2−e2)(f1−e1)−(f2−e2)(d1−e1)][(a2−b2)(c2−b2)+(a1−b1)(c1−b1)],
which, after expansion and simplifications, yields an equation consisting
of 96 terms.

(b) (B −C)(A−B)(D−E)(E − F ) − (A−B)(B −C)(E − F )(D−E), an
expression in 30 terms.

(c) (ā − b̄)(b − c)(d − e)(ē − f̄) − (a − b)(b̄ − c̄)(d̄ − ē)(e − f) = 0, which
ultimately yields an expression in 30 terms.

3. The product of two squares of segment lengths, AB2 · CD2.

(a) [(a1 − b1)2 + (a2 − b2)2][(c1 − d1)2 + (c2 − d2)2], which expands to 36
terms.

(b) (A−B)2(C −D)2, an expression in 16 terms.
(c) (ā− b̄)(a− b)(c̄− d̄)(c− d), yielding 16 terms.

4. Line AC is parallel to line BD.
(a) (c2 − a2)(d1 − b1) − (d2 − b2)(c1 − a1) = 0, which has 8 terms upon

expansion.
(b) (C −A)(D −B) − (D −B)(C −A), 8 terms.
(c) (ā− c̄)(b− d) − (a− c)(b̄− d̄) = 0, 8 terms.

5. Point A lies on line BC.
Use the previous case with AB parallel to BC, giving expressions with 6
terms for each formulation.



A Complex Change of Variables for Geometrical Reasoning 145

6. Line AC is perpendicular to line BD.
(a) (c2 − a2)(d2 − a2) + (c1 − a1)(d1 − a1) = 0, yielding an expression with

8 terms.
(b) (C −A)(D −B) + (D −B)(C −A), 8 terms.
(c) (ā− c̄)(b− d) + (a− c)(b̄− d̄) = 0, again an 8 term expression.

7. A is the midpoint of B and C.
(a) a1 − (b1 − c1)/2 = 0, a2 − (b2 − c2)/2 = 0.
(b) A = (B+C)/2.
(c) a− (b+ c)/2 = 0, hence also ā− (b̄+ c̄)/2 = 0.

It is evident that the advantages of the Clifford algebra vector formalism over
the usual coordinate approach in terms of succinctness are also possessed by
the complex vector formalism, even though this is a commutative formalism.
However, the use of conjugation means that essentially twice as many variables
are needed when using complex vectors as compared to Clifford vectors, the same
as for the coordinatised versions.

In the following sections we compare the standard coordinate formalism with
the complex vector formalism. In particular, in Sections 5 and 6 we describe im-
plementations and give timing results of proofs using the two representations.
This is appropriate since, having expressed a theorem in the respective formal-
ism, both approaches use the same algorithm to carry out the proof. This is not
the case for the Clifford representation; we leave discussion of this approach to
later work.

Throughout, we shall be interested in the solution of various problems using
the Gröbner basis approach [1]. For geometrical theorem proving, an alternative
method is Wu’s [16,15]. Wu’s method was the first approach to geometrical
theorem proving using polynomial algorithms, and is essentially equivalent to
the Gröbner basis approach for this class of problems as is demonstrated in [2].
We anticipate the same sorts of efficiency improvements using Wu’s prover as
occur using the Gröbner basis approach. However, the Gröbner basis approach
is more readily generalised to non-commutative algebras, and packages based on
Buchberger’s Gröbner basis algorithm are in wider use than are implementations
of Wu’s algorithm. We use Maple’s built-in Gröbner package in the computed
examples.

3 Viewing the Complex Vector Formalism
as a Change of Coordinates

Geometry theorems may be expressed in terms of polynomial algebra, using
coordinatisation. Once a field of scalars K is fixed, the hypotheses and conclusion
of the theorem correspond to certain polynomials in the coordinates of points
being zero. In standard methods, the field K is assumed to be algebraically
closed in order to ensure completeness, since then Hilbert’s Nullstellensatz can
be used. Typically one takes K to be C, the complex number field, which has
the effect of replacing the real Euclidean plane R2 by C2.



146 Tim Stokes and Michael Bulmer

The ramifications of working with C2 rather than R2 are explored fully in [2],
but essentially the difference is that one proves theorems of metric geometry, a
generalisation of Euclidean geometry with the property that a theorem is true in
metric geometry if and only if the corresponding coordinatised algebraic theorem
is true over any algebraically closed field of characteristic zero. As discussed in
[2], in practice little is lost in working with C rather than R .

In the present context, working with C rather than R has special signifi-
cance. Letting i be the imaginary unit in C, the invertible linear transformation
θ : C2 → C2 given by (a1, a2) �→(a, ā), where a = a1 + a2i and ā = a1 − a2i,
induces an invertible linear change of variables ψ from the polynomial ring
C[x1, y1, x2, y2, . . . , xn, yn] to C[v1, v̄1, v2, v̄2, . . . , vn, v̄n] in which vj = xj + iyj

and v̄j = xj − iyj for each j. (Note that for any (a1, a2) ∈ C2, the complex
conjugate of a1 + ia2 is not a1 − ia2 unless a1, a2 ∈ R. However, we retain the
over-bar notation at the risk of some confusion.)

Thus, writing f ′
j = ψ(fj) and g′ = ψ(g), if a theorem’s hypotheses are

captured by the equations f1 = 0, f2 = 0, . . . , fk = 0 and the conclusion by g = 0,
then in the transformed coordinates, these become f ′

1 = 0, f ′
2 = 0, . . . , f ′

k =
0 and g′ = 0. The second set of equations are all expressed in terms of the
complex vector formalism, so the more efficient algebraic forms given in the first
section will feature. Hence the conversion between formalisms can be performed
internally, with no need to introduce an imaginary unit i: it is already part of
the field. The significance of this is that the complex vector formulation can
be viewed simply as an alternative coordinate-based formulation. In a theorem
proving context, this will mean that all the usual cooordinate-based methods
apply in full.

4 Generic Truth and Gröbner Bases

The standard notion of generic truth, discussed at length by Chou in [2] and
in many places since, turns out to be the appropriate one for most geometry
theorems encountered in practice. (Most “theorems” turn out to be false due to
degenerate cases not easily excluded by the user.) This approach requires that
certain of the variables in a coordinatised possible theorem be specified as pa-
rameters. The idea is that these coordinates can be chosen in a mechanical way
on the basis of the ordering of the hypotheses. This ordering contains implicit in-
formation about a notional “construction” associated with a theorem statement:
the first-mentioned points are chosen “arbitrarily”, or in general position, and
then subsequent points are either partially or wholly constrained by the theorem
hypotheses. In this formulation, theorems are proved to be “generically true” in
a sense made rigorous in [15,2]. The idea is that one is only concerned with
cases of the hypotheses in which the parameters are algebraically independent,
and Chou gives strong arguments as to why this is a logically and geometrically
sound approach. Algorithmically, using rational expression fields is shown in [2]
to be a very efficient way of checking generic truth,and also allows one to obtain



A Complex Change of Variables for Geometrical Reasoning 147

non-degeneracy conditions, sufficient for the truth of the theorem and expressible
as algebraic inequations.

Issues of genericity are readily dealt with in our scheme: if a point is in general
position, both it and its “conjugate” are viewed as parameters and added to the
coefficient field for purposes of computations. If the point is viewed as totally
dependent, both it and its “conjugate” are added to the variable set. If a point
represented by x in the complex vector formalism has a single notional degree of
freedom (for instance, if it is constrained to lie on a particular line or circle), then
x is made a parameter but not x̄. (Note that this would make no sense unless we
viewed both x and x̄ as separate and independent complex scalars rather than as
a vector in the complex plane and its conjugate.) All other variables are left as
polynomial variables. Once this is done, the methods applying to the standard
formulation also apply here.

The results which are the basis of provers of generic truth are well known
and we state them here. Let

F = {f1, f2, . . . , fk} ⊆ K(m)[n] = K(u1, u2, . . . , um)[x1, x2, . . . , xn],

and let GB(F ) be the reduced Gröbner basis of F in K(m)[n] with respect to a
fixed admissible term ordering on the monomials in the xi. With the definition
of generic truth given in [2], we have the following extension of an approach first
introduced by Kapur (see [9,10] where this refutational approach is discussed
in detail), and extended to the generic context via the use of fields of rational
expressions in [2].

Theorem 1. 1. If g ∈ GB(F ), then the possible theorem represented by the
algebraic implication f1 = f2 = · · · = fk = 0 ⇒ g = 0 is generically true.

2. The possible theorem f1 = f2 = · · · = fk = 0 ⇒ g = 0 is generically true if
and only if GB(F ∪ {gxn+1 − 1}) = {1}.
In our computed examples, only the first part of Theorem 1 is needed in

order to verify the generic truth of theorems, reflecting the experience of Chou
in [2].

Thus our complex vector approach is really a coordinate approach in dis-
guise. This contrasts with genuinely vector approaches, such as those of Chou,
Gao and Zhang [3,4,5], in which theorems of two and three dimensional geom-
etry are proved using a radically different formalism based on areas and vol-
umes, allowing higher level interpretation of the resultant proofs. Similarly, the
point-based algebraic approach to automated reasoning in projective geometry
featured in the work of White [14], Sturmfels and Whitely [12] uses a funda-
mentally different algebraic algorithm, Cayley factorization in Cayley algebras,
to do reasoning in projective geometry. In [8], Fearnley-Sander and Stokes use
a variant of Buchberger’s algorithm which applies to Grassmann algebras to
do automated reasoning in affine geometry. Wang [13] demonstrated that Clif-
ford algebras with genuine algebraic term rewriting could be used for a range of
geometrical reasoning. A summary of recent advances in the use of Clifford rep-
resentations is given in [11]. The complex translation related to Clifford algebra,



148 Tim Stokes and Michael Bulmer

mentioned in the Introduction, also contrasts with the rule-based methods [17]
that have been used for reasoning with the Clifford formalism.

5 Implementation

A feature of Chou’s book [2] is the very large number of theorems proved me-
chanically using the methods described in the first half of the book. We used
the implementation of the Buchberger algorithm built into the computer algebra
package Maple V, running on a SPARC Station 1 (Sun 4/60), to test the advan-
tages of our approach for a number of the theorems considered in [2]. The choice
was not random: a theorem was chosen if it featured many distance or angle re-
lations, a situation we might expect to be better handled by the complex vector
formulation. However, we have included all results obtained, and we believe that
the process of identifying theorems that are likely to be more efficiently proved
by our technique could be fully automated.

We made no attempt to obtain non-degeneracy conditions, only to prove
generic truth. The Maple package does not permit the recording of polynomials
which arise as denominators during a computation. However, a package such as
the one referred to in [2], which does this and is able to interpret non-degeneracy
conditions geometrically, could easily be modified to do these things for polyno-
mials in the complex vector formalism. The sole object here has been to show
that our change of variables leads to faster processing for a wide class of easily
identified theorems.

We remark by the way that some other types of theorems from [2] were
tested, in particular some purely affine theorems. Here, the results if anything
favoured the usual coordinate-based approach, but not markedly. No advantage
was anticipated from the use of the transformed system for such problems.

Given a finite set of geometrical hypotheses H1, H2, . . . , Hk and a single con-
clusion C in the points P1, P2, . . . , Pn, the procedure was as follows:

1. Convert each Hi to a polynomial fi(x1, y1, x2, y2, . . . , xn, yn) using the con-
version rules of the first section; similarly convert C to g.

2. Select independent points A1, A2, . . . , Ar, semidependent points
Ar+1, Ar+2, . . . , As and dependent points As+1, As+2, . . . , An.

3. Compute G = GB(f1, f2, . . . , fk) using the total degree order with yr+1 <
yr+2 < · · · < ys < ys+1 < xs+1 < ys+2 < xs+2 < · · · < yn < xn.

4. Reduce g using G.

Only the third and fourth stages take a significant amount of processing time,
and the times given in Table 1 are for the total of those parts only.

The procedure for the complex vector formulation was the same, the only
difference being the rules for converting geometrical predicates into polynomials.

For the standard coordinate approach, the choice of which variables were
parameters was specified in [2], having been obtained automatically by Chou’s
prover, and we used the same choice. Determining parameters for the corre-
sponding complex vector formulation of the theorem was done according to the



A Complex Change of Variables for Geometrical Reasoning 149

choice used for the standard formulation. For testing purposes, we used a total
degree order for both formalisms, whereas [2] used a lexicographic order, so the
choice of order was less than optimal for the coordinatised system, and likewise
for the corresponding complex vector formulation. Also, the variable ordering
choice in [2] was predicated on subsequent use by Wu’s method, and a slightly
different variable ordering may have been better for maximising the efficiency of
the Gröbner basis method.

There were some refinements on the above algorithm that should be men-
tioned. Some efficiency gains were achieved using the standard variables by
choosing axes conveniently, as was done in [2] as a matter of course. For in-
stance, the first point could be chosen as the origin and the second as on the
X-axis, of the form (x, 0); thus three of the parameters were set to zero, without
affecting the generic truth of each possible theorem. Mostly these gains could
be carried over to the complex vector representation: for instance, a vector x
on the X-axis satisfies x = x̄. However, using standard coordinates also permits
the assertion of collinearity and perpendicularity conditions by a careful choice
of axes, a technique not possible in the complex vector formalism. For example,
the line from (x1, x2) to (x1, x3) is parallel to the line (0, 0) to (0, u1), a fact
which must be expressed equationally using the complex vector variables.

Because of the reducibility of the coordinate-based algebraic formulation of a
theorem, ambiguities in the geometrical interpretation occasionally arise. These
are dealt with in [2] by introducing certain subsidiary equations which rule out
the unwanted possibilities. Where this arose in our examples, we included a com-
plex vector version of each such subsidiary polynomial. The resultant complex
vector polynomials tend to be slightly less simple than the original ones, but the
advantage of the method for such examples was still clear.

Were it not for these various refinements, it would be possible to convert
directly between the standard and complex vector formulations using the sub-
stitution scheme

xj �→(uj + vj)/2, yj �→(uj − vj)/2i

for converting from standard to complex vector variables, and

uj �→xj + iyj , vj �→xj − iyj

for the inverse process.

6 Brianchon’s Theorem for Circles

We will illustrate the potential computational benefit from the complex vector
formulation using a collection of examples from [2]. We will show the details of
the application to Brianchon’s theorem for circles (Example 19 in [2]), with the
remaining timing results summarised in Section 7.

Brianchon’s theorem is illustrated in Figure 1. The theorem states that if A,
B, C, D, E, F are six points on a circle then the three lines through the opposite
verticies of the hexagon formed by the tangent lines to the circle at these points
are concurrent.



150 Tim Stokes and Michael Bulmer

A

B

C

DE

F

A1 B1

C1

D1

E1

F1

J

Fig. 1. Brianchon’s Theorem.

We will start by showing the standard conversion into polynomials using the
coordinate approach. We construct the hypothesis polynomials by starting with
point O, the centre of the circle, at the origin and point A on the horizontal
axis. The remaining points, including the vertices of the hexagon, A1, B1, C1,
D1, E1, and F1, are constructed (in order) as follows.

Firstly, we fix the points on the circle by setting BO ≡ OA, CO ≡ OA,
DO ≡ OA, EO ≡ OA, and FO ≡ OA. This large number of equal-length
relationships will be naturally suited to the complex vector method since each
once can be captured in fewer terms, as seen in Section 2. Secondly, we construct
the hexagon’s vertices using the tangent relationships A1B ⊥ BO, A1A ⊥ AO,
B1C ⊥ CO, B1B ⊥ BO, C1D ⊥ DO, C1C ⊥ CO, D1E ⊥ EO, D1D ⊥ DO,
E1F ⊥ FO, E1E ⊥ EO, and F1F ⊥ FO, and (for simplicity) saying F1 is on
line A1A. Finally we describe the point of intersection, J , by saying J is on line
B1E1 and on line A1D1. The conclusion is then that points C1, F1 and J are
collinear.

This construction gives the following coordinate representation of the points:
O = (0, 0), A = (u1, 0), B = (x1, u2), C = (x2, u3), D = (x3, u4), E = (x4, u5),
F = (x5, u6), A1 = (u1, x6), B1 = (x8, x7), C1 = (x10, x9), D1 = (x12, x11),
E1 = (x14, x13), F1 = (u1, x15), I = (x17, x16).

The list of hypothesis polynomials (each notionally set equal to zero) is then

F =




x2
1 + u2

2 − u2
1, x

2
2 + u2

3 − u2
1, x

2
3 + u2

4 − u2
1, x

2
4 + u2

5 − u2
1, x

2
5 + u2

6 − u2
1,

x1u1 − x2
1 + x6u2 − u2

2, x8x2 − x2
2 + x7u3 − u2

3,
x8x1 − x2

1 + x7u2 − u2
2, x10x3 − x2

3 + x9u4 − u2
4,

x10x2 − x2
2 + x9u3 − u2

3, x12x4 − x2
4 + x11u5 − u2

5,
x14x5 − x2

5 + x13u6 − u2
6, x14x4 − x2

4 + x13u5 − u2
5,

x5u1 − x2
5 + x15u6 − u2

6, x12x3 − x2
3 + x11u4 − u2

4,
−x16x14 − x7x17 + x7x14 + x16x8 + x13x17 − x13x8,
−x16x12 − x6x17 + x6x12 + x16u1 + x11x17 − x11u1




,



A Complex Change of Variables for Geometrical Reasoning 151

with conclusion polynomial

g = x9u1 − x9x17 + x15x17 − x15x10 + x16x10 − x16u1.

We find the Gröbner basis using the total degree term order with x1 < x2 <
· · · < x17. Generating the Gröbner basis of the hypotheses and reducing the
conclusion to zero took in excess of 5000 seconds.

The complex vector formulation proceeds similarly but the refinements made
in the coordinate case will not necessarily work in the new setting. For example,
we can still choose O = (0, 0) but to specify that A is on the horizontal axis we
use A = (u1, u1), saying that the point and its conjugate are the same. Similarly,
in the coordinate case we could set the point A1 and F1 by noting that both
would have the same X coordinate as A. This is not possible in the complex
case and so we must in troduce new dependent variables x′

5 and x′
14, setting

A1 = (x′
5, x6) and F1 = (x′

14, x15), and also the explicit perpendicularity and
collinearity constraints that define where they are.

Thus there are now 19 hypothesis polynomials

FC =




x1u2 − u2
1, x2u3 − u2

1, x3u4 − u2
1, x4u5 − u2

1, x5u6 − u2
1,

1
2x

′
5u2 + 1

2x6x1 − x1u2,
1
2u1x

′
5 + 1

2u1x6 − u2
1,

1
2x8u3 + 1

2x7x2 − x2u3,
1
2x8u2 + 1

2x7x1 − x1u2,
1
2x10u4 + 1

2x9x3 − x3u4,
1
2x10u3 + 1

2x9x2 − x2u3,
1
2x12u5 + 1

2x11x4 − x4u5,
1
2x14u6 + 1

2x13x5 − x5u6,
1
2x14u5 + 1

2x13x4 − x4u5,
1
2x

′
14u6 + 1

2x15x5 − x5u6,
1
2x12u4 + 1

2x11x3 − x3u4,

x8x13 + x16x14 − x17x13 + x7x17 − x7x14 − x8x16,

x16x12 − x17x11 + x6x17 − x6x12 − x′
5x16 + x′

5x11,

−x15u1 + x′
14u1 − x′

14x6 + u1x6 + x15x
′
5 − u1x

′
5}




,

compared to 17 polynomials in F above. The conclusion polynomial is

g = −x9x17 + x9x
′
14 − x10x15 + x10x16 + x15x17 − x′

14x16.

We use the same total degree term ordering as before but with x′
5 inserted

between x5 and x6, and x′
14 inserted between x14 and x15, to maintain the order

of construction. The new proof took only 34 seconds.

7 Further Timing Comparisons

To conclude we give a timing comparison for a selection of other theorems chosen
from [2], identified according to their numbering there. Table 1 gives compar-
isons between proofs using the standard formulation and the complex vector
formulation. The superiority of the vector formulation is fairly consistent, and
often quite considerable.



152 Tim Stokes and Michael Bulmer

Table 1. Comparison between proofs using standard representation and complex vec-
tor representation (time in seconds).

Example Chou Chou Chou Chou Chou Chou Chou Chou
from [2] 19 21 39 40 43 44 45 48
Standard > 5000 394 81 247 20 22 32 > 5000
Complex 34 82 47 149 18 21 34 33

Example Chou Chou Chou Chou Chou Chou Chou Chou
from [2] 63 73 80 94 96 106 109 115
Standard 47 97 > 5000 139 3791 2994 > 5000 432
Complex 170 25 897 28 8 28 33 29

Example Chou Chou Chou Chou Chou Chou Chou Chou
from [2] 128 144 162 240 243 271 277 302
Standard 1600 3297 56 85 171 33 1755 490
Complex 620 336 120 23 90 23 43 31

Example Chou Chou Chou Chou Chou Chou Chou Chou
from [2] 303 309 310 311 315 317 347 379
Standard 468 510 2302 36 340 25 > 5000 88
Complex 25 390 87 31 78 2723 2190 15

Example Chou Chou Chou Chou Chou Chou Chou Chou
from [2] 390 393 395 401 409 440 456 487
Standard > 5000 1115 71 > 5000 423 1545 10 41
Complex 10 336 19 37 23 53 10 39

Acknowledgements

We thank the anonymous referees of the first draft of this paper for their helpful
suggestions. We would also like to thank Desmond Fearnley-Sander for intro-
ducing us to the concept of automated theorem proving in geometry and many
discussions over the years on that topic.

References

1. Buchberger, B., Gröbner Bases: An Algorithmic Method in Polynomial Ideal The-
ory, Multidimensional Systems Theory (ed. N. K. Bose), D. Reidel, 184–232 (1985).

2. Chou, S.-C., Mechanical Geometry Theorem Proving, D. Reidel (1988).
3. Chou, S.-C., Gao, X.-S. and Zhang, J.-Z., Automated Geometry Theorem Proving

Using Vector Calculation, Proc. ISSAC ’93, Kiev, 284–291 (1993).
4. Chou, S.-C., Gao, X.-S. and Zhang, J.-Z., Automated Production of Traditional

Proofs for Constructive Geometry Theorems, Proc. 8th IEEE Symbolic Logic in
Computer Science, Montreal, 48–56 (1993).

5. Chou, S.-C., Gao, X.-S. and Zhang, J.-Z., Automated Production of Traditional
Proofs in Solid Geometry, J. Automated Reasoning 14, 257–291 (1995).



A Complex Change of Variables for Geometrical Reasoning 153

6. Cox, D., Little, J. and O’Shea, D., Ideals, Varieties and Algorithms — An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra, Under-
graduate Texts in Mathematics, Springer-Verlag (1992).

7. Fearnley-Sander, D., Plane Euclidean Reasoning, Automated Deduction in Geom-
etry (eds. X.-S. Gao, D. Wang, L. Yang), Lecture Notes in Artificial Intelligence
1669, Springer-Verlag, 86–110 (1999).

8. Fearnley-Sander, D. and Stokes, T., Area in Grassmann Geometry, Automated
Deduction in Geometry (ed. D. Wang), Lecture Notes in Artificial Intelligence,
Springer-Verlag, 141–170 (1997).

9. Kapur, D., Geometry Theorem Proving Using Hilbert’s Nullstellensatz, Proc.
SYMSAC ’86, Waterloo, 202–208 (1986).

10. Kapur, D., A Refutational Approach to Theorem Proving in Geometry, Artificial
Intelligence 37, 61–93 (1988).

11. Li, H., Some Applications of Clifford Algebras to Geometries, Automated Deduc-
tion in Geometry (eds. X.-S. Gao, D. Wang, L. Yang), Lecture Notes in Artificial
Intelligence 1669, Springer-Verlag, 156–179 (1999).

12. Sturmfels, B. and Whiteley, W., On the Synthetic Factorization of Projectively
Invariant Polynomials, J. Symbolic Computation 11, 439–453 (1991).

13. Wang, D., Clifford Algebraic Calculus for Geometric Reasoning with Application
to Computer Vision, Automated Deduction in Geometry (ed. D. Wang), Lecture
Notes in Artificial Intelligence 1360, Springer-Verlag, 115–140 (1997).

14. White, N. L., Multilinear Cayley Factorization, J. Symbolic Computation 11, 421–
438 (1991).

15. Wu, W.-t., On the Decision Problem and the Mechanization of Theorem Proving
in Elementary Geometry, Scientia Sinica 21, 157–179 (1978).

16. Wu, W.-t., Mechanical Theorem Proving in Geometries: Basic Principles, Springer-
Verlag (1994).

17. Yang H., Zhang, S. and Feng, G., A Clifford Algebraic Method for Geometric
Reasoning, Automated Deduction in Geometry (eds. X.-S. Gao, D. Wang, L. Yang),
Lecture Notes in Artificial Intelligence 1669, Springer-Verlag, 111–129 (1999).



Reasoning about Surfaces
Using Differential Zero and Ideal Decomposition

Philippe Aubry and Dongming Wang

Laboratoire d’Informatique de Paris 6, Université Pierre et Marie Curie – CNRS
4, place Jussieu, F-75252 Paris Cedex 05, France

Abstract. This paper presents methods for zero and ideal decompo-
sition of partial differential polynomial systems and the application of
these methods and their implementations to deal with problems from
the local theory of surfaces. We show how to prove known geometric
theorems and to derive unknown relations automatically. In particular,
an algebraic relation between the first and the second fundamental coef-
ficients in a very compact form has been derived, which is more general
and has smaller degree than a relation discovered previously by Z. Li.
Moreover, we provide symmetric expressions for Li’s relation and clar-
ify his statement. Some examples of theorem proving and computational
difficulties encountered in our experiments are also discussed.

1 Introduction

Automated reasoning in differential geometry was initiated by W.-t. Wu [26]
in the later 1970s as part of his work on mechanical theorem proving and dis-
covering. Unlike the case of elementary geometry in which Wu’s method has
proven extremely efficient for proving many theorems, the situation in the dif-
ferential case is quite different. Wu [27,29] and his followers (for example, Chou
and Gao [8] and the second author [22]) have applied the method to prove the-
orems and derive relations mainly in the local theory of curves and mechanics,
where the involved differential algebraic equations are ordinary (i.e., with only
one derivation variable). The computational complexity becomes much higher
in the partial differential case, where integrability conditions have to be taken
into account and term orderings among derivatives need be introduced. In the
case of two derivation variables, one may apply the method to deal with surfaces
which has been investigated by Li [17] and recently by the second author in
[25], a preliminary version of this paper. Along different directions, Carrà Ferro
and Gallo [7] tried to generalize the Gröbner basis method [6] for automated
theorem proving in differential geometry. Li and Cheng [15,16] have proposed to
combine Clifford algebra formalism with Wu’s method in order to produce short
and readable proofs.

The algebraic bases of Wu’s method are general algorithms for triangulariz-
ing systems of differential polynomials and for decomposing such systems into
finitely many characteristic systems. These algorithms are developed from the
classical work of M. Janet, J. M. Thomas, E. R. Kolchin, and Ritt [19], and are

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 154–174, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Reasoning about Surfaces Using Differential Zero and Ideal Decomposition 155

applicable to many other problems beyond geometry. The design and implemen-
tation of efficient algorithms for decomposing differential polynomial systems
have become the topics of several other researchers. For example, we may men-
tion the algorithm Rosenfeld–Groebner developed by Boulier and others [3,4],
the subresultant-based algorithm suggested by Li and Wang [18] for computing
differential simple systems, the factorization-free algorithm proposed recently by
Hubert [10], and other relevant work by these authors. Some of these algorithms
will be reviewed in Sect. 3 of this paper. In Sect. 4, we shall present an algo-
rithm for decomposing any regular differential triangular system into simple sets
such that the intersection of their saturated differential ideals is the same as the
saturated differential ideal of the triangular system. This algorithm makes use
of some ideas from the work of Kalkbrener [12] with improvement by the first
author [1] and is similar to the algorithms given by Hubert [10], Boulier and
Lemaire [5], but they are different in the fact that our algorithm avoids comput-
ing explicitly the inverse of some polynomials in an extension field and works in
the general frame of positive dimension (there is no need to reduce the problem
to one of dimension 0).

The main objective of this paper is to apply Wu’s and other related methods
based on zero and ideal decomposition and their implementations to deal with
partial differential polynomial systems formulated from geometric problems, with
a particular intention to study the local properties of surfaces. In fact, we have
proved several well-known geometric theorems and derived some unknown rela-
tions about surfaces automatically (see the examples in Sects. 5.1 and 6). An
algebraic relation between the first and the second fundamental coefficients in a
very compact form has been derived (Sect. 5.2), which is more general and has
smaller degree than a relation discovered previously by Li [17]. Moreover, we pro-
vide symmetric expressions for Li’s relation and clarify his statement (Sect. 5.3).
Some basics from the local theory of surfaces are collected in the following sec-
tion and the paper concludes with a mention of a few computational difficulties
encountered in our experiments.

The purpose of our work about surfaces is twofold: on the one hand, we take
differential polynomial systems formulated from geometric problems as practical,
not artificially constructed, examples to test the applicability and efficiency of
decomposition algorithms, and on the other hand, we illustrate how differential
geometric problems can be solved in an automatic way by using such algorithms.
The results reported in this paper are still primitive and may serve to motivate
further research on this subject. To achieve a full and effective automation of
theorem proving and discovering in the theory of surfaces, considerable research
and effort on both decomposition algorithms and algebraic formulation of geo-
metric problems are needed.

2 The Local Theory of Surfaces

We recall some basic concepts from the local theory of surfaces. Let

r = r(u, v) = (x(u, v), y(u, v), z(u, v))



156 Philippe Aubry and Dongming Wang

be a parametric surface S in three-dimensional Euclidean space. Then

ru =
∂r

∂u
and rv =

∂r

∂v

are the tangent vectors along the lines of u and v in the tangent plane at point
P (x, y, z) of S. The first fundamental form of S is

|dr|2 = Edu2 + 2Fdudv + Gdv2,

where

E = r2
u =

(
∂x

∂u

)2

+
(

∂y

∂u

)2

+
(

∂z

∂u

)2

,

F = ru · rv =
∂x

∂u

∂x

∂v
+

∂y

∂u

∂y

∂v
+

∂z

∂u

∂z

∂v
,

G = r2
v =

(
∂x

∂v

)2

+
(

∂y

∂v

)2

+
(

∂z

∂v

)2

are called the coefficients of the first fundamental form (first fundamental coef-
ficients for short) of S. Except for singular points on S, we have

E > 0, G > 0, δ = EG − F 2 > 0.

��������

�
�

�
���

�

ru

rv

n

P

Fig. 1

Assume that the tangent vectors ru and rv are not parallel at a regular point
P . Then

n =
ru × rv

|ru × rv|
is a unit normal vector perpendicular to the tangent plane of S at P . The
quadratic form

−dn · dr = Ldu2 + 2Mdudv + Ndv2

is called the second fundamental form of S, where

L = −ru · nu, M = −ru · nv, N = −rv · nv



Reasoning about Surfaces Using Differential Zero and Ideal Decomposition 157

are the second fundamental coefficients of S. The function

K = (LN − M2)/δ

is defined to be the Gaussian curvature of S. We recall the following famous
theorem of Gauss.

Theorem 1 (Theorema egregium). The Gaussian curvature K of any sur-
face depends only on the first fundamental coefficients E, F, G and their first and
second derivatives. More precisely,

K =
1
δ2




∣∣∣∣∣∣∣
E F Fv − 1

2 Gu

F G 1
2 Gv

1
2Eu Fu − 1

2Ev α

∣∣∣∣∣∣∣ −

∣∣∣∣∣∣∣
E F 1

2Ev

F G 1
2 Gu

1
2Ev

1
2 Gu 0

∣∣∣∣∣∣∣

 ,

where α = − 1
2Evv + Fuv − 1

2 Guu.

When expanded, the right-hand side of the above equality is a rational ex-
pression, whose numerator consists of 17 terms, in E, F, G and their derivatives.
We shall demonstrate in Sect. 5 how this expression can be derived automati-
cally.

The three vectors [ru, rv, n] form a moving frame of S at P . Taking their
partial derivatives with respect to u and v, we have


ruu = Γ 1

11ru + Γ 2
11rv + Ln,

ruv = Γ 1
12ru + Γ 2

12rv + Mn,

rvv = Γ 1
22ru + Γ 2

22rv + Nn;
(1)

{
nu = [(MF − LG)ru + (LF − ME)rv]/δ,

nv = [(NF − MG)ru + (MF − NE)rv]/δ,
(2)

where

Γ 1
11 = (GEu − 2FFv + FEv)/(2δ), Γ 2

11 = (2EFu − EEv − FEu)/(2δ),
Γ 1

12 = (GEv − FGu)/(2δ), Γ 2
12 = (EGu − FEv)/(2δ),

Γ 1
22 = (2GFv − GGu + FGv)/(2δ), Γ 2

22 = (EGv − 2FFv − FGu)/(2δ)

are the Christoffel symbols of the second kind . The equations (1) and (2) are
called Gauss formulas and Weingarten formulas, respectively. Their integrability
conditions are given respectively by the following equations:



KF = (Γ 1
12)u − (Γ 1

11)v + Γ 2
12Γ

1
12 − Γ 2

11Γ
1
22,

KE = (Γ 2
11)v − (Γ 2

12)u + Γ 1
11Γ

2
12 + Γ 2

11Γ
2
22 − Γ 1

12Γ
2
11 − (Γ 2

12)
2,

KG = (Γ 1
22)u − (Γ 1

12)v + Γ 2
22Γ

1
12 + Γ 1

22Γ
1
11 − Γ 2

12Γ
1
22 − (Γ 1

12)
2,

KF = (Γ 2
12)v − (Γ 2

22)u + Γ 1
12Γ

2
12 − Γ 1

22Γ
2
11;

(3)

{
Lv − Mu = L Γ 1

12 + M(Γ 2
12 − Γ 1

11) − N Γ 2
11,

Mv − Nu = L Γ 1
22 + M(Γ 2

22 − Γ 1
12) − N Γ 2

12.
(4)



158 Philippe Aubry and Dongming Wang

As usual, (3) is called the Gauss equations and (4) the Codazzi–Mainardi equa-
tions.

The concepts and results about the local theory of surfaces reviewed above
are classical and can be found in standard textbooks of differential geometry, for
example [13,14].

3 Decomposition of Differential Polynomial Systems

In order to reason about problems of surfaces, we shall formulate geometric
conditions as partial differential polynomial (d-pol for short) equations and in-
equations with two derivation variables u and v. Proving a known theorem may
be reduced to determining whether the conclusion-d-pols vanish on the set of
differential zeros of the hypothesis-d-pol system, and if not, on which part of
the zero set they do. This is closely related to the problem of radical differential
ideal membership. Discovering a new theorem amounts to deriving an unknown
relation from the given geometric hypotheses expressed as d-pol equations. The
determination and derivation may be made easier when the system of hypothesis-
d-pols is decomposed into special subsystems that have certain triangular form
and for which the radical differential ideal membership may be tested by simple
reductions. In this section, we give a short review of major techniques for the
decomposition of d-pol systems, which may be used for differential geometric
reasoning.

3.1 Differential Polynomials and Triangular Systems

Let K be a differential field of characteristic 0 with m derivation operators δ1,
. . . , δm. We call θ = δi1

1 . . . δim
m a derivative operator and i1 + · · · + im the

order of θ. Let x1, . . . , xn be n differential indeterminates over K. For any k,
the symbol θxk denotes the derivative of xk with respect to (wrt) θ; θxk is said
to be proper if the order of θ is positive. We denote by R = K{x1, . . . , xn} the
ring of polynomials in the derivatives of x1, . . . , xn with coefficients in K, by [P ]
or [P] the differential ideal generated by the d-pol P or the d-pols in P, and by
(P ) or (P) the algebraic ideal generated by P or the elements of P considered as
ordinary polynomials in the derivatives.

There are different admissible orderings by which derivatives can be ordered.
We shall consider d-pols with a fixed admissible ordering ≺ for their derivatives.
Let P be any d-pol in R\K. The highest derivative appearing in P is called the
lead of P and denoted by ld(P ). When ld(P ) = θxk, k is called the class of P .
We call the leading coefficient of P wrt ld(P ) the initial of P , and the formal
partial derivative of P wrt ld(P ) the separant of P ; they are denoted by ini(P )
and sep(P ), respectively.

A d-pol Q is said to be partially reduced wrt P if no proper derivative of
ld(P ) appears in Q, and reduced wrt P if Q is partially reduced wrt P and the
degree of Q is lower than that of P in ld(P ). In any case, one can compute a
partial d-pseudo-remainder R′ and a d-pseudo-remainder R of Q wrt P ; then



Reasoning about Surfaces Using Differential Zero and Ideal Decomposition 159

there exist integers α and β such that

sep(P )αQ − R′ ∈ [P ], sep(P )αini(P )βQ − R ∈ [P ],

R′ is partially reduced wrt P , and R is reduced wrt P . The d-pseudo-remainder
of Q wrt P is denoted by d-prem(Q, P ).

Let P be any finite set of d-pols in R. A differential zero (d-zero) of P is
an n-tuple (z1, . . . , zn) in a universal differential extension field of K such that
every P ∈ P becomes zero after θxk is replaced by θzk, for all θxk occurring
in the d-pols of P. We denote by d-Zero(P) the set of all d-zeros of P. The
set of ordinary zeros of P, regarded as a set of polynomials with the occurring
derivatives as indeterminates, is denoted by Zero(P). For any Q ⊂ R, we define

d-Zero(P/Q) := d-Zero(P) \ d-Zero
({∏

Q∈Q
Q

})
,

and similarly for Zero(P/Q).
A nonempty ordered set T = 〈T1, . . . , Tr〉 of d-pols in R \ K is called a

differential triangular (d-tri) set if ld(T1) ≺ · · · ≺ ld(Tr) and every Tj is partially
reduced wrt Ti for j > i. A d-tri set is autoreduced if every Tj is reduced wrt Ti

for j > i.
Let Q be any d-pol and U a finite set of nonzero d-pols in R. We define

d-prem(Q, T) := d-prem(. . .d-prem(Q, Tr), . . . , T1),
si(T) := {sep(Ti), ini(Ti) | 1 ≤ i ≤ r}.

The pair 〈T, U〉 is called a d-tri system if every d-pol in si(T) does not vanish on
d-Zero(T/U), and an elementary triangular (e-tri) system if every polynomial
in si(T) does not vanish on Zero(T/U).

3.2 Decomposition into Regular Systems

Let F and G be two d-pols in R \ K of same class. A ∆-polynomial (∆-pol) of
F and G is defined as

∆(F, G) := sep(G)θF − sep(F )φ G, (5)

where θ and φ are proper derivative operators with lowest order such that
ld(θF ) = ld(φG).

A d-tri set T is said to be coherent if, for any F, G ∈ T with same class and
any ∆(F, G) of the form (5), we have

J∆(F, G) = Q1θ1T1 + · · · + QrθrTr,

where J is a product of d-pols in si(T), Qi ∈ R, and Ti ∈ T with θiTi < ld(θF )
for 1 ≤ i ≤ r.

A d-tri system 〈T, U〉 is said to be coherent if T is coherent and each d-pol
in U is partially reduced wrt T. A d-tri system 〈T, U〉 is said to be regular if it
is a coherent and e-tri system.



160 Philippe Aubry and Dongming Wang

Given a pair 〈P, Q〉 of d-pol sets (called a d-pol system) in R, one can decom-
pose 〈P, Q〉 into finitely many regular d-tri systems 〈T1, U1〉, . . . , 〈Te, Ue〉 such
that

d-Zero(P/Q) =
e⋃

i=1

d-Zero(Ti/Ui). (6)

This can be done by using the characteristic set method of Ritt [19] and Wu
[27,28], or the elimination techniques of Seidenberg [21] further developed by
Boulier and others [3,4,18,23]. Besides their different elimination strategies, the
two approaches are also distinguished by their ways of dealing with integrability
conditions: the former uses passive ascending sets and integrability d-pols are
computed by means of completion and M/I-reduction [19,28], while for the latter
integrability conditions are handled with coherence and computed by means
of ∆-pols [20,3,4]. It is clear that the two methods and their ways of dealing
with integrability conditions may be combined or interchanged. Some relations
between passive and coherent d-tri sets have been established in [18].

The significance of regularity of a d-tri system lies partly in the following
remarkable result [20]: if a d-tri system 〈T, U〉 is regular, then

d-Zero(T/U) = ∅ ⇐⇒ Zero(T/U) = ∅.

Moreover, by means of computing regular d-tri systems the problem of de-
ciding whether a d-pol P vanishes on d-Zero(T/U) may be reduced to a similar
problem for ordinary polynomials. To make this precise, we recall the saturation
of (differential) ideals. Let I be an ideal and F a nonempty subset of R. The
saturated ideal of I wrt F is

I : F∞ := {P ∈ R | FP ∈ I for some product F of d-pols in F}.

I : F∞ is a differential ideal if I is a differential ideal, and that P vanishes on
d-Zero(T/U) if and only if (iff) P belongs to the radical of [T] : U∞. Thus the
zero decomposition (6) implies that

d-Zero([P] : Q∞) =
e⋃

i=1

d-Zero([Ti] : U∞
i ). (7)

The following result [3,4,18] shows how to reduce the radical ideal member-
ship problem from the differential case to the algebraic case. Let a d-tri system
〈T, U〉 be regular. Then,

– a d-pol P belongs to [T] : U∞ iff a partial d-pseudo-remainder of P wrt T

belongs to (T) : U∞; and
– both [T] : U∞ and (T) : U∞ are radical.

3.3 Irreducibility, Gröbner Bases, and Simple Systems

In the decomposition (6) it is possible that d-Zero(Ti/Ui) = ∅ for some i, and
radical ideal membership cannot readily be tested without further computation.



Reasoning about Surfaces Using Differential Zero and Ideal Decomposition 161

However, in view of the results mentioned in the preceding section we now can
work with ordinary polynomials over K. There are several techniques that have
been developed to deal with this algebraic problem deduced from d-pol systems.

The first is to impose an irreducibility requirement, which was proposed by
Ritt [19] and Wu [28]. In this case, one further decomposes each regular d-tri sys-
tem 〈Ti, Ui〉, considered as an e-tri system, into irreducible e-tri systems, where
polynomial factorization over successive algebaric extension fields may have to
be used. In the process of decomposition, an e-tri system that has no zero is
detected automatically, and the obtained irreducible ones all have zeros. For any
regular and irreducible d-tri system 〈T, U〉, a d-pol P vanishes on d-Zero(T/U)
iff d-prem(P, T) = 0. Therefore, after a d-pol set P has been decomposed into
regular and irreducible d-tri systems, whether a d-pol vanishes on d-Zero(P) can
be tested simply by computing d-pseudo-remainders.

The second technique, proposed by Boulier and others [3,4], works by com-
puting a Gröbner basis G of the saturated algebraic ideal (T) : U∞ using a stan-
dard method [6]. The e-tri system 〈T, U〉 has no zero iff G contains a nonzero
element of K. Otherwise, a d-pol P belongs to [T] : U∞ iff the normal form
of a partial d-pseudo-remainder of P wrt T modulo G is 0. So, in this case
the radical ideal membership may be tested by means of computing partial d-
pseudo-remainders and normal forms.

The third technique, suggested by Li and Wang [18], proceeds by decompos-
ing each regular d-tri system, considered as an e-tri system, into simple systems
[24]. A simple system is an e-tri system 〈T, U〉, in which T is not necessarily
irreducible but every polynomial of T is conditionally squarefree in some techni-
cal sense. The essential process for this decomposition is to use the polynomials
of T to eliminate polynomials from U by computing regular subresultants. The
squarefreeness condition may be easily accomplished because of the regularity of
the d-tri system. A simple system 〈T, U〉 must have zeros, and a d-pol P vanishes
on d-Zero(T/U) iff d-prem(P, T) = 0.

More recently, Hubert [10], Boulier and Lemaire [5] have devised alterna-
tive (and more specialized) algorithms for computing (normalized/simple) e-tri
sets representing regular differential ideals. We shall propose another specialized
algorithm in the next section.

The above general setting of d-pols will be specialized in our study of surfaces
with m = 2 and δ1 = ∂/∂v, δ2 = ∂/∂u. Speaking about partial derivatives in
this case, we usually mean proper derivatives.

4 An Algorithm for Ideal Decomposition
of Regular Systems

In this section we present a new algorithm for decomposing regular d-tri systems
into d-simple sets. A coherent d-simple set T is a d-tri set that has d-zeros, and
for which P ∈ [T] : si(T)∞ iff d-prem(P, T) = 0. The underlying idea of our
method is similar to the one described in [5], but our definition of d-simple
sets is weaker than the definition of characteristic presentations introduced by



162 Philippe Aubry and Dongming Wang

Boulier and others, and our algorithm avoids computing explicitly the inverse
of some polynomials in an extension of K. Moreover, our method works in the
general frame of positive dimension and we do not need to reduce the problem to
a zero-dimensional one as in [10,5]. This may simplify the problem to be solved
and make it clearer and thus is a point of theoritical interest.

We say that a d-tri set T is a d-simple set if

[T] : si(T)∞ = {P ∈ R | d-prem(P, T) = 0}.

Let 〈T, U〉 be a regular d-tri system. We are interested in computing an irredun-
dant characteristic decomposition of [T] : U∞, that is a finite family of d-simple
sets C1, . . . , Cm such that

[T] : U∞ =
m⋂

i=1

[Ci] : si(Ci)∞

and the sets of associated prime ideals of [Ci] : si(Ci)
∞ form a partition of the

set of associated prime ideals of [T] : U∞.
This problem may actually reduce to a purely algebraic problem. To explain

this, we have to introduce similar notions for algebraic ideals. Our main tool
is the algorithm triangSplit given below. For any d-tri set T = 〈T1, . . . , Tr〉, we
define ini(T) := {ini(Ti) | 1 ≤ i ≤ r} and sat(T) := (T) : ini(T)∞.

A d-tri set T considered as an e-tri set is called a proper triangular set1 if
sat(T) = {P ∈ R | prem(P, T) = 0}. An irredundant algebraic characteristic
decomposition of an ideal I in R is a family of proper triangular sets C1, . . . , Cm

such that I =
⋂m

i=1 sat(Ci) and the sets of associated prime ideals of sat(Ci)
form a partition of the set of minimal associated primes of I. For simplicity, we
sometimes omit the adjective “irredundant.”

The following result slightly generalizes Theorem 6.2 of [10] and shows that
the problem can be treated in a purely algebraic way.

Theorem 2. Let 〈T, U〉 be a regular d-tri system in R. If (T) : U∞ =
⋂

i sat(Ci)
is an irredundant algebraic characteristic decomposition, then each Ci is a co-
herent d-simple set, and [T] : U∞ =

⋂
i[Ci] : si(Ci)∞ is an irredundant charac-

teristic decomposition of [T] : U∞.

Hubert [10], Boulier and Lemaire [5] have proposed algorithms for computing
algebraic characteristic decompositions from coherent autoreduced sets. They
have to work with zero-dimensional ideals in the main step of their algorithms.
Our algorithm deals directly with triangular sets of positive dimension, using the
techniques introduced by Kalkbrener [11] and developed by the first author, and
thus it avoids projecting the triangular sets to dimension zero and then lifting
them up.
1 A proper triangular set is usually called a regular set or regular chain (see, e.g.,

[12,2]). We use the term “proper” because “regular” is used with a different meaning
in this paper.



Reasoning about Surfaces Using Differential Zero and Ideal Decomposition 163

Let C be a proper triangular set and P a polynomial in R. We say that C

is a simple set if the ideal sat(C) is radical. The algorithm split(C, P ) presented
in [12] provides two families C1, . . . , Cm and Cm+1, . . . , Cp of proper triangular
sets such that (see [1])

–
√

sat(C) =
√

sat(C1) ∩ · · · ∩ √
sat(Cp),

– the sets of minimal associated prime ideals of sat(Ci) for all i form a partition
of the set of minimal associated primes of sat(C),

– ∀i, 1 ≤ i ≤ m, P is not a zero divisor modulo sat(Ci),
– ∀i, m + 1 ≤ i ≤ p, P is zero modulo sat(Ci).

Moreover, when C is a simple set, the Ci are also simple sets and thus form an
algebraic characteristic decomposition of sat(C). We then define invComp(C, P )
as the set {C1, . . . , Cm} and nullComp(C, P ) as the set {Cm+1, . . . , Cp}.

Let U ⊂ R and C be a proper triangular set. It follows clearly from the
definition of invComp above that the algorithm invCompSet(C, U) below returns
a set {C1, . . . , Cm} of proper triangular sets such that√

sat(C) : U∞ =
√

sat(C1) ∩ · · · ∩
√

sat(Cm).

Moreover, if sat(C) : U∞ is radical, then C1, . . . , Cm are simple sets forming an
algebraic characteristic decomposition of sat(C) : U∞.

invCompSet(C, U)
Ψ := {C}
for U in U repeat

Ψ :=
⋃

B∈Ψ invComp(B, U)
return Ψ

Using these algorithms we devise our main algorithm triangSplit:

– Input: 〈T, U〉 either a regular d-tri system in R, or a d-pol system in R with
T = ∅;

– Output: {C1, . . . , Cm} a set of simple sets, which form an irreducible char-
acteristic decomposition of (T) : U∞.

triangSplit(T, U)
if T = ∅ then return {T}
let T = 〈T1, . . . , Tr〉
U := U ∪ ini(T)
V := {U ∈ U | ld(U) = ld(Tr)}
U′ := U \ V

Φ := ∅

for C in triangSplit(〈T1, . . . , Tr−1〉, U′) repeat
B := C ∪ {Tr}
for A in invCompSet(B, V) repeat

Φ := Φ ∪ {A}
return Φ



164 Philippe Aubry and Dongming Wang

Proof. We show the correctness of the algorithm. If T is empty, then (T) = (0)
and the result is obvious. Now assume that T = 〈T1, . . . , Tr〉 with r > 0, and let
T′ = 〈T1, . . . , Tr−1〉 and P = Tr.

Let 〈T, U〉 be a regular d-tri system. By definition, ini(T )(x) �= 0 for anyT ∈
T and x ∈ Zero(T/U). It follows that ini(T ) does not belong to any associated
prime ideal of (T) : U∞ and this justifies line 3 of the algorithm. Moreover, we
have

(T) : U∞ = (T) : U∞ : ini(P )∞

= (T′ ∪ {P}) : U′∞ : ini(P )∞ : V∞.

Let Φ1 be the output of triangSplit(T′, U′). One may easily verify that (T′ ∪
{P}) : U′∞ = (T′ : U′∞ ∪ {P}) : U′∞, and by induction we obtain

(T) : U∞ =
⋂

C∈Φ1

(sat(C) ∪ {P}) : ini(P )∞ : V∞ : U′∞

=
⋂

C∈Φ1

sat(C ∪ {P}) : V∞ : U′∞

according to Proposition 4.3.2 in [1].
Let X denote the indeterminates, other than ld(P ), occurring in T. Let P

be an associated prime ideal of sat(C ∪ {P}). According to [1] (Theorem 4.3.6),
P ∩K[X] is an associated prime of sat(C) and consequently an associated prime
of (T′) : U′∞. It follows that U ′ �∈ Pfor any U ′ ∈ U′, and thus

(T) : U∞ =
⋂

C∈Φ1

sat(C ∪ {P}) : V∞.

Let C ∈ Φ1 and {A1, . . . , Am} = invCompSet(C ∪ {P}, V). Since (T) : U∞

is radical, so is the ideal sat(C ∪ {P}) : V∞; and from the specification of
invCompSet the family A1, . . . , Am is an algebraic characteristic decomposition
of sat(C ∪ {P}) : V∞. We thus deduce that

(T) : U∞ =
⋂

A∈Φ

sat(A).

This proves the correctness of triangSplit. The termination of the algorithm is
obvious.

Let 〈T, U〉 be a regular d-tri system and {C1, . . . , Cm} be the output of our al-
gorithm for 〈T, U〉. Then, P vanishes on d-Zero(T/U) iff P ∈ [T] : U∞ iff the par-
tial d-pseudo-remainder of P wrt T belongs to (T) : U∞ iff d-prem(P, Ci) = 0 for
all i = 1, . . . , m. Therefore, with (6), whether a d-pol vanishes on d-Zero(P/Q)
can be completely decided by decomposing the d-pol system 〈P, Q〉 into regular
d-tri systems and then to d-simple systems and by d-pseudo-remainder compu-
tations.



Reasoning about Surfaces Using Differential Zero and Ideal Decomposition 165

5 The Fundamental Coefficients of Surfaces Revisited

In this section, we apply Wu’s and other related methods based on zero de-
composition of d-pol systems to study the fundamental coefficients of surfaces
and their relationships. The application of these methods to deal with geometric
problems that can be expressed algebraically by means of d-pol equations and in-
equations is quite straightforward. For differential geometry in three-dimensional
Euclidean space, sometimes we also need to handle inequalities which are de-
fined over the field of reals. In this case, some alternative devices have to be
adopted. For example, we shall use the weaker condition δ �= 0 instead of the
real condition δ > 0 in the computation.

Let us introduce an ordering Ω for the derivatives of x1 ≺ · · · ≺ xn as follows:
δi1
1 δi2

2 xk ≺ δj1
1 δj2

2 xl if either i1 + i2 < j1 + j2, or i1 + i2 = j1 + j2 and k < l, or
i1 + i2 = j1 + j2, k = l and i2 < j2. This ordering is denoted by grlexA in the
diffalg package of F. Boulier and E. Hubert [9], which has been used together
with the authors’ implementation of simple systems and the algorithm triangSplit
for our experiments.

5.1 Automated Rediscovery of Theorema Egregium

To derive the representation of the Gaussian curvature K in terms of the first
fundamental coefficients and their derivatives, we form a set P of d-pols corre-
sponding to the equations in (1) and (3). Let the derivatives of E ≺ F ≺ G ≺
L ≺ M ≺ N and those of ru ≺ rv ≺ n be ordered according to Ω, and any
derivative of E, F, G, L, M, N be ordered smaller than any derivative of ru, rv, n.
Under this (admissible) ordering, a decomposition of the form (6) for the d-pol
system 〈P, {δ, M}〉 (e.g., using Rosenfeld Groebner in diffalg without compu-
tation of Gröbner bases) contains only one element (i.e., e = 1). One may find
that in the d-tri set there is a d-pol of the form

g = δ(LN − M2) − β, (8)

where β is identical to the difference of the two determinants in Theorem 1.
Therefore, the Theorema egregium of Gauss is now rediscovered automatically
(under the condition M �= 0). Moreover, the d-pol setP may be decomposed into
12 regular d-tri systems. It can be easily verified that g has d-pseudo-remainder
0 wrt all the 12 d-tri sets and thus g vanishes on the zeros of all these d-tri
systems. Hence, the Theorema egregium holds true as well in the case M = 0.

5.2 Relations between First and Second Fundamental Coefficients

In the process of computing integrability conditions with F = M = 0, Li [17]
discovered a polynomial of degree 4 in L, whose coefficients are d-pols in E
and G, and thus concluded that the second fundamental form is algebraically
determined by E, G and their derivatives. This d-pol consists of 434 terms and
thus is quite complex. It is difficult to analyze its geometric meaning. Using



166 Philippe Aubry and Dongming Wang

a slightly different way of elimination, we show how to derive a more general
relation in a very compact form. This compact form consists of only 11 terms and
thus provides us with some possibility to investigate its geometric significance.
We shall clarify the statement of Li and give symmetric expressions for this
special case. Moreover, a quadratic relation of L has also been obtained.

Consider the case M = 0. Then the Codazzi–Mainardi equations become

c1 = Lv − L Γ 1
12 + N Γ 2

11 = 0,

c2 = Nu + L Γ 1
22 − N Γ 2

12 = 0.

Let γ = β/δ; then (8) implies that

c = LN − γ = 0.

Now eliminate the variable N from c1 and c2 using c by means of d-pseudo-
division; we have

p1 = d-prem(c1, c), p2 = d-prem(c2, c).

Next, compute the ∆-pol p3 of p1 and p2 (whose leads are Lv and Lu respec-
tively). Finally, eliminating the derivatives Lu and Lv from p3 using p1 and p2
by d-pseudo-division, we get

r = d-prem(p3, 〈p1, p2〉),
which is a d-pol of degree 4 in its lead L and does not contain terms of odd
degrees in L. Therefore, the following relation is derived:

r = r4L
4 + r2L

2 + r0 = 0,

where
r4 = 2 γΓ 1

12Γ
1
22 − γvΓ 1

22 + γ(Γ 1
22)v,

r2 = −[γ2(Γ 1
12)u + γ2(Γ 2

12)v + 4 γ2Γ 2
11Γ

1
22 + γuγv − γγuv],

r0 = γ3(Γ 2
11)u − γ2γuΓ 2

11 + 2 γ3Γ 2
11Γ

2
12.

In fact, the relation r = 0 can be derived automatically by triangularizing the
d-pol set H = {c1, c2, c} with L, N, γ and Γ k

ij as variables. For this purpose, order
the derivatives of Γ 1

22 ≺ Γ 2
11 ≺ Γ 2

12 ≺ Γ 1
12 ≺ γ according to Ω and to be smaller

than any derivative of L, which is ordered smaller than any derivative of N .
Then the d-pol r as well as f given below appears in the process of decomposing
H into regular d-tri systems. However, the complete decomposition of H could
not be obtained due to the occurrence of very large d-pols.

After Γ k
ij and γ are substituted by their corresponding expressions, the nu-

merator of r, when expanded, is a d-pol consisting of 17 666 terms in E, F, G
and their derivatives. In the case F = 0, r simplifies to 434 terms, yielding the
d-pol found by Li [17].

From r = 0 and c = 0, the following theorem may be established.



Reasoning about Surfaces Using Differential Zero and Ideal Decomposition 167

Theorem 3. For any surface with M = 0, either r4 = r2 = r0 = 0, or the
second fundamental coefficient L is algebraically determined by the first funda-
mental coefficients E, F, G and their derivatives. In the latter case, if L �= 0,
then N and thus the second fundamental form are also algebraically determined
by E, F, G and their derivatives.

Moreover, pseudo-dividing p1 by r, we obtain the following quadratic relation

f = d-prem(p1, r) = γ(f2L
2 + f0) = 0,

where f2 and f0 are d-pols consisting of 46 and 43 terms, respectively, in γ, Γ 1
12,

Γ 2
11, Γ 1

22, Γ
2
12 and their derivatives. Therefore, we have the following new theorem.

Theorem 4. For any surface with M = 0, either γf2 = γf0 = 0, or the square
of the second fundamental coefficient L is a rational expression of the first fun-
damental coefficients E, F, G and their derivatives, viz.,

L2 = −f0

f2
.

If γf0 �= 0, then N and thus the second fundamental form are algebraically
determined by E, F, G and their derivatives.

Note that f was first discovered from the triangularization process of decom-
posing H. We realize that this d-pol can be easily obtained as the d-pseudo-
remainder of p1 wrt r after we have already seen it. After substitution of the
expressions of γ, Γ 1

12, etc., the numerator of f2L
2+f0, if expanded, is a very large

d-pol in E, F, G and their derivatives. When F = 0, the numerator of f2L
2 + f0

simplifies to 3 696 terms.

5.3 The Case F = M = 0

Now we come to the special case F = M = 0. Then the d-pols r4, r2, r0 can be
written as

r4 = − 1
2E

(EGKGuv − GKEvGu − EKGvGu − EGGuKv),

r2 = −1
2
(2EGK2EvGu − EG2K2Euv + G2K2EuEv − E2GK2Guv

+ E2K2GuGv − 2E2G2KKuv + 2E2G2KuKv),

r0 = −E2GK2

2
(EGKEuv − GKEuEv − EKEvGu − EGKuEv),

where the Gaussian curvature simplifies to

K =
γ

EG
=

(
EuGu + E2

v

4 E
+

EvGv + G2
u

4 G
− Evv + Guu

2

) /
(EG).



168 Philippe Aubry and Dongming Wang

Theorem 5. For any surface with F = M = 0, one of the following holds:

(a) GuK = 0;

(b) GuK �= 0and
Guv

Gu
=

Ev

E
+

Gv

G
+

Kv

K
;

(c) the second fundamental coefficient L is algebraically determined by the
first fundamental coefficients E, G and their derivatives; if L �= 0, then N and
thus the second fundamental form are also algebraically determined by E, G and
their derivatives.

In the case EvGuK �= 0, r4, r2, and r0 can be written in the following
symmetric form:

r4 = −GKGu

2

(
Guv

Gu
− Ev

E
− Gv

G
− Kv

K

)
,

r2 = − (EGK)2

2

[
2
Ev

E

Gu

G
−

(
Eu

E

)
v

−
(

Gu

G

)
v

− 2
(

Ku

K

)
v

]
,

r0 = −E3G2K3Ev

2

(
Euv

Ev
− Eu

E
− Gu

G
− Ku

K

)
.

Of course, if r4 = 0 and r2 �= 0, thenL is also algebraically determined by
E, G and their derivatives. In the case r4 = r2 = r0 = 0, computation shows
that in general there does not exist any polynomial relation among L, E, G and
the derivatives of E and G, that follows formally from the equations (1)–(4).

Now an interesting question is how to geometrically characterize the three
classes of surfaces. The first two cases, which were not considered in Li’s conclu-
sion, are not trivial. For example, we have looked at the following three families
of surfaces. The first is the general surface of revolution

r(u, v) = (h(u) cos v, h(u) sin v, k(u)),

where it is assumed that h′2 +k′2 �= 0 andh �= 0. The surface includes the sphere
with h(u) = a cos u and k(u) = a sin u, the ellipsoid (Fig. 2) with h(u) = a cos u
and k(u) = b sin u, and the torus (Fig. 3) with h(u) = a + b cos u and k(u) =
b sin u as special cases. For this surface, we have Ev = Gv = Kv = Guv = 0, so
it belongs to class (b).

Fig. 2 Fig. 3



Reasoning about Surfaces Using Differential Zero and Ideal Decomposition 169

Another surface is the helicoid (Fig. 4)

r(u, v) = (v cos u, −v sin u, bu),

which is not a surface of revolution. For
this surface, Gu = 0 and thus case (a)
holds.

Obviously, all surfaces of zero Gaus-
sian curvature (i.e., K = 0) also belong to
class (a). The cylinder (Fig. 5) is one of
such surfaces. Moreover, for all the above
examples we have r4 = r2 = r0 = 0.

Fig. 4

On the other hand, it may be verified that ri = 0 (i = 4, 2, 0) and fj = 0
(j = 2, 0) are not formal consequences of the equations (1)–(4). However, this
fact does not imply that there must exist surfaces such that ri �= 0 orfj �= 0. The
reason is that the relations between the fundamental coefficients E, F, G, L, M, N
and the vectors ru, rv, n expressed by means of the inner product are not taken
into account in the hypothesis. To include these relations, we need to take the
components of the vectors ru, rv and n as variables. This leads to a considerable
increase in the number of variables and of equations and thus makes the com-
putation much more complex. We have proved that, in the case F = M = 0, the
d-pols r4, r2, r0 do not belong to the radical of the differential ideal generated
by the d-pols obtained from (1)–(4) and the relations between E, G, L, N and
ru, rv, n by taking the components of the involved vectors as variables. We have
also observed that the regular d-tri systems whose d-zeros do not make the van-
ishing of r4, r2, r0 represent some nontrivial components of the zero set. So there
should indeed exist nontrivial surfaces that belong to class (c). The remaining
problem is to find such surfaces and their geometric characterization.

6 Proving Theorems about Surfaces

As shown in the preceding section, deriving an unknown geometric relation or
discovering a new theorem may be done by triangularizing the geometric hy-
potheses with specially arranged variable (and term) orderings. The case of prov-
ing a geometric theorem is relatively easy because the conclusion-relations are
given. Theoretically, the theorem may be proved by verifying that the conclusion-
d-pols vanish on the d-zeros of the d-pol set P expressing the geometric hypothe-
ses. However, this theoretical approach does not work well because geometric
theorems are true usually under certain nondegeneracy conditions. It is a good
strategy to introduce d-pol inequations to rule out some of the degenerate cases.
Thus, in practice we should formulate the hypothesis of the geometric theorem in
question as a d-pol system 〈P, Q〉 and decide on which part of d-Zero(P/Q) the
conclusion-d-pols vanish. This can be done by decomposing the hypothesis-d-pol
system so that its zero set is split into subsets (corresponding to the geometric
situations), and then deciding on which subsets the conclusion-d-pols vanish.



170 Philippe Aubry and Dongming Wang

We have applied the zero decomposition techniques reviewed in Sect. 3 to
d-pol systems formulated from problems in the local theory of surfaces, experi-
menting with several theorems selected from standard textbooks of differential
geometry and the literature of automated geometric reasoning to see the effec-
tiveness of differential elimination methods. The following examples (of which
the first is taken from [17]) are two of them and serve to illustrate how such
theorems can be proved automatically.

Example 1. If a surface r =
r(u, v) has two unequal con-
stant principal curvatures, then
the surface is a cylinder.

With the formulation given
by Li [17], the hypothesis of this
theorem consists of the follow-
ing seven d-pol equations Fig. 5

p1 = LuE − LEu = 0, p2 = LvE − LEv = 0, p3 = NuG − NGu = 0,

p4 = NvG − NGv = 0, p5 = 2 NuGE − NGuE − LGuG = 0,

p6 = 4 NLGE + 2 GuuGE − GvEvE − G2
uE − GuGEu + 2 GEvvE − GE2

v = 0,

p7 = 8 LvLG2E − 4 L2G2Ev + 2 GuuGEvE − GvE2
vE − G2

uEvE − GuGEvEu

+ 2 GEvvEvE − GE3
v = 0,

and the inequation q = EN − GL �= 0 (which means that the two principal
curvatures are unequal). Let P = {p1, . . . , p7}, Q = {E, G, q}, and the derivatives
of E ≺ G ≺ L ≺ N be ordered according to Ω. Using the refined Seidenberg
algorithm, the d-pol system 〈P, Q〉 may be decomposed into two regular d-tri
systems 〈T1, U1〉 and 〈T2, U2〉 with

T1 = [N, Ev, Gu, ELv − LEv, ELu − LEu],
T2 = [L, Gu, GNv − NGv, 2 EGNu − ENGu − GLGu,

− 2 EGEvv + GE2
v + EEvGv − 4 G2L2],

U1 = {E, G, L}, U2 = {E, G, N}
such that (6) holds with e = 2. Considering the two d-tri systems as e-tri systems
and decomposing the first under N ≺ Ev ≺ Gu ≺ Lv ≺ Lu (the ordered leads)
and the second under L ≺ Gu ≺ Nv ≺ Nu ≺ Evv, we may get two simple
systems 〈T1, ∅〉 and 〈T2, ∅〉. Therefore, we have

d-Zero([P] : Q∞) = d-Zero([T1] : V∞
1 ) ∪ d-Zero([T2] : V∞

2 ), (9)

where Vi is the set of factors of the d-pols in si(Ti): V1 = {E} and V2 = {E, G}.
By means of computing Gröbner bases as proposed by Boulier and others [3,4],
one may also get two simple sets

T∗
1 = [N, Ev, Gu, Lv, ELu − LEu],

T∗
2 = [L, Gu, GNv − NGv, Nu, 2 EGEvv − GE2

v − EEvGv]



Reasoning about Surfaces Using Differential Zero and Ideal Decomposition 171

such that (9) holds as well when Ti is substituted by T∗
i for i = 1, 2.

The conclusion of the theorem to be proved may be given by five d-pol equa-
tions (see [17]). According to the reduction techniques mentioned in Sect. 3.3,
one may easily verify that the conclusion d-pols can be reduced to 0 wrt T1 or
G1, but not wrt T2 or G2. In other words, the theorem is proved to be true
for one of the two components. The reason is that the conclusion is formulated
only for one of two cases shown in Fig. 5. For the other case, we need to swap
the positions of u and v in the conclusion d-pols as remarked by Li [17]. The
resulting d-pols may be reduced to 0 wrt T2 or G2. In any case, the surface is a
cylinder under the condition EG �= 0; this condition is already satisfied because
EG > 0.

Example 2. If a surface r = r(u, v) consists entirely of umbilics, then it is
planar or spherical.

A point P on the surface is called an umbilic if the two principal curvatures
at P are equal. At every umbilic we have

L

E
=

M

F
=

N

G
.

Take the d-pol equations (1)–(4) together with EM −FL = 0 and EN −GL = 0
as the hypothesis of the theorem, denote the corresponding set of d-pols by P,
and let Q = {E, G, δ}, where δ = EG − F 2 as before. Order the derivatives of
E ≺ F ≺ G ≺ L ≺ M ≺ N ≺ r ≺ n according to Ω.

If L = 0, then it is easy to decompose 〈P ∪ {L}, Q〉 into one regular d-
tri system 〈T, U〉, and one may see that both nu and nv are contained in T.
Therefore, n is a constant vector and the surface is planar.

Now consider the case L �= 0. Then decomposition of〈P, Q〉 as of the form
(6) yields two regular d-tri systems 〈T1, U1〉 and 〈T2, U2〉, where

T1 = 〈T1, . . . , T10〉, T2 = 〈F, M, T2, T3, T
′
4, T5, T6, T

′
7, T

′
8, T

′
9, T

′
10〉,

U1 = Q ∪ {F}, U2 = {E, G},

and

T1 = EM − FL,

T2 = EN − GL,

T3 = ELv − LEv,

T4 = E2Lv − ELEv − EFLu + LFEu,

T5 = Env + Lrv,

T6 = Enu + Lru,

T7 = E2[2 δ(Guu − 2 Fuv + Evv) − EG2
u − GE2

v + 4 G2L2

+ (2 FFu − GEu + FEv)Gu + (2 EFu − FEu − EEv)Gv

− 2 (2 FFu − GEu − FEv)Fv] − 4 (2 EG − F 2)F 2L2,

T8 = E[2 δrvv + (GGu + FGv − 2 GFv)ru − (FGu + EGv − 2 FFv)rv]
− 2 LGδn,



172 Philippe Aubry and Dongming Wang

T9 = E[2 δruv + (FGu − GEv)ru − (EGu − FEv)rv] − 2 LFδn,

T10 = 2 δruu + (2 FFu − GEu − FEv)ru − (2 EFu − FEu − EEv)rv

− 2 Lδn;

T ′
4 = ELu − LEu,

T ′
7 = 2 EG(Guu + Evv) − EG2

u − GE2
v − GEuGu − EEvGv + 4 G2L2,

T ′
8 = 2 EGrvv + GGuru − EGvrv − 2 G2Ln,

T ′
9 = 2 EGruv − GEvru − EGurv,

T ′
10 = 2 EGruu − GEuru + EEvrv − 2 EGLn.

In fact, T1 is a simple set and T4 may be replaced by T ′
4. Let

k =
L

E
, f =

n

k
+ r.

Then one can easily verify that

d-prem(ku, Ti) = d-prem(kv, Ti) = d-prem(fu, Ti) = prem(fv, Ti) = 0

for i = 1, 2. It follows that k is a nonzero constant and f is equal to a constant
vector r0, and thus

r − r0 = −n

k
.

Therefore, we have

|r − r0| =
|n|
|k| =

1
|k| .

This proves that the surface is spherical.

For differential geometry, the algebraic formulation of problems is not al-
ways easy and straightforward. We are looking for more geometric theorems
that are nontrivial and instructive, may be formulated in the setting of d-pol
equations and inequations, and are computationally tractable. We have also been
observing the performance of decomposition methods with different variants and
the computational difficulties involved for theorem proving. Not as easy as in
elementary geometry, we often encounter very large d-pols when dealing with
problems about surfaces. The computation is highly sensitive to the variable and
term orderings. How to design more efficient decomposition algorithms and how
to apply them effectively to attack problems in the local and global theory of
surfaces have become interesting questions for our research.

Acknowledgements

Part of this work has been supported by the SPACES Project (http://www-
spaces.lip6.fr/) and by the Chinese National 973 Project NKBRSF G19980306.



Reasoning about Surfaces Using Differential Zero and Ideal Decomposition 173

References

1. Aubry, P. (1999). Ensembles triangulaires de polynômes et résolution de systèmes
algébriques. Implantation en Axiom. Ph.D. thesis, Université Paris VI, France.

2. Aubry, P., Lazard, D., Moreno Maza, M. (1999). On the theories of triangular sets.
J. Symb. Comput. 28: 105–124.

3. Boulier, F., Lazard, D., Ollivier, F., Petitot, M. (1995). Representation for the
radical of a finitely generated differential ideal. In: Levelt, A.H.M. (ed.): Proc.
ISSAC ’95, Montreal, Canada, ACM Press, New York, pp. 158–166.

4. Boulier, F., Lazard, D., Ollivier, F., Petitot, M. (1998). Computing representation
for radicals of finitely generated differential ideals. Preprint, LIFL, Université Lille
I, France.

5. Boulier, F., Lemaire, F. (2000). Computing canonical representatives of regular
differential ideals. In: Traverso, C. (ed.): Proc. ISSAC ’2000, St. Andrews, Scotland,
ACM Press, New York, pp. 38–47.

6. Buchberger, B. (1985). Gröbner bases: An algorithmic method for polynomial ideal
theory. In: Bose, N. K. (ed): Multidimensional Systems Theory, D. Reidel, Dor-
drecht, pp. 184–232.

7. Carrà Ferro, G., Gallo, G. (1990). A procedure to prove statements in differential
geometry. J. Automat. Reason. 6: 203–209.

8. Chou, S.-C., Gao, X.-S. (1993). Automated reasoning in differential geometry and
mechanics using the characteristic set method — Part I. An improved version
of Ritt–Wu’s decomposition algorithm. Part II. Mechanical theorem proving. J.
Automat. Reason. 10: 161–189.

9. Hubert, E. (1999). The diffalg package. http://daisy.uwaterloo.ca/∼ehubert/Diff
alg/.

10. Hubert, E. (2000). Factorization-free decomposition algorithms in differential al-
gebra. J. Symb. Comput. 29: 641–662.

11. Kalkbrener, M. (1991). Three Contributions to Elimination Theory. Ph.D. thesis,
Johannes Kepler University, Austria.

12. Kalkbrener, M. (1998). Algorithmic properties of polynomial rings. J. Symb. Com-
put. 26: 525–581.

13. Klingenberg, W. (1978). A Course in Differential Geometry. Translated by D. Hoff-
man. Springer, New York.

14. Kreyszig, E. (1968). Introduction to Differential Geometry and Riemannian Ge-
ometry. University of Toronto Press, Tornoto.

15. Li, H. (1997). Mechanical theorem proving in differential geometry — Local theory
of surfaces. Sci. China (Ser. A) 40: 350–356.

16. Li, H., Cheng, M. (1998). Clifford algebraic reduction method for automated the-
orem proving in differential geometry. J. Automat. Reason. 21: 1–21.

17. Li, Z. (1995). Mechanical theorem proving in the local theory of surfaces. Ann.
Math. Artif. Intell. 13: 25–46.

18. Li, Z., Wang, D. (1999). Coherent, regular and simple systems in zero decomposi-
tions of partial differential systems. Syst. Sci. Math. Sci. 12 (Suppl.): 43–60.

19. Ritt, J. F. (1950). Differential Algebra. Amer. Math. Soc., New York.
20. Rosenfeld, A. (1959). Specializations in differential algebra. Trans. Amer. Math.

Soc. 90: 394–407.
21. Seidenberg, A. (1956). An elimination theory for differential algebra. Univ. Cali-

fornia Publ. Math. (N.S.) 3(2): 31–66.



174 Philippe Aubry and Dongming Wang

22. Wang, D. (1995). A method for proving theorems in differential geometry and
mechanics. J. Univ. Comput. Sci. 1: 658–673.

23. Wang, D. (1996). An elimination method for differential polynomial systems I.
Syst. Sci. Math. Sci. 9: 216–228.

24. Wang, D. (1998). Decomposing polynomial systems into simple systems. J. Symb.
Comput. 25: 295–314.

25. Wang, D. (2000). Automated reasoning about surfaces (progress report). In:
Richter-Gebert, J., Wang, D. (eds.): Proc. ADG 2000, Zurich, Switzerland, Septem-
ber 25–27, 2000, pp. 183–196.

26. Wu, W.-t. (1979). On the mechanization of theorem-proving in elementary differ-
ential geometry (in Chinese). Sci. Sinica Special Issue on Math. (I): 94–102.

27. Wu, W.-t. (1987). A constructive theory of differential algebraic geometry based
on works of J. F. Ritt with particular applications to mechanical theorem-proving
of differential geometries. In: Gu, C., Berger, M., Bryant, R. L. (eds.): Differential
Geometry and Differential Equations, LNM 1255, Springer, Berlin, pp. 173–189.

28. Wu, W.-t. (1989). On the foundation of algebraic differential geometry. Syst. Sci.
Math. Sci. 2: 289–312.

29. Wu, W.-t. (1991). Mechanical theorem proving of differential geometries and some
of its applications in mechanics. J. Automat. Reason. 7: 171–191.



Effective Methods
in Computational Synthetic Geometry

Jürgen Bokowski

Darmstadt University of Technology
Department of Mathematics

D-64289 Darmstadt
juergen@bokowski.de

Abstract. We discuss algorithmic steps when dealing with realizability
problems in discrete geometry, especially that of finding realizations for
a given oriented matroid. After a brief introduction to known methods,
we discuss a dynamic inductive realization method, which has proven
successful when other methods did not succeed. A useful theorem in this
context in the rank 3 case asserts that a one-element extension of a uni-
form rank 3 oriented matroid depends essentially just on the mutations
involving that element. There are problems in computational synthetic
geometry of course, where intuition must help. In this context we men-
tion the application of the software Cinderella to automated deduction in
computational synthetic geometry, when studying face lattices of poly-
topes.

1 Introduction

We start with a motivation for studying oriented matroids. When using an
(n × r)-matrix to describe a geometrical object in Euclidean space, we are actu-
ally often interested in the equivalence class of all matrices that describe images
of our object under rigid motions. Oriented matroids form a natural framework
for such equivalence classes. They are even invariants of the corresponding pro-
jective space with respect to homeomorphic transformations. For the novice in
the theory of oriented matroids, we recommend to think of an oriented ma-
troid with n elements in rank r as an equivalence class of (n × r)-matrices. In
each such equivalence class we collect matrices that agree on certain combina-
torial properties, about the relative position of the row vectors of the matrix.
So, in principle, oriented matroids are purely combinatorial objects that mimic
the “relative-position behavior” of vectors. While real matrices provide a kind
of realizable paradigm for oriented matroids, there are, moreover, also oriented
matroids that do not come from a matrix (still sharing the same abstract com-
binatorial properties). They are called non-realizable. One model of an oriented
matroid with n elements in rank r describes it as an abstract sign vector with(
n
r

)
components. The components are indexed by the

(
n
r

)
r-tuples (λ1, λ2, . . . , λr)

with 1 ≤ λ1 < λ2 < . . . < λr ≤ n and in case of an (n× r)-matrix M, n ≥ r, the

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 175–192, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



176 Jürgen Bokowski

component corresponding to (λ1, λ2, . . . , λr) equals the sign of the determinant
of the sub-matrix of M with rows λ1, λ2, . . . , λr. While all realizable oriented
matroids can be generated in this way, a general oriented matroid is such a sign
vector that satisfies certain conditions of local realizability. We omit the technical
description of these criteria here and refer to [3] for an elaborate treatment of
oriented matroid axioms.

One essential property of oriented matroids is that many geometric questions
that are usually treated on the coordinate level can be dealt with as well on the
combinatorial level of a suitably chosen oriented matroid. For instance the convex
hull of a point configuration P can be calculated from the oriented matroid
of the matrix of the homogeneous coordinates. Similarly this oriented matroid
carries enough information to decide whether a given simplicial complex can
be embedded without self-intersections on the vertices of P . This enables us to
break up the process of deciding the realizability of a simplicial complex ∆ into a
two-step procedure. First one enumerates (on a combinatorial level) all oriented
matroids that are compatible with ∆. Then one tries to realize at least one of
them. So, in principle a simplicial complex may be non-realizable for two different
reasons. Either no oriented matroid was found (this is a purely combinatorial
statement) or the possible oriented matroids turned out to be non-realizable
(this is a geometric statement).

The notion Computational Synthetic Geometry has been introduced in [4,24].
It deals with realizability problems in discrete geometry, see also [14]. An es-
sential subproblem in this field is that of finding realizations for given oriented
matroids (i.e. given the sign vector, find a matrix that has this vector as oriented
matroid). By observing that determinants are a special kind of polynomials, the
realizability problem turns out to be a semialgebraic problem of finding solu-
tions of a system of real polynomial equations and inequalities. A first naive
attempt to the realizability problem would therefore try to apply the more or
less standard techniques and algorithms of real algebraic geometry. However the
general complexity behavior of this problem is known to be intrinsically hard
and a general algorithm is far from being applicable for practical purposes, see
[14,3]. One might think that there is some hope that the realizability problem
for oriented matroids turns out to be simpler than general semialgebraic prob-
lems, since determinants are very special polynomials. However it turns out that
this is not the case: the universality theorems of Mnëv [17] show that the real-
izability problem and the problem of solving systems of polynomial inequalities
are essentially equivalent. See also the closely related results about realization
spaces of polytopes of Richter-Gebert [21]. On the other hand, several heuristic
methods for deciding the realizability of oriented matroids have been applied
successfully in the past. Starting with a brief introduction to the known meth-
ods, we discuss an additional method, a dynamic inductive realization method,
which has proven successful when other methods did not succeed. We provide
in particular a useful theorem in this context in the rank 3 case which asserts
that the one-element extension of a uniform rank 3 oriented matroid depends
essentially just on the mutations (see below) involving that element.



Effective Methods in Computational Synthetic Geometry 177

There are problems in computational synthetic geometry of course, where no
formal heuristics did provide a solution and intuition must help. In this context
we mention the application of the software Cinderella for automated deduction
in computational synthetic geometry, when studying face lattices of polytopes.

We start with a typical example in computational synthetic geometry: the
realization problem for a triangulated 2-manifold. We exemplify how to proceed
algorithmically. A fundamental subproblem will be that of finding coordinates of
a given oriented matroid. As mentioned above we know that a general algorithm
for this problem is unsuitable for practical applications. So we have to look at
fast heuristic methods instead.

Example 1. We consider the following abstract list of triangles, an orientable
triangulated 2-manifold:

125 127 137 138 146 148 156 236 238 245 248 267 345 347 356 467

Input: A triangulated combinatorial torus.

Problem. Can we find 8 corresponding points in Euclidean 3-space such that
the flat triangles defined via the above list have no self-intersections?

Step 0. Finding an admissible oriented matroid.

Assume for a moment that we have found such 8 points, and write their homo-
geneous coordinates as an 8 × 4 matrix M. One can compute the signs of all
determinants of 4 × 4 submatrices of M. The sign of such a quadruple tells us
whether the corresponding four points form a left- or a right-handed system in
space. When we consider a collection of 5 rows of this matrix M corresponding
to the vertices of a triangle and a line segment of our example, the corresponding
5 signs of determinants of 4 × 4 submatrices tell us whether the edge pierces the
triangle or not. We ask the reader to confirm this.

Having this is mind, we look for a sign structure that satisfies two properties.
On the one hand it should have the chance to be the sign structure of the
determinants of 4 × 4 submatrices of a matrix M (i.e. we look for an oriented
matroid) and on the other hand, the sign structure should not violate any of the
intersection properties that are forced by the simplicial complex. In other words,
we determine an admissible oriented matroid in rank 4. We skip here the method
for generating them. An effective algorithm can be found in [8]. The output of
the algorithm can be one of two possibilities:

Either: The set of admissible oriented matroids is empty.

If this were the case, it would be impossible to embed the example under
consideration.

Or: Admissible oriented matroids were found.

If this were the case, the embedability of the example depends on the question
whether at least one of these oriented matroids is realizable. If there is more than
one admissible oriented matroid, then the torus is not embeddable if and only if
all of them are non-realizable.



178 Jürgen Bokowski

In our torus case, we have found the following admissible oriented matroid
with 8 elements in rank 4 written in terms of signed bases.

−1234 −1235 −1236 −1237 +1238 +1245 +1246 +1247 −1248 +1256
+1257 −1258 +1267 −1268 −1278 −1345 −1346 −1347 +1348 +1356
+1357 +1358 +1367 +1368 +1378 −1456 −1457 +1458 −1467 +1468
−1478 +1567 −1568 −1578 −1678 +2345 +2346 +2347 +2348 +2356
+2357 +2358 +2367 +2368 +2378 +2456 +2457 −2458 +2467 −2468
−2478 −2567 −2568 −2578 −2678 +3456 +3457 +3458 +3467 +3468
+3478 −3567 −3568 +3578 +3678 −4567 +4568 +4578 +4678 −5678

Now the problem reduces to finding coordinates of points that generate exactly
the sign pattern of the oriented matroid. Any such realization will automatically
be an embedding of the torus under consideration.

We use the following method when the problem is small enough (i.e. when we
can be optimistic about finding a decision for the forthcoming inequality sys-
tem). The advantage of the following method is that we do not give up the full
generality. Nevertheless, we can also start with any other alternative mentioned
later.

Step 1. Careful analysis to determine the unit matrix.

Since the oriented matroid of our matrix M is invariant under multiplication by
a 4 × 4 matrix with positive determinant, we can assume that the rows 1, 3, 5
and 7 form a unit matrix. In our oriented matroid the sign [1, 3, 5, 7] is positive,
which is consistent with the sign of our chosen basis. If this were not the case we
would have w.l.o.g. to realize the oriented matroid where all signs are reversed.

M =




1 0 0 0
A B C D
0 1 0 0
E F G H
0 0 1 0
I J K L
0 0 0 1
M N O P




M′ =




1 0 0 0
a b c −d
0 1 0 0

−e −f −g h
0 0 1 0
−i −j k l
0 0 0 1

−m −n −o p




Having chosen certain rows to be a unit matrix, considerably simplifies the
algebraic structure of the system of inequalities. While we before had to deal
with a system of many 4 × 4 determinants, now (due to all the zeros in the
matrix) many determinants can be expressed as 1 × 1, 2 × 2, or 3 × 3 determi-
nants of suitable sub-matrices. In particular the variables A . . . P themselves
can be expressed as a determinant (e.g. P = [1, 3, 5, 8]). By this the oriented
matroid itself determines the signs of the variables. The signs of all variables
are determined when we know the signs of the following determinants: [2357],
[1257], [1237], [1235], [3457], [1457], [1347], [1345], [3567], [1567], [1367], [1356],
[3578], [1578], [1378], [1358].



Effective Methods in Computational Synthetic Geometry 179

Now we substitute all negative variables v with −v in order to have positive
variables in M′ only. In what follows all calculations refer to the matrix M′, in
which the variables a, . . . , p have to be positive in order to get a realization of
our oriented matroid.

Step 2. Finding a minimal reduced system.

The selection of the rows that are chosen to be a basis is not at random. The
arguments that lead to this particular choice will be discussed now. See e.g. [5]
for a more detailed example.

It is a well known fact that the values of sub-determinants in a matrix are not
independent from each other. They adhere to algebraic dependencies; so called
Graßmann Plücker relations (for instance we have [1357][1368] − [1356][1378] +
[1358][1367] = 0, as you can easily verify for the matrix M′). Not all terms in
such an equation can be positive at the same time. This implies that already
a subset of signs of determinants determines all of them. For a given choice of
a unit matrix and a given oriented matroid we can look for a “small” reduced
system: a subset of determinants whose signs determine all other signs such that
a weighted sum of the degress of the corresponding polynomials is as small as
possible. In our example the weights should be chosen in a way such that the
1 × 1 submatrices (i.e. the variables) are “for free”, 2 × 2 are “cheep”, 3 × 3 are
“expensive” and 4 × 4 are “very expensive.”

We skip arguments in which Graßmann Plücker relations are used for finding
a minimal reduced system. We are finally left with the following subsystem of
inequalities.

cp < do [1238]
bh < df [1245]
bo < cn [1278]
gn < fo [1478]
di < al [2356]
aj < bi [2567]
lm < ip [3568]
fi < ej [4567]

∣∣∣∣∣∣
f −g h
j k l
n −o p

∣∣∣∣∣∣
< 0 [1468]

∣∣∣∣∣∣
a c d
e g h
m o p

∣∣∣∣∣∣
< 0 [2348]

So far we did not loose any generality. Every solution of the above system of
10 equations together with the positivity restriction for the variables provides a
realization of the oriented matroid. The choice of the rows that constitute the
unit matrix is such that this system of inequality is as cheap as possible with
respect to our weight function.

Step 3. Starting the solvability sequence method (for details see [13]).

First we observe that we can choose k very large: This variable occurs only in
the inequality [1468] < 0. This determinant can be written as [1468] = k · (fp −
hn)+ · · · = −k · [1458]+ · · · such that k does not occur in the remaining terms.
The oriented matroid tells us that [1458] > 0, hence the choice k → ∞
implies that the term containing k dominates all others and we get [1468] < 0
(under the new side condition [1458] > 0).



180 Jürgen Bokowski

We eliminate k by this argument and add the euqation fp < hn to our
system. Now we only have to consider the 2 × 2 determinants and the last 3 × 3
determinant. Next we analyse the signs of the gradients for each variable in each
inequality. We can do this by similar signature arguments that we used for the
elimination of k.

a ↓↑⇑ b ↓↓↑ c ↓↑⇑ d ↓↑↑⇓
e ↑⇓ f ↓↑↑ g ↓⇓ h ↓⇑
i ↓↓↑↑ j ↓↑ k l ↓↑
m ↓⇓ n ↓↑ o ↓↑↑⇓ p ↓↑⇑

Here a ↓ or ⇓ means that there is an equation that tells us that the corre-
sponding variable should be chosen “small” in order to satisfy the inequality.
(Gradients that come from a 2 × 2 matrix are marked by ↓, and gradients that
come form a 3 × 3 matrix are marked by ⇓. Siminarly for ↑ and ⇑.)

If we consider the variable g we see that making this value positive and close
to zero improves all inequalities in which it is involved. Moreover the equation
gn < fo will be automatically satisfied if g > 0 is chosen very small for any fixed
positive choice of n, f and o. Thus a choice g → 0 eliminates this variable
and the inequality [1478] < 0 from our considerations. Next we can apply the
same argument to m and get m → 0. Having eliminated the inequality [1478] < 0
variable n only remains in 2 × 2 inequalities on the right side. Choosing it large
enough we can eliminate n and the corresponding equations. Now we skip all
details that help us to proceed iteratively in essentially the same manner. We
only list the resulting sequence of variables.

bo
c , fp

h < n

di
a < l

i = 1

f
e < j < b

a

b = 1

h
d < f < e

a

a = c = d = e = p = 1 h = 0.5 o = 1.2

It is important to mention that the whole procedure we sketched can be defined
in a rigurous algorithmic way (see [5]). It can essentially be carried out on a
completely combinatorial level. Going all the way back, we find that

M =




1 0 0 0
1 1 1 −1
0 1 0 0

−1 −0.6 −0.2 0.5
0 0 1 0

−1 −0.8 2 1.5
0 0 0 1

−0.5 −2 −1.2 1




is a possible realization of the oriented matroid: A solution was found.



Effective Methods in Computational Synthetic Geometry 181

A contradiction would lead to a final polynomial (see [14]).

What can we do, when we get stuck with our system of inequalities?

Alternative 1. Trying to find a bi-quadratic final polynomial (see [11]).

Alternative 2. Trying a combinatorial reduction method (see [19]).

In an investigation of finding the set of all non-realizable uniform 10 element
oriented matroids in rank 3 in [9], our Alternative 1 and Alternative 2 was applied
successfully but a final set of about 143 different cases remained undecided. This
was the birth of Alternative 3 suggested by Bokowski which will be described
below. The method started with a rubber band model. It was implemented by
K.P.Pock, support was given by J. Richter-Gebert in the rank 3 case. There is
also a later implementation by J. Scharnbacher in the rank 4 case.

Alternative 3. Trying the dynamic inductive realization method (see details in
this article).

Alternative 4. There is always hope for some intuition, compare our last sec-
tion.

For our dynamic inductive realization method, we have now to introduce
more notations.

2 Configurations and Arrangements

We use the notation of a recent paper [10] in which a direct proof of the equiv-
alence of the hyperline sequence representation and the Folkman Lawrence rep-
resentation of an oriented matroid in the rank 3 case was established. Since we
use in this article both models and their interaction, it is useful for the reader
to have a look at that paper. We include the following definitions especially for
the reader not familiar with the theory of oriented matroids.

We introduce several configurations and arrangements representing geomet-
rically a class of matrices. It is useful to think simultaneously of all these models
and to pick the most convenient one for a particular application or argument.

We consider a non-degenerate vector configuration in R3, i.e. a finite ordered
set Vn = {v1, . . . , vn} ⊂ R3, n ≥ 3, vi 
= 0, i = 1, . . . , n, such that the one
dimensional subspaces generated by vi, i = 1, . . . , n, are pairwise different and
such that the corresponding n×3 matrix M with vi as its i-th row vector has rank
3. The vector configuration will be viewed as a representative of the equivalence
class of matrices cln(M) := {M ′ | M ′ = D M, D = diag(λ1, λ2, . . . , λn), λi >
0, i = 1, . . . , n}.

A vector configuration Vn induces an arrangement of oriented central planes
Hn = {h1, . . . , hn}, via the concept of polar duality. The unoriented plane of
hi is given as the zero space {x = (x1, x2, x3) ∈ R3 | hi(x) = 0} of a linear
form hi(x) = vi1x1 + vi2x2 + vi3x3, vi = (vi1 , vi2 , vi3) 
= 0. The positive and
negative sides of an oriented central plane are the two induced half-spaces h+

i :
{x | hi(x) > 0} and h−

i : {x | hi(x) < 0}.



182 Jürgen Bokowski

P1
P2

P3 P4 T

l4
l2

l1

l3

c2

c1

c4 S2

c3

Fig. 1. An equivalence class of matrices and geometric representatives.

An arrangement of oriented central planes Hn induces an arrangement of
oriented great circles Cn = {c1, . . . , cn} on the 2-sphere and vice-versa. An ori-
ented central plane cuts the unit sphere S2 in R3 along a great circle which we
consider to be parameterized and oriented such that, when looking from outside,
the positive half-space lies to its left when the parameter increases.

A vector v 
= 0, v ∈ R3 induces a directed line lv : {αv|α ∈ R} through the
origin, which intersects the sphere in two antipodal points sv (in the direction
of v) and sv (in the opposite direction). A vector configuration Vn induces a
configuration of points on the sphere, Sn = {s1, s2, . . . , sn}, where si = svi , i =
1, . . . , n. Each point p on the sphere has an associated antipodal point p.

We carry over the previous polar dual pairs to the affine plane T , viewed
as a plane tangent to the 2-sphere. We assume that vi, i ∈ {1, . . . , n} is neither
parallel nor orthogonal to the plane T .

The great circle parallel to T defines two open hemispheres. One of them,
called the upper hemisphere, contains the tangent point of T . An oriented great
circle ci induces an oriented half-circle in this upper hemisphere which projects
to an oriented straight line lT (ci) in the plane T via radial projection, and vice-
versa, any oriented straight line in T defines an oriented great circle on S2. An
arrangement of oriented great circles induces an arrangement of oriented lines
LT

n = {l1, . . . , ln}, where li := lT (ci), in the affine plane.
The same transition from the sphere S2 to the plane T leads from a point

configuration on the sphere to a signed point configuration in the affine plane.
We define spT (si) to be a pair of a signed index and a point pi ∈ T obtained via
radial projection from si, as follows. A point si on the upper hemisphere maps to
the pair spT (si) = (i, pi), i ∈ {1, . . . , n}, and a point si on the lower hemisphere
maps to a pair (i, pi) and pi := pi ∈ T . We obtain from Sn = {s1, . . . , sn} a
signed point configuration PT

n = {sp1, . . . , spn}, with spi := spT (si), and vice
versa.



Effective Methods in Computational Synthetic Geometry 183

3 Hyperline Sequences of Configurations
and Arrangements

We use En = {1, . . . , n}, endowed with the natural order, to denote the index set
of geometric objects like vectors, planes, great circles and points on the sphere,
lines and points in the Euclidean plane, or of a finite ordered set of abstract
elements. The associated signed index set En = {1, . . . , n, 1, . . . , n} makes it
possible to denote orientations or signs of these elements. The s �→s operator is
required to be an involution: s = s, ∀s ∈ En.

All ordered sets Vn, Hn, Cn, Sn, LT
n , PT

n above can be viewed as geometric rep-
resentations of the same equivalence class of matrices cln(M). We can reorient
the elements. The reorientation classes are the equivalence classes with respect to
reorienting subsets such as vector configurations or central plane arrangements,
great circle arrangements or pairs of antipodal points on the 2-sphere, line ar-
rangements or point sets in the plane. These reorientation classes are obtained
when the numbers λi 
= 0 can be negative as well. The reorientation of a vector
vi is the vector vi = −vi and the reorientation of an oriented central plane is the
change of the sign of its normal vector. The reorientation of an oriented great
circle or of an oriented line means replacing it by the same object with the re-
versed orientation. The reorientation of a signed point (i, pi), i ∈ En is the signed
point (i, pi), pi = pi. The reorientation of an index i is its replacement with i.
The relabelling of an ordered set is given by a permutation of its elements.
We now extract combinatorial information from all the geometric sets defined
above. We will work only with signed subsets q ⊂ En which do not contain
simultaneously both an element i and its negation i. If q ⊂ En, we define q =
{s|s ∈ q}. The unsigned support supp(q) ⊂ En of q ⊂ En is obtained by ignoring
all the signs in q. A signed partition of En is a signed set I = I+ ∪ I− with
I+, I− ∈ En, I+ ∪ I− = En.

Definition 1. A hyperline sequence hsi over En, i ∈ En with half-period length
ki is a pair hsi = (i, πi), where πi is a double infinite sequence πi = (qi

j)j∈Z with
qi
j ⊂ En \ {i, i}, qi

j = qi
j+ki

, ∀j ∈ Z, supp(
⋃

j∈Z qi
j) = En \ supp({i}), where the

unsigned supports of qi
1, . . . , q

i
ki

are mutually disjoint. We consider hsi = (i, πi)
and hsi = (i, πi) to be equivalent when πi is obtained from πi by reversing the
order.

The name hyperline for a subspace of codimension 2 is justified by the concept
in higher dimensions. In the particular case when all the qi

j ’s are one-element
subsets, the sequence is said to be in general position, simple or uniform, and
we replace the sets qi

j with their elements. In this case, any half period of πi

is a signed permutation of En \ supp({i}). In general we have an additional
ordered partition into pairwise disjoint subsets of the signed elements. An infinite
sequence πi in a hyperline sequence hsi = (i, πi) can be represented by any half
period, i.e. by any ki consecutive signed sets qi

t+1, . . . , q
i
t+ki

, qi
t+j ⊂ En\{i, i}, t ∈

Z.



184 Jürgen Bokowski

Example 2. (1, π1) = (1, (. . . , {5}, {2, 4}, {3}, {5}, {2, 4}, {3}, . . .)) is a hyperline
sequence over E5, E5 = {1 . . . 5}, with half period length k1 = 3.

1

{2, 4}

{3}

{5}

{2, 4}

{3}

{5}

Fig. 2. A hyperline sequence over E5.

We obtain the normalized representation hsr = (r, πr) of a hyperline se-
quence hsi = (i, πi) by first choosing (r, πr) := (i, πi) if i ∈ En or (r, πr) :=
(i, reverse(πi)) if i ∈ En, and afterwards choosing the half period of πr starting
with the set qr

j ⊂ En containing the smallest positive element.

Example 3. The normalized representation of the hyperline sequence in the
previous example is (1, ({2, 4}, {5}, {3})). From now on, we will use the more
convenient notation (1 : {2, 4}, {5}, {3}).

To a signed point configuration PT
n = {(i, pi) | i ∈ I} (obtained from a vector

configuration as described above) we associate a set HS(PT
n ) = {hs1, . . . , hsn}

of n hyperline sequences hsi = (i, πi) over En. The sequence πi, denoted by a
half period qi

1, q
i
2, . . . , q

i
ki

, with qi
j ⊂ En \ {i, i}, corresponds to the signed point

(i, pi) ∈ PT
n . It is obtained by rotating an oriented line in ccw order around pi if

i ∈ En or in cw order around pi if i ∈ En and looking at the successive positions
where it coincides with lines defined by pairs of points (pi, pj) with pj 
=pi.
When PT

n is not in general position, several points may become simultaneously
collinear with the rotating line, and they are recorded as a set qi

k. If the point pj

of the signed point (j, pj) is encountered by the rotating line in positive direction
from pi, it will be recorded as the index j, otherwise as the negated index j. The
whole sequence is recorded in the order induced by the rotating line, and an
arbitrary half-period is chosen to represent it.

Definition 2. The rank 3 oriented matroid induced by hyperline sequences as-
sociated to a signed point configuration PT

n = {(i, pi)|i ∈ I}, where I is a signed
partition of En, is HS(PT

n ) = {hsi = (i, πi) | i ∈ I} as described above. We
identify HS(PT

n ) with {(i, πi) | i ∈ I}.

Note that if the orientation of the plane T is reversed, all the sequences are re-
versed. The identification in the previous definition makes the notion of hyperline
sequences independent of the chosen orientation of the plane T .



Effective Methods in Computational Synthetic Geometry 185

Remark. When we start with a set of vectors Vn and two admissible tangent
planes T and T ′, by radial projection we obtain two sets of signed planar points
PT

n and PT ′
n . The reader can verify that our definition ensures that the result-

ing hyperline sequences HS(PT
n ) and HS(PT ′

n ) will coincide. This allows for a
definition of hyperline sequences associated to any of the previously considered
geometric ordered sets: vectors, oriented central planes, etc.

1

2

3

4

5
1

3

4

5

4

5

x

y

z

Fig. 3. Arrangement C5 of oriented great circles on the 2-sphere.

Consider an arrangement C = {c1, . . . , cn} of n oriented great circles on
the sphere S2. To each circle ci associate a hyperline sequence by recording the
points of intersection (ordered according to the orientation of the circle ci) with
the remaining oriented circles. An index j is recorded as positive (resp. negative)
when the circle cj crosses ci from left to right (resp., right to left).

An arrangement of oriented lines LT
n = {l1, . . . , ln} induces a set of n hyper-

line sequences HS(LT
n ): for each line li, record the points of intersection with

the other lines (ordered according to the orientation of the line). Each element
j is signed: positive if line lj crosses li from left to right, negative otherwise.

Example 4. For the arrangement of oriented great circles in Fig. 3, we have
the following induced set of normalized representations of hyperline sequences
HS(C5). We get the same set of normalized representations HS(M) of hyperline
sequences for M :

HS(C5) = HS(M) =




1 : {2}, {3}, {5}, {4}
2 : {1}, {3, 4}, {5}
3 : {1}, {5}, {2, 4}
4 : {1}, {2, 3}, {5}
5 : {1}, {4}, {2}, {3}




M =




1 1 1
0 −4 1
0 1 0
0 0 1
1 0 0






186 Jürgen Bokowski

4 Pseudoline Arrangements and Hyperline Sequences

A pseudoline arrangement A in the projective plane is a set of simple closed
curves such that every two curves have precisely one point in common, at which
they cross each other. We exclude the case when all curves have a point in
common. Let T be the group of homeomorphic transformations of the projective
plane. For an arrangement A we have the equivalence class of arrangements
cl(A) := {A′|A′ = tA, t ∈ T}. We always consider pseudoline arrangements
A as representatives of their equivalence class cl(A). An arrangement and its
mirror image are identified.

To introduce a suitable concept of orientation we single out a “line at infinity”
of the projective plane. We embed the usual Euclidean plane in the projective
plane with respect to this line at infinity. An oriented pseudoline different from
the line at infinity is a simple closed curve which is parameterized and oriented
such that the “left side” denotes the side which lies to its left when the parameter
increases and the line at infinity has been removed. The projective plane without
the line at infinity is the left side, or the right side, of the oriented line at infinity
when its orientation is ccw, or cw, respectively.

Definition 3. The oriented matroid given by an arrangement of n oriented
pseudolines is the equivalence class with respect to homeomorphic transforma-
tions of the projective plane of a finite ordered set of n simple oriented closed
curves (oriented pseudolines) such that every two curves have precisely one point
in common, at which they cross each other. We exclude the case when all curves
have a point in common and identify an arrangement with its mirror image.

The oriented pseudoline arrangement is called simple, uniform or in general
position, if no more than two pseudolines cross at a point.

The rule to create a set of hyperline sequences HS(Ln) from an arrangement
of oriented lines Ln = {l1, . . . , ln} can be carried over in the same way to any ar-
rangement PLn = {pl1, . . . , pln} of oriented pseudolines. Since there are oriented
pseudoline arrangements for which there is no oriented line arrangement within
the class of homeomorphic transformations for n ≥ 9, we get in the pseudoline
case a strictly more general concept, |{HS(Ln)|Ln is an arrangement of lines }|
< |{HS(PLn)|PLn is an arrangement of pseudolines }| for n ≥ 9.

We extend the concept of oriented matroids induced by hyperline sequences
in another way. Hyperline sequences of configurations and arrangements of the
last section store the signs of determinants of 3×3 submatrices of the matrix M of
a corresponding vector configuration Vn = {v1, . . . , vn} ⊂ R3, n ≥ 3 vi 
= 0, i =
1, . . . , n. This is an invariant for all matrices M ′ ∈ cln(M). Let i, j, k be three
distinct signed indices in En. Let [i,j,k] be the determinant of the submatrix of M
with row vectors vi, vj , vk. If j and k appear within the same set qi

k of πi, we have
sign [i, j, k] = 0. If j and k occur in this order in some half-period of πi, we have
sign [i, j, k] = +1, and sign [i, j, k] = −1 otherwise. The sign of the determinant
χ(ijk) := sign [i, j, k] is independent of the chosen half periods and compatible
by alternation χ(ijk) = χ(jki) = χ(kij) = −χ(ikj) = −χ(kji) = −χ(jik) and
anti-symmetry χ(ijk) = −χ(ijk).



Effective Methods in Computational Synthetic Geometry 187

Given an abstract set of hyperline sequences, let us choose its corresponding
normalized form and define χ : E

3
n → {−1, 0, +1}, (partially) by: χ(ijk) := 0,

if j and k appear within the same set qs of πi, for i in En, j, k in En, j 
=k,
χ(ijk) := +1, if j and k occur in this order in πi, and χ(ijk) := −1, if j and k
occur in the reversed order in πi.

Extending this partial definition of χ by alternation and anti-symmetry, the
value of χ(ijk) for 0 < i < j < k is obtained either directly, by the above rule
applied to each of the three hyperline sequences, or via alternation and anti-
symmetry. When these three values for χ(ijk) are compatible in all cases, we
say that the set of hyperline sequences admit an abstract sign of determinant
function.

Definition 4. A rank 3 oriented matroid with n elements given by hyperline
sequences is a set of hyperline sequences {(i, πi) | i ∈ I} over En which admit
an abstract sign of the determinant function. The oriented matroid is uniform
when all hyperline sequences are uniform.

Theorem 1. The hyperline sequences HS(PLn) of an oriented pseudoline ar-
rangement PLn admit an abstract sign of the determinant function.

For each rank 3 oriented matroid given by hyperline sequences HS we can
find an oriented pseudoline arrangement PLn which induces it, HS = HS(PLn).
For a direct proof of this theorem see [10].

While the pseudoline arrangement of an oriented matroid shows that we
are dealing with a topological invariant, the hyperline sequences show that this
information can be stored effectively and that the complete generation of these
objects for given number of elements and given rank becomes possible. The
enumeration of corresponding possible types of matrices is available only by
extending this problem to the concept of oriented matroids and deciding later
which of them are realizable.

We again see that it is an essential problem to find out for a given oriented
matroid whether it belongs to the non-realizable ones or to the realizable ones.

5 Extension Determined by Mutations in Rank 3

We consider the set En = {1, 2, . . . , n}. We start with a uniform oriented matroid
χ = χEn in rank 3 with n elements and its set of mutations Mutχ = {(i, j, k) | i <
j < k}. The triple (i, j, k) is a mutation when changing its sign leads again to an
oriented matroid. By deleting the n-th element we obtain the oriented matroid
χEn−1 .

Theorem 2. The extension of an oriented matroid χ = χEn−1 in rank 3 with
n − 1 elements by an additional element n is uniquely determined by the signs
of brackets (x, y, n) ∈ Mutχ together with an additional sign of a bracket
(x, y, n) 
∈Mut.



188 Jürgen Bokowski

Remarks. (i) This theorem was first proved by Bokowski and Scharnbacher
[23]. Their proof is unpublished. It was originally conjectured by Richter-Gebert
(private communication). We present a new proof here.

(ii) Figure 2 shows that the additional assumption is essential in many instances.

Fig. 4. Changing all mutations at the line at infinity simultaneously leads again to an
oriented matroid.

Proof. W.l.o.g. we assume that (1, n − 1, n) is a mutation and that the sign
of (1, n − 2, n) which is not a mutation is given. We look at the normalized
representation of the hyperline sequence. We see immediately that the hyperline
sequence of element 1 is uniquely defined. As a consequence, the sign of element
n in the i-th hyperline sequence (i > 1) is uniquely defined.

Again as a consequence, the position of the element n is uniquely defined
in all hyperlines which are contained in a mutation of n. We collect all these
hyperline indices in a set E1.

Now we consider the oriented matroid χE1∪{n} obtained by deleting the el-
ements not in E1 \ {n} from χE . The Folkman Lawrence representation of χE

defines an additional cell decomposition within the Folkman Lawrence repre-
sentation of χE1∪{n}. On all rank 2 contractions of elements in E1, we have a
unique ordering of the cocircuits of χE . Now we look at a cell C within the Folk-
man Lawrence representation of χE1∪{n} which contains a pseudoline segment of
pseudoline n. Because of the known ordering of cocircuits of χE on the boundary
of C, we can split the set of elements not in E1 ∪ {n} into those which cut the
pseudoline segment of pseudoline n, say {c1, . . . , ck} and into those which do
not cut, say {p1, . . . , pl}. A latter parallel element pm decomposes C into two



Effective Methods in Computational Synthetic Geometry 189

discs. We denote with Cpm the corresponding disc which contains the pseudoline
segment of pseudoline n. Now consider C ′ := int(C ∩ Cp1 ∩ Cp2 ∩ . . . ∩ Cpm).
When C ′ contains no cocircuits of χE , we are done. In this case the insertion
segments for the n-th element is uniquely defined.

But if a cocircuit exists in C ′, there is one which is adjacent to the n-th pseu-
doline segment. The two elements defining that cocircuit cut the n-th pseudoline
segment within C ′ and define together with n a triangle in C ′. If this triangle
does not contain a cocircuit in its interior, we find a mutation in it which was
excluded. But in the other case, we find a smaller triangle completely included
in the former one, again having one cocircuit adjacent to the n-th element. After
a finite number of steps we arrive at a contradiction.

6 Dynamic Inductive Realization

When we apply the dynamic inductive realization method, we start with a re-
alized oriented matroid with k − 1 elements. We consider having k − 1 great
circles on a 2-sphere. We add the k-th pseudo great circle on the upper half
of the 2-sphere as a rubber band (we identify antipodal points on the equator
by a diameter which can rotate around the midpoint). We mark the mutations
with pins which guarantee that the rubber band lies always on the proper side
with respect to a mutation. When the rubber band can be straightened to a half
circle not violating the mutation conditions, we have found according to our last
theorem a realization of the oriented matroid with k elements.

When this great half circle cannot be rectified, we can change a former el-
ement within the realization space of the former oriented matroid such that
inserting the new element becomes easier. Doing this systematically for all fore-
going elements was very effective in many instances.

This idea of the author was implemented in the rank 3 case by K. P. Pock
in his Diplom thesis [18], support was given also by J. Richter-Gebert. The cor-
responding idea worked also in the rank 4 case. But the corresponding theorem
about the mutations does not hold. Results can be found in the articles [1,2].
There is an implementation in the rank 4 case by J. Scharnbacher [23].

7 Cinderella Playing with Polytopes

The first impression when checking what can be done with the software Cin-
derella by J. Richter-Gebert and U. Kortenkamp [22], or with any other sim-
ilar dynamic program, these are applications to planar drawings and planar
theorems. But when the applications for architects come to your mind (see
e.g. http://juergen.bokowski.de and http://homepages.tu-darmstadt.de/
∼raiwi) projections from higher dimensions to the plane appear. Dynamic ge-
ometry programs can be used to visualize, study and modify these projections
and by this obtaining new insights on the situation in high dimensions.

When we start drawing the projections of the unit vectors of a basis in Rn,
we can insert e.g. projections of all vertices of a polytope. The latter change



190 Jürgen Bokowski

of the positions of all projections of the unit vectors of the basis generate all
possible linear projections of the polytope onto the plane. The edge graph can
easily be drawn. The face lattice of the polytope can be visualized and studied
this way, facets can appear as line segments. A first application can be seen in
[7].

For another interesting 3-sphere with 16 vertices , and 50 simplicial facets:

1234 1235 1246 1256 1347 1357 1467 1567 2348 2389
2395 2480 2406 2809 209a 20a6 29a5 2a56 34b8 34b7
3b8c 3bc7 38c9 3c95 3c57 4bd8 4bd7 4d80 4d06 4d67
bd8c bdc7 d0e6 dce7 de67 0e9a 0ea6 ce95 ce57 e9a5
ea56 e567 fd80 fd8c fd0e fdce f809 f8c9 f0e9 fce9

B. Sturmfels and A. Zelevinsky asked whether it forms the face lattice of a 4-
polytope. We use this 3-sphere here as an example to show another method which
was not applied in this context before. A realization was found by Bokowski
by drawing the edge graph with its symmetry. Of course some intuition was
essential to find the realization. But in order to confirm the lattice structure of
the boundary of the polytope you can look at the Cinderella program output at
http://juergen.bokowski.de

With the generators of the symmetry group

(2)(5)(6)(8)(c)(d)(1, a)(b, f)(3, 9)(4, 0)(7, c)
(3)(4)(7)(9)(0)(c)(1, b)(a, f)(5, 9c(2, 8)(6, d)
(1)(a)(b)(f)(2, 6, 5)(9, 0, e)(8, d, c)(4, 7, 3)

   

 ..

.....

...

 a

 f b

 1

P

  6

 2

 5

 0

 9

   e

 c

 d

 8

 3

4

 7

Fig. 5. A projection of the corresponding 4-polytope.



Effective Methods in Computational Synthetic Geometry 191

we can determine the orbits of the facets. By checking one facet in each orbit and
by using the connectedness of the facets, we can confirm that the face lattice is
that of a convex polytope. This is done for each facet by changing the projection
contineously until a position is reached in which the vertices of that facet of the
sphere lies on a supporting line of the projection of the polytope.

References

1. A. Altshuler, J. Bokowski, and P. Schuchert. Spatial polyhedra without diagonals.
Israel J. Math. 86, 373–396, 1994.

2. A. Altshuler, J. Bokowski, and P. Schuchert. Sphere systems and neighborly spatial
polyhedra with 10 vertices. Suppl. Rend. Circ. Mat. Palermo, II. Ser. 35, 15–28,
1994.

3. A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler. Oriented
Matroids. Cambridge University Press, Cambridge, 1993.

4. J. Bokowski. Aspects of computational synthetic geometry II: Combinatorial com-
plexes and their geometric realization — An algorithmic approach. Proceedings of
the INRIA Workshop on Computer-Aided Geometric Reasoning (H. Crapo, ed.),
Antibes, France, 1987.

5. J. Bokowski. On the geometric flat embedding of abstract complexes with symme-
tries. Symmetry of Discrete Mathematical Structures and Their Symmetry Groups:
A Collection of Essays (K. H. Hofmann and R. Wille, eds.), Research and Exposi-
tion in Mathematics 15, 1–48, Heldermann, Berlin, 1991.

6. J. Bokowski. Handbook of Convex Geometry, Chapter on Oriented Matroids (P.
Gruber and J. M. Wills, eds.). Elsevier, North-Holland, Netherlands, 1992.

7. J. Bokowski, P. Cara, and S. Mock. On a self dual 3-sphere of Peter McMullen.
Periodica Mathematica Hungarica 39, 17–32, 1999.

8. J. Bokowski and A. Guedes de Oliveira. On the generation of oriented matroids.
Discrete Comput. Geom. 24, 197–208, 2000.

9. J. Bokowski, G. Lafaille, and J. Richter-Gebert. Classification of non-stretchable
pseudoline arrangements and related properties. Manuscript, 1991.

10. J. Bokowski, S. Mock, and I. Streinu. The Folkman-Lawrence topological repre-
sentation theorem: A direct proof in the rank 3 case. Proceedings of the CIRM
Conference “Géométries combinatoires: Matröıdes orientés, matröıdes et applica-
tions”, Luminy, France, 1999.

11. J. Bokowski and J. Richter. On the finding of final polynomials. Eur. J. Comb. 11,
21–34, 1990.

12. J. Bokowski and J. Richter-Gebert. Reduction theorems for oriented matroids.
Manuscript, 1990.

13. J. Bokowski and B. Sturmfels. On the coordinatization of oriented matroids. Dis-
crete Comput. Geom. 1, 293–306, 1986.

14. J. Bokowski and B. Sturmfels. Computational Synthetic Geometry. Lecture Notes
in Mathematics 1399, Springer, Berlin, 1989.

15. B. Grünbaum. Arrangements and Spreads. Regional Conf. Ser. Math. 10, Amer.
Math. Soc., Providence, RI, 1972.

16. D. Ljubic, J.-P. Roudneff, and B. Sturmfels. Arrangements of lines and pseudolines
without adjacent triangles. J. Comb. Theory, Ser. A 50, 24–32, 1989.



192 Jürgen Bokowski

17. N. E. Mnëv. The universitality theorems on the classification problem of configu-
ration varieties and convex polytope varieties. Topology and Geometry — Rohlin
Seminar (O. Ya. Viro, ed.), Lecture Notes in Mathematics 1346, 527–544, Springer,
Berlin, 1988.

18. K. P. Pock. Entscheidungsmethoden zur Realisierung orientierter Matroide. Diplom
thesis, TH Darmstadt, 1991.

19. J. Richter. Kombinatorische Realisierbarkeitskriterien für orientierte Matroide.
Mitteilungen aus dem Math. Sem. Gießen 194, 1–113, 1989. Diplom thesis, TH
Darmstadt, 1988.

20. J. Richter-Gebert. On the Realizability Problem of Combinatorial Geometries —
Decision Methods. Ph.D. thesis, Darmstadt, 1992.

21. J. Richter-Gebert. Realization Spaces of Polytopes. Lecture Notes in Mathematics
1643, Springer, Berlin, 1996.

22. J. Richter-Gebert and U. Kortenkamp. The Interactive Geometry Software Cin-
derella. Springer, Berlin, 1999.

23. J. Scharnbacher. Zur Realisation simplizialer orientierter Matroide. Diplom thesis,
TH Darmstadt, 1993.

24. B. Sturmfels. Aspects of computational synthetic geometry I: Algortihmic coordi-
natization of matroids. Proceedings of the INRIA Workshop on Computer-Aided
Geometric Reasoning (H. Crapo, ed.), Antibes, France, 1987.



Decision Complexity in Dynamic Geometry

Ulrich Kortenkamp1 and Jürgen Richter-Gebert2

1 Institut für Informatik, Freie Universität Berlin, Takustr. 9, D-14195 Berlin,
Germany kortenkamp@inf.fu-berlin.de

2 Zentrum Mathematik, SB4, Technische Universität München, D-80290 München,
Germany richter@ma.tum.de

Abstract. Geometric straight-line programs [5,9] can be used to model
geometric constructions and their implicit ambiguities. In this paper we
discuss the complexity of deciding whether two instances of the same
geometric straight-line program are connected by a continuous path, the
Complex Reachability Problem.

1 Introduction

Straight-line programs and randomized techniques for proving their equivalence
did find their application in geometric theorem proving. Using estimates for
the degrees of the variables of a multivariate polynomial given by a straight-
line program and evaluations for some random samples, we can prove geometric
theorems with much less computational effort than usual [2,14], for example
compared to symbolic methods using Gröbner bases.

An apparent drawback of polynomials is that we have to refer to systems of
polynomial equations as soon as we want to describe theorems involving circles
or conics. Although there are very powerful methods to do theorem proving in
these contexts (e.g. Wu’s method, see [13,12]), it is desirable to have a concept
like straight-line programs that is able to describe constructive theorems, and
is able to model the dynamic aspects of theorems as they occur in dynamic
geometry systems. The implementation of one dynamic geometry system [8,7]
caused the definition of geometric straight-line programs, which are one way to
approach the above issues.

One question that must be settled before we could use techniques similar to
the methods of Schwartz and Zippel [10,6] to prove geometric theorems is the
question of (complex) reachability: Can we move one instance of a geometric
theorem continuously into another instance? This paper describes first results
on the algorithmic complexity of this question.

2 Geometric Straight-Line Programs

Geometric straight-line programs extend the concept of straight-line programs
(see the book of Bürgisser et al. [1] for a detailed discussion of straight-line pro-
grams). Informally, a straight-line program (SLP) is a sequence of operations

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 193–198, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



194 Ulrich Kortenkamp and Jürgen Richter-Gebert

(usually addition, multiplication, subtraction, and sometimes division) that op-
erate on a certain input (usually values of some algebra A) or intermediate results
from previous operations.

Straight-line programs are important due to the fact that they provide a
very compact description of multivariate polynomials (or rational functions, if
we allow divisions). The degree of the polynomials can be much higher than the
length of the straight-line program (up to exponential).

In [5] it is shown that geometric constructions using points and lines as ob-
jects, and meets and joins as operations, are equivalent to straight-line programs
over IR or C. In a way this is a consequence of von-Staudt’s approach, who has
shown that there is a coordinate-free description of projective geometry [3].

As soon as we want to describe constructions that involve ambiguous op-
erations (like Intersection of Circle and Line, Intersection of Circle and Circle, or
Angular Bisector of two lines) the concept of straight-line programs fails. Better
said, it is not possible to describe constructions with varying input parameters
that behave continuously using straight-line programs.

Geometric straight-line programs (GSPs) are a way to keep a concise alge-
braic description even for constructions involving ambiguous operations. The
operations of a straight-line program are replaced by relations from a suitable
relational instruction set (RIS). The objects can be choosen arbitrarily, as long
as they match the relations. In this paper we will deal with the complex numbers
C as objects and the RIS R := {+, −, ∗, ±√·} only, and we will emphasize this
sometimes by calling them complex GSPs.

Again, we refer to [5] for a more formal and detailed description. Here we rely
on the readers‘ intuition and introduce geometric straight-line programs using
an example.

Example 1 (A GSP on (C, R)). Here is a GSP encoding the expression
±√

z1
2 + z2

2, with two input variables. The negative indices denote input vari-
ables, the other ones index the intermediate results. All statements refer to the
indices of previous results or input variables.

Index Statement Remark
−2 z2 Input
−1 z1 Input
0 ∗(−1, −1) z1

2

1 ∗(−2, −2) z2
2

2 +(0, 1) z1
2 + z2

2

3 ±√·(2) ±√
z1

2 + z2
2

A fundamental difference between ordinary straight-line programs and GSPs
is that we cannot just “run through” the statements of a GSP in order to cal-
culate the expression for a given input. This is due to the fact that the relations
can have different valid outputs for the same input. This gives rise to the no-
tion of an instance of a GSP, an assignment of the input parameters and all
intermediate results that is compatible with the relations.

Example 2 (Instance of a GSP). An instance for the GSP above is given by



Decision Complexity in Dynamic Geometry 195

Index Value Remark
−2 3 Input z2
−1 4 Input z1
0 16 z1

2

1 9 z2
2

2 25 z1
2 + z2

2

3 −5 ±√
z1

2 + z2
2

Observe that all but the last value are determined by the input, and there is
only one other instance with the same input (where the last value is 5).

Moving GSPs

For polynomials, or straight-line programs, it is easy to speak about dynamic
changes of the input parameters. Since the value of all intermediate results of
an SLP is determined by the input, we can vary the input parameters and
recalculate the polynomial. Of course, the intermediate results are polynomials
in the input variables, and as such they are analytic functions, in particular
continuous.

If we want to do the same with GSPs we must specify how to resolve am-
biguities. A natural requirement would be that the intermediate results should
be continuous functions in the input parameters. A direct consequence is that
the intermediate results must be analytic [5] in the following way: Let U :=
(u1, . . . , un), V := (v1, . . . , vn) ∈ Cn be two inputs for a complex GSP, and let
γ: [0, 1] �→Cn be a path from γ(0) = U to γ(1) = V . If we can find instances of
the GSP for every λ ∈ [0, 1] such that every intermediate result is an analytic
function in λ for λ ∈ (0, 1) and a continuous function for λ ∈ [0, 1], then these
instances form an analytic path.

Here are two examples showing the subtilities of analytic paths:
Example 3 (Square Root). Take the complex GSP with one input that has the
±√·-Relation as the one and only statement, and consider the path

γ: [0, 1] �→C
γ(λ) = e2iπλ

For each of the two possible choices at λ = 0 there is a unique assignment of
instances for λ ∈ (0, 1] to form an analytic path, which is the proper branch of
the complex square root function. The value of the square root at λ = 1 will be
the negative of the value at λ = 0.

We can find this path by doing analytic continuations along γ, and here in
this example it is clear that we can do this for all paths avoiding 0 for λ ∈ (0, 1),
and only these.

Example 4 (Roots of squares). Take the complex GSP with one input z and
with two statements, first multiplying the input with itself and then the ±√·-
Relation. The first intermediate result, the square of the input, is determined
by the input, and since it is a polynomial, it is analytic in the input z, so it is
analytic for any analytic function γ.



196 Ulrich Kortenkamp and Jürgen Richter-Gebert

The second relation can be simplified to either +z or −z, but not to the
absolute value function |x|, since this would destroy analyticity. We do not have
to consider a special path to observe this, it holds for any path.

In the second example there is not always a need to avoid the 0 for the square
root function, for example for the path γ(λ) = 2λ − 1 there are instances that
make it analytic. However, in most considerations it will be a good idea to avoid
any zeros of square roots, since these are the critical points where singularities
can occur.

3 Complex Reachability and Testing of Polynomials

A problem in straight-line program analysis is to decide whether a given straight-
line program is equivalent to another one, i.e. whether it describes the same
polynomial (or rational function). The algorithmic complexity of this decision
problem is unknown, but there exist polynomial-time randomized algorithms
[10]. The main obstacle is that we can neither handle the full, symbolic expression
for the polynomial, since the coefficients and the degree of the polynomial can
be large, nor the evaluation of the straight-line program for sufficiently large
numbers, since the coding length for the intermediate results becomes too large.

If we could find an algorithm to test equivalence of straight-line programs
efficiently, then their range of application could be extended to efficient encod-
ings of large numbers. It would also be possible to derive efficient deterministic
algorithms to prove geometric theorems.

We will now formulate a version of this decision problem which is equivalent
to the equivalence testing problem.

[SLP zero testing] Given a division-free straight-line program Γ over Q
with one input variable. Is the polynomial p encoded by Γ the zero
polynomial?

We will show that this problem is at most as hard as deciding whether we can
move analytically from one instance of a GSP to another instance of the same
GSP that is different at exactly one intermediate result by giving a polynomial
transformation from [SLP zero testing] to the following decision problem:

[Complex Reachability Problem] Given two instances of a complex GSP
with one input variable that differ in exactly one intermediate result. Is
it possible to move analytically from the first instance to the second?

We will prove the following theorem, with this corollary as an easy conse-
quence:

Corollary 1. The [Complex Reachability Problem] is algorithmically at least as
hard as [SLP zero testing].

Theorem 1. There is a polynomial transformation of [SLP zero testing] to the
[Complex Reachability Problem], i.e. we can answer an instance of [SLP zero
testing] by transforming it to an instance of the [Complex Reachability Problem]
and answering this.



Decision Complexity in Dynamic Geometry 197

Proof. First, we have to clarify how we specify an instance of a complex GSP in
a polynomial size of the encoding length of the GSP (where the encoding length
of the GSP is the number of bits needed to write down all statements of the
GSP). We will deal with GSP inputs that have polynomial encoding length, and
then we just have to specify for each ±√·-statement which solution we choose.
This can be done using one bit for each decision, saying to choose the solution
with the smaller or equal angle in the polar coordinate representation of the
two possibilities. We denote an instance by writing down all values of the input
variables and a + or − for each decision bit.

Observe that there is no need to evaluate the GSP; indeed, we must not
evaluate the GSP since this could take exponential time.

Having done this, we assume to have an SLP Γ of length n with one input
variable z and want to know whether it describes the zero polynomial. Let us
refer to the last result, the polynomial, by p(z).

Let M be the largest constant that can be created using a straight-line pro-
gram ΓM of length n and with encoding length less or equal to the encoding
length of Γ . Using one additional statement we can write a straight-line pro-
gram Γ2M that evaluates to 2M . Thus we can transform Γ in polynomial time
and space to Γ ′ which evaluates p(z) + 2M . Due to the construction of Γ ′ the
value at z = 0 of Γ ′ cannot be 0.

Now we add one additional statement to Γ ′ in order to evaluate ±√
p(z) + 2M .

Let the new GSP be Γ1. In a similar way, we also create a GSP Γ2 that evaluates
±√

zp(z) + 2M . This requires just one additional statement compared to Γ1
These two GSPs can be used to decide the zeroness of p(z) using the complex

reachability decision. Let (z = 0, +) be the start instance, and (z = 0, −) the
end instance for both Γ1 and Γ2.

Now we claim that the reachability decision will be “not reachable” for both
Γ1 and Γ2 if and only if p(z) is the zero polynomial. For the ⇐ direction we
observe that p(z) + 2M = 2M and zp(z) + 2M = 2M , i.e. the arguments of the
±√·-statement are constant and non-zero. So they can never change continuously
from one sign decision to the other.

For the ⇒ direction we note that p(z) + 2M and zp(z) + 2M are two poly-
nomials of even and odd resp. odd and even degree if p(z) �≡0. This means that
at least one of them has a root of odd multiplicity at, say, z0. But this means
that we can change the sign of the square root by following a path from z = 0 to
z = z0 + ε, cycling once around z0 and going back from z = z0 + ε to z = 0. So
for at least one of Γ1 and Γ2 the reachability decision will be “reachable.” 
�

4 Remarks

The paper “Randomized Zero Testing of Radical Expressions and Elementary
Geometry Theorem Proving” by Daniela Tulone, Chee Yap and Chen Li, that
was also presented at ADG 2000, also introduces square roots for straight-line
programs. The main difference between our two approaches is that we rely on the
implicit sign decision for our notion of geometric theorems, which is different from



198 Ulrich Kortenkamp and Jürgen Richter-Gebert

the usual notion of theorems given by polynomial equations for hypothesis, non-
degeneracies and conclusions. Also, since we only work with complex numbers,
we cannot state theorems that are given by semi-algebraic varieties.

Nevertheless, it seems that both the results of both papers can be combined
in one or the other way, which we will try to do in our further investigations.

Kurt Mehlhorn pointed out that our transformation shows not only that the
complex reachability problem is as hard as to find out whether a polynomial is
the zero polynomial, but also as hard as to find out whether a polynomial has
at least one root of odd degree.

References

1. Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic Complex-
ity Theory, volume 315 of A Series of Comprehensive Studies in Mathematics,
chapter 4, pages 103–124. Springer-Verlag, Berlin Heidelberg New York, 1997.

2. Mike Deng. The parallel numerical method of proving the constructive geometric
theorem. Chinese Science Bulletin, 34:1066–1070, 1989.

3. Hans Freudenthal. The impact of von Staudt’s foundations of geometry. In R. S.
Cohen, J. J. Stachel, and M. W. Wartofsky, editors, For Dirk Struik, pages 189–200.
D. Reidel, Dordrecht-Holland, 1974. An article emphasizing the foundation-laying
contribution (in terms of purely algebraic description) of von Staudt to projective
geometry.

4. Erich Kaltofen. Greatest common divisors of polynomials given by straight-line
programs. Journal of the Association for Computing Machinery, 35(1):231–264,
January 1988.

5. Ulrich Kortenkamp. Foundations of Dynamic Geometry. Dissertation, ETH Zürich,
October 1999.

6. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms, chapter 7.
Cambridge University Press, Cambridge, 1995.

7. Jürgen Richter-Gebert and Ulrich Kortenkamp. Die interaktive Geometriesoftware
Cinderella. Book & CD-ROM, HEUREKA-Klett Softwareverlag, Stuttgart, 1999.

8. Jürgen Richter-Gebert and Ulrich Kortenkamp. The Interactive Geometry Software
Cinderella. Book & CD-ROM, Springer-Verlag, Berlin Heidelberg New York, 1999.

9. Jürgen Richter-Gebert and Ulrich Kortenkamp. Complexity issues in Dynamic
Geometry. Submitted to Proceedings of the Smale Fest 2000, Hongkong, 2000.

10. Jacob T. Schwartz. Probabilistic algorithms for verification of polynomial identi-
ties. In Symbolic and Algebraic Computation, EUROSAM ’79, Int. Symp., Mar-
seille 1979, Lect. Notes Comput. Sci. 72, pages 200–215. Springer-Verlag, Berlin
Heidelberg New York, 1979.

11. Volker Strassen. Berechnung und Programm I. Acta Informatica, 1:320–335, 1972.
12. Wen-tsün Wu. On the decision problem and the mechanization of theorem-proving

in elementary geometry. In Contemp. Math., volume 29, pages 213–234. AMS,
Providence, 1984.

13. Wen-tsün Wu. Mechanical Theorem Proving in Geometries. Basic Principles.
Transl. from the Chinese by Xiaofan Jin and Dongming Wang. Texts and Mono-
graphs in Symbolic Computation. Springer-Verlag, Wien, 1994.

14. Jingzhong Zhang, Lu Yang, and Mike Deng. The parallel numerical method of
mechanical theorem proving. Theoretical Computer Science, 74:253–271, 1990.



Automated Theorem Proving in Incidence
Geometry – A Bracket Algebra Based

Elimination Method

Hongbo Li and Yihong Wu

Academy of Mathematics and System Sciences
Chinese Academy of Sciences
Beijing 100080, P. R. China

{hli, yhwu}@mmrc.iss.ac.cn

Abstract. In this paper we propose a bracket algebra based elimina-
tion method for automated generation of readable proofs for theorems
in incidence geometry. This method features three techniques, the first
being heuristic automated reordering of geometric constructions for the
purpose of producing shorter proofs, the second being some heuristic
elimination rules which improve the performance of the area method of
Zhang and others without introducing signed length ratios, the third be-
ing a simplification technique called contraction, which reduces the size
of bracket polynomials. More than twenty theorems in incidence geome-
try have been proved, for which short proofs can be produced very fast,
together with the corresponding nondegeneracy conditions. An interest-
ing phenomenon is that a proof composed of polynomials of at most two
terms can always be found for any of these theorems, similar to that by
the biquadratic final polynomial method of Richter-Gebert.

1 Introduction

According to the first fundamental theorem of invariant theory [17], brackets are
the fundamental invariants under projective transformations. From an invariant
theoretic point of view, the ring of brackets forms a suitable algebraic setting to
deal with projective configurations [19,12]. Bracket algebra is the most general
structure in which projective properties can be expressed in a coordinate-free
way.

Let Vn+1 be an (n + 1)-dimensional vector space. For a sequence of n + 1
vectors A1, . . . ,An+1 ∈ Vn+1, the corresponding bracket is defined by

[A1 · · ·An+1] = det(A1 · · ·An+1). (1)

Let A1, . . . ,Am be indeterminates (vectors) in Vn+1, m > n. The bracket algebra
generated by them is the polynomial algebra R([Ai1 · · ·Ain+1 ]|1 ≤ ij ≤ m) gen-
erated by all possible brackets of the indeterminates modulo the ideal generated

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 199–227, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



200 Hongbo Li and Yihong Wu

by the following Grassmann-Plücker polynomials:

GP =
{

n+2∑
k=1

(−1)k[Ai1 · · ·Ain
Ajk

][Aj1 · · ·Ajk−1Ajk+1 · · ·Ajn+2 ]∣∣∣∣ 1 ≤ i1 < · · · < in ≤ m, 1 ≤ j1 < · · · < jn+2 ≤ m

}
.

(2)

On the level of bracket algebra, a geometric theorem prover can be imple-
mented using the straightening algorithm [22,5]. The main idea behind this
approach is to rewrite the projective incidence statement as a term in Grass-
mann algebra which vanishes if and only if the statement is true. After this, the
Grassmann algebra term is expanded into a bracket algebra term. If this term
vanishes modulo the ideal generated by the Grassmann-Plücker polynomials,
then the theorem is proved. It is shown by Sturmfels and White [18] that the
straightening algorithm can be considered as a special kind of Gröbner bases
algorithm for bracket polynomials. The algorithm works in full generality, but
requires over-exponential CPU time.

The prover proposed by Richter-Gebert [15] is based on the biquadratic fi-
nal polynomial method (see also [1,16,4]). A proof produced by this prover is
extremely short and geometrically meaningful. In particular, every polynomial
which occurs in the proof is composed of two terms. Although the algorithm does
not work in general, it could manage almost all projective incidence theorems.

Another prover is proposed by Chou and others [3] and is based on the area
method. This is an elimination method whose rules are derived from properties
of signed areas, or brackets in 2-dimensional projective space. This method is
complete when area coordinates are used. When the coordinates are avoided,
proofs produced by the prover are often short and readable.

Our work is inspired both by the area method and by the final polynomial
method. First, we propose a set of heuristic elimination rules to improve the
performance of the area method by producing shorter proofs (for elimination
methods, see also [21,20,8,7]). Second, we propose a new technique for bracket
polynomial simplification, of which a special case is used as the foundation for
setting up biquadratic equations in the final polynomial method. Third, as an
optional technique, we use the heuristic method in [9] for automated reordering
of geometric constructions in case a polynomial in the proof has more than two
terms. We build up a prover based on the three techniques.

The performance of the prover is very satisfactory: more than twenty inci-
dence theorems have been tested, which covers all the 2-dimensional incidence
theorems in [3,15]. For every theorem, a proof composed of polynomials of at
most two terms can be produced very fast. Furthermore, every proof finishes
before any free point in the plane is eliminated, and in some cases, even before
some semifree points on lines are eliminated.

The prover is complete for 2-dimensional incidence theorems of the following
constructive types.

Constructive type 1. Take a free point in the plane.
Constructive type 2. Take a semifree point on a line.
Constructive type 3. Take the intersection of two lines.



Automated Theorem Proving in Incidence Geometry 201

2 Algorithm

The following is an algorithm which can produce a proof in the form of brackets
for a theorem whose conclusion is either an equality or an inequality of negative
type.

Input:
– A set of constructions of points.
– An order for eliminations of points.
– A conclusion conc = 0 or conc �= 0, whereconc is a polynomial of

brackets.

Preprocess. Change every collinearity constraint in the constructions into a
rule for computing brackets. (Optional) reorder the points together with
their geometric constructions.

Step 1. Eliminate constrained points and semifree points. First, as-
sume that point X is the intersection of lines AB and CD. To eliminate X
from a bracket [XPQ], there are three formulas available:

[XPQ] = X ∨ (P ∧ Q) = (A ∧ B) ∨ (C ∧ D) ∨ (P ∧ Q)

=




[ABD][CPQ] − [ABC][DPQ] (3.1)
[ACD][BPQ] − [BCD][APQ] (3.2)
[ABP][CDQ] − [ABQ][CDP] (3.3)

(3)

Rule 1 (same as in the area method). If a bracket in (3) equals zero,
use the corresponding formula.

Rule 2 (heuristic). In general, use the formula which separates into dif-
ferent brackets the pair of points in (A,B), (C,D), (P,Q) having the
largest number of concurrent lines.

In the area method, (3.2) is generally adopted.
Second, assume that point X is on line AB. Let A,B,C be linearly inde-
pendent vectors. To eliminate X from a bracket polynomial p, first contract
p (see Step 2), then for each [XPQ] in p, apply the following formula:

[ABC][XPQ] = [XBC][APQ] − [XAC][BPQ], (4)

which is a Grassmann-Plücker relation in the case [XAB] = 0.
Rule 3 (heuristic). In general, choose C to be the free point outside line

AB that has the largest number of occurrences in p. The nondegeneracy
condition is [ABC] �= 0 if [ABC] occurs in the denominator of p.

Step 2. Simplification by contraction. For any vectors A1, . . . ,A5 in R3,

[A1A2A5][A3A4A5] + [A1A3A5][A4A2A5] = [A1A4A5][A3A2A5].

This is a Grassmann-Plücker relation.



202 Hongbo Li and Yihong Wu

Let p be a bracket polynomial of two terms. If p is reduced to a single
monomial by the above identity, this reduction is called a contraction. It can
be extended to any bracket polynomial.
It can be proved that a polynomial is reduced to zero modulo the ideal gen-
erated by the Grassmann-Plücker polynomials if and only if when multiplied
by some bracket polynomial, it is reduced to zero through contractions. As
a result, the outcome of the contraction is always zero for conc = 0, and
nonzero for conc �= 0.

Output: The proving procedure and the nondegeneracy conditions.

Remark 1. In earlier papers [11,10], we addressed the problem of theorem prov-
ing in projective geometry involving both lines and conics. The current algorithm
has the function of reordering geometric constructions, i.e., reformulation of ge-
ometric theorems. At this moment it works only for incidence geometry.

Remark 2. The heuristic rules 2 and 3 can contribute to obtaining short proofs.
When searching for a proof composed of polynomials of at most two terms, these
rules can serve as guidelines for setting up precedence tables.

Remark 3. The method is between the biquadratic final polynomial method [1]
and the reduction method in classical invariant theory [2].

Remark 4. To improve the performance of the algorithm for conc = 0, after
each elimination we can delete the common bracket factors in conc. These factors
are not nondegeneracy conditions.

3 Examples

Below is a collection of 23 examples and their machine generated proofs com-
posed of polynomials of at most two terms. The program is written in Maple
V.4 and runs on an IBM compatible Pentium II/366 with Microsoft Windows
98. The generation of each proof is very fast. The nondegeneracy conditions are
generated at the same time.

For theorems of equality type, common bracket factors (underlined) are found
out in each step and are deleted before the next step starts.

Example 1 (See also [3], Example 6.203).

Free points: 1, 2, 3, 4.
Intersections:

5 = 12 ∩ 34, 6 = 13 ∩ 24, 7 = 23 ∩ 14,
8 = 23 ∩ 56, 9 = 24 ∩ 57, 0 = 34 ∩ 67.

Conclusion: 8, 9, 0 are collinear.



Automated Theorem Proving in Incidence Geometry 203

2

1

4

3

56

7

8

9
0

Fig. 1. Example 1.

Proof:

Rules [890]

0= [347][689]−[346][789]

[689] = [248][567]

[789] = [247][578]

9= [248][347][567]−[247][346][578]

[248] = [236][245]

[578] = [235][567]

8= [567][236][245][347]−[567][235][247][346]

[347] = [134][234]

[247] = [124][234]

7= [234][134][245][236]−[234][124][235][346]

[236] = [123][234]

[346] = [134][234]

6= [134][234]([123][245]−[124][235])

[245] = −[124][234]

[235] = −[123][234]

5= 0.

Nondegeneracy condition: none.

Example 2 (See also [6], Proposition 5.8).

Free points: 1, 2, 3, 4.
Intersections:

5 = 12 ∩ 34, 6 = 13 ∩ 24, 7 = 23 ∩ 14,

8 = 13 ∩ 57, 9 = 67 ∩ 48, 0 = 24 ∩ 57.

Conclusion: 3, 9, 0 are collinear.



204 Hongbo Li and Yihong Wu

1

4

2

3

5

6

7 8

9

0

Fig. 2. Example 2.

Proof:

Rules [390]
0= −[257][349]−[239][457]

[349] = −[348][467]

[239] = [236][478]

9= [257][348][467]−[236][457][478]

[348] = −[134][357]

[478] = −[137][457]

8= −[134][257][357][467]+[137][236][457]2

[257] = [124][235]

[467] = [146][234]

[357] = [134][235]

[457] = [145][234]

[137] = −[123][134]

7= [134][234](−[124][134][146][235]2−[123][145]2[234][236])

[146] = −[124][134]

[236] = [123][234]

6= [124]2[134]2[235]2−[123]2[145]2[234]2

[235] = −[123][234]

[145] = −[124][134]

5= 0.

Nondegeneracy condition: none.

Example 3 (See also [14], p. 63).

Free points: 1, 2, 3, 4.
Intersections:

5 = 12 ∩ 34, 6 = 13 ∩ 24, 7 = 23 ∩ 14,

8 = 13 ∩ 57, 9 = 14 ∩ 56, 0 = 34 ∩ 67.

Conclusion: 8, 9, 0 are collinear.



Automated Theorem Proving in Incidence Geometry 205

1

4

2

3

5

6

7 8

9
0

Fig. 3. Example 3.

Proof:

Rules [890]

0= [347][689]−[346][789]

[689] = [156][468]

[789] = −[148][567]

9= [156][347][468]+[148][346][567]

[468] = −[134][567]

[148] = −[134][157]

8= [134][567](−[156][347]−[157][346])

[347] = [134][234]

[157] = [123][145]

7= −[134][156][234]−[123][145][346]

[156] = −[124][135]

[346] = [134][234]

6= [134][234]([124][135]−[123][145])

[135] = −[123][134]

[145] = −[124][134]

5= 0.

Nondegeneracy condition: none.

Example 4 (See also [3], Example 6.32).

Free points: 1, 2, 3, 4, 5.

Intersections:

6 = 12 ∩ 34, 7 = 13 ∩ 24, 8 = 23 ∩ 14, 9 = 56 ∩ 78,

0 = 57 ∩ 68, A = 39 ∩ 20, B = 67 ∩ 58.

Conclusion: 1, A, B are collinear.



206 Hongbo Li and Yihong Wu

1 2

3

4

5

6

7

89
0

B

A

Fig. 4. Example 4.

Proof:

Rules [1AB]
B= [17A][568]−[16A][578]

[17A] = −[179][230]

[16A] = −[160][239]

A= −[179][230][568]+[160][239][578]

[230] = [236][578]

[160] = [168][567]

0= −[578][179][236][568]+[578][168][239][567]

[179] = −[178][567]

[239] = [237][568]

9= [567][568]([178][236]+[168][237])

[178] = [123][147]

[168] = [123][146]

8= [123][147][236]+[123][146][237]

[147] = −[124][134]

[237] = [123][234]

7= −[124][134][236]+[123][146][234]

[236] = −[123][234]

[146] = −[124][134]

6= 0.

Nondegeneracy condition: none.

Example 5 (Pappus point theorem, see also [3], Example 6.22).

Free points: 1, 2, 3, 4, 5.
Intersections:

6 = 13 ∩ 24, 7 = 23 ∩ 56, 8 = 25 ∩ 34, 9 = 12 ∩ 68,
0 = 79 ∩ 24, A = 39 ∩ 67, B = 15 ∩ 4A, C = 28 ∩ 39.

Conclusion: 0, B, C are collinear.



Automated Theorem Proving in Incidence Geometry 207

9 6

2 3

8

7

1

C

4

0

5

A

B

Fig. 5. Example 5.

Proof:

Rules [0BC]
C= [280][39B]−[28B][390]

[39B] = −[15A][349]

[28B] = [128][45A]

B= −[15A][280][349]−[128][390][45A]

[15A] = [167][359]

[45A] = [359][467]

A= −[359][167][280][349]−[359][128][390][467]

[280] = [248][279]

[390] = [249][379]

0= −[167][248][279][349]−[128][249][379][467]

[279] = −[127][268]

[349] = [128][346]

[379] = −[137][268]

[249] = −[124][268]

9= [128][268]([127][167][248][346]−[124][137][268][467])

[248] = [234][245]

[268] = −[234][256]

8= [234][127][167][245][346]+[234][124][137][256][467]

[127] = [123][256]

[167] = −[156][236]

[467] = −[236][456]

[137] = [123][356]

7= [123][236][256](−[156][245][346]−[124][356][456])

[156] = −[124][135]

[346] = [134][234]

[456] = [134][245]

[356] = [135][234]

6= 0.

Nondegeneracy condition: none.



208 Hongbo Li and Yihong Wu

Example 6 (Pappus’ theorem, see also [3], Example 6.20).

Free points: 1,2,3,4.
Semifree points: 5 on 12, 6 on 34.
Intersections: 7 = 23 ∩ 14, 8 = 35 ∩ 16, 9 = 45 ∩ 26.
Conclusion: 7, 8, 9 are collinear.

1
2

3 4

5

6

7
8

9

Fig. 6. Example 6.

Proof:

Rules [789]
9= [278][456]−[245][678]

[278] = [136][257]

[678] = [167][356]

8= [136][257][456]−[167][245][356]

[257] = [124][235]

[167] = [123][146]

7= [124][136][235][456]−[123][146][245][356]

[134][456] = −[146][345]

[134][356] = −[136][345]

6=
[136][146][345]

[134]
(−[124][235]+[123][245])

= 0.

Nondegeneracy condition: [134] �= 0.

1
3 4

2

5

67

8

9

0

Fig. 7. Example 7.



Automated Theorem Proving in Incidence Geometry 209

Example 7 (Desargues’ theorem, see also [3], Example 6.24).

Free points: 1,2,3,4,5.
Semifree point: 6 on 13.
Intersections: 7 = 12 ∩ 45, 8 = 15 ∩ 24, 9 = 38 ∩ 56, 0 = 23 ∩ 49.
Conclusion: 6, 7, 0 are collinear.
Proof:

Rules [670]
0= [239][467]−[234][679]

[239] = −[238][356]

[679] = [368][567]

9= −[238][356][467]−[234][368][567]

[238] = −[125][234]

[368] = [124][356]

8= [234][356]([125][467]−[124][567])

[467] = [124][456]

[567] = [125][456]

7= 0.

Nondegeneracy condition: none.

Example 8 (See also [3], Example 6.34).

Free points: 1, 2, 3.
Semifree points: 4 on 12, 5 on 12, 6 on 13, 7 on 23.
Intersections:

8 = 23 ∩ 46, 9 = 23 ∩ 56, 0 = 13 ∩ 57,
A = 13 ∩ 47, B = 12 ∩ 80.

Conclusion: 9, A, B are collinear.

3

1

2

4

5

6

7

8

9 0

A

B

Fig. 8. Example 8.



210 Hongbo Li and Yihong Wu

Proof:

Rules [9AB]

B
= [120][89A]+[128][90A]

[89A] = [137][489]

[90A] = [139][470]

A= [120][137][489]+[128][139][470]

[120] = [123][157]

[470] = −[137][457]

0= [137][123][157][489]−[137][128][139][457]

[489] = −[236][458]

[139] = [123][356]

9= −[123][157][236][458]−[123][128][356][457]

[458] = −[234][456]

[128] = [123][246]

8= [157][234][236][456]−[123][246][356][457]

[123][157] = −[127][135]

[123][457] = [127][345]

7=
[127]

[123]
(−[135][234][236][456]−[123][246][345][356])

[123][456] = [126][345]

[123][356] = [135][236]

[123][246] = −[126][234]

6= 0.

Nondegeneracy condition: [123] �= 0.

Example 9 (See also [3], Example 6.38).

Free points: 1, 2, 3, 4.
Semifree point: 5 on 12.
Intersections:

6 = 12 ∩ 34, 7 = 13 ∩ 24, 8 = 23 ∩ 14, 9 = 13 ∩ 45, 0 = 23 ∩ 45,
A = 14 ∩ 35, B = 24 ∩ 35, C = 12 ∩ 89, D = 12 ∩ 70, E = 12 ∩ 0A.

Conclusions: (1) 7, A, C are collinear; (2) 8, B, D are collinear; (3) 9, B,
E are collinear.

Proof: (1)

Rules [7AC]
C= [189][27A]−[17A][289]

[27A] = [127][345]

[17A] = −[135][147]

A= [127][189][345]+[135][147][289]

[189] = −[138][145]

[289] = −[128][345]

9= −[345][127][138][145]−[345][128][135][147]

[138] = −[123][134]

[128] = −[123][124]

8= [123][127][134][145]+[123][124][135][147]



Automated Theorem Proving in Incidence Geometry 211

1

2

3

4

5
6

7

8

9

0

A

B

C
D

E

Fig. 9. Example 9.

[127] = [123][124]

[147] = −[124][134]

7= [124][134]([123][145]−[124][135])

= 0.

(2)

Rules [8BD]
D= [170][28B]−[18B][270]

[28B] = −[235][248]

[18B] = −[128][345]

B= −[170][235][248]+[128][270][345]

[170] = [127][345]

[270] = −[237][245]

0= −[345][127][235][248]−[345][128][237][245]

[248] = −[124][234]

[128] = −[123][124]

8= [124][127][234][235]+[124][123][237][245]

[127] = −[123][124]

[237] = [123][234]

7= [123][234](−[124][235]+[123][245])

= 0.

(3)
Rules [9BE]

E
= [10A][29B]−[19B][20A]

[29B] = −[235][249]

[19B] = −[159][234]

B= −[10A][235][249]+[159][234][20A]



212 Hongbo Li and Yihong Wu

[10A] = −[135][140]

[20A] = −[134][250]

A= [135][140][235][249]−[134][159][234][250]

[140] = −[145][234]

[250] = −[235][245]

0= [234][235](−[135][145][249]+[134][159][245])

[249] = −[134][245]

[159] = −[145][135]

9= 0.

Nondegeneracy condition: none.

Example 10 (See also [3], Example 6.208).

Free points: 1, 2, 3, 4.
Semifree point: 5 on 12.
Intersections:

6 = 12 ∩ 34, 7 = 13 ∩ 24, 8 = 13 ∩ 45, 9 = 23 ∩ 67,
0 = 24 ∩ 19, A = 34 ∩ 19, B = 23 ∩ 80, C = 49 ∩ 30.

Conclusions: (1) 5, A, B are collinear; (2) 7, A, C are collinear.

1

2

3
4

7

5

6

8

9

0

A

B

C

Fig. 10. Example 10.

Proof: (1)

Rules [5AB]
B= [280][35A]−[25A][380]

[35A] = [139][345]

[25A] = −[134][259]

A= [139][280][345]+[134][259][380]

[280] = [129][248]

[380] = −[124][389]

0= [129][139][248][345]−[124][134][259][389]



Automated Theorem Proving in Incidence Geometry 213

[129] = [123][267]

[139] = [123][367]

[389] = −[238][367]

[259] = −[235][267]

9= [267][367]([123]2[248][345]−[124][134][235][238])

[248] = −[134][245]

[238] = −[123][345]

8= [123][134][345](−[123][245]+[124][235])

= 0.

(2)

Rules [7AC]
C= [340][79A]+[390][47A]

[79A] = [179][349]

[47A] = [149][347]

A= [179][349][340]+[149][347][390]

[340] = [149][234]

[390] = [139][249]

0= [149][179][234][349]+[149][139][249][347]

[179] = −[167][237]

[349] = −[234][367]

[249] = −[234][267]

[139] = [123][367]

9= [234][367]([167][234][237]−[123][267][347])

[237] = [123][234]

[167] = −[124][136]

[347] = [134][234]

[267] = −[123][246]

7= [123][234](−[124][136][234]+[123][134][246])

[136] = −[123][134]

[246] = −[124][234]

6= 0.

Nondegeneracy condition: none.

Example 11 (Nehring’s theorem, see also [3], Example 6.27).

Free points: 1, 2, 3, 4.
Semifree point: 5 on 12.
Intersections:

6 = 12 ∩ 34, 7 = 13 ∩ 24, 8 = 23 ∩ 14, 9 = 13 ∩ 58,
0 = 23 ∩ 69, A = 12 ∩ 70, B = 13 ∩ 8A, C = 23 ∩ 6B.

Conclusion: 5, 7, C are collinear.



214 Hongbo Li and Yihong Wu

1

2

3
4

7

5

6

8

9

0

A

B

C

Fig. 11. Example 11.

Proof:

Rules [57C]
C= −[235][67B]−[237][56B]

[67B] = [136][78A]

[56B] = [13A][568]

B= −[136][235][78A]−[13A][237][568]

[78A] = −[127][780]

[13A] = −[123][170]

A= [127][136][235][780]+[123][170][237][568]

[780] = −[237][689]

[170] = [127][369]

0= [127][237](−[136][235][689]+[123][369][568])

[689] = [138][568]

[369] = −[136][358]

9= [136][568](−[138][235]−[123][358])

[138] = −[123][134]

[358] = [134][235]

8= 0.

Nondegeneracy condition: none.

Example 12 (See also [15], Example 7).

Free points: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Semifree point: 0 on 19.
Intersections:

A = 13 ∩ 24, B = 24 ∩ 35, C = 35 ∩ 46, D = 46 ∩ 57,
E = 57 ∩ 68, F = 68 ∩ 17, G = 17 ∩ 28, H = 28 ∩ 13,
A1 = 29 ∩ 0H, B1 = 39 ∩ AA1, C1 = 49 ∩ BB1, D1 = 59 ∩ CC1,
E1 = 69 ∩ DD1, F1 = 79 ∩ EE1, G1 = 89 ∩ FF1.

Conclusion: 0, G, G1 are collinear.



Automated Theorem Proving in Incidence Geometry 215

1

2

3

4

5

6

7

8

9

0

A

B

C D

E

F

GH

A1

B1

C1

D1

E 1

F 1

G1

Fig. 12. Example 12.

Proof:
Rules [0GG1]

G1= [8FF1][90G]−[80G][9FF1]

[8FF1] = −[79E][8FE1]

[9FF1] = −[79F][9EE1]

F1= −[79E][8FE1][90G]+[79F][80G][9EE1]

[8FE1] = −[6DD1][89F]

[9EE1] = −[69E][9DD1]

E1= [6DD1][79E][89F][90G]−[69D][79F][80G][9DD1]

[6DD1] = −[59C][6DC1]

[9DD1] = −[59D][9CC1]

D1= −[59C][6DC1][79E][89F][90G]+[59D][69E][79F][80G][9CC1]

[6DC1] = −[4BB1][69D]

[9CC1] = −[49C][9BB1]

C1= [4BB1][59C][69D][79E][89F][90G]

−[49C][59D][69E][79F][9BB1][0G8]

[4BB1] = −[39A][4BA1]

[9BB1] = −[39B][9AA1]

B1= −[39A][4BA1][59C][69D][79E][89F][90G]

+[39B][49C][59D][69E][79F][80G][9AA1]

[4BA1] = −[20H][49B]

[9AA1] = −[29A][90H]

A1= [20H][39A][49B][59C][69D][79E][89F][90G]

−[29A][39B][49C][59D][69E][79F][80G][90H]

[20H] = [123][280]

[90H] = −[128][390]

H= [123][280][39A][49B][59C][69D][79E][89F][90G]

+[128][29A][390][39B][49C][59D][69E][79F][80G]

[90G] = [128][790]

[80G] = [178][280]

G= [128][280][123][39A][49B][59C][69D][790][79E][89F]

+[128][280][178][29A][390][39B][49C][59D][69E][79F]

[89F] = −[178][689]

[79F] = −[179][678]

F= −[178][123][39A][49B][59C][689][69D][790][79E]

−[178][179][29A][390][39B][49C][59D][678][69E]



216 Hongbo Li and Yihong Wu

[79E] = [579][678]

[69E] = −[567][689]

E= −[678][689][123][39A][49B][579][59C][69D][790]

+[678][689][179][29A][390][39B][49C][567][59D]

[69D] = [469][567]

[59D] = −[456][579]

D= −[567][579][123][39A][469][49B][59C][790]

−[567][579][179][29A][390][39B][456][49C]

[59C] = [359][456]

[49C] = −[345][469]

C= −[456][469][123][359][39A][49B][790]

+[456][469][179][29A][345][390][39B]

[49B] = [249][345]

[39B] = −[234][359]

B= [345][359](−[123][249][39A][790]−[179][234][29A][390])

[39A] = [139][234]

[29A] = −[123][249]

A= [123][234][249](−[139][790]+[179][390])

= 0.

Nondegeneracy condition: none.

1

2

3

4

5

6

7

8

9

0

A

B

F

C

D
E

Fig. 13. Example 13.

Example 13 (Saam’s theorem, see also [15], Example 6).

Free points: 1, 2, 3, 4, 5, 6.
Semifree point: 7 on 12.
Intersections:

8 = 13 ∩ 24, 9 = 23 ∩ 14, 0 = 15 ∩ 46,
A = 35 ∩ 16, B = 13 ∩ 67, C = 16 ∩ 90,
D = 15 ∩ 8A, E = 12 ∩ BC, F = 57 ∩ 14.

Conclusion: D, E, F are collinear.



Automated Theorem Proving in Incidence Geometry 217

Proof:

Rules [DEF]
F= [145][7DE]−[147][5DE]

[7DE] = −[12D][7BC]

[5DE] = [1BC][25D]

E= −[12D][145][7BC]−[147][1BC][25D]

[12D] = [125][18A]

[25D] = −[125][58A]

D= −[125][145][18A][7BC]+[125][147][1BC][58A]

[7BC] = −[17B][690]

[1BC] = −[16B][190]

C= [145][17B][18A][690]−[147][16B][190][58A]

[17B] = −[137][167]

[16B] = −[136][167]

B= −[167][137][145][18A][690]+[167][136][147][190][58A]

[18A] = [135][168]

[58A] = [156][358]

A= −[135][137][145][168][690]+[136][147][156][190][358]

[690] = [156][469]

[190] = −[146][159]

0= −[156][135][137][145][168][469]−[156][136][146][147][159][358]

[469] = [146][234]

[159] = [123][145]

9= [145][146](−[135][137][168][234]−[123][136][147][358])

[168] = −[124][136]

[358] = [135][234]

8= [135][136][234]([124][137]−[123][147])

= 0.

Nondegeneracy condition: none.

Example 14 (See also [3], Example 6.190). Two doubly perspective triangles
are also triply perspective.

Free points: 1, 2, 3, 4, 5.
Intersections: 6 = 12 ∩ 34, 7 = 24 ∩ 15, 8 = 13 ∩ 45, A = 56 ∩ 37.
Conclusion: 2, 8, 9 are collinear.

Proof:

Rules [289]
9= [268][357]−[258][367]

[268] = −[145][236]

[258] = −[135][245]

8= −[145][236][357]+[135][245][367]

[357] = [135][245]

[367] = [145][236]

7= 0.

Nondegeneracy condition: none.



218 Hongbo Li and Yihong Wu

5

4

3

1
2

6

7

8

9

Fig. 14. Example 14.

Example 15 (See also [3], Example 6.26). In a hexagon whose vertices are 1,
2, 3, 4, 5, 9, if both 39, 12, 45 and 19, 34, 25 are concurrent, then 14, 59,
23 are concurrent.

Free points: 1,2,3,4,5.
Intersections: 6 = 23 ∩ 14, 7 = 12 ∩ 45, 8 = 34 ∩ 25, 9 = 37 ∩ 18.
Conclusion: 5, 6, 9 are collinear.

3

4

1 2

5
6

7

8

9

Fig. 15. Example 15.

Proof:

Rules [569]
9= [178][356]−[138][567]

[178] = [157][234]

[138] = −[134][235]

8= [157][234][356]+[134][235][567]

[157] = −[125][145]

[567] = [125][456]

7= −[125][145][234][356]+[125][134][235][456]

[356] = [134][235]

[456] = [145][234]

6= 0.



Automated Theorem Proving in Incidence Geometry 219

Nondegeneracy condition: none.

Example 16 (Permutation theorem, see also [15], Example 3). If 6, 7, 8, 9 are
collinear, then there exits a projectivity between (8,9,7,6) and (6,7,9,8).

Free points: 1, 2, 3, 4.
Semifree point: 5 on 23.
Intersections:

6 = 12 ∩ 34, 7 = 13 ∩ 24, 8 = 15 ∩ 67, 9 = 45 ∩ 67, 0 = 23 ∩ 48.

Conclusion: 1, 9, 0 are collinear.

1

3
2

4

5

67 89

0

Fig. 16. Example 16.

Proof:

Rules [190]
0= [189][234]−[149][238]

[189] = [148][567]

[149] = [145][467]

9= [148][234][567]−[145][238][467]

[148] = [145][167]

[238] = −[123][567]

8= [145][567]([167][234]+[123][467])

[167] = −[124][136]

[467] = [134][246]

7= −[124][136][234]+[123][134][246]

[136] = −[123][134]

[246] = −[124][234]

6= 0.

Nondegeneracy condition: none.

Example 17 (Harmonic points, see also [3], Example 6.236, and [15], Example
4). If 6, 7, 8, B is a harmonic quadruple of points, then B is uniquely determined
by 6, 7, 8.

Free points: 1, 2, 3, 4, 5.
Semifree point: 9 on 58.



220 Hongbo Li and Yihong Wu

Intersections:

6 = 12 ∩ 34, 7 = 23 ∩ 14, 8 = 67 ∩ 13,
0 = 79 ∩ 56, A = 69 ∩ 57, B = 67 ∩ 24.

Conclusion: 0, A, B are collinear.

7 B

2

A

1

5

6

4

0

3

9

8

Fig. 17. Example 17.

Proof:

Rules [0AB]
B= [246][70A]−[247][60A]

[70A] = −[570][679]

[60A] = [567][690]

A= −[246][570][679]−[247][567][690]

[570] = [567][579]

[690] = [569][679]

0= [567][679](−[246][579]−[247][569])

[158][579] = [159][578]

[158][569] = [159][568]

9=
[159]

[158]
(−[246][578]−[247][568])

[578] = [137][567]

[568] = [136][567]

8= −[567][137][246]−[567][136][247]

[137] = −[123][134]

[247] = [124][234]

7= [123][134][246]−[124][136][234]

[246] = −[124][234]

[136] = −[123][134]

6= 0.

Nondegeneracy condition: [158] �= 0.

Example 18 (See also [3], Example 6.237, and [15], Example 5). If the intersec-
tions of five correponding sides of two complete quadrilaterals are on the same
line l, then the remaining sides also meet in l.



Automated Theorem Proving in Incidence Geometry 221

Free points: 1, 2, 3, 4, 5, 6.
Semifree point: 7 on 12.
Intersections:

8 = 23 ∩ 56, 9 = 13 ∩ 78, 0 = 14 ∩ 78, A = 24 ∩ 78,
B = 34 ∩ 78, C = 57 ∩ 69, D = 5A ∩ 6B.

Conclusion: 0, C, D are collinear.

4

1

2

3

5
6

78
9

0
A B

C

D

Fig. 18. Example 18.

Proof:

Rules [0CD]
D= [50C][6AB]−[56B][0AC]

[50C] = [569][570]

[0AC] = −[579][60A]

C= [569][570][6AB]+[56B][579][60A]

[6AB] = −[34A][678]

[56B] = [348][567]

B= −[34A][569][570][678]+[348][567][579][60A]

[34A] = −[234][478]

[60A] = −[240][678]

A= [678][234][478][569][570]−[678][240][348][567][579]

[570] = −[147][578]

[240] = −[124][478]

0= −[478][147][234][569][578]+[478][124][348][567][579]

[569] = [138][567]

[579] = −[137][578]

9= [567][578](−[138][147][234]−[124][137][348])

[138] = [123][356]

[348] = −[234][356]

8= [234][356](−[123][147]+[124][137])

= 0.

Nondegeneracy condition: none.



222 Hongbo Li and Yihong Wu

Example 19 (Pascal’s theorem, see also [3], Example 6.390).

Free points: 1,2,3,4,5.
Semifree point: 6 on 12.
Intersections:

7 = 34 ∩ 15, 8 = 46 ∩ 59, 2 = 16 ∩ 39,
A = 36 ∩ 15, B = 45 ∩ 69, 0 = 34 ∩ 19.

Conclusion: If 2,7,8 are collinear, so are 0,A,B.

Reformulation of the theorem:

Free points: 1, 2, 3, 4, 5.
Semifree point: 6 on 12.
Intersections:

7 = 15 ∩ 34, 8 = 27 ∩ 46, 9 = 58 ∩ 23,
0 = 19 ∩ 34, A = 36 ∩ 15, B = 69 ∩ 45.

Conclusion: 0, A, B are collinear.

4

3

5

2
1

6

7

8

9

0

A

B

Fig. 19. Example 19.

Proof:

Rules [0AB]
B= [456][90A]−[459][60A]

[90A] = −[136][590]

[60A] = −[156][360]

A= −[136][456][590]+[156][360][459]

[590] = −[159][349]

[360] = −[139][346]

0= [136][159][349][456]−[139][156][346][459]

[159] = [158][235]

[349] = [234][358]

[459] = [235][458]

[139] = −[123][358]

9= [235][358]([136][158][234][456]+[123][156][346][458])



Automated Theorem Proving in Incidence Geometry 223

[158] = [125][467]

[458] = [247][456]

8= [456][125][136][234][467]+[456][123][156][247][346]

[467] = −[145][346]

[247] = [145][234]

7= [145][234][346](−[125][136]+[123][156])

= 0.

Nondegeneracy condition in the proof of the reformulated theorem: none.

Example 20 (See also [3], Example 6.28).

Free points: 1, 2, 3, 4, 5, 6.
Semifree points: 7 on 12, 8 on 13.
Intersections:

9 = 14 ∩ 56, 0 = 15 ∩ 46, A = 37 ∩ 28,
B = 34 ∩ 89, C = 25 ∩ 70, D = 58 ∩ 30.

Conclusion: A, C, D are collinear.

1

5

3

6

42

7

8

9

0

A

B CD

Fig. 20. Example 20.

Proof:

Rules [ACD]
D= [380][5AC]−[350][8AC]

[5AC] = −[25A][570]

[8AC] = [270][58A]

C= −[25A][380][570]−[270][350][58A]

[25A] = −[237][258]

[58A] = [258][378]

A= [258][237][380][570]−[258][270][350][378]



224 Hongbo Li and Yihong Wu

[380] = −[146][358]

[570] = [157][456]

[350] = [135][456]

[270] = −[146][257]

0= −[146][456][157][237][358]+[146][456][135][257][378]

[135][378] = [137][358]
8= [358](−[157][237]+[257][137])

= 0.

Nondegeneracy condition: [135] �= 0.

Example 21 (See also [3], Example 6.33).

Free points: 3, 4, 6, 7.
Intersections: 1 = 36 ∩ 47, 2 = 46 ∩ 37, 8 = 67 ∩ 34.
Semifree points: 9 on 18, 0 on 12.
Intersections: A = 28 ∩ 90, B = 36 ∩ 7A, C = 67 ∩ 39, 5 = 37 ∩ 60.

Conclusion: B,C,5 are collinear.

Reformulation of the theorem:

Free points: 1, 2, 3, 4.
Semifree points: 5 on 23, 9 on 12.
Intersections:

6 = 13 ∩ 24, 7 = 23 ∩ 14, 8 = 34 ∩ 67, 0 = 56 ∩ 18,

A = 28 ∩ 90, B = 7A ∩ 13, C = 39 ∩ 67.

Conclusion: 5, B, C are collinear.

3

1 2

4

5

6 78

9

0
A

B

C

Fig. 21. Example 21.



Automated Theorem Proving in Incidence Geometry 225

Proof:

Rules [5BC]
C= [379][56B]−[369][57B]

[56B] = −[135][67A]

[57B] = [137][57A]

B= −[135][379][67A]−[137][369][57A]

[67A] = −[267][890]

[57A] = [290][578]

A= [135][267][379][890]−[137][290][369][578]

[890] = [189][568]

[290] = [156][289]

0= [135][189][267][379][568]−[137][156][289][369][578]

[123][379] = [137][239]

[123][189] = [128][139]

[123][369] = −[139][236]

[123][289] = [128][239]

9=
[128][137][139][239]

[123]2
([135][267][568]+[156][236][578])

[568] = −[346][567]

[578] = −[347][567]

8= −[567][135][267][346]−[567][156][236][347]

[267] = [124][236]

[347] = [134][234]

7= −[236][124][135][346]−[236][134][156][234]

[346] = [134][234]

[156] = −[124][135]

6= 0.

Nondegeneracy condition in the proof of the reformulated theorem: [123] �= 0.

Example 22 (Non-realizable 103-configuration, see also [15], Example 9).

Free points: 1, 2, 3, 4, 5.
Semifree point: 6 on 12.
Intersections: 7 = 23 ∩ 14, 8 = 15 ∩ 46, 9 = 25 ∩ 36, 0 = 34 ∩ 57.
Conclusion: 8, 9, 0 are not collinear.

1

2

3 4

56 7

8
9

0

Fig. 22. Example 22.



226 Hongbo Li and Yihong Wu

Proof:

Rules [890]
0= [357][489]−[389][457]

[489] = [256][348]

[389] = −[235][368]

9= [256][348][357]+[235][368][457]

[348] = [145][346]

[368] = −[156][346]

8= [346][145][256][357]−[346][156][235][457]

[357] = [134][235]

[457] = [145][234]

7= [145][235][346]([134][256]−[156][234])

= [125][145][235][346]2.

Nondegeneracy conditions: [125], [145], [235], [346] �= 0.

Example 23 (Fano’s axiom, see also [6], p. 46, and [13], p. 66). There is no
complete quadrilateral whose three diagonal points are collinear.

Free points: 1,2,3,4.
Intersections: 5 = 12 ∩ 34, 6 = 23 ∩ 14, 7 = 13 ∩ 24.
Conclusion : 5, 6, 7 are not collinear.

1

2 3

4

7

6

5

Fig. 23. Example 23.

Proof:

Rules [567]
7= [124][356]+[156][234]

[356] = [134][235]

[156] = [123][145]

6= [124][134][235]+[123][145][234]

[235] = −[123][234]

[145] = −[124][134]

5= −2[123][124][134][234].

Nondegeneracy conditions: [123], [124], [134], [234] �= 0.



Automated Theorem Proving in Incidence Geometry 227

References

1. J. Bokowski and J. Richter-Gebert. On the finding of final polynomials. Europ. J.
Combinatorics 11, 21–34, 1990.

2. J. Bokowski and B. Sturmfels. Computational Synthetic Geometry. LNM 1355,
Springer, Berlin Heidelberg, 1989.

3. S.-C. Chou, X.-S. Gao and J.-Z. Zhang. Machine Proofs in Geometry — Auto-
mated Production of Readable Proofs for Geometric Theorems. World Scientific,
Singapore, 1994.

4. H. Crapo and J. Richter-Gebert. Automatic proving of geometric theorems. In:
Invariant Methods in Discrete and Computational Geometry (N. White, ed.), pp.
107–139. Kluwer, Dordrecht, 1994.

5. P. Doubilet, G. C. Rota and J. Stein. On the foundations of combinatorial theory
IX: Combinatorial methods in invariant theory. Stud. Appl. Math. 57, 185–216,
1974.

6. L. Kadison and M. T. Kromann. Projective Geometry and Modern Algebra. Birk-
häuser, Boston, 1996.

7. H. Li. Vectorial equations solving for mechanical geometry theorem proving. J.
Automated Reasoning 25, 83–121, 2000.

8. H. Li and M.-T. Cheng. Proving theorems in elementary geometry with Clifford
algebraic method. Chinese Math. Progress 26(4), 357–371, 1997.

9. H. Li and M.-T. Cheng. Automated ordering for automated theorem proving in el-
ementary geometry — Degree of freedom analysis method. MM Research Preprints
18, 84–98, 1999.

10. H. Li and Y. Wu. Outer product factorization in Clifford algebra. In: Proc. ATCM
99 (Guangzhou, December 17–21, 1999), pp. 255–264.

11. H. Li and Y. Wu. Mechanical theorem proving in projective geometry with bracket
algebra. In: Computer Mathematics (X.-S. Gao and D. Wang, eds.), pp. 120–129.
World Scientific, Singapore, 2000.

12. B. Mourrain and N. Stolfi. Computational symbolic geometry. In: Invariant Meth-
ods in Discrete and Computational Geometry (N. White, ed.), pp. 107–139. Kluwer,
Dordrecht, 1994.

13. C. W. O’hara, S. J. and D. R. Ward, S. J. An Introduction to Projective Geometry.
Oxford University Press, London, 1936.

14. D. Pedoe. An Introduction to Projective Geometry. Pergamon Press, Oxford, 1963.
15. J. Richter-Gebert. Mechanical theorem proving in projective geometry. Ann. Math.

Artif. Intell. 13, 159–171, 1995.
16. B. Sturmfels. Computing final polynomials and final syzygies using Buchberger’s

Gröbner bases method. Result. Math. 15, 351–360, 1989.
17. B. Sturmfels. Algorithms in Invariant Theory. Springer, Wien New York, 1993.
18. B. Sturmfels and N. White. Gröbner bases and invariant theory. Adv. Math. 76,

245–259, 1989.
19. B. Sturmfels and W. Whiteley. On the synthetic factorization of homogeneous

invariants. J. Symbolic Computation 11, 439–454. 1991.
20. D. Wang. Elimination procedures for mechanical theorem proving in geometry.

Ann. Math. Artif. Intell. 13, 1–24, 1995.
21. W.-T. Wu. On the decision problem and the mechanization of theorem proving

in elementary geometry, In: Contemp. Math. 29, pp. 213–234. AMS, Providence,
1984.

22. A. Young. On quantative substitutionals analysis (3rd paper), Proc. London Math.
Soc., Ser. 2, 28, 255–292, 1928.



Qubit Logic, Algebra and Geometry

Timothy F. Havel

MIT (NW14-2218), 150 Albany St., Cambridge, MA 02139, USA
tfhavel@mit.edu

Abstract. A qubit is a two-state quantum system, in which one bit of
binary information can be stored and recovered. A qubit differs from an
ordinary bit in that it can exist in a complex linear combination of its two
basis states, where combinations differing by a factor are identified. This
projective line, in turn, can be regarded as an entity within a Clifford
or geometric algebra, which endows it with both an algebraic structure
and an interpretation as a Euclidean unit 2-sphere. Testing a qubit to
see if it is in a basis state generally yields a random result, and attempts
to explain this in terms of random variables parametrized by the points
of the spheres of the individual qubits lead to contradictions. Geometric
reasoning forces one to the conclusion that the parameter space is a
tensor product of projective lines, and it is shown how this structure is
contained in the tensor product of their geometric algebras.

1 Introduction

At its most fundamental level, quantum mechanics is pure geometry. In the non-
relativistic case of interest here, it is in fact “just” three-dimensional Euclidean
geometry. Although scientists in the field are basically aware of this fact, it is not
widely known even by geometers. The following are four reasons for this state
of affairs.

The first is that the representations of the group of Euclidean motions with
which quantum mechanics deals are not those that have been studied in “classi-
cal” geometry; indeed, they are often over infinite dimensional complex function
spaces! Nevertheless, as Felix Klein and Hermann Weyl have taught us, the el-
ements of the carrier spaces of these representations are every bit as much a
part of Euclidean geometry as lines and planes, even if they may be a great
deal more difficult to visualize. It is in the interpretation of such mathematical
structures, for example by means of suitable low-dimensional models, that ge-
ometric concepts and methods can make important contributions to quantum
mechanics.

The second is the way in which these representations are combined when
two or more quantum systems are merged into one, namely as the direct product
of their constituent representations, rather than as the direct sum. Of course
this is perfectly standard in mathematics today, but such composite representa-
tions were seldom considered throughout the long history of geometry leading
up to Klein, and they continue to receive relatively little attention from the

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 228–245, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Qubit Logic, Algebra and Geometry 229

modern-day mathematicians working on classical geometry, probably because
these representations become physically relevant (so far as is known) only at
(sub)atomic scales.

The third is that the actual transformations studied in quantum mechanics
are motivated by physical considerations, and described in physical terms, which
lie outside the purview of many mathematicians. This is true particularly of
the interactions between different quantum systems, which induce nonclassical
correlations between them and produce an “entangled” joint state that must
be described by a nonfactorizable tensor. In addition to this language barrier,
the notation used in quantum mechanics, especially its use of an uninterpreted
imaginary unit, tends to obscure the underlying geometry.

The fourth is the intrinsically stochastic nature of quantum measurements.
Such measurements involve amplification of information about the state of a
quantum system from the submicroscopic to the macroscopic level, a task not
unlike (but considerably more drastic than) trying to pick up a live ant with
a bulldozer. In general, such measurements destroy all correlations among the
constituent parts of the system, which must therefore be inferred indirectly from
the results of repeated measurements on ensembles of identically prepared sys-
tems. The nondeterministic, and hence “nongeometric”, nature of this process
is why Einstein so disliked quantum mechanics, and it is safe to say that more
than half a century later nobody really understands “how it can be like that”.
This is, once again, a matter of interpreting the mathematics, which nevertheless
describes reality extremely well.

The main message of this paper is that the computer-aided geometric reason-
ing community is missing out on a great deal of excitement, and a potentially
very appreciative audience, by limiting themselves largely to geometry as in-
spired by the space in which classical physics is perceived to take place.1 It will
seek to illustrate this in the context of a particularly simple area of quantum me-
chanics which is nonetheless of great contemporary interest, not just to physicists
but also to computer scientists and growing number of mathematicians, namely
“quantum computing” or (more generally) quantum information processing. The
simplicity of this area is derived from that of the type of quantum systems it
usually deals with, which are merely two-dimensional systems or qubits.

In order to illuminate the geometric nature of qubits, the notation and lan-
guage of the paper is derived from the most powerful tool for bridging the gap
between the analytic and the synthetic that has been bequeathed to us by the
grand masters of geometry from the 19th century, namely Grassmann’s “Cal-
culus of Extension” as enlarged and streamlined by Hamilton, Clifford, Peano,
1 Note that “classical” physics is usually considered to include special relativity —

itself a very geometric subject with connections to non-Euclidean geometry. The
book by Albert [1] contains a wonderful nontechnical introduction to the apparent
paradoxes of quantum mechanics, whereas that by Peres [2] provides a more tech-
nical and detailed account of how these paradoxes arise in trying to apply classical
geometric reasoning to quantum systems. For an interesting interpretation of quan-
tum mechanics within complex projective metric geometry, the reader may wish to
consult [3,4].



230 Timothy F. Havel

Cayley, Gibbs, Lipschitz, Chevalley, Cartan and Riesz together with (in more
recent times) Hestenes, Sobczyk, Lounesto, and many others. Today it is most
appropriately called (with apologies to E. Artin) geometric algebra. Among its
many uses, it has become the basis of a number of symbolic algebra programs
(as reviewed in [5]) which, though intended primarily for either physical or ab-
stract mathematical investigations, also have the potential to serve as potent
aids to reasoning in the classical geometries. This potential has been discussed
and illustrated in e.g. [6,7,8,9,10,11,12,13], and further progress along these lines
is expected to be presented in this proceedings, as well.

2 Quantum Information Processing

We begin with a general, but necessarily rather brief, introduction to quan-
tum information processing, using the language and notation of conventional
quantum mechanics. Further details will be provided in a more geometric form
over the following sections, and longer and gentler introductions are available in
e.g. [14,15,16].

Information, however it is conceived, exists only by virtue of being con-
tained in the state of some physical system. Thus, although the information
can have more than one meaning, it always has something to say about the
state of the system it is stored in. Any N bits of binary information, for exam-
ple, can be regarded as an abstract vector in Z

N
2 , though it may actually be the

beads on an abacus. Similarly, quantum information can be regarded as a vector
[ψ1, ψ2, . . . , ψN ] ∈ C

N , or as the state of a given multiparticle quantum system.
In either case, it is the physics of its embodiment which determines what can be
done with the information.

In order to discuss these issues more concretely, a generic but simple model
system is needed. This is a quantum computer, which encodes binary informa-
tion in an ordered array of two-state quantum systems, or “qubits”. This en-
coding is obtained by choosing a fixed pair of orthonormal vectors in the two-
dimensional state space of each qubit, which are written in Dirac notation as
| 0 〉 ≡ [1, 0], | 1 〉 ≡ [0, 1] and identified with binary 0, 1 respectively. The conju-
gate transposes are denoted by 〈 0 |, 〈 1 |, respectively, and hence orthonormality
means 〈 0 | 0 〉 = 〈 1 | 1 〉 = 1 and 〈 0 | 1 〉 = 〈 1 | 0 〉 = 0. By the previously men-
tioned rules for merging multiple quantum systems into one, the state space of
an N -qubit quantum computer is the (2N )-dimensional tensor product of those
of its qubits, which is spanned by the induced orthonormal basis

| δ1 〉 ⊗ · · · ⊗ | δN 〉 ≡ | δ1 〉 · · · | δN 〉 ≡ | δ1 · · · δN 〉 (1)

(δ1, . . . , δN ∈ {0, 1}). These N -qubit basis states may also be labeled by the
integers k = 0, . . . , 2N − 1 via their binary expansions, and denoted by | k 〉. It
should be understood that, although a classical analog computer can be built
whose bits could be in arbitrary superpositions (linear combinations) ψ0| 0 〉 +
ψ1| 1 〉 (ψ0, ψ1 ∈ C), its state space would be only 2N -dimensional over C. Thus



Qubit Logic, Algebra and Geometry 231

it is the exponential growth in the dimension of their state space which really
distinguishes quantum computers from classical.

The extra dimensions are due to the existence of nonfactorizable or entangled
states, which exhibit a number of nonintuitive properties (cf. [1,2]). These in turn
are closely tied to the stochastic nature of quantum mechanical measurements.
These measurements are quantized, so that measuring a qubit always yields one
of the two possible outcomes 0 or 1, and leaves the system in the corresponding
basis state | 0 〉 or | 1 〉. Which outcome will be obtained can be predicted only if
the system is already in one of the two basis states, whereas measurements on su-
perpositions yield random outcomes. In particular, the information in entangled
states is contained in the correlations between the outcomes of measurements on
different qubits. As a result of this intrinsic randomness, even though it takes an
exponentially increasing amount of classical information to specify the state of
an N -qubit quantum computer to any fixed precision, at most N bits of classical
information can be stored in and recovered from it (hence the name, “qubit”)

Having discussed the nonintuitive features of a quantum state, we now turn
to the operations which can be performed on it, again in the context of an
ideal quantum computer. According to Schrödinger’s equation, isolated quantum
systems evolve in time by unitary transformations. The subgroup of the unitary
group U(2N ) consisting of all permutations of the basis states | k 〉 corresponds
to the set of all invertible boolean transformations of Z

N
2 . It is known that,

with at most a polynomial number of constant inputs and unused outputs, any
boolean transformation can be embedded in an invertible one [17], and hence
a quantum computer is computationally universal. In fact, the entire unitary
group is generated by local operations acting on at most two qubits at a time
[18], which is convenient because all elementary physical forces are two-particle
interactions.

Let us illustrate this with some specific “quantum logic gates”. The simplest
is just the NOT of a qubit, which has the following matrix representation in the
computational basis:

N | 0 〉 =
[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= | 1 〉 (2)

A one-bit gate without a classical counterpart is the Hadamard gate, which maps
basis states to superpositions:

H | 0 〉 =
1√
2

[
1 1
1 −1

] [
1
0

]
=

[
2−1/2

2−1/2

]
= (| 0 〉 + | 1 〉)/

√
2 (3)

H | 1 〉 =
1√
2

[
1 1
1 −1

] [
0
1

]
=

[
2−1/2

−2−1/2

]
= (| 0 〉 − | 1 〉)/

√
2 (4)

Note that both these operations are involutions, in that N2 = H2 = 1.
Interesting calculations require that operations on one qubit be conditional

on the state of one or more others. Since we cannot read a qubit in a superposition
without destroying that superposition, this conditionality must be built into a



232 Timothy F. Havel

unitary transformation which acts simultaneously on all the qubits. Clearly con-
ventional logic gates like the AND are not possible, since these are not invertible
(two inputs but only one output!). The most common example of a two-bit gate
is the controlled NOT, or c-NOT, gate, which has the matrix representation

S2|1 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 , (5)

and so acts upon the computational basis as follows:

S2|1 | 00 〉 = | 00 〉, S2|1 | 01 〉 = | 01 〉,
S2|1 | 10 〉 = | 11 〉, S2|1 | 11 〉 = | 10 〉

(6)

Thus the S2|1 flips the second (right) qubit whenever the first is 1. This single
two-bit gate, together with all possible one-bit unitary operations, is known to
generate the entire unitary group U(2N ) [18]. The number of operations required,
however, can be exponential in N .

Much of the current interest in quantum computers is due to the spectacular
discovery of a polynomial-time quantum algorithm for the integer factorization
problem [19]. Since every known classical algorithm is exponential, this implies
that quantum computers violate that cornerstone of computational complex-
ity known as the strong Church-Turing thesis, which states that the distinction
between exponential and polynomial-time algorithms does not depend on the
underlying hardware. Such speed-ups rely upon the linearity of quantum evolu-
tion, so that a unitary operation on the basis states operates simultaneously on
all terms of a superposition, as follows:

U
∑2N −1

k=0 ck | k 〉 =
∑2N −1

k=0 ckU | k 〉 (7)

This shows that a quantum computer offers a degree of parallelism which po-
tentially grows exponentially with the size of the problem. The catch is that
the above-mentioned limitations on the amount of information available from
quantum measurements prevents us from simply reading out the results (which
would require exponential time and memory anyway). The trick, therefore, is to
find an additional quantum operation that maps the final superposition back to
a basis state which reveals the desired answer, without knowledge of the super-
position. Such operations, generally some form of Fourier transformation, have
been discovered for only a very few problems to date, and in particular, quantum
computers are unlikely to be a panacea for NP-complete problems [20].

Having described the operational features of quantum computers, we turn
our attention to their underlying geometric structure.

3 The Pauli Algebra

The state space of a single qubit, being a two-dimensional vector space over C,
appears very different from physical space. A relation between the two is obtained



Qubit Logic, Algebra and Geometry 233

Fig. 1. The Bloch vector of a qubit being subjected to a continuous rotation on the
Riemann (unit) sphere, starting from its reference position along the vertical z-axis.
The spirals in the complex xy-plane are its stereographic projection (outside the sphere)
together with that of its antipode (inside), as indicated by the dashed lines from the
north pole. This action of SO(3) on the Bloch vector is induced under stereographic
projection by certain Möbius transformations (or homographies) of the complex plane,
which in turn are induced by the standard representation of the special unitary group
SU(2) under taking ratios of the complex coordinates ψ1/ψ0 of qubit state vectors.
This mapping is a two-to-one homomorphism of SU(2) onto SO(3), in accord with
the well-known Lie algebra relationship between these groups: SU(2) is the universal
(i.e. simply connected) covering group of SO(3). On the projective line given by the
ratio ψ1/ψ0, the antipode corresponds to the harmonic conjugate, with respect to the
projective points of the north and south poles, of the Bloch vector’s projective point.

by viewing the components of a general state vector |ψ 〉 = ψ0| 0 〉+ψ1| 1 〉 as the
Cayley-Klein parameters for a three-dimensional Euclidean rotation [22], which
are given in terms of the Euler angles by

ψ0 = cos(ϑ/2) eι(ζ−ϕ)/2 , ψ1 = − ι sin(ϑ/2) eι(ζ+ϕ)/2 (8)

(wherein ι2 = −1). These parameters determine an element of the two-fold
universal covering group SU(2) of SO(3), namely

Ψ ≡
[
ψ0 −ψ∗

1
ψ1 ψ∗

0

]
∈ SU(2) , (9)

and hence are determined by the rotation up to sign. This identification makes it
possible to map the state of the qubit to a three-dimensional unit vector, which
is obtained from a given reference vector by applying the rotation to it. Under
this mapping, the states | 0 〉 and | 1 〉 coincide with the reference vector and its
negative, while the physically irrelevant net phase exp(ιζ) corresponds to the
angle of rotation about the reference vector.

Assuming that the reference is a unit vector along the z-coordinate axis, the
transformed vector, called the Bloch vector, is given in terms of an orthonormal
basis σx , σy , σz by

sin(ϑ) cos(ϕ)σx + sin(ϑ) sin(ϕ)σy + cos(ϑ)σz , (10)



234 Timothy F. Havel

so its polar coordinates are Euler angles. This “classical” model of a qubit’s state
which corresponds to the stereographic projection of ψ1/ψ0 onto the Riemann
sphere (see Fig. 1)2, has a number of interesting implications. First, it associates
the computational basis | 0 〉, | 1 〉 with a direction in physical space, which (in
any physical realization of qubits) is determined by the measurement apparatus.
Because physical rotations of the apparatus induce passive transformations of
the underlying state space, the question of whether a qubit is in a superposition
state or a basis state is geometrically meaningless; whether or not they are
entangled, however, turns out to be basis independent. More importantly for the
present purposes, the model enables the standard matrix formulation of quantum
mechanics to be embedded in the natural algebraic structure of a metric vector
space, namely its Clifford or geometric algebra (cf. [23,24,25,22]).

The geometric algebra of a three-dimensional Euclidean vector space, also
called the Pauli algebra G3 , is the associative algebra generated by a basis subject
to the relations σµσν + σνσµ = 2 δµν (µ, ν ∈ {x, y, z}). These relations readily
imply that the Euclidean inner product is given by the symmetric part of the
geometric product, a·b = (ab+ba)/2, while the antisymmetric part corresponds
to Grassmann’s outer product a∧ b = (ab− ba)/2. A linear basis for this eight-
dimensional algebra is given by:

1 (scalars, 0-dimensional)
σx, σy, σz (vectors, 1-dimensional)

σxσy, σzσx, σyσz (bivectors, 2-dimensional)
σxσyσz (pseudo-scalars, 3-dimensional)

(11)

In particular, the unit pseudo-scalar ι ≡ σxσyσz is easily seen to square to −1
and commute with everything in the algebra, thereby providing a geometric
interpretation for the imaginary unit of qubits (and many other physical entities).
Just as a real number can be interpreted as either a magnitude (e.g. length = 2)
or as an operator (e.g. scale by 2), ι can be interpreted as either the oriented
volume element of space, or as an operator that maps vectors to their orthogonal
bivectors. The latter shows that the outer product of two vectors a, b is related
to their cross product by:

a ∧ b = ι(a× b) (12)

In addition to its many applications to classical geometry and physics [26],
the Pauli algebra provides a concise mathematical encoding of the physics of
qubits (be they nuclear spins, photon polarizations, electronic states of atoms,
etc.), as follows. The even subalgebra G+

3 is that generated by the products of
even numbers of vectors, namely by the identity together with the basis bivectors.
Its multiplicative subgroup of unit norm elements is isomorphic to SU(2), which
in turn is isomorphic to the multiplicative group of unit quaternions. A time-

2 For many further illustrations of these beautiful morphisms between seemingly
different geometries, the reader is referred to the delightful book “Visual Complex
Analysis” by T. Needham [21].



Qubit Logic, Algebra and Geometry 235

dependent rotation of a vector v is given by its conjugate UvU−1 with a one-
parameter subgroup of G+

3 , namely

U = exp(−ιωtu/2) = cos(ωt/2) − ιu sin(ωt/2) , (13)

where ω is the angular velocity and u a unit vector on the axis of rotation.
The inverse U−1 = exp(ιωtu/2) = Ũ is obtained by reversing the order of the
factors in the terms of an expansion of U relative to the above basis, thereby
changing the sign of its bivector part. In most physical realizations of qubits,
H ≡ ωu is the Hamiltonian “operator” for the interaction of the qubit with a
constant external field which induces the rotation.

Elementary idempotents of the form Ev ≡ (1+v)/2 with v2 = 1 play several
important roles in the algebra and the physics. First, these idempotents describe
a qubit’s state as the sum of a scalar (1/2) and the vector (v/2) obtained by
applying a rotation Ψ ∈ G+

3 to the reference vector (conventionally taken to be
σz/2),

Ev = 1
2 (1 + v) = Ψ 1

2 (1 + σz) Ψ̃ ≡ Ψ E+ Ψ̃ . (14)

The reference idempotent and its complement will henceforth be written as
E± ≡ E±σz , so that E+ ↔ | 0 〉〈 0 | and E− ↔ | 1 〉〈 1 | (where ↔ indicates
a correspondence between geometric and coordinate-based objects). Although
the scalar part may seem superfluous, it will be seen shortly that it provides a
normalization factor needed to describe the statistics of ensembles of qubits.

Second, right-multiplication by the reference idempotent projects the algebra
onto a left-ideal with half as many (i.e. four) degrees of freedom, on which the
even subalgebra acts from the left to give a representation of R

∗ ⊕ SU(2). This
allows the elements of the left-ideal to be interpreted as qubit state vectors,
since they transform in the same way. Explicitly, if we choose a representation
in which σz and hence E+ is diagonal, we have:

Ψ E+ =
[
ψ0 −ψ∗

1
ψ1 ψ∗

0

] [
1 0
0 0

]
=

[
ψ0 0
ψ1 0

]
= (ψ0| 0 〉 + ψ1| 1 〉)〈 0 | (15)

It follows that ΨE+Ψ̃E+ = ΨE+ψ
∗
0 is the inverse of our mapping from qubit

state vectors to spatial vectors (up to phase and normalization).
Third, Ev is the operator for a measurement that yields 1 if the qubit is

in the state Ev and 0 if it is in the orthogonal state E−v . In accord with the
properties of quantum measurements introduced previously, when applied to a
state Ew this measurement irreversibly “collapses” it onto one of the two states
E±v , each with probability equal to

2〈EwE±v 〉0 = 1
2 (1 ±w · v) , (16)

where 〈 〉0 denotes the scalar part (or half the trace in the above matrix repre-
sentation). Thus we see that, curiously enough, the geometric relations among
Euclidean vectors representing states and operators are what determines the
statistics of quantum measurements. This equivalence will now be extended to



236 Timothy F. Havel

ensembles of qubits, wherein the qubit states’ statistical frequencies represent a
probability density function over the state space.

In the matrix formulation of a qubit mechanics [2], the expectation value of
a measurement is given by a quadratic form in the state vector components, e.g.

〈ψ |Ev|ψ 〉 = tr(Ev |ψ 〉〈ψ |) ↔ 2〈EvEw 〉0 = 1
2 (1 + v ·w) , (17)

which is an affine form in the Bloch vector w. This allows us to write the average
of the expectation value over a probabilistic ensemble { pi , |ψi 〉 } (pi ≥ 0,∑

i pi = 1) of qubits as
∑

i pi 〈ψi |Ev|ψi 〉 = 2 〈Ev

∑
i piEwi 〉0 = 1

2 (1 + v · ∑
i piwi) . (18)

It follows that the average of any test over the ensemble is determined by a Bloch
vector ηw ≡ ∑

i piwi of length η ≤ 1, or equivalently, by the corresponding
density operator ρ ≡ 1

2 (1+ηw). The “coherence” of the ensemble η is related to
the average of the density operator versus itself by η2 = 4〈ρ2 〉0−1. An ensemble
is called pure when η = 1, meaning that ρ ↔ |ψ 〉〈ψ | for a single state vector
|ψ 〉, and mixed otherwise.

4 Multi-qubit Systems

Extending these geometric interpretations to multi-qubit systems necessitates
taking the N -fold tensor power of G3 .3 The subalgebra generated by the op-
erators for any one qubit is thus a copy of the Pauli algebra as above, while
the operators for different qubits commute freely. Thus an arbitrary element of
the algebra, denoted by G⊗N

3 , can be written as a linear combination of product
operators, ∑

µ∈{0,x,y,z}N

αµ σ
1
µ1 · · ·σN

µN , (19)

where the superscripts are qubit indices (written here arbitrarily in increasing
order), and for notational convenience σ0 ≡ 1. The coefficients αµ are hyper-
complex numbers in the center of the algebra of the form

∑
ν⊆{1,...,N}

αν
µ ι

ν1 · · · ινM , (20)

where αν
µ ∈ R and ιq is the unit pseudo-scalar of the q-th qubit (q = 1, . . . , N).

It follows that G⊗N
3 has dimension 23N as a linear space over R. In the

conventional quantum mechanics of qubits, however, one works in the algebra
of 2N × 2N matrices over C, which has real dimension 22N+1. These apparently
superfluous degrees of freedom arise from the fact that G⊗N

3 contains a different
3 A physical justification for this may be found in the fact that this algebra is obtained

from the geometric algebra of a direct sum of N copies of Minkowski space-time by
choosing an inertial frame in each [22,24].



Qubit Logic, Algebra and Geometry 237

unit pseudo-scalar ιq for each qubit q = 1, . . . , N . They can be projected out by
working in the principal ideal generated by the so-called correlator idempotent:

C ≡ 1
2 (1 − ι1ι2) 1

2 (1 − ι1ι3) · · · 1
2 (1 − ι1ιN ) (21)

It is easily seen that ιpιqC = −C for all p, q ∈ {1, . . . , N}, which enables us
to simply drop the qubit labels on the ι’s and use a single imaginary unit as
in conventional quantum mechanics. Also, since C commutes with the entire
algebra, it too can be dropped for most purposes, as will be done from here on.

The resulting algebra G⊗N
3 (C) is isomorphic to the algebra of all 2N × 2N

matrices over C, but the entities within it no longer depend on an arbitrary
choice of coordinate frames. As with a single qubit, there are two ways to view
the states of an N -qubit system [22]. The first is as a left-ideal in the product
of the even subalgebras (G+

3 )
⊗N

(C), namely ΨE+ where

Ψ ∈ (G+
3 )

⊗N
, ‖Ψ‖ = 1 , E+ ≡ E1

+ · · ·EN
+ , E q

+ ≡ 1
2 (1 + σq

z ) (22)

(q ∈ {1, . . . , N}). The second is as the corresponding density operator:

ψ ≡ ΨE+Ψ̃ (23)

The density operator formalism has the advantages that it is closer in most re-
spects to conventional quantum mechanics, that it explicitly exhibits the duality
between states and their transformations (namely multiplication by ι), and that
it can be used to describe statistical ensembles as well as subsystems of entan-
gled quantum systems (see below). For these reasons we will concentrate on the
density operator formulation in the following.

Let us now consider how to describe logical operations in the algebra, and
their geometric interpretations (cf. [27]). The simplest such gate is the NOT of
a single qubit N ≡ −ισx , which is just a rotation by π about x . This acts on
the initial density operator E+ ↔ | 0 〉〈 0 | as:

−ισxE+ισx = 1
2 (1 + σxσzσx) = 1

2 (1 − (σx)2σz) = E− ↔ | 1 〉〈 1 | (24)

That is to say, −ισx = exp(−ισxπ/2) both generates and is itself the desired
logic gate. Similarly, the Hadamard gate is a rotation by π about the axis
(σx + σz)/

√
2:

H = exp
(
−ιπ(σx + σz)/

√
8
)

= − ι(σx + σz)/
√

2 (25)

We leave it as an exercise to show that this acts on the basis states E± as
previously described using matrices.



238 Timothy F. Havel

Finally, the c-NOT gate is given in coordinate-free form as4:

S2|1 ≡ E 1
+ + E 1

− ισ
2
x (26)

This can also be written in exponential form as S2|1 = exp(−ιE 1
−σ

2
x π/2). It is

easily shown that it acts on the basis states as

S2|1E 1
ε1E

2
ε2 S̃

2|1 = E 1
ε1E

2
ε1ε2 (ε1, ε2 ∈ {±1}) , (27)

so it takes the NOT of the second qubit whenever the first isE 1
− . The c-NOT gate

thus illustrates yet another use for the elementary idempotents: they describe
the conditionality of operations. Alternatively, from a geometric standpoint, a
c-NOT gate is a rotation by π in the left-ideal defined by E1

− only.
The following are some physically significant properties of multi-qubit density

operators:

– A density operator ρ is pure if it is idempotent, meaning (ρ)2 = ρ, and
mixed otherwise.

– It is factorizable if ρ = ρ1 · · ·ρN , where each ρ q (q = 1, . . . , N) can be
expressed in terms of operators acting on just the q-th qubit, and correlated
if it is not factorizable.

– It is separable if there exists an ensemble for it whose individual states are
factorizable (unentangled), meaning

ρ =
∑

k pk |ψ1
k . . . ψ

N
k 〉〈ψ1

k . . . ψ
N
k |

=
∑

k pk |ψ1
k 〉〈ψ1

k | · · · |ψN
k 〉〈ψN

k | . (28)

Note that a nonseparable density operator (or ensemble) is necessarily correlated,
and that the converse holds if ρ is pure. It is in general difficult to determine
if a given density operator is factorizable or not, and even more difficult to
determine if it is separable. These problems have been completely solved only
in the case of two qubits, thanks in large part to the Schmidt decomposition of
general bipartite quantum systems. The Schmidt decomposition of a two-qubit
pure state is

|χ 〉 = ς1|ψ1
1 〉|φ2

1 〉 + ς2|ψ1
2 〉|φ2

2 〉 , (29)

and is easily derived from the singular value decomposition of the 2 × 2 matrix
obtained from the four entries of the vector |χ 〉. A pure state is unentangled if
and only if one of the two real coefficients ς21 + ς22 = 1 vanishes.

4 The astute reader will have observed that the phase of the states transformed by
this operator differs from that of the matrix Eq. (5); since this has no effect upon
the basis states, the c-NOT given here is an equally valid extension of the classical
gate to superpositions.



Qubit Logic, Algebra and Geometry 239

The problem of interpreting multi-qubit density operators geometrically is
perhaps even less well-understood, so we restrict ourselves to the two qubit case,
and consider the product operator expansion of a general density operator:

ρ = 1
4 +

∑
µ∈{x,y,z} α

1
µσ

1
µ +

∑
ν∈{x,y,z} α

2
νσ

2
ν

+
∑

µ∈{x,y,z}
∑

ν∈{x,y,z} βµνσ
1
µσ

2
ν

(30)

The orthogonality of the product operators implies that coefficients in this ex-
pansion are the ensemble average expectation values of the corresponding prod-
uct operator. The first term, of course, transforms as a scalar, while each of
the summations over the α’s transform as vectors. The β’s are the correlations
among the components of these vectors. The summation over the β’s transforms
as a rank 2 tensor, which decomposes into three orbits under the simultaneous
action of the rotation group on both qubits together:

a scalar, 1
3 (βxx + βyy + βzz)(σ1

x σ
2
x + σ1

y σ
2
y + σ1

z σ
2
z ) ;

a vector, 1
2 (βyx − βxy)(σ1

x σ
2
y − σ1

y σ
2
x ) + 1

2 (βxz − βzx)(σ1
x σ

2
z − σ1

z σ
2
x )

+ 1
2 (βzy − βyz)(σ1

y σ
2
z − σ1

z σ
2
y )

(since this does not change sign under inversion in the origin, it would be more
accurate to say it transforms as a bivector!);

and a symmetric traceless rank 2 tensor,

( 2
3βxx − 1

3βyy − 1
3βzz)σ1

x σ
2
x + (− 1

3βxx + 2
3βyy − 1

3βzz)σ1
y σ

2
y

+ (− 1
3βxx − 1

3βyy + 2
3βzz)σ1

z σ
2
z + 1

2 (βxy + βyx)(σ1
x σ

2
y + σ1

y σ
2
x )

+ 1
2 (βxz + βzx)(σ1

x σ
2
z + σ1

z σ
2
x ) + 1

2 (βyz + βzy)(σ1
y σ

2
z + σ1

z σ
2
y ).

The vanishing of the trace of this tensor implies that the corresponding quadratic
form is a second-order solid harmonic. A basis for such an irreducible represen-
tation of the rotation group acting identically on all qubits together constitutes
a system of covariants for the rotation group; an invariant is a system consisting
of a single covariant.

The group of interest in qubit geometry is actually SU(2N ) ⊃ (SU(2))⊗N ,
the (2N )-fold cover of (SO(3))⊗N . This is because entanglement can only be
created by rotating two subsystems with respect to one another in the larger
space that is allowed by entanglement, whereas local operations in (SU(2))⊗N

are generated by the rotations of single qubits. In any physical realization of
qubits, local operations correspond to interactions of the qubits with external
fields, whereas entangling operations involve interactions between qubits. The
entangling operations convert the representations of (SO(3))⊗N on density op-
erators into an infinite family of similar representations, which can in principle
be classified by the values of the invariants. It is known, for example, that the
invariants of a two-qubit density operator are generated algebraically by only
ten fundamental invariants, and although such a minimal system has yet to be



240 Timothy F. Havel

exhibited, 21 linearly independent invariants have been found using computer
algebra methods [28]. Also in the case of two qubits, a geometric interpretation
of the Schmidt decomposition has been given [22].

Up to this point, we have assumed we are dealing with a quantum computer
that is perfectly isolated from its environment, so that a pure ensemble evolves
coherently into another pure ensemble. The main reason why a quantum com-
puter of any substantial complexity has yet to be built is that it is very difficult
to achieve a sufficient degree of isolation in the laboratory, while still being able
to interact with the system as needed to perform logical operations on its state.
The interactions between a system and its environment generally result in their
mutual entanglement, and since the environment is (by definition) unobservable,
this in turn results in a loss of accessible information on the state of the system,
which is otherwise known as decoherence. The system may then be described
conceptually by an ensemble of quantum states which reproduces the statistics
of measurements on it, or more compactly, by the density operator of such an
ensemble.

To illustrate this, suppose that the “environment” itself consists of a single
qubit, which interacts with a second “system” qubit so as to produce one of the
so-called Bell states:

S2|1eισ1
x π/4| 00 〉 = S2|1(| 00 〉 − | 10 〉)/

√
2

= (| 00 〉 − | 11 〉)/
√

2 ≡ |φ− 〉 .
(31)

The corresponding density operator is

|φ− 〉〈φ− | ↔ ρ ≡ 1
4

(
1 − σ1

x σ
2
x + σ1

y σ
2
y + σ1

z σ
2
z

)
, (32)

which exhibits the correlations between the qubits explicitly. None of the terms of
this expression can be observed without performing simultaneous measurements
on both qubits save for the identity 1, and hence the density operator of the
system qubit #2 alone is simply

ρ2 = 1
2 ↔ 1

2 (| 0 〉〈 0 | + | 1 〉〈 1 |) . (33)

This in turn corresponds to a completely mixed ensemble wherein half the qubits
are in each of the states | 0 〉 and | 1 〉, meaning that all information about the state
of the system has been lost to the environment. The corresponding mathematical
operation is called the partial trace over the first qubit, which means dropping
all terms from the product operator expansion of ρ depending on that qubit, and
renormalizing by multiplying the remainder by two. It should be noted, however,
that even if the environment qubit is also measured, the state |φ− 〉 cannot be
distinguished from its complementary Bell state |φ+ 〉 ≡ (| 00 〉 + | 11 〉)/√2.
In other words, one of the two bits of information contained in this system
is fundamentally hidden by its entanglement, and can be recovered only by
disentangling them.



Qubit Logic, Algebra and Geometry 241

5 An Entanglement Paradox

On adding a third qubit to the Bell state |φ− 〉 = |φ12
− 〉 above and performing

another c-NOT on it, we get:

S3|1|φ12
− 〉| 0 〉 = S3|1(| 000 〉 − | 110 〉)/

√
2

= (| 000 〉 − | 111 〉)/
√

2 ≡ |GHZ 〉
(34)

This is the highly entangled Greenberger-Horne-Zeilinger state [29], the density
operator of which is | GHZ 〉〈 GHZ | ↔ ρGHZ =

1
8 (1 + σ1

z σ
2
z + σ1

z σ
3
z + σ2

z σ
3
z − σ1

x σ
2
x σ

3
x + σ1

y σ
2
y σ

3
x + σ1

y σ
2
x σ

3
y + σ1

x σ
2
y σ

3
y ) . (35)

It will now be shown that the statistics of measurements performed on an en-
semble of three-qubit systems, all prepared in the GHZ state as described above,
cannot be reproduced by any probabilistic ensemble of systems wherein the out-
comes of the measurements are determined by the prior states of the individual
qubits [30]. This shows, in turn, that these statistics must be determined by
parameters which are pertinent to more than one qubit. If one accepts that the
Bloch vector fully characterizes the statistics of measurements on single qubits
and seeks to maintain the linearity of quantum mechanics, then the most natural
such parameter space is the full tensor product of the Bloch vectors of the three
qubits. Empirically, it has been found that these parameters are also sufficient
to fully characterize the statistics.

First, let us consider the results of measuring the individual qubits along z ,
namely σ1

z , σ2
z , σ3

z . These form what is called a complete system of commuting ob-
servables, meaning that their simultaneous eigenstates are uniquely determined
by the outcomes of measuring them (i.e. by their eigenvalues ±1). Hence knowl-
edge of these outcomes is sufficient to predict the result of measuring any other
commuting observable. Since taking the partial trace over any two of the qubits
in ρGHZ yields the density operator 1/2, the outcomes of these measurements are
all completely random (i.e. have a 50% chance of being either ±1). Now consider
the three product observables σq1

z σ
q2
z (q1 �=q2 ∈ {1, 2, 3}), the outcomes of which

are 1 when both Bloch vectors come out parallel along z, and −1 if they come
out antiparallel. Since the terms σq1

z σ
q2
z all occur in the above expansion of ρGHZ

with a coefficient of 1/8, the expectation values are 23 〈ρGHZ σ
q1
z σ

q2
z 〉0 = 1 for

all these observables, which (since their outcomes must be ±1) shows that their
outcomes on any given system are 1 with probability one. Thus any two qubits
must always yield the same value when measured, and this further implies that
the outcomes are also the same when all three qubits are measured. It follows
that the outcomes of measurements of the qubits in the σz computational basis
are compatible with a “classical” ensemble, which consists of an equal mixture
of systems in each of which all three qubits are either | 0 〉 or | 1 〉. This might
lead one to believe that the state | GHZ 〉 is unentangled, but nothing could be
further from the truth!



242 Timothy F. Havel

Now let us consider the results of measurements along the x and y axes,
noting that any three of the observables σq

x or σq
y with distinct qubit indices

q = 1, 2, 3 form a complete system of commuting observables. Once again, the
result of measuring any one of these observables is completely random, but now
the result of measuring any two of them is likewise completely random (i.e. all
four possibilities occur with equal frequency). To show that certain combinations
of all three outcomes are nonrandom, we observe that the three product operators

A ≡ σ1
x σ

2
y σ

3
y , B ≡ σ1

y σ
2
x σ

3
y , C ≡ σ1

y σ
2
y σ

3
x (36)

form a complete system of commuting observables, so that the fourth commuting
observable

D ≡ σ1
x σ

2
x σ

3
x (37)

can be predicted when the outcomes of the first three are known.
Now, it follows from their coefficients in the above expansion of ρGHZ that

the expectation values of A, B and C are 1, while that of D is −1. Therefore,
if we measure three commuting observables of the form σq1

x , σq2
y , σq3

y (q1 �=q2 �=
q3 �=q1), we can be sure that either all three outcomes are 1, or else exactly
two are −1. If M1

x ,M
1
y , . . . ,M

3
y are the predetermined outcomes of the individual

measurements on some arbitrary system in the GHZ state, the expectation values
of A, B and C show that

M1
xM

2
yM

3
y = M1

yM
2
xM

3
y = M1

yM
2
yM

3
x = 1 . (38)

Thus the product of all three triples of outcomes is likewise

1 = (M1
xM

2
yM

3
y )(M1

yM
2
xM

3
y )(M1

yM
2
yM

3
x ) = M1

xM
2
xM

3
x , (39)

since (Mq
y )2 = (±1)2 = 1 for q = 1, 2, 3. But this contradicts the fact that the

expectation value of D is −1, since that implies the product of the three Mq
x

should be −1 with probability one. For those who would like a more detailed
proof, the following table shows that all combinations of signs for the x (rows)
and y (columns) outcomes are excluded by the expectation values of at least one
of the observables A through D.

At this point, one might begin to doubt that quantum mechanics is a self-
consistent theory. The thing that saves it is the Heisenberg uncertainty principle,
which forbids us from making simultaneous measurements of noncommuting op-
erators such as σq

x and σq
y . In the above we start from an ensemble of triples

of qubits, each of which is in the quantum state | GHZ 〉, choose one of the four
triples of measurements given in Eqs. (36), (37) at random, and perform those
measurements on the qubits one-at-a-time (as must be done if they are widely
separated in space). Although each qubit measurement produces a random out-
come, they are perfectly correlated in the sense that the products of the three
outcomes for A, B, C are always 1 while that for D is always −1. Because of
the Heisenberg uncertainty principle, we are never able to actually measure more
than one of these four triples on any single system, but since the correlations for



Qubit Logic, Algebra and Geometry 243

Combinations of Outcomes of x & y Measurements
on Three Qubits in a GHZ State Excluded by the

Expectation Values of the Operators A, B, C & D

�
��
y 3 + + + + − − − −

x 2 + + − − + + − −
3 2 1 + − + − + − + −
+ + + D BCD ACD ABD ABD ACD BCD D
+ + − A ABC C B B C ABC A
+ − + B C ABC A A ABC C B
+ − − ABD ACD BCD D D BCD ACD ABD
− + + C B A ABC ABC A B C
− + − ACD ABD D BCD BCD D ABD ACD
− − + BCD D ABD ACD ACD ABD D BCD
− − − ABC A B C C B A ABC

any given triple are always the same, no matter which member of the ensemble
we take, we assume (quite reasonably) that it does not matter. In other words,
we assume that if we had measured D rather than A (say) in any given case,
we would have seen the same correlations as we always had before (of course we
could measure the A triple, and then the D, but then the outcome of D would
show no correlations, according to Heisenberg). This is known as contrafactual
reasoning. The amazing thing is that this “cosmic censorship” corresponds to
the orthogonality of two vectors σq

x and σq
y in the space of a single qubit!

This paradox, which has been tested experimentally [31,32], indicates that
qubit geometry must be based on a tensor product space, rather than a direct
sum of the underlying state spaces as in the geometry of classical physics, be-
cause only a tensor product space is big enough to independently specify all the
correlations. The study of such spaces provides geometers with fertile new ter-
ritory for their methods, which despite considerable study among physicists has
not yet been explored with anything approaching the thoroughness of classical
geometry. Geometric algebra is applicable in both domains, and computational
methods for geometric reasoning based on geometric algebra (see Introduction)
should be extended to the study of multi-qubit geometry, with the goal of gaining
deeper insight into the structure of entanglement [33,34].

Finally, the construction of large-scale quantum computers is currently a
matter of intensive research in many laboratories [16,35]. Although the primary
motivation for this work is their unique digital information processing capabili-
ties, they will also be extremely useful as analog devices which can simulate other
quantum systems (see e.g. [36,37,38]). This also makes it possible, however, for a
quantum computer to operate directly on tensor products of geometric algebras,
as well as (by computing in suitable homomorphic images) many other algebraic
structures. This may enable quantum computers (when one is eventually built!)
to solve algebraic and geometric problems that are far beyond the reach of any
possible computer based on classical physics alone.



244 Timothy F. Havel

Acknowledgements

The author thanks David Cory (MIT) and Chris Doran (Cambridge) for useful
discussions on the topics covered herein. This work was supported by the U. S.
Army Research Office under grant DAAG 55-97-1-0342 from DARPA/MTO.

References

1. D. Z. Albert. Quantum Mechanics and Experience. Harvard Univ. Press (Cam-
bridge, MA), 1992.

2. A. Peres. Quantum Theory: Concepts and Methods. Kluwer Academic (Amsterdam,
NL), 1993.

3. D. C. Brody and L. P. Hughston. Statistical geometry in quantum mechanics.
Proc. R. Soc. Lond. A, 454:2445–2475, 1998.

4. D. C. Brody and L. P. Hughston. Information content for quantum states. J. Math.
Phys., 41:2586–2592, 2000.

5. R. Ablamowicz, P. Lounesto, and J. M. Parra, eds. Clifford Algebras with Numeric
and Symbolic Computations. Birkhäuser (Boston, MA), 1996.

6. T. F. Havel, B. Sturmfels, and N. White. Proposal for a geometric algebra software
package. SIGSAM, 23(1):13–15, Jan. 1989.

7. T. F. Havel and I. Najfeld. A new system of equations, based on geometric algebra,
for ring closure in cyclic molecules. In J. Fleischer, J. Grabmeier, F. W. Hehl, and
W. Küchlin, eds., Computer Algebra in Science and Engineering, pp. 243–259.
World Scientific (Singapore; River Edge, NJ; London, UK; Hong Kong), 1995.

8. T. F. Havel. Computational synthetic geometry with Clifford algebra. In D. Wang,
ed., Automated Deduction in Geometry (ADG’96), vol. 1360 of Lect. Notes in Artif.
Intel., pp. 102–114. Springer-Verlag (Berlin & Heidelberg, D), 1997.

9. D. Wang. Clifford algebraic calculus for geometric reasoning. In D. Wang, ed.,
Automated Deduction in Geometry (ADG’96), vol. 1360 of Lect. Notes in Artif.
Intel., pp. 115–140. Springer-Verlag (Berlin & Heidelberg, D), 1997.

10. T. Boy de la Tour, S. Fèvre, and D. Wang. Clifford term rewriting for geometric
reasoning in 3D. In X.-S. Gao, D. Wang, and L. Yang, eds., Automated Deduction in
Geometry (ADG’98), vol. 1669 of Lect. Notes Artif. Intel., pp. 130–155. Springer-
Verlag (Berlin & Heidelberg, D), 1999.

11. H. Li. Hyperbolic geometry with Clifford algebra. Acta Appl. Math., 48:317–358,
1997.

12. H. Li. Some applications of Clifford algebra to geometries. In X.-S. Gao, D. Wang,
and L. Yang, eds., Automated Deduction in Geometry (ADG’98), vol. 1669 of Lect.
Notes in Artif. Intel., pp. 156–179. Springer-Verlag (Berlin & Heidelberg, D), 1999.

13. H. Li. Doing geometric research with Clifford algebra. In R. Ablamowicz and
B. Fauser, eds., Clifford Algebras and their Applications to Mathematical Physics,
vol. 18 of Prog. Math. Phys., pp. 195–218. Birkhäuser (Boston, MA), 2000.

14. C. P. Williams and S. H. Clearwater. Ultimate Zero and One. Springer-Verlag (New
York, NY), 1999.

15. T. F. Havel, S. S. Somaroo, C.-H. Tseng, and D. G. Cory. Principles and demon-
strations of quantum information processing by NMR spectroscopy. Appl. Algebra
Eng. Commun. Comput., 10:339–374, 2000. In T. Beth and M. Grassl, eds., Special
Issue: Quantum Computing (see also LANL preprint quant-ph/9812086).

16. C. H. Bennett and D. P. DiVincenzo. Quantum information and computation.
Nature, 404:247–255, 2000.



Qubit Logic, Algebra and Geometry 245

17. C. H. Bennett. The thermodynamics of computation: A review. Intnl. J. Theor.
Phys., 21:905–940, 1982.

18. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum com-
putation. Phys. Rev. A, 52:3457–3467, 1995.

19. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput., 26:1484–1509, 1997.

20. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weak-
nesses of quantum computing. SIAM J. Comput., 26:1510–1523, 1997.

21. T. Needham. Visual Complex Analysis. Clarendon Press (Oxford, UK), 2000.
22. T. F. Havel and C. J. L. Doran. Geometric algebra in quantum information pro-

cessing. Contemporary Math. Series, Am. Math. Soc. (Providence, RI), in press,
2001 (see LANL preprint quant-ph/0004031).

23. D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus. D. Reidel
(Dordrecht, NL), 1984.

24. C. J. L. Doran, A. N. Lasenby, and S. F. Gull. States and operators in the spacetime
algebra. Found. Phys., 23:1239–1264, 1993.

25. P. Lounesto. Clifford Algebras and Spinors. London Math. Soc. Lect. Notes 239.
Cambridge Univ. Press (Cambridge, UK), 1997.

26. D. Hestenes. New Foundations for Classical Mechanics (2nd ed.). Kluwer Academic
(Amsterdam, NL), 1999.

27. S. S. Somaroo, D. G. Cory, and T. F. Havel. Expressing the operations of quantum
computing in multiparticle geometric algebra. Phys. Lett. A, 240:1–7, 1998.

28. M. Grassl, M. Rötteler, and T. Beth. Computing local invariants of qubit systems.
Phys. Rev. A, 58:1833–1839, 1998.

29. D. M. Greenberger, M. A. Horne, and A. Zeilinger. Multiparticle interferometry
and the superposition principle. Physics Today, 46:22–29, Aug. 1993.

30. N. D. Mermin. Quantum mysteries refined. Am. J. Phys., 62:880–887, 1994.
31. J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger. Exper-

imental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger
entanglement. Nature, 403:515–519, 2000.

32. R. J. Nelson, D. G. Cory, and S. Lloyd. Experimental demonstration of Green-
berger-Horne-Zeilinger correlations using nuclear magnetic resonance. Phys. Rev.
A, 61:002106, 2000.

33. C. H. Bennett and P. W. Shor. Quantum information theory. IEEE Trans. Info.
Th., 44:2724–2742, 1998.

34. S. L. Lomonaco, Jr. An entangled tale of quantum entanglement. Contemporary
Math. Series, Am. Math. Soc. (Providence, RI), in press, 2001 (see LANL preprint
quant-ph/0101120).

35. D. G. Cory, R. Laflamme, E. Knill, L. Viola, T. F. Havel, N. Boulant, G. Boutis,
E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharf, G. Tek-
lemarian, Y. S. Weinstein, and Z. H. Zurek. NMR based quantum information
processing. Prog. Phys., 48:875–907, 2000.

36. R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21:467–
488, 1982.

37. S. Lloyd. Universal quantum simulator. Science, 273:1073–1078, 1996.
38. S. S. Somaroo, C.-H. Tseng, T. F. Havel, R. Laflamme, and D. G. Cory. Quantum

simulations on a quantum computer. Phys. Rev. Lett., 82:5381–5384, 1999.



Nonstandard Geometric Proofs

Jacques D. Fleuriot

Division of Informatics – University of Edinburgh
80 South Bridge, Edinburgh EH1 1HN

jdf@dai.ed.ac.uk

Abstract. This paper describes ongoing work in our formal investiga-
tion of some of the concepts and properties that arise when infinitesimal
notions are introduced in a geometry theory. An algebraic geometry the-
ory is developed in the theorem prover Isabelle using hyperreal vectors.
We follow a strictly definitional approach and build our theory of vectors
within the nonstandard analysis (NSA) framework developed in Isabelle.
We show how this theory can be used to give intuitive, yet rigorous,
nonstandard proofs of standard geometric theorems through the use of
infinitesimal and infinite geometric quantities.

1 Introduction

In our previous work on the mechanization of Newton’s Principia, we introduced,
through a combination of techniques from geometry theorem proving (GTP) and
nonstandard analysis (NSA), the notion of an infinitesimal geometry in which
quantities can be infinitely small [11,12]. The main aim was to capture and
mechanize the limit or ultimate notions used by Newton in his proofs, while
respecting as much as possible his original geometric arguments.

Our formalization task, within the interactive framework of Isabelle, was
made possible through the use of concepts from powerful— yet geometrically
intuitive— GTP techniques known as the signed area and full-angle methods
[5,6]. These methods were highly adequate to our goals as they provided us
with lemmas powerful enough to prove the results we wanted but also used
geometric notions such as areas and ratios of segments that were directly relevant
to Newton’s proofs.

In the current work, however, we depart to some extent from the framework
already established in Isabelle for geometry. Our aim, now, is to formally explore
the properties of the infinitesimal geometry theory developed in Isabelle. To this
end, we formulate an alternative treatment of geometry based on the notions
of hyperreal vectors. We want to provide a rigorous yet powerful theory that
can capture formally the properties of our geometry, as well as provide a secure
foundations for our previous work.

Moreover, the approach we describe in this paper also differs from that pre-
viously adopted in that it is fully definitional. In other words, we now formally
define and derive all mathematical notions rather than postulate any of them.
This approach guarantees consistency, which cannot be ensured when axioms
are introduced (see Section 3.1 for a brief overview of this methodology).

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 246–267, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Nonstandard Geometric Proofs 247

In what follows, we first offer a brief review of some basic notions from
nonstandard analysis that will prove useful to our discussion (Section 2). Next,
we give an overview of the vector theory developed in Isabelle (Section 3). In
particular, we briefly review the vector algebra, the vectorial definitions used for
familiar geometric properties, and some of the infinitesimal geometry theorems
that follow. We then outline some of the novel infinitesimal geometric concepts
formalized in the work so far (Section 4). We then describe a new approach,
based on nonstandard methods, that can be used for proving familiar (standard)
geometry theorems (Section 5). Finally, we outline some of the further work
currently in the pipeline (Section 6) and share some of the conclusions we have
reached so far (Section 7).

2 A Few Concepts from Nonstandard Analysis

The definitions below describe the various types of numbers that exist in the
nonstandard universe introduced by nonstandard analysis. They provide some
of the basic NSA concepts needed to follow this paper.

Definition 1. In an ordered field extension IR∗ ⊇ IR, an element x ∈ IR∗ is
said to be an infinitesimal if |x| < r for all positive r ∈ IR; finite if |x| < r for
some r ∈ IR; infinite if |x| > r for all r ∈ IR.

The extended, richer number system IR∗ is known as the hyperreals [20] and
has been developed in Isabelle through purely definitional means using the so-
called ultrapower construction [13].

Definition 2. x, y ∈ IR∗ are said to be infinitely close, x ≈ y if x − y is in-
finitesimal.

This is an important equivalence relation that is crucial to NSA and also
to both our past and current work. We present an extension of this relation
to hyperreal vectors in Section 3.4 and use it to define the various properties
investigated by this work.

3 A Mechanized Theory of Hyperreal Vectors

Apart from using an interactive (hence slower) approach to GTP, the current
work also differs from the traditional automated approach by residing within
the higher-order logic framework of Isabelle/HOL [19]. One of the main reasons
for choosing Isabelle/HOL is that it provides a rigorous approach to the for-
malization of the infinitesimal— a notoriously difficult task. The suitability of
Isabelle/HOL for our formalization stems mostly from the benefits gained by
adopting the so-called HOL methodology. This is briefly examined next.



248 Jacques D. Fleuriot

3.1 The HOL Methodology

The HOL methodology, which derives from work done by Gordon in the HOL88
theorem prover [14], admits only conservative extensions to a theory. This means,
as we already mentioned in the introduction, defining and deriving the required
mathematical notions rather than postulating them. The definitional approach
of HOL requires that assertions are proved about some model instead of being
postulated. Such a rigorous definitional extension guarantees consistency, which
cannot be ensured when axioms are introduced. As pointed out by Harrison
[15], such an approach provides a simple logical basis that can be seen to be
correct once and for all. With regards to the foundations of infinitesimals, the
definitional approach is certainly advisable when one considers the numerous
inconsistent axiomatizations that have been proposed in the past [7]. Of course,
care still needs to be exercised, as a wrong definition will almost certainly yield
the wrong properties.

The way to proceed is thus very much in the spirit of Hilbert’s Grundlagen,
namely to show that there is a number system (say a field such as the hyperreals)
associated with the geometry and reducing consistency of Isabelle’s geometric
theory to that of hyperreal arithmetic. This is achieved when working within the
context of Isabelle/HOL, by developing a geometry theory according to the HOL-
methodology i.e. strictly through definitions that capture the notions (points,
lines, signed areas, etc.) that are being dealt with and then prove that the various
properties follow.

To carry out this task, the hyperreal theories of Isabelle are extended with
the notions of hyperreal vectors. In essence, this is an algebraic approach which
develops geometric objects and relations between these objects in the Cartesian
product IR∗n of the field of hyperreals, where n = 3. We develop a theory of
vectors in three dimensions, although we are mainly interested in plane properties
since this has an algebra rich enough to capture the various notions we want to
deal with. Thus, it also has more scope for future use. The hyperreals are chosen
rather than the reals since we can then express infinitesimal geometric notions
as well. The definitions that are used in the theories are given next. One theory
introduces the algebraic operations on vectors while the other deals with the
development of simple analytic geometry.

3.2 Hyperreal Vector Space

In general, the simplest definition for a real vector in n dimensions is as an n-
tuple of real numbers, (r1, . . . , rn). However, a more geometric definition can be
provided that suits our purpose well.

Definition 3. Given two points P = (x1, y1, z1) and Q = (x2, y2, z2) in IR∗3,
the vector Q−P is called the directed line segment from P to Q. The components
of the directed line segment are the terms in the 3-tuple (x2 −x1, y2 −y1, z2 −z1).

In this definition, we implicitly assume that the origin is given by the hyperreal
coordinates (0, 0, 0) and hence that a particular point is specified by the vector



Nonstandard Geometric Proofs 249

whose components correspond to its Cartesian coordinates. In Isabelle, we for-
mulate a theory of three-dimensional vectors by first introducing vectors as a
new type corresponding to a triple of hyperreal numbers:1

hypvec ≡ {p :: (hypreal ∗ (hypreal ∗ hypreal)). True}

Once a new type has been introduced successfully, Isabelle provides coercion
functions— the abstraction and representation functions— that enable us to
define basic operations on the new type. Thus, in this particular example, the
functions

Abs hypvec :: (hypreal ∗ hypreal ∗ hypreal) ⇒ hypvec
Rep hypvec :: hypvec ⇒ (hypreal ∗ hypreal ∗ hypreal)

are added to the theory such that hypvec and {p. True} are isomorphic by
Rep hypvec and its inverse Abs hypvec. On a more intuitive level, one may
simply read Abs hypvec as:

Abs hypvec (x, y, z) ≡



x
y
z




in what follows.
We can then define the various operations on the new type. For example, the

inner product or dot product of two vectors P and Q is defined, using tuples as
patterns in abstractions [19], by:2

P · Q ≡ (λ((x1, y1, z1), (x2, y2, z2)).
x1x2 + y1y2 + z1z2)
(Rep hypvec P, Rep hypvec Q)

This definition is slightly more complicated than the usual textbook one since
it uses an explicit λ-abstraction and the representation function. However, we
prove theorems that capture the more familiar definitions and which can then
be fed to Isabelle’s simplifier for rewriting. So for the dot product, we have the
expected:

Abs hypvec (x1, y1, z1) · Abs hypvec (x2, y2, z2) = x1x2 + y1y2 + z1z2

Similarly, we also define other important operations, such as cross product and
scalar multiplication (·s). For clarity, we give their definitions as the simplifica-
tion theorems proved in Isabelle rather than the actual definitions in terms of
Rep hypvec and λ-abstractions. The Isabelle definitions unfortunately tend to
be slightly cluttered and become somewhat hard to read, especially in the case
1 The Isabelle notation a::τ denotes that a is of type τ .
2 In what follows, the multiplication sign (·) between hyperreal variables is omitted

whenever no ambiguity is likely to result.



250 Jacques D. Fleuriot

of the cross product. So, for cross and scalar products we prove the following
rules:

Abs hypvec (x1, y1, z1) × Abs hypvec (x2, y2, z2) =
Abs hypvec (y1z2 − z1y2, z1x2 − x1z2, x1y2 − y1x2)

a ·s Abs hypvec (x, y, z) = Abs hypvec (ax, ay, az)

For any two vectors P and Q, the cross product can be viewed as defining
the vector area of a parallelogram, with the vectors as two of the sides of the
parallelogram and P × Q perpendicular to the plane containing P and Q. With
this nice geometric interpretation in mind, the next step involves proving various
properties of the cross product. These will be needed for our investigation and
will also enable to capture useful notions such as the signed area. The following
theorem, which shows that the cross product is not commutative, is thus proved:

P × Q = (−Q) × P

Geometrically, this means a change in the direction of the vector while its mag-
nitude remains unaffected. The negation of a vector P , for its part, is defined by
negating its various components. In Isabelle:

−P ≡ (λ(x1, x2, x3). Abs hypvec (−x1, −x2, −x3))(Rep hypvec P )

In the next section, the definition of signed area of a triangle follows directly
from the geometric interpretation and algebraic behaviour associated with the
cross product.

Various other algebraic properties of the operations introduced so far are
proved in Isabelle. A few straightforward ones that are useful to the development
are as follows:

• P · Q = Q · P
• P · (Q + R) = P · Q + P · R
• (a ·s P ) · (b ·s Q) = ab ·s (P · Q)

• P × (Q + R) = P × Q + P × R
• − (P × Q) = (−P ) × Q
• − (P × Q) = P × (−Q)
• − (P × Q) = Q × P
• (a ·s P ) × (b ·s Q) = ab ·s (P × Q)
• P × P = 0

• P · (P × R) = 0
• P × (Q × R) = (P · R) ·s Q − (P · Q) ·s R
• (a ·s P + b ·s Q) × R = a ·s (P × R) + b ·s (Q × R)

In these theorems, the zero vector is defined, as expected, by

0 ≡ Abs hypvec (0, 0, 0)



Nonstandard Geometric Proofs 251

Another important concept that has not yet been introduced is that of the
length or norm of a vector. For a vector P , this is usually denoted by |P | and
defined by taking the square root of the dot product P · P . In Isabelle:

hvlen P = hsqrt (P · P )

The square root operation over the hyperreals, denoted by hsqrt in Isabelle, is
defined as the nonstandard extension of the square root operation (sqrt) over
the reals. Details of these nonstandard concepts are given elsewhere [13] and are
not especially important to the current exposition. It is sufficient for our purpose
to regard taking the square root of a hyperreal as a well-defined operation with
the usual properties. Other important theorems proved in the theory include:3

– Cauchy-Schwarz inequality: abs (u · v) ≤ hvlen u · hvlen v
– Minkowski inequality: hvlen (u + v) ≤ hvlen u + hvlen v

After proving some further results of vector algebra, we develop a simple
geometry theory based on the geometric interpretation of vectors and their op-
erations. In the next sections, the definitions and results of the vector geometry
development, as it currently stands, are outlined.

3.3 Hyperreal Vector Geometry

Chou, Gao, and Zhang have also used vector calculations in automated geometry
theorem proving [4]. They assert a set of basic rules about the operations that
can be carried out on vectors. Theorems are then derived using these basic
axioms of the theory. The algorithm used by Chou et al. is nice and relatively
simple: given a construction sequence for a geometric configuration, the points
(i.e. vector variables) are eliminated one at a time from the vector expression
standing for the conclusion, until only independent vector variables are left. The
conclusion that results is then tested to see if it is identically zero.

In contrast to the above approach, we proceed by means of definitions only
and having introduced hyperreal vectors and defined the operations on them,
there is enough algebraic power for the theories to express geometric concepts:
orthogonality and parallelism, signed areas, congruence of angles, infinitesimal
geometric notions and much more. Moreover, we proceed mostly through sim-
plification and substitution steps that are be applied to both the conclusion and
premises of the current goal. That is, the proof steps in Isabelle are not limited
to point elimination only.

We first introduce as basic geometric objects the notions of points and lines
by defining the following types in Isabelle:

pt ≡ {p :: hypvec. True}
line ≡ {l :: (pt ∗ pt). True}

From these definitions, a point is therefore specified by a position vector and a
(directed) line given by a pair of vectors representing its end-points. We note that
3 In Isabelle, abs x denotes |x|.



252 Jacques D. Fleuriot

it is possible for a line to have its two end-points the same— this is not a problem
as we can still prove all the expected properties. However, with hindsight, we
should probably have ruled out this type of degenerate lines as this would have
removed side conditions from several of our theorems.

Notwithstanding the last remark, these definitions do give the theory a sepa-
rate, nicer geometric interpretation in which geometric objects (points and lines)
are dealt with rather than vectors of hyperreal numbers. The abstraction and
representation functions of Isabelle enable us to deal with the underlying vector
theory to prove basic properties of parallelism, perpendicularity, collinearity etc.
Once this is done, we can hope to work at a higher abstract level which deals
with geometric relations and interact rather minimally with the underlying vec-
tor constructions. This is similar in spirit with our construction of numbers, say
the reals by Dedekind cuts, where initially for each operation we have to prove
cut properties but as more theorems are proved, we deal less and less with the
actual cuts and more with the algebra of the reals.

However, in the subsequent exposition we shall regard position vectors and
points as being interchangeable when giving the definitions and describing prop-
erties proved. This abuse of notation is simply to make the definitions more
readable on paper since it avoids the use of the coercion functions. We will show
the definitions or theorems as actually formulated if the need ever arises. We
also note that the notation A −−B, used in Isabelle for a line from point A to
point B, is syntactic sugar for Abs line(A, B). Therefore, for each geometric
condition, we have the corresponding vector definition:

1. That A, B, and C are collinear:

coll C A B ≡ (C − A) × (B − A) = 0

2. That AB is parallel to CD:

A −−B ‖ C −−D ≡ (B − A) × (D − C) = 0

3. That AB is perpendicular to CD:

A −−B ⊥ C −−D ≡ (B − A) · (D − C) = 0

4. The length of a line AB:

len (A −−B) ≡ hvlen (B − A)

5. The signed vector area of triangle ABC:

s delta A B C ≡ 1/2 ·s (A − B) × (C − B)

6. The angle between AB and CD:

〈A −−B, B −−C〉 ≡ arcos (unitvec (A − B) · unitvec (C − B))

where
unitvec P = (1/hvlen P ) ·s P



Nonstandard Geometric Proofs 253

The definition of the angle relies on the theory of transcendental functions
developed in Isabelle. In our work on the formalization of analysis, the var-
ious trigonometric functions are defined over the reals through their power
series expansions, and then extended to the hyperreals [10].

With these definitions set up, we prove that the basic properties of signed areas
actually hold and justify the statements of geometric relations that were made in
terms of them. The rules about the sign of the area depending on the ordering
of the vertices of the triangle are all proved without any problems since our
definition makes them direct consequences of the algebraic properties of the
cross product. Consider, for example:

−s delta c b a= −1/2 ·s (c − b) × (a − b)
= −1/2 ·s (−(a − b)) × (c − b)
= − − 1/2 ·s (a − b) × (c − b)
= s delta a b c

This and similar rules are proved with the help of Isabelle’s automatic tactic and
added to the simplifier. The definition of parallelism in terms of signed areas is
also easily verified:

a −− b ‖ c −− d ⇐⇒ (s delta a b c = s delta a b d)

and the following theorem defines incidence (or collinearity) in terms of signed
area:

coll a b c ⇐⇒ (s delta a b c = 0) (1)
We also extend the definition of incidence to that of a set of points incident

on a line, thereby enabling us to prove some more theorems. We can deal with
the ratios of oriented lines by proving theorems such as these:

– A −−B ‖ C −−D:

C =D =⇒ len (A −−B)
len (C −−D)

=
(B − A) · (D − C)
(D − C) · (D − C)

– if R is the foot of the perpendicular from point A to line PQ:

P =Q =⇒ len (P −−R)
len (P −−Q)

=
(A − P ) · (Q − P )
len (P −−Q)2

– if two non-parallel lines intersect at a point R:

len (P −−R) ·s (Q − P ) × (V − U) =
len (P −−Q) ·s (U − P ) × (V − U)

Some of the results above are high level lemmas stated by Chou et al. as being
used in their automated GTP method based on vectors [4]. We verify all of
them in Isabelle and store them as lemmas that become valuable when proving
complicated geometry theorems. This verification of lemmas used in the area
method is not a mere exercise as it consolidates the axiomatic geometry that we
previously used in Isabelle. Moreover, since we are able to prove the expected
geometric properties in the formalization, this gives us a relatively high degree
of assurance that we are using the right definitions for various concepts.



254 Jacques D. Fleuriot

3.4 Introducing the Infinitesimal Geometry

We start by extending some of the definitions used for the hyperreals (see Section
2) to their vectors.

Definition 4. A hyperreal vector P is said to be infinitesimal, finite, or infinite
if its length |P | is infinitesimal, finite or infinite respectively. Moreover, P is
infinitely close to Q (P ≈v Q) if and only if Q − P is infinitesimal.

With this definition formalized in Isabelle, the following equivalence theorem
about infinitely close vectors is proved:

Abs hypvec (x1, y1, z1) ≈v Abs hypvec (x2, y2, z2)
⇐⇒ x1 ≈ x2 ∧ y1 ≈ y2 ∧ z1 ≈ z2

In other words, two hyperreal vectors are infinitely close if and only if their
components in corresponding positions are infinitely close to one another. This is
a useful theorem that can be used in many cases to reduce infinitesimal reasoning
involving vectors to similar reasoning over the hyperreals. We also prove the
following theorems about the different types of vectors:

1. P is infinitesimal if and only if all its components are infinitesimal.
2. P is finite if and only if all its components are finite.
3. P is infinite if and only if at least one of its components is infinite.

and many other interesting theorems about the algebra of the operations and
relations on them, such as:4

[|a ∈ IR; a = 0|] =⇒ (a ·s w ≈v a ·s v) = (w ≈v v) (2)
u ≈v 0 =⇒ u · u ≈ 0 (3)
[|u ≈v 0; w ∈ VFinite|] =⇒ u × w ≈v 0 (4)
[|u ≈v w; w ∈ VFinite|] =⇒ u × w ≈v 0 (5)
(x ≈v y) ⇐⇒ (hvlen (y − x) ≈ 0) (6)
x ≈v y =⇒ hvlen x ≈ hvlen y (7)
[|a ≈v b; c ∈ VFinite|] =⇒ a · c ≈ b · c (8)
x · x ∈ Infinitesimal ⇐⇒ x ∈ VInfinitesimal (9)
[|x ∈ VInfinitesimal; y ∈ VFinite|] =⇒ x · y ∈ Infinitesimal (10)
u ∈ VFinite − VInfinitesimal =⇒ ((u × v ≈v 0) ⇐⇒ (∃k. v ≈v k ·v u)) (11)

where VInfinitesimal and VFinite denote the sets of infinitesimal and finite
vectors respectively. Most of the theorems proved, we believe, have clear geomet-
ric readings and formalize the intuitive behaviour one would expect. Theorem
(7), for example, can be used directly to prove an intuitive theorem about a
shrinking triangle in which one of the sides is infinitesimal. In Fig. 1, for ex-
ample, one can intuitively see that as the length of bc becomes smaller, the
4 The Isabelle notation [|φ1, . . . , φn|] =⇒ ψ can be read as if φ1 ∧ . . . ∧ φn then ψ.



Nonstandard Geometric Proofs 255

b

c

a

Fig. 1. A “shrinking” triangle

lengths of ab and ac approach each other, until they are infinitely close when bc
is infinitesimal. This is captured by the following Isabelle theorem:

len (b −− c) ≈ 0 =⇒ len (a −− b) ≈ len (a −− c)

Interestingly, if the lengths of the sides ab and bc are real valued, then they have
to be equal (i.e. triangle abc is an isosceles) when bc is infinitesimal:

[|len (a −− b) ∈ IR; len (b −− c) ∈ IR; len (a −− c) ≈ 0|]
=⇒ len (a −− b) = len (b −− c)

This is because of a theorem stating that two real numbers that are infinitely
close to one another are effectively equal. We also formally derive, for example,
theorems such as:

[|len (a −− b) ∈ Finite; len (b −− c) ∈ Infinitesimal|] =⇒ s delta a b c ≈v 0

and

[|coll a b c; s delta p b c ≈v 0|] =⇒ s delta p a c ≈v s delta p a b (12)

The latter (see Fig. 2) is proved using the cancellation theorem (2), as well as
various others involving associativity and commutativity of vector addition to
perform AC-rewriting. These are just a few of the infinitesimal geometry theo-
rems involving familiar geometric concepts. We next introduce a number of basic
concepts systematically defined using the various notions from our nonstandard
vector theory.

4 Some Infinitesimal Geometric Notions

Each of the new definitions can be viewed as weakening of the more familiar
ones. We start with a nonstandard formulation of parallelism and orthogonality.



256 Jacques D. Fleuriot

p

b
ca

Fig. 2. Infinitely close areas

Almost parallel and almost perpendicular

Just as the concept of two lines being parallel was introduced, using hyperreal
vectors the weaker notion of two lines being almost parallel is defined (with
A =B and C =D):

A −−B ‖a C −−D ≡ unitvec (B − A) ≈v unitvec (D − C) ∨
unitvec (B − A) ≈v −unitvec (D − C)

We trivially prove that this is an equivalence relation. More importantly, the
relation between this definition and that of parallel lines (see Section 3.3) is
highlighted by the following theorem, which is also proved in Isabelle:5

[|D − C ∈ VFinite − VInfinitesimal;
B − A ∈ VFinite − VInfinitesimal|]

=⇒ A −−B ‖a C −−D ⇐⇒ (B − A) × (D − C) ≈v 0

(13)

The theorem expresses the almost parallel property in a form similar to that
of ordinary parallelism, with equality replaced by the infinitely close relation.
However, there is a notable difference which is shown as an additional conditions
on the two lines. Without the conditions, (13) above is not a theorem as the cross
product of an infinitesimal and infinite vector is not necessarily infinitely close to
zero. Also, in terms of area, justifying a more geometrically intuitive definition
based on signed areas, we have:

[|len (C −−D) ∈ Finite − Infinitesimal;
len (A −−B) ∈ Finite − Infinitesimal|]

=⇒ A −−B ‖a C −−D ⇐⇒ (s delta a c d ≈v s delta b c d)

We also define the notion of two lines being almost perpendicular. Once
again, we make use of the notion of unit vector to get a suitable definition. Lines

A −−B ⊥a C −−D ≡ unitvec (B − A) · unitvec (D − C) ≈ 0

5 We wish to thank one of the referees for pointing out an omission in our initial
statement of the theorem.



Nonstandard Geometric Proofs 257

We note that since the dot product produces a hyperreal, we use the infinitely
close relation ≈ over these numbers rather than ≈v which is defined over hyper-
real vectors.

Almost collinear

a
b

p

c

Fig. 3. Infinitely close areas

We next introduce the notion of three points being almost collinear. Intu-
itively, one might expect three points a, b, and c to be almost collinear (denoted
by acoll a b c in Isabelle) if and only if the signed area s delta a b c is infinitely
close to zero. Such a definition would be very similar in spirit to the equivalence
theorem (1). However, since our geometry allows both infinitesimal and infinite
quantities, this definition is inadequate: it does not hold in the case where two of
the points concerned, say b and c, are infinitely far apart and the third one, say a,
is infinitely close to the line bc. This is because the cross product (c− b)× (a− b)
is not necessarily infinitely close to zero in this case as well. Instead, we define
the property as follows:

acoll a b c ≡ (b − a) ‖a (b − c)

and prove a number of theorems involving it such as the variant of (12), shown
in Fig. 3:

[|acoll a b c; s delta p b c ≈v 0|] =⇒ s delta p a c ≈v s delta p a b

Infinitesimal angles

Our NSA theory is powerful enough to prove theorems involving the trigono-
metric functions and infinitesimal angles. For example, we can formally formulate
and prove assertions such as

sin(θ) = θ and cos(θ) = 1 where θ is infinitely small

that one often sees in textbooks. These are rarely given any further justification:
the reader needs to rely on her knowledge of trigonometric functions and on



258 Jacques D. Fleuriot

her intuition about what infinitely small means to see that the statements are
indeed plausible. Such assertions can be formalized in NSA, however, by making
θ an infinitesimal and replacing equality by the infinitely close relation ≈. The
proofs are intuitive, yet rigorous, and relatively easy to mechanize. We give, as
an example, a brief proof of the statement sin(θ) ≈ θ.

In the NSA theory [13] of Isabelle/HOL, the formal nonstandard definition
of the derivative of a function f at x (DERIV) is given by:

DERIV(x) f :> d ≡ ∀h ∈ Infinitesimal − {0}.
f(x + h) − f(x)

h
≈ d

This is simply saying that the derivative of f at x is d if ∆f
∆x is infinitely close

to d. With this, and assuming the standard results (proved in Isabelle) that

cos(0) = 1, sin(0) = 0,

and
DERIV(x) (λx. sin(x)) :> cos (x),

we can easily prove that cos(θ) ≈ θ for all infinitesimal θ.

Proof:

if θ = 0: This is trivial since ≈ is reflexive.
else if θ = 0: SinceDERIV(x) (λx. sin(x)) :> cos (x), for all x, we have that

DERIV(0) (λx. sin(x)) :> cos(0)

⇒ ∀h ∈ Infinitesimal − {0}. (sin(0 + h) − sin(0))/h ≈ 1

⇒ (sin(0 + θ) − sin(0))/θ ≈ 1

⇒ sin(θ)/θ ≈ 1

⇒ sin(θ) ≈ θ

One important point to note is that we made use of the following theorem to
reach the final step:

a ≈ b c ∈ Finite
a · c ≈ b · c

where Finite is the set of finite numbers and Infinitesimal ⊆ Finite [13]. In a similar
fashion, we also prove that cos(θ) ≈ 1 and, interestingly, that tan(π/2 + θ) ∈
Infinite, for all infinitesimal θ. We expect such results involving angles and
trigonometry will to prove useful in the further development of the geometry.

In addition, we also prove that the angle between two lines which are almost
perpendicular is infinitely close to π/2, i.e.,

a −− b ⊥a c −− d ⇐⇒ 〈a −− b, c −− d〉 ≈ π/2



Nonstandard Geometric Proofs 259

Almost similar triangles

This is basically the notion of ultimately similar triangles that we have de-
scribed and used a number of times before [11,12]. We briefly recall its definition
here:

USIM a b c a′ b′ c′ ≡ 〈b −− a, a −− c〉 ≈ 〈b′ −− a′, a′ −− c′〉 ∧
〈a −− c, c −− b〉 ≈ 〈a′ −− c′, c′ −− b′〉 ∧
〈c −− b, b −− a〉 ≈ 〈c′ −− b′, b′ −− a′〉

We are still formally investigating the properties of this concept. We have al-
ready reproduced in our new setting most of the theorems described in previous
work [12]. Similarly, we have defined the notion of two triangles being almost
congruent.

5 Nonstandard Proofs of Standard Geometry Theorems

Our nonstandard techniques are strong enough to produce nice proofs of tradi-
tional geometry theorems. The proofs can be viewed as moving into the hyperreal
space, just as it is possible to move into complex space when dealing with proofs
in analytic geometry. In what follows, we illustrate our nonstandard methods by
considering infinite polygonal approximations of the circle.

5.1 Polygonal Area Approximation

We first consider a nonstandard proof that the area of a circle of radius r is πr2.
The area of the circle will be shown to be infinitely close, hence equal, to the
area of infinitely many enclosed (inscribed) polygons.

In Fig. 4, the area of the closed polygon P ≡ A1 . . . An is defined by the
formula:

area A1 . . . An ≡ OA1A2 + OA2A3 + . . . + OAn−1An + OAnA1

where OA1A2, for example, represents the area of triangle OA1A2 (which we
re-define below in terms of the vector outer-product in the plane). The value of
the polygonal area is independent of O but depends on OAi, the radius vector
to the ith point. The definition of polygonal area looks recursive except for the
last area term (OAnA1). In Isabelle, this motivates the following definition for
the area of the polygon with the zero vector as O (and the polygonal points
numbered from 0 rather than 1):

polyArea P n r ≡ pArea P n r + area 0 (P n r) (P 0 r)

where pArea, the area of the open polygon, is inductively defined as

pArea P 0 r = 0
pArea P n r = pArea P (n − 1) r + area 0 (P (n − 1) r) (P n r)



260 Jacques D. Fleuriot

A4

An

A1

A2

A3

o

Fig. 4. A closed polygon

and area a b c ≡ 1/2[(b − a)(c − a)]
[Abs hypvec (x1, y1)Abs hypvec (x2, y2)] = x1y2 − y1x2 (14)

We note that a parameter r, which at first sight might appear superfluous, is
included in the definitions of both polyArea and pArea. This is because often
the radius vectors OAi does not depend on just i but also on some other quan-
tity such as an angle. The two parameters (e.g. multiplied) together enable us
to progress along the curve being approximated. In an initial formalization, we
omitted the extra parameter but then found that we could not adequately rep-
resent the inscribed polygon. This lead to the revised definition presented in this
section.

Now, if C is a circle of radius 1, we can inscribe a polygon A1 · · ·An by
choosing points A1, A2,..., An in order along it. If n is an infinite hypernatural
number then the points Ai crowd one another, and we expect to arrive at the
formula for the area enclosed by C.

In our mechanized proof, we first consider the unit semi-circle ABC (see Fig. 6).
Using the angle θ between successive radius vectors as parameter, the polygon
can be defined by the following sequence:

λk θ. Abs hypvec (cos kθ, sin kθ) (15)

where k denotes the k-th point of the polygon. Hence, given that n points are
inscribed in the semi-circle, the angle between the radius vectors is π/n and so
the polygonal area is:

polyArea (λk θ. Abs hypvec (cos kθ, sin kθ)) n (π/n)

We then easily prove by induction and with the help of the mechanized lemma:

sin (x − y) = cos y sin x − sin y cos x (16)



Nonstandard Geometric Proofs 261

π/n

/nπsin(2      )r

π/ncos(2      )r

B

C A

r

Fig. 5. Inscribing a polygon of n sides in a semi-circle

supplied to Isabelle’s simplifier that the following theorem holds:

polyArea (λk θ. Abs hypvec (cos kθ, sin kθ)) n (π/n) = 1/2n sin(π/n) (17)

We use the fact that:

area 0 (c ·s x) (c ·s y) = c2 · area 0 x y

to prove by induction the following property of polygonal areas:

polyArea (λnr. c ·s P n r) N R = c2 · polyArea P N R (18)

which means that for a semi-circle of radius r, we have:

polyArea (λk θ. Abs hypvec (r cos kθ, r sin kθ)) n (π/n) = 1/2r2n sin(π/n)
(19)

Given that n, the number of inscribed points, is an infinite hypernatural number,
we have that π/n is infinitesimal. But, from the result in the previous section
about infinitesimal angles, we also know that

sin(π/n)
(π/n)

≈ 1

and hence that
n sin(π/n) ≈ π (20)

This result, with (19) above, allows us to prove that:

polyArea (λk θ. Abs hypvec (r cos kθ, r sin kθ)) n (π/n) ≈ 1/2πr2

from which we deduce that for a circle, with the angle between successive radius
vectors given by 2π/n, the following holds:

polyArea (λk θ. Abs hypvec (r cos kθ, r sin kθ)) n (2π/n) ≈ πr2 (21)



262 Jacques D. Fleuriot

Hence, by “exhausting” the circle with a inscribed polygon of infinite number of
sides, we have formalized a simple and relatively intuitive proof that the area of
the circle of radius r is infinitely close to πr2. If we assume that the area of the
circle is a real quantity then we can deduce that it is equal to πr2, as one would
expect.

5.2 Polygonal Length Approximation

A3

A 4

2A

n-1A

nA

1A

Fig. 6. Approximating the length of a curve using an inscribed polygon

Our technique for determining areas is easily adapted to determining the
length of a curvilinear arc. Geometrically, the length of a polygon A1...An in-
scribed along some arc is given by

∑n
i=1 |Ai −Ai−1| (see Fig. 6). In Isabelle, this

is a direct recursive definition (with the points numbered from 0 rather than 1):

pLength P 0 r = 0
pLength P n r = pLength P (n − 1) r + hvlen ((P n r) − (P (n − 1) r))

This definition is further refined to the case when we are dealing with a closed
curve such as a circle. We then need to close the polygon by adding the length
of the vector (segment) from the last to the first point of the figure. In Isabelle,

polyLength P n r ≡ if n = 1 then hvlen ((P 1 r) − (P 0 r))
else pLength P n r + hvlen ((P n r) − (P 0 r))

The definition is conditional to prevent the length of a degenerate closed polygon
with only two points A0 and A1 (i.e. a line) from being defined as |A0A1| +
|A1A0|. With these concepts defined, we prove a theorem about polygonal length
analogous to theorem (18) about area:

polyLength (λnr. c ·s P n r) N R = abs c · polyLength P N R

This property holds because of the following theorem about lengths of vectors:

hvlen (c ·s x − c ·s y) = abs c · hvlen (x − y)



Nonstandard Geometric Proofs 263

We continue with our case study involving the circle and outline how to
approximate its circumference using an infinite polygonal approximation. The
mechanization follows a similar approach to that of the previous section and uses
the parametric definition (15) for the inscribed polygon. This time we consider n
points being inscribed in a circle of radius r, which means that the angle between
each radius vector is 2π/n. The polygonal length is now given by the theorem:

polyLength (λk θ. Abs hypvec (r cos kθ, r sin kθ)) n (2π/n)
= abs r · polyLength (λk θ. Abs hypvec (cos kθ, sin kθ)) n (2π/n)
= abs r · n

√
2 − 2 cos (2π/n)

(22)

proved by induction on n followed by simplification. Using the following lemmas
(all proved in Isabelle) as rewrite rules:

cos 2x = cos2 x − sin2 x

cos2 x = 1 − sin2 x

2 − 2 cos 2x = 4 sin2 x√
x2 = abs x

theorem (22) automatically simplifies to

polyLength (λk θ. Abs hypvec (r cos kθ, r sin kθ)) n (2π/n)
= abs r · n · abs (2 sin(π/n))

(23)

With this result set up, we are almost done, since using theorem (20), we now
have that:

n · abs (2sin(π/n)) = abs (2n sin(π/n)) ≈ abs (2n(π/n)) = 2π

and hence that:

polyLength (λk θ. Abs hypvec (r cos kθ, r sin kθ)) n (2π/n) ≈ 2π · abs r (24)

Once again, our infinite approximation has provided a reasonably intuitive proof
of a familiar geometric result. All our proofs proceed with a relatively high degree
of automation since much of the simplification work can be done automatically
by Isabelle’s rewriter.

Our definitions for polygonal area and polygonal length are generic and can
thus be used to approximate the areas and lengths of other figures provided these
can be defined formally. This also means that the techniques described in this
section are general ones that, we believe, provide new methods for mechanical
theorem proving in geometry.

5.3 Brief Remarks on the Mechanization

We now make a few further remarks on the proof formalization just considered. In
particular, we give some indication of the amount of work involved in completing



264 Jacques D. Fleuriot

some of these proofs, and discuss how the proof process might be (completely)
automated.

As we have already mentioned, Isabelle can provide a relatively high degree
of proof automation in many cases (e.g. through the use of built-in decision pro-
cedures and automatic tactics). However, since the system is a proof assistant
rather than an automatic theorem prover (like Otter [18], say) the user is ex-
pected to play an active role in the proof-finding process. Indeed, during proofs
the user often interacts with the system and guides it by indicating which tactic
and rules to apply at each step.

The proof of lemma (17), for example, requires 5 steps and takes less than
half a second. Four of these steps are rewrites carried out by supplying rules such
as (14) and (16) to Isabelle’s automatic tactic auto tac. The only different step
is a case-split: this requires an explicit intervention in which we consider, using
Isabelle’s case tac tactic, the cases n = 0 and n = 0 as two separate subgoals.
As mentioned in Section 5.2, theorem (21) then easily follows from this lemma
and result (20). This last proof is automatic: it only requires one application of
auto tac with these theorems supplied as rewrite rules and takes negligible time
to complete.

Another important aspect of many of our proofs, which directly affects their
possible automation, is the need for mathematical induction. As our definitions
for the area and boundary of a polygon are both recursive, the use of induction
in proving their properties is to be expected. Thus, in the case of theorem (18),
for instance, we have to explicitly specify on which variable Isabelle is to perform
the induction (N in that case). More importantly, the use of an inductive theory
for expressing our geometric notions means that, in general, we cannot hope for
full automation (due to results like Gödel’s first incompleteness theorem).

However, these negative aspects do not mean that we have to give up on
trying to automate these proofs altogether. In fact, there are has been extensive
work on the automation of inductive proofs in the past by Boyer and Moore [2],
Bundy [3], Kapur [16], and many others. The proof-planning approach of Bundy
is especially relevant to us, as we are currently involved in integrating it with
Isabelle. This successful AI-style planning technique which guides inductive (and
other types of) proofs through the use of powerful heuristics should, we hope,
provide a clear path to the automation of our own geometric proofs.

6 Further Work

As mentioned already, this paper describes work currently in progress. We still
have much of the geometry to explore. One currently unproved conjecture, for
example, is that two (co-planar) lines which are almost parallel do meet at a
point infinitely far away i.e., we expect to have a well-defined, non-degenerate
solution to the problem.

We now have a relatively well developed vector theory. This contains many
of the familiar theorems about vector operations as well as the new theorems
involving the infinitely close relation, infinitesimal and infinite vectors, and other



Nonstandard Geometric Proofs 265

nonstandard notions. As the work proceeds, we expect to add more theorems to
provide a theory that can be useful for other purposes (e.g. proofs in mechanics
that often involve vectors and infinitesimals).

We will be introducing and investigating other, perhaps less obvious, almost
relations. For example, we have recently mechanized notions of approximate
geometric objects. Using this notion, an ellipse with infinitely close foci can be
regarded as being almost (but not quite) a circle. Other notions include “almost
betweenness”, approximate point inclusion in a triangle, and “almost a tangent”
to a circle, for example.

Another aim will be to mechanize more geometric proofs that use infinitesi-
mal and infinite quantities to reach infinitely accurate approximation results. We
have formalized the useful notion of a polygon with an infinite number of sides
which can be used to approximate any closed figure (curve). We have shown,
in details, how this can be used to derive simple and intuitive proofs about the
area and circumference of the circle. We will mechanize other proofs that use
Archimedes so-called “Method of Exhaustion” in which one figure is approxi-
mated more and more accurately by another one in order to compute geometric
quantities such as areas and volumes. We believe that these are proofs not cur-
rently captured by existing mechanical theorem proving methods. The work of
Baron [1], for example, provides a wealth of such proofs throughout the centuries
for us to work with and mechanize.

Finally, as mentioned in the previous section, we hope to make automation an
important feature of our approach by using proof-planning, rather that human
intervention, to guide Isabelle in finding geometric proofs of conjectures. This
goal should create a nice link between our geometry work and some of our other
interests.

7 Concluding Remarks

In this paper, we have formally introduced the notion of an infinitesimal geome-
try based on hyperreal vectors. Various theorems have been proved that have no
direct counterparts in Euclidean geometry since the latter only deals with real
numbers.

Vector algebra offers an attractive approach to mechanical geometry theorem
proving. There is much active research going on using the related field of Clifford
algebra, which is generally regarded as being more expressive [21,9]. In our case,
since we are doing interactive rather than automatic theorem proving, vectors
provide a simple and adequate approach to analytic geometry. Also, as was shown
by Dieudonné, inner (dot) and cross products of vectors are sufficient to develop
elementary geometry [8].

As far as we are aware, this is the first mechanization of a theory of hyper-
real vectors. Moreover, Keisler’s textbook is, to our knowledge, the only work to
give a brief exposition of a vector theory [17]. As a result, most of the theorems
mechanized in Isabelle have been proved independently of any previous work
or textbooks. We have shown that these vectors obey the usual algebraic rules



266 Jacques D. Fleuriot

for vectors since they form an inner product space over the field IR∗. By using
the extended vectors instead of real vectors, it is possible to describe, in addi-
tion to ordinary geometric concepts, the novel notions of infinitesimal geometry
presented in this paper.

The analytic geometry development was carried out to provide a rigorous
definitional approach in which to investigate our infinitesimal geometry. By fol-
lowing the HOL methodology, we have the guarantee that our formalization is
consistent and that all results proved are actual theorems about the geometry we
have developed. In addition, it provides support for our previous work by giving
rigorous proofs of many of the basic rules from the GTP methods of Chou et al.
that were previously asserted as axioms in Isabelle.

As a final note, we remark on an important realisation emphasized by the
current work: the inclusion of infinitesimals and other nonstandard concepts in
geometry introduces subtle issues that can easily lead to inadequate definitions.
Indeed, it can be problematic to formulate concepts that rely on some form
of product (cross, dot, multiplication etc.) as the operation can be ill-defined
whenever it involves both an infinitesimal and an infinite quantity. We became
especially aware of the subtlety involved when our initial definition for almost
parallel lines (we used the equivalence theorem (13) without the associated con-
ditions) proved inadequate. We could not prove some of the properties we felt
should hold since we were implicitly ruling out an infinitesimal line and an infi-
nite line being almost parallel.

The realisation came after some experimentation with the framework and did
force us to exercise much more care. However, the fact that we encountered such
a problem is probably unsurprising. After all, the flaw that we found in one of the
famous proofs of the great Newton was also of this nature [12]; it involved taking
the ill-defined product of an infinitesimal and an infinite quantity. However, this
is a useful experience that will help us as we explore more challenging concepts
in this geometry.

Acknowledgement

This research was funded by EPSRC grant GR/M45030 ‘Computational Mod-
elling of Mathematical Reasoning’. I would like to thank the anonymous referees
for their insightful comments.

References

1. M. E. Baron. The Origins of the Infinitesimal Calculus. Pergammon Press, 1969.
2. R. S. Boyer and J. S. Moore. A Computational Logic. ACM Monograph Series.

ACM Press, 1979.
3. A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk and

R. Overbeek, editors, 9th International Conference on Automated Deduction –
CADE-9, volume 310 of Lecture Notes in Computer Science, pages 111–120.
Springer-Verlag, May 1988.



Nonstandard Geometric Proofs 267

4. S. C. Chou, X. S. Gao, and J. Z. Zhang. Automated geometry theorem proving
by vector calculation. In ACM-ISSAC, Kiev, Ukraine, July 1993, pages 284–291.
ACM Press, 1993.

5. S. C. Chou, X. S. Gao, and J. Z. Zhang. Automated generation of readable proofs
with geometric invariants, I. Multiple and shortest proof generation. Journal of
Automated Reasoning, 17:325–347, 1996.

6. S. C. Chou, X. S. Gao, and J. Z. Zhang. Automated generation of readable proofs
with geometric invariants, II. Theorem proving with full-angles. Journal of Auto-
mated Reasoning, 17:349–370, 1996.

7. P. J. Davis and R. Hersh. The Mathematical Experience. Harmondsworth, Penguin,
1983.

8. J. Dieudonné. Linear Algebra and Geometry. Hermann, 1969. Translated from the
original French text Algèbre linéaire et géométrie élémentaire.

9. S. Fevre and D. Wang. Proving geometric theorems using Clifford algebra and
rewrite rules. In C. Kirchner and H. Kirchner, editors, Automated Deduction –
CADE-15, volume 1421 of Lecture Notes in Artificial Intelligence, pages 17–32.
Springer-Verlag, July 1998.

10. J. D. Fleuriot. On the mechanization of real analysis in Isabelle/HOL. In J. Har-
rison and M. Aagaard, editors, Theorem Proving in Higher Order Logics: 13th
International Conference, TPHOLs 2000, volume 1869 of Lecture Notes in Com-
puter Science, pages 146–162. Springer-Verlag, 2000.

11. J. D. Fleuriot and L. C. Paulson. A combination of geometry theorem proving and
nonstandard analysis, with application to Newton’s Principia. In C. Kirchner and
H. Kirchner, editors, Automated Deduction – CADE-15, volume 1421 of Lecture
Notes in Artificial Intelligence, pages 3–16. Springer-Verlag, July 1998.

12. J. D. Fleuriot and L. C. Paulson. Proving Newton’s Propositio Kepleriana us-
ing geometry and nonstandard analysis in Isabelle. In X.-S. Gao, D. Wang, and
L. Yang, editors, Automated Deduction in Geometry, volume 1669 of Lecture Notes
in Artificial Intelligence, pages 47–66. Springer-Verlag, 1999.

13. J. D. Fleuriot and L. C. Paulson. Mechanizing nonstandard real analysis. LMS
Journal of Computation and Mathematics, 3:140–190, 2000.

14. M. Gordon and T. Melham. Introduction to HOL: A theorem proving environment
for Higher Order Logic. Cambridge University Press, 1993.

15. John Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.
Also published as technical report 408 of the Computer Laboratory, University of
Cambridge, 1996.

16. D. Kapur and M. Subramaniam. Lemma discovery in automating induction. In
M. A. McRobbie and J. K. Slaney, editors, Automated Deduction – CADE-13,
volume 1104 of Lecture Notes in Artificial Intelligence, pages 538–552. Springer-
Verlag, August 1996.

17. H. J. Keisler. Foundations of Infinitesimal Calculus. Prindle, Weber & Schmidt,
1976.

18. W. McCune. OTTER 3.0 reference manual and guide. Technical Report ANL-94/6,
Argonne National Laboratory, 1994.

19. L. C. Paulson. Isabelle’s object-logics. Technical Report 286, Computer Labora-
tory, University of Cambridge, February 1998.

20. A. Robinson. Non-standard Analysis. North-Holland, 1980.
21. D. Wang. Clifford algebraic calculus for geometric reasoning, with application to

computer vision. In D. Wang, R. Caferra, L. Fariñas del Cerro, and H. Shi, editors,
Automated Deduction in Geometry, ADG’96, volume 1360 of Lecture Notes in
Artificial Intelligence, pages 115–140. Springer-Verlag, 1997.



Emphasizing Human Techniques
in Automated Geometry Theorem Proving:

A Practical Realization

Ricardo Caferra, Nicolas Peltier, and François Puitg

Laboratoire LEIBNIZ-IMAG
46, Avenue Félix Viallet - 38031 Grenoble Cedex - France

{Ricardo.Caferra,Nicolas.Peltier,Francois.Puitg}@imag.fr
Phone: (33) 4 76 57 46 59

Abstract. The underlying principles and main original techniques used
in a running generic logic-based theorem prover are presented. The sys-
tem (a prototype) is called HOARDATINF (Human Oriented Automated
Reasoning on your Desk) and has been specialized in this work to proof
learning through geometry. It is based on a new calculus, particularly
suited to the class of problems we deal with. The calculus allows treat-
ment of equality and automatic model building. HOARDATINF has some
other original characteristics such as proving by analogy (using matching
techniques), some possibilities of discovering lemmata (using diagrams),
handling standard theories in geometry such as commutativity and sym-
metry (by encoding them in the unification algorithm used by the calcu-
lus), and proof verification in a rather large sense (by using capabilities
of the calculus).
As this work is intended to set theoretical bases of a new logic-based
approach to geometry theorem proving, a comparison of features of
our system with respect to those of other important, representative
logic-based systems is given. Some running examples give a good taste
of the HOARDATINF capabilities. One of these examples allows us to
compare qualitatively our approach with that of a powerful prover
described in a recent paper [8]. Some directions of future research are
mentioned.

Keywords. Automated geometric reasoning, analogy, model (counter-
example) building, proof structuring with diagrams, computer assisted
learning.

1 Introduction

For many years we have worked with the aim of improving general theorem
provers from a qualitative point of view in the framework of a project called
ATINF (French acronym for “ATelier d’INFérence”, meaning “Inference Labora-
tory”; see [5,4] for example). We oppose qualitative to (only) “fast and cleverly”.
More precisely, we would like general theorem provers not only to prove theo-
rems, but also to help users to analyze and present proofs, to find analogies with
other proofs, to build counter-examples (models), etc.

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 268–305, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Emphasizing Human Techniques in Automated Geometry Theorem Proving 269

Of course our aims are not original and since the very beginning of automated
theorem proving some pioneer work pursued similar goals (see e.g. [15] and
the work of Bledsoe’s group already in the seventies). This early nice work is
characterized by ad hoc approaches to particular classes of problems. We contend
that a general approach towards a formalization of powerful human techniques
of reasoning is possible (and valuable). This generality is not contradictory with
a specialization a posteriori to particular classes of problems.

The present work is an application of our views to a particular domain: learn-
ing of proof through geometry. To reach this goal we specialize some techniques
presented elsewhere (see for example [5,7,3,13,12]) and well-known such as E-
unification (i.e. unification modulo equational theories) or hyper-resolution and
paramodulation. The latter are the two components of a new calculus that is at
the very basis of the system. We also use diagrams in a more human-oriented
way, i.e. not only to prune the search space by filtering but also in order to
suggest lemmata allowing to plan and to structure proofs (the use of diagrams
not only as a filter but also as a guide is suggested too in [10] and in [30] but in
a much more informal and embryonic way).

Albeit some of our proposals are only partially developed, these are not only
theoretical propositions or general ideas about the subject: a running prototype
based on this approach is presented in detail and some running examples are
shown.

As it is well known, there exist some extremely efficient, powerful systems for
geometrical theorem proving (see e.g. [16]). Such systems are based on powerful
algebraic methods such as Wu’s. The basic principle is to translate the consid-
ered problem into an algebraic language, and then solve the considered set of
equations, using specialized algorithms (for example the “characteristic set” or
Gröbner basis method, see e.g. [9]). The powerful methods of Tarski, Collins
and Wu have on one side limited range of applications (see e.g. [18]) and on the
other side — and much more important for our present purpose — they do not
provide readable proofs.

There exist a few systems based on purely logical approaches to geometri-
cal theorem proving (see e.g. [10,28]) and the most powerful (general-purpose)
existing theorem provers such as OTTER, SPASS, and SETHEO are not suc-
cessful when trying to prove geometry theorems. It is commonly admitted that
algebraic approaches are the most powerful and efficient but there are several
strong reasons to justify further investigation of logical approaches (see e.g. [8]).

Our main goal is not to program a new logic-based geometry theorem prover,
but to show that it is possible to incorporate to the provers formalizations of very
useful human techniques that increase their power and make their interaction
with users much more natural.

Learning (teaching) of the notion of proof through geometry seems to us both
a challenge and a way to show evidence of the usefulness of our approach.

This work presents part of the automated reasoning module of a project
on computer assisted learning named Baghera, under development at the
LEIBNIZ-IMAG laboratory. One of the main aims of Baghera is to fill a gap



270 Ricardo Caferra, Nicolas Peltier, and François Puitg

in existing tutorial systems (see e.g. [1]): these systems neither perform really
automated reasoning (i.e. proof verification, proposition of alternative proofs,
. . . ) nor offer techniques for the analysis or presentation of proofs. Consequently,
we have tried to incorporate these features in our theorem prover HOARDATINF

(Human Oriented Automated Reasoning on your Desk). For reasons both his-
torical and of closeness we started from a tutorial systems called CABRI-Euclide
(see [20,21], and references therein) and in a similar way we did with our sys-
tem GLEFATINF (see [4]), and we fixed a list of requirements to reach (“ideal”
specification).

The system should be able to verify proofs (and to complete them if necessary:
human beings never write fully formalized proofs); to build counter-examples
(models); to verify and to suggest analogies between proofs and/or formulas; to
do abduction — i.e. to identify (supplementary) hypothesis that could allow to
prove (or to “explain”) a given assertion; to perform some form of proof planning,
suggesting a guideline for the stuck student.

Obviously the system should be efficient enough to react to requests in “rea-
sonably” short time. It should also be generic because it is intended to be used
by students of very different levels of knowledge. Therefore the underlying geo-
metric theory can change. The system must be able to adapt to these changes
(i.e. to deal with different theories), in order to construct proofs understandable
by the user.1 Therefore, no general axiomatization (such as Hilbert’s or Tarski’s)
can be used. This need of genericity prevents us from using very specialized and
specific approaches such as expert systems, and makes the choice of a logical
approach very natural.

Organization of the Paper

The rest of the paper is organized as follows: In Section 2, we describe the
fragment of first-order logic used to encode geometric problems submitted to
HOARDATINF, and we present the proof calculus that is used to obtain proofs.
This calculus is a refinement of the ordered hyper-resolution + ordered posi-
tive paramodulation rules and is particularly well adapted to human oriented
proof presentation (see Annex A). We particularly emphasize its specificity w.r.t.
existing similar calculi.

In Section 3, we describe the additional features that have been added into
the system, such as proof analysis, proof generalization, analogy detection, and
counter-example (model) construction.

Section 4 particularly emphasizes one important semantic aspect of the sys-
tem: the ability to use diagrams for guiding and structuring proofs, in particular
to generate lemmata.

1 Of course, another solution would have been to compute the proof in some fixed
axiomatization of geometry, and then to translate it into the desired axiomatization.
But designing such a translation algorithm would be a difficult — and possibly
infeasible — task.



Emphasizing Human Techniques in Automated Geometry Theorem Proving 271

Sections 3 and 4 are those that will be studied more extensively in our future
research. Nevertheless we consider the already obtained results as very promising,
as hopefully shown by the examples.

Section 6 gives a short conclusion and main lines of future work.

2 The Theorem Prover HOARDATINF:
Principles and Main Features

In this section, we describe the theoretical bases of HOARDATINF. The prover
is implemented in Prolog (for the sake of fast prototyping and portability).
HOARDATINF is still a prototype and a lot of implementational work remains
to be done before putting it in the public domain (see Section 5).

Remark 1. It is neither possible nor useful to recall here all the standard notions
of automated reasoning used in this work. The interested reader can consult
[36,19].

2.1 A Restricted First-Order Language

HOARDATINF uses a subclass of first-order logic. We recall below some basic
definitions concerning the language.

Definition 1. Let Σ be a set of functional symbols, let X be a set of variables.
Let arity be a function mapping each element of Σ into an element of IN. The
set of terms T (Σ,X ) is the least set that satisfies the following properties:

– X ⊆ T (Σ,X );
– If f ∈ Σ, arity(f) = 0 (i.e. the constants) then f ∈ T (Σ,X );
– If f ∈ Σ, arity(f) = n, n > 0, (t1, . . . , tn)n ∈ T (Σ,X )n then f(t1, . . . , tn) ∈

T (Σ,X ).

The set of terms containing no variables are called ground and noted T (Σ)

Definition 2. An atom is of the form t = s, where t and s are two terms.
An atom is said to be non-equational iff it is of the form t = true or true =
s, equational otherwise (i.e. if it is of the form t = s where t and s are not
syntactically identical to true).

Remark 2. In this paper, we only consider atoms of the form t = s. No predicate
symbols other can “=” are allowed. It is well known that this restriction does not
entail any loss of generality, because any atom of the form P (t1, . . . , tn) where
P is a predicate symbol may be replaced by an equational atom of the form
p(t1, . . . , tn) = true, where true is a special term and p is a function symbol of
arity n.



272 Ricardo Caferra, Nicolas Peltier, and François Puitg

Definition 3. A literal is either an atom (positive literal) or the negation of
an atom (negative literal). A literal is said to be equational iff the corresponding
atom is equational, non-equational otherwise.

A clause is a finite set of literals (interpreted as a disjunction). A clause of
the form {¬L1, . . . ,¬Ln, L′

1, . . . , L
′
m} where L1, . . . , Ln, L′

1, . . . , L
′
m are atoms is

often denoted (following the usual sequent-like notation) as a rule: L1∧. . .∧Ln →
L′

1 ∨ . . . ∨ L′
m.

We also require that each of the clauses be range-restricted i.e. all the vari-
ables occurring in the positive or equational literal of a clause C must also occur
in a negative non-equational literal in C (this is an generalization of the standard
notion of range-restricted clauses).

Range-restricted clauses are expressive enough to state all the geometric ax-
ioms and theorems that we have to deal with in practice. Moreover it is well
known that any set of clauses can be transformed into an equivalent set of
range-restricted clauses (provided some new predicate symbols — the so called
domain predicates — are added to the signature).

More formally:

Notation. Let C be a clause. We denote by Var(C) the set of variables occurring
in C.

Definition 4. Let C be a clause. We denote by C− (resp. C+) the set of negative
(resp. positive) literals occurring in C. We denote by CE the set of equational
literals in C and by CNE the set of non-equational literals in C. C−E(C−NE)
and C+E(C+NE) have the obvious meaning.

A clause C is said to be positive (resp. negative) iff C+ = C (resp. C− = C).
A clause C is said to be range-restricted iff Var(C+) ⊆ Var(C−) and if

Var(C−E) ⊆ Var(C−NE).

As we shall see, the restriction to range-restricted clauses allows to simplify
the proof process especially in conjunction with the use of (positive) hyper-
resolution. It is interesting to remark, for example, that any positive range-
restricted clause must be ground (indeed, if C is positive, then C− is empty hence
Var(C−) = ∅ therefore we must have Var(C+) = ∅, i.e. Var(C) = ∅). Moreover,
since positive hyper-resolution only produces positive clauses, it implies that
only ground clauses will be generated by the application of the hyper-resolution
rule.

2.2 The Calculus

In this section, we describe the calculus used by HOARDATINF. It is based on
forward chaining (bottom up reasoning), using a variant of the hyper-resolution
+ positive ordered paramodulation rules.

We introduce a new inference rule, called E-hyper-resolution, that combines
hyper-resolution with equality reasoning and rewriting techniques. E-hyper-
resolution can be seen as a macro inference rule combining in a single inference



Emphasizing Human Techniques in Automated Geometry Theorem Proving 273

step, several applications of the positive ordered paramodulation and positive
resolution rules (as defined for example in [17]). This rule has been designed in
order to deal with range-restricted problems, especially if the equational part is
not very important, relatively to the non-equational part (which is the case for
many of the problem we have to treat).

Let us first recall the definition of the (well-known) ordered paramodulation
rule. As usual L[t]p denotes a literal obtained from L by replacing the term at
position p by t. We assume an order (noted <) defined on (ground) terms and
(ground) literals.

Positive Ordered (PO-) Paramodulation:

{t = s} ∪ R {L[t]p} ∪ R′

{L[s]p} ∪ R ∪ R′

where R, R′, L[t]p are positive, t = s > R, L[t]p > R′ and s < t.

Remark 3. Notice that unlike the standard definitions (see for example [32]),
this rule is applied only on positive clauses, hence (since the clauses are range-
restricted, see Definition 4) only on ground clauses. Therefore, no unification is
needed as in the general definition of paramodulation.

In order to define the E-hyper-resolution rule, we must first define the fol-
lowing EC-unification procedure. It performs a (restricted) form of (conditional)
E-unification. Given a set of clauses S and two terms t, s, it tries to compute a
clause C and a substitution θ such that S |= (¬C → tθ = s). ¬C can be seen
as a condition which is sufficient to prove that S |= tθ = s. Not all solutions
are computed (this would be obviously not possible in general) but the given set
of solutions will be still sufficient to ensure the refutational completeness of the
whole calculus. The EC-unification procedure is given in Figure 1.

Remark 4. The tests “¬E, C is unsatisfiable” and “¬E, ¬R, t = f(s1, . . . , sn), C
is satisfiable” are propositional satisfaisability tests.

Since the EC-unification procedure is nondeterministic, we must specify how
this nondeterminism is handled. Actually, the choice of the pair (t, s) and that
of the application of t′, t′′, R can be done arbitrarily, i.e. using a “don’t care”
nondeterminism. No backtracking is needed. Some heuristic are used to prune
the search space (for example, equations with the smallest number of variables,
or equations that are not likely to be rewrited, are chosen first). In contrast,
the choice in line 25 must be done using a “don’t know” nondeterminism, which
requires backtracking and will therefore provide a set of solutions rather than a
unique solution.

Remark that the instruction in line 34 corresponds exactly to the usual de-
composition rule of the unification algorithm, i.e.:

f(t1, . . . , tn) = f(t′1, . . . , t
′
n) →

n∧

i=1

ti = t′i



274 Ricardo Caferra, Nicolas Peltier, and François Puitg

1 Procedure EC-unification
2 INPUT :
3 A set of clauses S

4 A set of equations S′

5 OUTPUT :
6 A substitution θ of Var(t) and a positive ground clause E

7 or a flag “no solution”.
8 Begin
9 P := S′

10 θ := ∅
11 E := ⊥
12 C := ∅ % C is a set of conditions, initially empty
13 % Remark: the purpose of C is only to reduce search space by avoiding
14 % irrelevant computations
15 While P �=∅
16 If ¬E, C is unsatisfiable Then Return(“no solution”)
17 Choose (t = s) ∈ P

18 If t is a variable Then P := P \ (t = s), θ := θ ∪ {t → s}, P := Pθ, C := Cθ

19 % Replacement rule
20 Else If s is a variable Then P :=P \(t = s), θ := θ∪{s→ t}, P :=Pθ, C :=Cθ

21 % Replacement rule
22 Else % t is of the form f(t1, . . . , tn)
23 If ∃f(s1, . . . ,sn)= t′′∪R∈S such that f(s1, . . . ,tn)= t′′ >R, f(s1, . . . ,sn)>t′′

24 and ¬E, ¬R, t = f(s1, . . . , sn), C is satisfiable
25 Then % Conditional narrowing rule
26 Or Begin
27 P := P \ (t = s) ∪ {t′′ = s} ∪ ⋃n

i=1{ti = si}
28 E := E ∨ R

29 C := C ∪ {f(s1, . . . , sn) = t}
30 End
31 Or
32 C := C ∪ {R ∨ ∨n

i=1 si �=ti}
33 Else If t = f(t1, . . . , tn) and s = f(t′

1, . . . , t
′
n)

34 Then P := P \ (t = s) ∪ {ti = t′
i | i ∈ [1..n]} % Decomposition rule

35 Else If t = f(t1, . . . , tn) and s = g(t′
1, . . . , t

′
m) and f �=g

36 Then Return(“no solution”) % Clash rule
37 EndWhile
38 Return(θ, E)
39 End

Fig. 1. The EC-unification procedure



Emphasizing Human Techniques in Automated Geometry Theorem Proving 275

whereas the instruction in lines 18–20 and 35 corresponds respectively to the
replacement and clash rules.

Finally, the instructions in lines 23–30 correspond to an application of a
conditional narrowing rule, i.e. a term t is transformed into a term t′′ if there
exists a clause t′ = t′′ ∨ R and a substitution θ such that tθ = t′ and provided
that the condition R is added to the resolvent.

Now, we have all what we need to define the E-hyper-resolution rule.
∨n

i=1 ti = si → C S
Cθ ∪ E

where (θ, E) := EC-unification(S, {t1 = x1, s1 = x1, . . . , tn = xn, sn = xn}).
The following example illustrates the use of the E-hyper-resolution rule.

Example 1. We consider the following set of clauses:
1 {¬(p(f(x)) = true), r(x) = true}
2 {f(a) = b} ∪ R
3 p(b) = true
Let us apply the E-hyper-resolution on clause 1. First, the EC-unification

procedure is called on the equation p(f(x)) = true. Here the conditional nar-
rowing rule can be applied on p(f(x)) using clause 3. We obtain two distinct
problems:

– {true = true, f(x) = b};
– or {p(f(x)) = true} with the condition f(x) �=b.

The second problem can be deleted, since narrowing cannot be applied any-
more at root position in the term p(f(x)), and since p(f(x)) is not unifiable with
true (lines 23 and 35 of the EC-unification procedure). Hence, it only remains
to solve the first problem. The first equation is trivial and can be deleted imme-
diately (a particular case of the decomposition rule, lines 33–34) . For solving
the equation f(x) = b, we can again apply the narrowing rule on f(x) = b and
clause 2. We obtain the following problem (the other branch can be immediately
deleted since f(x) is not unifiable with b):

{b = b, x = a}, with the condition {R}.

b = b is valid, and x = a can be solved immediately by replacing x by a
(replacement rule, lines 18–20), hence we obtain the following solution: {x → a},
with the condition R.

Therefore, the E-hyper-resolution rule can be applied and gives the clause:

r(a) ∨ R

Notice that this clause may have been generated by 2 steps of paramodulation
into clause 1, followed by one step of hyper-resolution between the obtained
clause and the reflexivity axiom x = x (needed when paramodulation is used).
The E-hyper-resolution allows to merge these 3 steps in a single rule. More



276 Ricardo Caferra, Nicolas Peltier, and François Puitg

important, it also allows to restrict the search space: if we replace for example
the clause p(b) = true by p(f(a)) = true, then the E-hyper-resolution would not
be applicable any more. Indeed, the reader can easily check that the instance
p(f(a)) of p(f(x)) would still be rewritten as p(b) hence would not be unifiable
with p(f(a)). This does not threaten refutational completeness, since p(b) ∨
R may actually be generated from p(f(a)) and f(a) = b ∨ R by using PO-
paramodulation.

Theorem 1. The calculus defined by the E-hyper-resolution (with the EC-uni-
fication procedure) and positive ordered paramodulation is sound and refutation-
ally complete, i.e. for all sets of clauses S, S is unsatisfiable iff there exists a refu-
tation from S using only the E-hyper-resolution and positive ordered paramodu-
lation rules.

Proof. Soundness. The soundness of the positive ordered paramodulation rule
is well known. We only have to prove that the E-hyper-resolution is sound.
To this purpose, it suffices to show that for all set of equations P = {t1 =
x1, s1 = x1, . . . , tn = xn, sn = xn}, if EC-unification(S, P ) = (θ, E) then we
have S, ¬E |= Pθ. Indeed, in this case, the clause Cθ ∪ E must be a logical
consequence of the clause S ∪ {t1 = s1, . . . , tn = sn → C}.

We denote by Pn the set of equations obtained at set n, by En the set of
atoms, by Cn the corresponding set of conditions, and by θn the corresponding
substitutions. We show by induction on the number of iterations, that at each
step, and for any model I of S ∪ ¬En, we must have I |= S′θn if I |= Pθn.
When the procedure terminates, we must have P ≡ 
 hence I must be a model
of S′θn.

– Base case. The proof is immediate, since P0 ≡ S′.
– Inductive case. Assume that the property holds at step n. We show that

it holds at step n + 1. It suffices to show that S, ¬En+1 |= (Pnθn+1 ⇐
Pn+1θn+1). Let t = s be the equation selected by the procedure at step
n + 1. We distinguish several case, according to the form of t, s.

• If t (resp. s) is a variable, then we have, by definition, θn+1 = θn∪{t → s}
and Pn+1 = Pn \ {t = s}. Hence the proof is immediate.

• If t ≡ f(t1, . . . , tn) and there exists a clause f(s1, . . . , sn) = t′′ ∪ R ∈ S
such that f(s1, . . . , sn) = t′′ > R, f(s1, . . . , sn) > t′′ then we distinguish
two cases according to the chosen OR branch.
1. Rewriting branch. We have θn+1 = θn, Pn+1 = Pn \{(t, s)}∪{t′′, s}∪⋃n

i=1{ti = si} and En+1 = En ∪R. Let σ be a ground substitution of
Pn+1θn+1 and let I be a model of S, ¬En+1, Pn+1θn+1. We must have
I |= ¬R and I |= f(s1, . . . , sn) = t′′ ∪ R hence I |= f(s1, . . . , sn) =
t′′. Moreover, we have ∀i ∈ [1..n], I |= (ti = si)θn+1σ. Hence I |=
f(s1, . . . , sn) = f(t1, . . . , tn)θn+1σ. Therefore I |= (t = t′′)θn+1σ.
Since we must have I |= (t′′ = s)θn+1σ, we deduce that I |= (t =
s)θn+1σ hence that I |= Pnθn+1σ. Therefore, we have S, ¬En+1 |=
(Pnθn+1 ⇐ Pn+1θn+1).



Emphasizing Human Techniques in Automated Geometry Theorem Proving 277

2. Non-rewriting branch. The proof is immediate, since Pn+1 = Pn and
θn+1 = θn.

• If t = f(t1, . . . , tn) and s = f(s1, . . . , sn). The proof is immediate, by
soundness of the decomposition rule.

• If t = f(t1, . . . , tn) and s = g(s1, . . . , sm). The proof is immediate, since
there is no solutions.

Refutational completeness. We first have to show that the EC-unification
procedure terminates. By definition of EC-unification, any term occurring in Pn

at any step n is either a subterm of a term occurring in S′ or a ground term
occurring in S (since any positive clause in S is ground). Therefore, the number of
distinct clauses of the form R∨∨n

i=1 ti �=si such that f(s1, . . . , sn) = t′′ ∨R ∈ S
and f(t1, . . . , tn) occurs in Pn is finite. Therefore, we may assume, w.l.o.g. that
no new clause is added into C.

Then, we consider the following measure on the set of equation Pn:

I(P ) = {(v(t = s), t = s) | (t, s) ∈ P}

where s(t = s) denotes the number of variables in t = s. Equations are or-
dered using the ordering < and I(P ) is ordered using lexicographic and multiset
extensions of the orderings on s(t = s) and t = s.

Then at each step, it is easy to see that either I(Pn) decrease strictly. Indeed,
either a variable is instanciated and v decreases strictly, or the value of the terms
in t = s decreases strictly w.r.t. <.

Now, we prove that the E-hyper-resolution and ordered positive paramodu-
lation rules are refutationally complete, using the technique introduced in [17],
namely the transfinite tree method.

Let A be the set of ground literals built on the signature Σ, =. Clearly, (A, <)
is isomorphic to an ordinal ω. For any ordinal α < ω, we denote by Aα the literal
corresponding to α.

We build — by transfinite induction — a sequence of partial interpretations
Iα (i.e. of partial functions from A into {true, false}) as follows:

– Base case. I0 = ∅.
– Limit ordinal. Iα =

⋃
β<α Iβ if α is a limit ordinal.

– Successor case. Iα+1 is defined as follows.
• If Aα = (t = t) then Iα+1 = Iα ∪ {(t = t) → true}.
• If Aα = L[t]p and there exists a literal t = s such that Iα(t = s) = true

and t > s, then Iα+1(L[t]p) = Iα(L[s]p).
• If Aα = L and there exists a positive clause L′ ∨ R and a ground substi-

tution σ such that L = L′σ and Iα |= ¬R then Iα+1(L) = true.
• Else Iα(L) = false.

Remark 5. The reader should note that the sequence (Iα)α<ω is monotonic i.e.
for all β ≤ α Iα is an extension of Iβ .



278 Ricardo Caferra, Nicolas Peltier, and François Puitg

Assume that � �∈S and that S is irreducible by E-hyper-resolution and
ordered positive resolution. Then, we are going to show that Iω |= S. We denote
by Sg be the set of ground instances of clauses in S.

Assume that Iω �|= S. Then, there exists a clause C and a ground substitution
σ such that Iω |= ¬Cσ. W.l.o.g. we assume that C, σ are chosen in such a way
that Cσ is the smallest clause (w.r.t. <) having this property.

– Assume that C is positive. Cσ is of the form L ∨ R where Iω |= ¬R. By
construction of Iω, there must exists a term t′ occurring at position p in L
such that Iω validates an equation t′ = s′ (else Iω would necessarly validate
the maximal literal in Cσ which is impossible). Therefore, there must exist
a term t′ and a clause t′ = s′ ∨R′ ∈ Sg such that Iω |= (t′ = s′)∨R′, t′ > s′,
(t′ = s′) > R′ and t′ occurs at a position p in L. By irreducibility w.r.t. the
ordered positive paramodulation rule, this implies that Sg contains the clause
L[s′]p ∨ R ∨ R′. But we have Iω �|= L[s′]p ∨ R ∨ R′ and L[s′]p ∨ R ∨ R′ < Cσ.
Hence this is impossible.

– Therefore, C must contain at least a negative literal. C is of the form∨n
i=1 ti �=si ∨ R where R is positive, t1, s1, . . . , tn, sn are terms, n ≥ 1.

We are going to show that the application of the E-hyper-resolution rule
must yield a clause of the form Rσ ∪ E, where Iω �|= E.
By definition of the E-hyper-resolution rule, we have to show that the ap-
plication of the EC-unification procedure on the input S, {t1 = x1, s1 =
x1, . . . , tn = xn, sn = xn} yields the output (σ′, E), where σ′ = σ ∪ {xi →
tiσ} is an extension of σ and Iω �|= E.
We define the following strategy for the choice of the OR-branch. The
first branch is chosen iff R is falsified by Iω and Iω |= f(t1, . . . , tn)σ =
f(s1, . . . , sn). Else the second branch is chosen.
Then, by definition, at each step, any atom in E must be false in Iω. More-
over, we prove (by induction on n) that at each step n, we have: Iω |= Cnσ′

and Iω |= Pnθn+1σ
′ ⇒ Pn+1θn+1σ

′.
Let t = s be the equation considered at step n. We distinguish several cases,
according to the form of t = s.

• If t or s is a variable then the proof is immediate.
• If t ≡ f(t1, . . . , tn) and there exists a clause f(s1, . . . , sn) = t′′ ∪ R ∈ S

such that f(s1, . . . , sn) = t′′ > R, f(s1, . . . , sn) > t′′, ¬En,¬R, Cn �|=∧n
i=1 ti = si. Since f(s1, . . . , sn) = t′′∨R is positive, it must be validated

by Iω.
1. If the first OR-branch is chosen, then this means — by definition

on the chosen strategy — that we must have Iω |= f(s1, . . . , sn) =
t′′ (since Iω |= ¬R and Iω |= f(s1, . . . , sn) = t′′ ∨ R) and Iω |=
(tσ′ = f(s1, . . . , sn)). Hence if Iω(t = s)σ′ then Iω |= (t′′ = s) ∧
(
∧n

i=1 tiσ
′ = si). Therefore Iω |= (Pnθn+1 ⇒ Pn+1θn+1).

2. Else, we must have either Iω |= R or Iω |= f(s1, . . . , sn) �=tσ′, hence
Iω |= Cn+1σ

′.
• If t ≡ f(t1, . . . , tn) and s ≡ f(s1, . . . , sn) and we are not in the previous

case. Assume that there exists a clause f(s′
1, . . . , s

′
n) = t′′ ∪ R ∈ S



Emphasizing Human Techniques in Automated Geometry Theorem Proving 279

such that f(s′
1, . . . , s

′
n) = t′′ > R, f(s′

1, . . . , s
′
n) > t′′ and Iω |=

f(s′
1, . . . , s

′
n) = t′′ and Iω |= (tσ′ = f(s′

1, . . . , s
′
n)). Then, by definition,

we must have ¬En,¬R, Cn |= t �=f(s′
1, . . . , s

′
n). But this is impossible,

since we must have Iω |= ¬En,¬R, Cn and Iω |= tσ′ = f(s′
1, . . . , s

′
n).

Therefore, there is no clause in S satisfying the above property. By defini-
tion of Iω, this implies that Iω |= (t = s)σ′ iff ∀i ∈ [1..n], Iω |= tiσ

′ = si.
Hence we must have Iω |= (Pnθn+1 ⇒ Pn+1θn+1).

• If t ≡ f(t1, . . . , tn) and s ≡ g(s1, . . . , sm) and if there is no clause in S
satisfying the above property. The proof is similar to the previous case.

Therefore, since Iω |= (
⋃n

i=1(ti = xi ∧ si = xi)σ′, we deduce that
EC-unification must have a solution (θ, E) and that Iω �|= E. Then, by ir-
reducibility w.r.t. the E-hyper-resolution rule, this implies that Rσ ∪ E ∈ S
hence (since R and E are positive and Iα �|= E) that Iω |= Rσ. Since
Iω �|= Cσ this is impossible.

Therefore, the E-hyper-resolution rule is refutationally complete.

Using range-restricted clauses together with E-hyper-resolution and ordered
paramodulation has important consequences: in particular, only ground positive
clauses may be deduced, hence the efficiency of the usual algorithms for indexing
terms and clauses, and checking redundancies can be improved drastically. For
example, checking forward and backward subsumption (which is well known as
a difficult and costly problem in the general case) becomes very easy: it suffices
to compare the two lists of literals. If the clauses are sorted (w.r.t. <) before
being stored into the database (which can be done in n × ln(n) where n is the
length — i.e. the number of literals — of the clause), subsumption tests may be
done in linear time.

E-hyper-resolution is especially useful when the number of equational literals
is not very important w.r.t. the size of the clause set, which is the case in most
of the problems we have to deal with.

Remark 6. The fact that the clauses are range-restricted is essential for the ter-
mination of the EC-unification procedure, hence for the refutational complete-
ness of the method.

2.3 Mixing Up Backward and Forward Proof Search

HOARDATINF has been enriched with a special feature allowing to combine E-
hyper-resolution with a form of top-down reasoning (as it is performed for ex-
ample by Model-Elimination-based theorem provers or by SLD-resolution and
by Prolog).

This is done by adding a special kind of (equational) constraints to the
clauses. We consider constrained clauses of the form [C | X ] where C is a clause
(in the standard sense) and X a conjunction of equations of the form t = s. C
is the clausal part of [C | X ] and X is the constraint part.

The PO-paramodulation rule can easily be extended to constrained clauses,
as follows.



280 Ricardo Caferra, Nicolas Peltier, and François Puitg

Constrained Positive Ordered paramodulation:

[{t = s} ∪ R | X ] [{L[t]p} ∪ R′ | Y]
[{L[s]p} ∪ R ∪ R′ | X ∧ Y]

where R, R′, L[t]p are positive, t > s, t = s > R, L[t]p > R′, u[t]p > v.
From a semantic point of view, a constrained clause of the form [C | ∨n

i=1 ti =
si] is equivalent to the clause

∨n
i=1 ti �=si ∨ C. However, the constraint will

not be handled in the same way than the clausal part by the EC-unification
procedure. More precisely, instead of including as usual this condition into E,
the procedure will include it into the set of considered equations. Therefore,
the EC-unification procedure will evaluate all the equations belonging to the
constraint part of the clause in order to find solutions to these conditions, before
deducing the corresponding E-hyper-resolvent. This is done recursively, i.e. the
evaluation of the constraint may lead to the consideration of other constrained
clauses, hence may entail another application of the EC-unification procedure.

For this purpose, the condition “If ∃f(s1, . . . , sn) = t′′ ∪ R ∈ S” in the
EC-unification procedure (line 23) must be replaced by “If ∃[f(s1, . . . , sn) =
t′′ ∪ R | X ] ∈ S” and the following additional instruction has to be added to
the EC-unification procedure, just before EndWhile (line 37), in order to deal
with the constraint part of the clause:

P := P ∪ X
This technique allows to integrate in a very natural way useful features of

backward reasoning (in particular the building of goal-oriented derivations) into
the EC-unification procedure. This strongly reduces the number of generated
clauses, with reasonable computation cost.

A drawback of this technique is that the EC-unification procedure may not
terminate, hence refutational completeness may be lost. In order to avoid non-
termination in some particular cases, the system keeps track of the goals pre-
viously considered in order to avoid entering into infinite loops. Obviously, this
cannot prevent non-termination in the general case. It is up to the user to choose
carefully which equational conditions should be treated by a backward search.
Currently, we use it only on particular axioms for which termination is guaran-
teed. More flexible strategies, including automatic analysis of the clause sets will
be considered in the future.

There are two points for which the use of backward reasoning has proven to
be particularly useful.

– Definitions of geometric objects. Constrained clauses are especially
useful for defining objects. For example the definition: “a parallelogram
is a quadrilateral (A, B, C, D) such that (A, B) ‖ (C, D) and (B,C) ‖
(A, D)” can be translated into the following (non range-restricted!) clause:
[{parallelogram((A, B, C, D)) = true} | parallel((A, D), (B,C)) = true ∧
parallel((A, B), (C, D)) = true] Then, the mechanism described above
will enforce the prover to dynamically replace, during proof search, each
atom of the form parallelogram((A, B, C, D)) = true by the conjunction



Emphasizing Human Techniques in Automated Geometry Theorem Proving 281

parallel((A, D), (B,C)) = true ∧ parallel((A, B), (C, D)) = true (this tech-
nique can be seen as an extension of demodulation for non equational liter-
als).

– Prolog call. A special predicate “prolog call” has been introduced: it allows
to take advantage of all built-in Prolog predicates (for example for arithmetic
computations). Unifying prolog call(G) and true during the unification pro-
cedure will simply cause the evaluation of the goal G using Prolog engine.
Thus, adding the constraint prolog call(G) = true to a clause, will make the
system evaluate the goal G before applying the E-hyper-resolution rule on
this clause.

Remark 7. The prolog call predicate is especially useful for including numeri-
cal computations into the calculus, or for combining HOARDATINF with existing
systems (see Section 6).

2.4 Handling Theories

We analyze in this section some theories usually underlying geometric reasoning.
In order to efficiently obtain user-oriented proofs they must be incorporated into
the proof steps. As expected, experiments have confirmed that symmetry is one
of the most important among these theories. These examples show the way of
incorporating new theories in HOARDATINF.

Equational theories such as commutativity (i.e. [A, B] = [B,A] or (A, B) =
(B,A)) or circularity (i.e. (A, B, C, D) = (B,C,D,A)) are encoded in the core
of the unification algorithm. More precisely, the decomposition rule is replaced
by the following ones, that are specific to some particular functional symbols.
The EC-unification procedure is modified accordingly:

f(t1, t2) = f(t′
1, t

′
2) → (t1 = t′

1 ∧ t2 = t′
2) ∨ (t2 = t′

1 ∨ t1 = t′
2)

if f is commutative
f(t1, t2, t3, t4) =f(t′

1, t
′
2, t

′
3, t

′
4) → ∨n

i=1(ti = t′
1 ∧ ti+1 = t′

2 ∧ ti+2 = t′
3 ∧ ti+3 = t′

4)
if f is circular and with tj = tj−4 if j > 4

When a clause is generated, the system computes the minimal (w.r.t. <)
representative of its equivalence class according to the above properties (com-
mutativity and circularity), and only this particular representative (rather than
the clause itself) is stored into the database (this is possible since all generated
clauses are ground). This mechanism significantly speeds up redundancy checks
(subsumption tests can still be performed in linear time).

Moreover, special deletion rules are also added, in order to remove clauses
that do not carry any geometric information, for example clauses containing
terms of the form [t, s] or (t, s), where t ≡ s (it can easily be shown that this
does not affect refutational completeness).

These techniques allow to significantly reduce the number of clauses convey-
ing exactly the same information.

Moreover, non-equational theories such as parallelism and collinearity are
also treated by a special mechanism, based on the use of constrained clauses.



282 Ricardo Caferra, Nicolas Peltier, and François Puitg

More precisely, a new function symbol “dir” (dir standing for “direction”) of
arity 1 is introduced. Its intended meaning is that dir(d) is the equivalence class
of the line d w.r.t. the “parallel” relation. Therefore, checking whether two lines
(A, B) and (C, D) are parallel will be done very easily by checking whether
dir((A, B)) = dir((C, D)). Checking whether the points A, B, C are collinear
is done by checking (for example) that dir((A, C)) = dir((A, B)). This avoids
adding axioms for the transitivity of the parallelism relation and allows to deal
with this theory in a more effective way.

The following clauses are introduced into the clause sets:

[parallel((A, B), (C, D)) = true | dir((A, B)) �=dir((C, D))]
[dir((A, C)) = dir(A, B)) ∨ dir((A, B)) �=dir((B,C)) | true]
[collinear(A, B, C) = true | dir((A, B)) �=dir((A, C))]
[dir((A, C)) �=dir(A, B)) ∨ (A, B) = (A, C) | true]

Another special mechanism, based on the use of ordering constraints, has also
been added in order to handle clauses that are symmetric w.r.t. a permutation
of the variables. For example, consider the clause:

C : perpendicular(x, y) ∧ perpendicular(x, z) → parallel(y, z)

and the permutation σ = {y → z, z → y}.
It is easy to see that σ is a symmetry for clause C, since Cσ is syntactically

equivalent to C modulo the commutativity of ‖ and ∨. Thus, given the two clauses
perpendicular(a, b) and perpendicular(a, c), two distinct clauses will be generated
by applying the E-hyper-resolution rule: parallel(b, c) and parallel(c, b).

Obviously, these two clauses are equivalent modulo commutativity of ‖, hence
one of these two clauses will be actually deleted by the subsumption algorithm. It
would be more efficient to prevent the generation of such clauses, instead of dis-
carding them afterwards. This is done by introducing special kind of constraints
into the clauses. These constraints express ordering conditions on the variables,
in order to “destroy” the symmetry, thus preventing the generation of equivalent
clauses. Here, it suffices to add the constraint x < y, ensuring that x must be
lower than y according to some (arbitrarily chosen) ordering < in the initial
clause. This prevent the generation of parallel(b, c) (if b > c) or parallel(c, b) (if
b < c).

Unification problems are solved modulo these ordering constraints, i.e. the
system check that the obtained solutions satisfy the constraints. As in Constraint
Logic Programming, the constraints are solved as soon as the value of the vari-
ables are known. This allows to decrease strongly the cost of the unification
algorithm (since several solutions may be discarded) and the number of deleted
clauses without too much additional computation cost.

The addition of such ordering constraints may be done automatically. Indeed,
it suffices to add for each clause C and for each pair of variable (x, y) such that
C{x ↔ y} ≡ C the constraints x < y (or y < x).

As it is well known, adding such special mechanisms devoted to the handling
of the considered theories is essential for improving the efficiency of provers. This



Emphasizing Human Techniques in Automated Geometry Theorem Proving 283

is of course also the case for HOARDATINF. Without them, no proof would be
obtained in reasonable time for most of the considered problems.

2.5 Axiomatization

Our goal is to produce human-oriented proofs, and, in the framework of this
work, students oriented-proofs. Therefore, complete, but complex axiomatiza-
tions such as Tarski’s or Hilbert’s, would be useless.

The axiomatization will mainly depend on the level of knowledge of students.
It will contain all the geometric axioms that are supposed to be known at a
certain stage. In order to build our system such geometric axioms have been
gathered from school textbooks (of the adequate level) and translated into the
considered fragment of first-order logic.

Moreover, several axioms have had to be added in order to formalize “default”
(or “implicit”) knowledge freely used in textbooks, mainly because it is either
trivial or common sense. Such axioms includes for example basic properties of
geometric objects (i.e. (A, B) = (B,A)) or basic definitions (i.e. the definition
of the midpoint of a segment) or trivial reasoning steps about geometric object
(i.e. if I ∈ (A, B) and B ∈ (A, C) then I ∈ (A, C)). This implicit knowledge has
been added either as built-in features or formalized as set of first-order clauses.

This axiomatization is obviously not complete w.r.t. Euclidean plane geom-
etry, but completeness is not really relevant for our purpose (but soundness is,
of course, an important issue).

The axiomatization that we used for all the examples in this paper contains
141 clauses.

2.6 An Example

Remark 8. It is worth noticing that despite numerous attempts, using different
strategies, no proof of the simple theorems stated in Examples 2, 3 and 4 has
been obtained with the well-known generic theorem prover OTTER (of course
we have used the same axiomatization). OTTER ran out of memory after some
hours of computation having generated thousands of clauses.

Remark 9. All the examples treated by HOARDATINF given in this paper run on
a Pentium 200 with 64 Mb of memory.

Example 2 (Problem proposed to 15 years old French high school students). We
consider the following problem (see Figure 2): Let A, B, C be a triangle such that
|AC| = |BC|. Let I be the middle of [B,C], J be the middle of [A, C] and K
the middle of [A, B]. Let E and F the middle of [A, K] and [K, B] respectively.
Prove that (E, J, I, F ) is a rectangle.

HOARDATINF computes a proof automatically in about 20 seconds 217 clauses
are generated and 2432 are generated and discarded by forward subsumption.

The proof (in pseudo-French) is given in Annex A. Note that several of the
considered steps are simple applications of basic definitions that are trivial for



284 Ricardo Caferra, Nicolas Peltier, and François Puitg

A B

C

K FE

J I

Fig. 2. A figure for Example 2

human beeings, and thus omitted in human’s proofs (for example E is the mid-
points of (A, K) and (K, E) implies that (A, K) ‖ (K, E)). Of course, these
steps could have been removed by the system as well, but we prefer to make
them explicitly for the sake of completeness.

A more careful analysis of the proof also shows that several subparts are
highly similar. They correspond to applications of the same sequence of geomet-
ric theorems on different points. In order to reduce the size of the proof — thus
making it more readable — other techniques are necessary to detect such sim-
ilarities. We have already developed these techniques, see Section 3.3 (Remark
13) for more details.

Example 3. We consider a parallelogram (A, B, C, D) such that d(A, C) =
d(B,D). Let E, F, G, H the midpoints of [A, B], [B,C], [C, D], [D, A] respec-
tively. Prove that (E, F, G, H) is a square.

The proof of this theorem generated by HOARDATINF is given in Annex B.

The next example (taken from [8]) is interesting because its proof needs
the introduction of new auxiliary points. It allow to compare features of
HOARDATINF and GEX [8] on a running example.

Example 4 (taken from [8], page 240, originally given in [15]).
We consider a trapezoid (A, B, C, D) with (A, B) ‖ (C, D). M,N are the

midpoints of [A, C] and [B,D] respectively. E is the intersection of (M,N) and
(C, B). Prove that E is the midpoint of [C, B].

In order to construct the proof, the midpoint of [A, D] must be constructed.
In our formalism, this entails the use of a clause corresponding to a constructive
axiom, of the form:

¬point(A) ∨ ¬point(B) ∨ midpoint(m(A, B), [A, B])

This axiom comes from the skolemization of the following formula:

¬point(A) ∨ ¬point(B) ∨ (∃M)midpoint(M, [A, B])



Emphasizing Human Techniques in Automated Geometry Theorem Proving 285

m is the skolem function introduced from (∃M).
This technique avoids explicit generation of auxiliary points (as in GEX [8]).

See Section 5 for more details about this problem.
However, it is not reasonable to keep such skolem terms in the proof pre-

sented to the user, because they will darken the proof. Therefore, HOARDATINF

eliminates them after the proof has been generated and automatically replaces
the introduction of these terms by the explicit construction of new points (using
anti-skolemization techniques). The proof it gives is the following (the translation
into pseudo-french is too verbose, we do not give it).

Note that non-degeneracy conditions are proven here and not assumed from
a given figure (see Section 5). This explain the difference in length between
the HOARDATINF’s and GEX’s proofs. As previously mentioned for “implicit”
axioms, the corresponding parts of the proof need not to be explicitly displayed
to the user, which makes the proof shorter and more readable.

there_exists(p7,midpoint(p7,segment(D,A)))
$
midpoint(N,segment(D,B))
$
parallel(segment(p7,N),segment(A,B))
midpoint(p7,segment(D,A))
midpoint(N,segment(D,B))
midpoints_theorem
$
non(D = A)
non(collinear(D,A,B))
$
non(p7 = D)
midpoint(p7,segment(D,A))
non(D = A)
$
collinear(N,D,B)
midpoint(N,segment(D,B))
$
collinear(p7,D,A)
midpoint(p7,segment(D,A))
$
non(p7 = N)
non(p7 = D)
collinear(N,D,B)
collinear(p7,D,A)
non(collinear(D,A,B))
$
parallel(segment(p7,N),segment(D,C))
parallel(segment(p7,N),segment(A,B))
parallel(segment(D,C),segment(A,B))
transitivity_parallelism
$
parallel(segment(p7,M),segment(D,C))



286 Ricardo Caferra, Nicolas Peltier, and François Puitg

midpoint(p7,segment(D,A))
midpoint(M,segment(A,C))
midpoint_theorem
$
parallel(segment(p7,N),segment(p7,M))
parallel(segment(p7,N),segment(D,C))
parallel(segment(p7,M),segment(D,C))
transitivity_parallelisme
$
collinear(p7,N,M)
parallel(segment(p7,N),segment(p7,M))
$
droite(p7,N) = droite(N,M)
non(N = M)
non(p7 = N)
collinear(p7,N,M)
$
non(D = B)
non(collinear(D,A,B))
$
non(N = B)
midpoint(N,segment(D,B))
non(D = B)
$
non(collinear(D,C,B))
$
non(N = E)
non(N = B)
collinear(C,B,E)
collinear(N,D,B)
non(collinear(D,C,B))
$
droite(N,M) = droite(N,E)
non(N = E)
non(N = M)
collinear(N,M,E)
$
non(A = C)
non(collinear(A,C,B))
$
non(M = C)
midpoint(M,segment(A,C))
non(A = C)
$
collinear(M,A,C)
midpoint(M,segment(A,C))
$
non(M = E)
non(M = C)
collinear(C,B,E)



Emphasizing Human Techniques in Automated Geometry Theorem Proving 287

collinear(M,A,C)
non(collinear(A,C,B))
$
droite(N,M) = droite(M,E)
non(M = E)
non(N = M)
collinear(N,M,E)
$
droite(N,E) = droite(M,E)
droite(N,M) = droite(M,E)
droite(N,M) = droite(N,E)
$
droite(p7,N) = droite(M,E)
droite(p7,N) = droite(N,M)
droite(N,M) = droite(M,E)
$
parallel(segment(M,E),segment(A,B))
parallel(segment(p7,N),segment(A,B))
droite(p7,N) = droite(M,E)
$
midpoint(E,segment(C,B))
collinear(C,B,E)
non(collinear(A,C,B))
parallel(segment(M,E),segment(A,B))
midpoint(M,segment(A,C))
midpoint_theorem
$

3 Some Additional Features

In this section, we describe some other original features of HOARDATINF and we
give examples of applications of these features. Some of the ideas behind these
capabilities have been proposed in the field of automated deduction since many
years ago and some techniques have been presented (Bledsoe, Bundy, . . . ), but
the techniques proposed here are original in a large extent and, as far as we
know, combined for the first time.

3.1 Proof Verification

HOARDATINF can be used to check the alleged “proofs” built by the students,
in order to detect incorrect (in particular incomplete) “proofs”. However, the
system does not merely check the soundness of the proof is the standard sense.
Indeed, it is well known that human beings do not in general write “complete”
proofs: several steps are usually considered implicit, often because they are triv-
ial, and also because making them explicit would hide the main ideas and reduce
proof readability.



288 Ricardo Caferra, Nicolas Peltier, and François Puitg

Proof check is performed as follows:

– In the tutorial system CABRI-EUCLIDE (see Introduction), quite naturally,
each step of the proof must be specified by a partial conclusion C, a set of
hypothesis H and a geometric theorem (or definition) T .

– In order to check that the step is correct, HOARDATINF tries to compute a
proof of C given H, using both the set of axioms corresponding to T and the
“default” (“implicit”) axioms i.e. the theory that are “well known” in the
state of the student’s knowledge (see Section 2.5).

– If a proof is found, then the proof step is validated. Otherwise, further anal-
ysis may be performed in order to find an explanation of why the proof is
not correct. For example:

• Checking whether other theorems can be used for deriving the desired
conclusion.

• Try to identify missing hypotheses that could be used to prove C.
• Construct a partial counter-example if the step is incorrect.

Example 5. We consider the following proof step (taken from a student’s “proof”
built using CABRI-Euclide [21]).

“(A, B, C, D) is a parallelogram, I is the midpoint of [B,D]. Hence I is
the midpoint of [A, C] (since the diagonals of a parallelogram intersect in their
middles)”.

Here the assertion “I is the midpoint of [A, C]” cannot be deduced from the
hypothesis. The proof step is not correct (sound) since the conclusion is not a
logical consequence of the premises.

The system tries to computes (i.e. to abduce) a set of additional hypothesis
allowing to prove the desired result. This is done by backward chaining, starting
from the conclusion and trying to compute a sufficient set of hypothesis (w.r.t. a
given set of axioms). Here it detects that the hypothesis ¬collinear({A, B, C, D})
(i.e. a nondegeneracy condition) is sufficient to complete the proof. Depending
on the context, the system could accept the proof step as it is, point out the
missing hypothesis to the user, check whether the missing hypothesis is valid or
not, etc.

Remark 10. ¬collinear({A, B, C, D}) is an example of hypothesis which is often
omitted in human proofs.

3.2 Model Building

When the validity (respectively contradiction) of a formula cannot be proved,
it is very useful to get a counter-example (respectively model) of it, in order
to provide a convincing evidence of the non-validity (non-contradiction) of the
formula.

In this section, we show how to extract models from clause sets that are
saturated (i.e. no new clauses can be derived) under E-hyper-resolution. This
technique can be seen as a generalization of the method proposed in [23,22] for
a particular class of clauses.



Emphasizing Human Techniques in Automated Geometry Theorem Proving 289

Procedure ModelBuilding
INPUT A set of clauses S

OUTPUT A set of ground equations E such that E |= S

Begin
Let E := ∅
Let SE = {C ∈ S | C ≡ ∨n

i=1 ti = si}
While SE �≡ ∅
Begin

Let C := min(SE) % w.r.t. the multiset extension of the order <

Let L := max(C) % w.r.t. the order < on literals
E := E ∪ {L}
SE = {C ∈ S | C ≡ ∨n

i=1 ti = si,∀i ∈ [1..n]ti �≡E si}
End

End

Theorem 2. Let S be a set of clauses saturated under E-hyper-resolution and
ordered paramodulation together with standard deletion rule: (conditional) de-
modulation and subsumption. Then ModelBuilding(S) terminates. Moreover,
ModelBuilding(S) is a model of S.

The models constructed by the ModelBuilding procedure are Herbrand mod-
els (i.e. defined on the set of ground terms). Obviously, it is more useful — in
the particular context of geometry — to construct diagrams as models. Hence,
we have added a special mechanism to transform automatically Herbrand mod-
els into geometric diagrams. This entails numerical solving of sets of equations
and inequations, since we have to find the value of the coordinates such that
all the assertions in the Herbrand model holds (i.e. we must find a solution of
a system of equations and inequations). To this purpose, we use MAPLE2, to-
gether with specific heuristics devoted to numerical solving of inequations. The
pre-generation of Herbrand model (or at least of a partial Herbrand model) is
useful (and often crucial) to guide the numerical solver.

Example 6. Assume we want to build a counter-example for the wrong “proof” of
Example 5. We have to find a model satisfying “(A, B, C, D) is a parallelogram”,
“I is the midpoint of [B,D]” but not “I is the midpoint of [A, C]”.

During the generation of the Herbrand model, we deduce in particular the
assertion: “collinear({A, B, C, D})” which is a logical consequence of the set of
hypothesis. Then, all these assertions are translated into sets of equations and
inequations. We obtain:

1 XI = (XB + XD)/2 i.e. I is the midpoint of [B, D]
2 YI = (YB + YD)/2
3 XA − XB = XD − XC i.e. A, B, C, D is a parallelogram
4 YA − YB = YD − YC

5 XI �= (XA + XC)/2 i.e. I is not the midpoint of [A, C]
2 HOARDATINF has not yet integrated a symbolic computation system, MAPLE is

used here in an ad hoc manner.



290 Ricardo Caferra, Nicolas Peltier, and François Puitg

6 YI �= (YA + YC)/2
7 (XA − XB) × (YA − YC) = (XA − XC) × (YA − YB) i.e. collinear({A, B, C})
8 (XA − XB) × (YA − YD) = (XA − XD) × (YA − YB) i.e. collinear({A, B, D})

We use MAPLE to solve the system {1, 2, 3, 4, 7, 8}. We obtain a parame-
terized solution of the system, that can be instantiated by arbitrary values in
order to find the coordinates corresponding to a diagram which is the graphical
realization of the obtained Herbrand model. Notice that this would not have
been possible if the assertion “collinear({A, B, C, D})” had not been added into
the set of hypothesis. Indeed, 1, 2, 3, 4 do not carry enough information to find
a solution satisfying 5, 6.

3.3 Proof Generalization and Analogical Reasoning

The analysis of the concepts of analogy and reasoning by analogy has a very long
tradition in western Philosophy and Mathematics. Analogy seems to be one of
the most important (informal) techniques used by humans, particularly when
dealing with mathematical problems (see e.g. [25]). Consequently, application of
analogy to the field of automated deduction seems quite natural. However work
in this direction is surprisingly scarce albeit the ignorance of analogy by theorem
provers was early identified as a major drawback for their performances [2] and
reasoning by analogy is considered as a challenge in automated deduction in
the Wos’ well-known list [35]. Of course, a good use of analogy is still a very
important issue in automated deduction.

In the present work, we focus our interest on the intrinsic value of analogical
reasoning for a better understanding of proofs, rather than in its uses to improve
provers performances.

The main goals are to be able to verify (possibly proposing some changes)
the analogies proposed by students and to suggest proofs (or segment of proofs)
analogous to those proposed by them. Analogy detection is especially important
for the presentation and structuring of proofs: detecting analogies between parts
of a proof is a way of introducing lemmata, thus making proofs shorter and more
readable. Using analogy a priori can be considered as a form of planning.

The analogy reasoning performed by HOARDATINF is mainly based on the
method developed in [11] for detecting and using analogies in resolution proofs.
In this section, we briefly recall the basis of this approach, and we explain how
it has been adapted to geometric reasoning.

The method relies on generalization techniques. It can be divided into two
steps:

1. Generalization step. It occurs just after proving a (new) formula in a
theory (i.e. a theorem). The formula is transformed into a more general
formula schema. Predicate and function symbols are replaced by higher-
order variables, and specific generalization rules are applied, in order to
transform the considered formula into a more general one, while preserving
the proof. The idea is to try to find a formula which is more general than
the original one but that admit a “similar” (i.e. with the same structure)



Emphasizing Human Techniques in Automated Geometry Theorem Proving 291

proof. In some sense, the generalization algorithm infers, from a given proof,
information useful for a larger class of problems.

2. Matching step. Then the system tries to compare the problem at hand to
the previously generalized formulae in order to detect potential similarities.
If such similarities are only partial, then the system tries to infer lemmata
that have to be proven in order to “complete” the analogy. The calculus for
solving such matching problems has been presented in [13,12]. It is based on
higher-order unification techniques.

We refer to [11,13,12] for a detailed presentation of this approach but the
description we give here should enable the reader to understand how it works.
The main modifications that have been introduced into the algorithms in order
to deal more easily with geometry are the following:

– First, it is clear that some of the function and predicate symbols are part
of the language, hence should not be generalized at all (i.e. should not be
replaced by higher-order variables). For example, it would not make sense,
from a geometric point of view, to detect analogies by replacing the predicate
“parallel” by the predicate “perpendicular” in a formula. Therefore, the ap-
plication of the generalization rules (step 1) (see also [11]) must be carefully
controlled. Only function symbols without any intended meaning should be
generalized. Though this restricted generalization reduces the number of po-
tential similarities, it also has the big advantage to strengthen the constraints
on the matching problem (step 2), thus making the matching process much
more easy.

– Second, the matching algorithm should be performed modulo the particular
theories of geometry predicates (commutativity, circularity and parallelism)
as explained in Section 2.4.

As a consequence of these changes in the algorithms, the next example (as
well as the others in our experimentations) only uses a very weak version of the
method presented in [11,13,12].

Remark 11. Of course the full version of the algorithm could be useful, for exam-
ple for detecting similarities between proofs in different geometries or in differ-
ent axiomatizations of the same geometry. Indeed, abstracting the predicate and
function symbols of the considered axiomatization could be useful for study-
ing properties of these axiomatization, as well as properties of the considered
geometric problems.

Example 7. We consider the following source problem (P ). “Let A, B, C, D be
a quadrilateral. Let I, J, K, L be the midpoint of [A, B], [B,C], [C, D], [D, A] re-
spectively. Prove that (I, J, K, L) is a parallelogram.”

This problem is easy and well known. The proof built by HOARDATINF is the
following:



292 Ricardo Caferra, Nicolas Peltier, and François Puitg

midpoint(I,segment(A,B))
$
midpoint(J,segment(B,C))
$
midpoint(K,segment(C,D))
$
midpoint(L,segment(A,D))
$
parallel(segment(I,J),segment(A,C))
midpoint(I,segment(A,B))
midpoint(J,segment(B,C))
midpoints_theorem
$
parallel(segment(L,K),segment(A,C))
midpoint(L,segment(A,D))
midpoint(K,segment(C,D))
midpoints_theorem
$
parallel(segment(I,J),segment(L,K))
parallel(segment(I,J),segment(A,C))
parallel(segment(L,K),segment(A,C))
transitivity_parallelism
$
parallel(segment(L,I),segment(B,D))
midpoint(I,segment(A,B))
midpoint(L,segment(A,D))
midpoints_theorem
$
parallel(segment(J,K),segment(B,D))
midpoint(J,segment(B,C))
midpoint(K,segment(C,D))
midpoints_theorem
$
parallel(segment(I,L),segment(J,K))
parallel(segment(I,L),segment(B,D))
parallel(segment(J,K),segment(B,D))
transitivity_parallelism
$
parallelogramme(I,J,K,L)
parallel(segment(I,J),segment(L,K))
parallel(segment(L,I),segment(J,K))
parallelogram
$

Then, we consider a new problem, noted (P ′). “Let A, B, C be a triangle.
Let P be a point. We construct the points P1, P2, P3 as the images of P, P1, P2
respectively, by the symmetry w.r.t. the points A, B, and C respectively. Let I
be the midpoint of [P, P3]. Prove that (A, B, C, I) is a parallelogramm.”



Emphasizing Human Techniques in Automated Geometry Theorem Proving 293

The interesting point here is that from a human point of view (P ′) is strongly
similar (analogous) to (P ). We use the system HOARDATINF in order to detect
the analogy and reconstruct the proof of (P ′) from the one of (P ).

In a first step the proof of (P ) is generalized. Then the system tries to match
the new problem (P ′) with (P ). In this case the matching does not succeed,
since (P ′) is not a mere instance of (P ). But a partial matching is possible.
This matching can be transformed into a total one, modulo a set of lemmata
corresponding to hypotheses of (P ′) that can not be matched to those of (P ).

We obtain the following list of hypotheses:

midpoint(A,segment[X1,X2]).
midpoint(B,segment[X2,X3]).
midpoint(C,segment[X3,X4]).
midpoint(I,segment[X4,X1]).

It should be noted that X1, X2, . . . , X4 are variables. In order to reconstruct
the proof, we have to find values of X1, . . . , X4 such that the properties above
hold.

The last hypothesis can be matched with midpoint(I,segment(P3,P),
which leads to:

midpoint(A,segment[P,X2]).
midpoint(B,segment[X2,X3]).
midpoint(C,segment[X3,P3]).

The remaining hypotheses cannot be matched. However, they can easily be
proven from the original one, i.e. we have:

midpoint(A,segment[P,P1]).
midpoint(B,segment[P1,P2]).
midpoint(C,segment[P2,P3]).

where the variables X2, X3 have been instanciated. Thus, we obtain the following
proof:

[partial] % the analogy is only partial
parallelogramm(A,B,C,I)
parallel(segment(A,B),segment(I,C))
parallel(segment(I,A),segment(B,C))
$
parallel(segment(A,B),segment(I,C))
parallel(segment(A,B),segment(P,P2))
parallel(segment(I,C),segment(P,P2))
$
parallel(segment(A,B),segment(P,P2))
midpoint(A,segment(P,P1))
midpoint(B,segment(P1,P2))
$
parallel(segment(I,C),segment(P,P2))
midpoint(I,segment(P,P3))
midpoint(C,segment(P2,P3))



294 Ricardo Caferra, Nicolas Peltier, and François Puitg

$
midpoint(I,segment(P,P3))
$
parallel(segment(I,A),segment(B,C))
parallel(segment(A,I),segment(P1,P3))
parallel(segment(B,C),segment(P1,P3))
$
parallel(segment(A,I),segment(P1,P3))
midpoint(A,segment(P,P1))
midpoint(I,segment(P,P3))
$
parallel(segment(B,C),segment(P1,P3))
midpoint(B,segment(P1,P2))
midpoint(C,segment(P2,P3))
$
midpoint(A,segment(P,P1))
symetry(P,P1,A)
$
midpoint(B,segment(P1,P2))
symetry(P1,P2,B)
$
midpoint(C,segment(P2,P3))
symetry(P2,P3,C)
$

Remark 12. All these steps — generalization of the original problem, matching,
instanciation of the variables, proof of the remaining lemmata and reconstruction
of the whole proof — are fully automated. Computation time is rather short (less
than 1s). The interested reader may refer to [11,13,12] for a detailed presentation
of the algorithms.

Remark 13. Analogy reasoning is also very useful for structuring proofs. For
example in the proof of the Theorem given in Annex A, due to the obvious
symmetry in the problem, the proof of (E, J) ‖ (C, K) and (F, I) ‖ (C, K) are
analogous. Using our proof generalisation and matching algorithms in a system-
atic way on these subproofs could allow to detect such similarities and avoid
redundancies in proofs. Appropriate lemmata (obtained from the generalized
subproof) could be automatically introduced in the proof. Obviously, a proof
presented using lemmata is much more easy to understand and to interact with.

4 Reasoning from Diagrams: An Example

Using models and/or counter-examples for guiding proof search is a very natural
idea that have been considered since the very beginning of Automated Deduction
[15]. It is especially useful in geometry where using diagrams to guide proofs (or
refutations) is a common attitude among humans.

A model can be used to check the validity of a given assertion in a particular
context. Hence, it is often used to discard goals that cannot be proven, because



Emphasizing Human Techniques in Automated Geometry Theorem Proving 295

they are false in at least one model. This is especially useful for backward rea-
soning, since it allows to prune the search space by deleting numerous subgoals
that cannot be true in all models of the hypotheses, therefore cannot be a logical
consequence of them (see for example [34]).

Models (interpretations) can be also useful in forward reasoning. When look-
ing for contradiction of set of formulas, if the set can be partitioned in formulas
satisfied by the interpretation and formulas falsified in it, it is useless to deduce
exclusively from formulas satisfied in the interpretation. This is the principle of
the two most popular resolution strategies: support and semantic resolution.

The set of support strategy [37] was born almost simultaneously with resolu-
tion. The set of clauses is partitioned into a satisfiable one and a non-satisfiable
one (a simple theorem ensures the existence of such interpretations for unsatisfi-
able set of clauses). Specification of the interpretation is not required. The more
successful approach for using semantic information in the context of resolution
theorem proving is surely semantic resolution, introduced by Slagle in [33,6].
Semantic resolution corresponds roughly, as Slagle pointed out, to the heuristic
used in the Geometric Theorem-proving Machine [15] to prune the proof search
in plane geometry. It can be seen as an extension of the set of support strategy.
The principle of semantic resolution is again to discard some clauses that cannot
possibly lead to a refutation. This is done — roughly speaking — by preventing
the application of the resolution rule between two clauses that are true in the
considered interpretation.

Therefore, in all semantic-based approaches, models play the role of a filter,
and are used to cut some of the branches in the proof search. As such, this was
proved to be a powerful and elegant way of guiding proof search and strongly
improved the performances of theorem provers (see for example [34] for some
striking examples). Macro inference rules such as positive or negative hyper-
resolution may be seen as particular cases of semantic resolution.

In [30] models are used in two different ways: to prune subgoals that are false
in the model (as in [15]) and to suggest inferences. This second use is closer to
what we do in our approach. Reiter also uses the state of the proof to suggest
changes in the model (e.g. a construction in geometry).

An interesting recent work that deserves to be mentioned is [24]: “on Horn
clause OSHL (the prover written by Plaisted and Zhu) behaves a lot like the
geometry theorem proving prover of Gelernter et al. [15] which used geometric
diagrams and backward chaining with Horn clause-like inference rules to guide
its search.”

Here we propose to go one step further: instead of using models to discard
information (or to suggest inferences as in [30]), we propose to use them a-priori
for suggesting possible lemmata, in order to structure or to plan proofs.

Given a set of hypothesis H, a goal G (the formula to prove) and a particular
diagram D (which is a model of H), we try to find one (or several) logical
relations L that are satisfied in D. Then these relations can be seen as lemmata,
thus suggesting the following (generic) proof plan:



296 Ricardo Caferra, Nicolas Peltier, and François Puitg

– Prove that H models L.
– Prove that H ∪ {L} implies G.

This technique may be seen as a way of adding controlled version of the
(analytic or non-analytic) “cut” rule into the resolution calculus. It is well known
that clever application of the cut rule frequently amounts to significantly prune
the proof search and to decrease the size of the obtained proof (see for example
[19]). On the other hand, identifying “interesting” lemmata for application of this
rule is very difficult, since unrestricted application would be obviously impossible
in practice, due to the huge number of potential candidates. Finding “good”
lemmata often requires advanced knowledge about the considered domain, and
is at the very heart of the mathematical activity.

We consider that the use of diagrams may be a good way to control the
application of the cut rule, in a realistic and useful way. The following is an
example of application of this technique.

Example 8 (Exercise proposed to 16 years old French high school students). We
consider the following problem.

“Let (A, B, C) be a triangle. Let M be the midpoint of [A, B], G1 be the mid-
point of [M,B]. Let G3, G2 be two points on (A, C) such that CG2 = G2G3 =
G3A. Let G be a point such that CG = 2/3 × CG1 and let I be the midpoint
of [C, M ]. Prove that G belongs to (B,G2).”

It should be clear that the function of models here is different from that men-
tioned in Section 3.2. In Section 3.2. model building must be been as a way to
exhibit counterexamples of the initial problem (in refutational approaches for-
mula are negated) after a failed search. Here, models will be built before the search
starts and will be used to guide it. Therefore in this case, the pre-generation of
the Herbrand model is not performed, The system starts by generating auto-
matically a diagram for this problem (i.e. a model of the hypotheses) using the
technique presented in Section 3.2, i.e. the generation of algebraic conditions
corresponding to a logical axiomatization.

Then, it tries to generate lemmata by detecting assertions that are true on
the figure. This is done as follows.

– First, choose a (finite) set of functional symbols and predicate symbols. Here
only the elementary predicate symbols parallel and perpendicular and
the constructor “x, y → (x, y)” (the line between two points x and y) are
chosen.

– Then, enumerate all possible atomic assertions (up to a maximal depth)
that can be constructed on the chosen signature. Assertions that are already
known or that are equivalent to the considered goal (e.g. (B,G) ‖ (B,G2))
should be eliminated immediately.

– Check (using numerical computation) which assertions are true or false in
the model.



Emphasizing Human Techniques in Automated Geometry Theorem Proving 297

Here it generates (among others) the following properties:

parallel((B,G2), (M, G3))
parallel((G2, I), (M, G3))
parallel((B,G), (B, I))

Remark 14. The construction of the diagram and the generation of the lemmata
can be done automatically in almost negligible computation time on this example
(HOARDATINF used less than 1s).

The generation of these lemmata suggests the following proof plan:

1. Try to prove the property G ∈ (B,G2) (i.e. theorem’s conclusion) using all
available lemmata.

2. Then, try to prove from H the lemmata that were actually used in the proof
generated during Step 1.

3. Finally reconstruct the proof of G ∈ (B,G2) using the proof built in steps 1
and 2.

The first step is actually very easy. It can be done in 4.7 s. 95 clauses are
generated. The second step is more difficult. The system runs about 50s, and
generates 1286 clauses (126 are kept, others are deleted by backward or forward
subsumption). The third step is trivial and can actually be neglected (less than
1s).

A rough comparison can be done: proving the initial assertion without using
the lemmata takes 80s and entails the generation of 2386 clauses.

5 Related Work

As already mentioned in Section 1 there are a few logic-based running systems
for geometry theorem proving. Two important and representative among them
(an “old” one and a very recent one) are GEOM [10] and Geometry Expert
(GEX) [8].

GEOM aims at a better better understanding of using Prolog in geometry
theorem proving. Many of the points investigated in [10] are the same as those
investigated in [8] and in the present work.

The interesting work [10] has several limitations with respect to ours, for
example, GEOM allows to express hypotheses and goals only from a fixed list
(lines, parallel segments, . . . ). This makes the system rigid, the user cannot
specify, e.g. circles. As for diagrams, GEOM uses them both as a filter (as in
[15]) and also as a guide (i.e. as an example) to propose conclusions. This second
use is only suggested through a very simple example and is not systematic as
in HOARDATINF. Of course, our work benefits of the advances of automated
deduction these last years.

Our work shares many features with that of Chou, Gao and Zhang [8] but
has several important differences.



298 Ricardo Caferra, Nicolas Peltier, and François Puitg

Both systems use a logical approach with forward chaining. Geometry Expert
is implemented in C, and HOARDATINF is implemented in Prolog.

We compare both approaches on the basis of their design philosophy and the
potential capabilities of their underlying methods.

A comparison from a experimental point of view is part of future work.

– Axiomatization. The Geometric axiomatization (i.e. the set of geometric
rules) used by the Geometric Expert is fixed (it is chosen using only geometric
criteria).
On the contrary HOARDATINF can be used with different axiomatizations.
This is needed because the prover has to be used by students with different
levels of knowledge.
As explained in Section 2.5, this axiomatization must correspond to the
set of theorems, definitions and axioms which are available to the students
in the considered environment. Hence, it cannot be chosen by the prover,
but must be given to the system (together with the considered geometric
configuration and conclusion). The proof must be given using the appropriate
axiomatization. Indeed, a correct proof may be useless, if it uses definitions,
properties or constructions that are not yet known by the student.
More generally, to be convincing, a proof must use theorems, theories, . . . ,
known by the reader or explainable from the reader knowledge.
The axiomatization in [8] consists in a set of function-free Horn clauses
(possibly containing existential quantifiers). Our system can handle non-
Horn clauses which could allow to encode case reasoning into the sys-
tem (using for example formulas of the form parallel((A, B), (C, D)) ∨
nonparallel((A, B), (C, D))). Moreover existential quantifiers are replaced
by function symbols (using skolemization).
Very likely this flexibility makes the system usable for domains other than
geometry with very few modifications (only some particular theories from the
considered domain could have to be included into the unification algorithm).

– Treatment of equality. Geometry Expert does not use the equality predi-
cate. Equality intervenes as associated to particular predicates (e.g. eqangles)
and the equal objects are described in extension in the database. In contrast,
HOARDATINF incorporates an equality axiomatization in an adequate form,
adapted to the inference process, in particular for handling some geometric
theories such as parallelism (see Section 2.4). Specific inference rules are nor-
mally used for reasoning with equality: paramodulation (which corresponds
to instantiation and replacement of equals by equals) and E-unification (i.e.
unification modulo a set of equations).
Dealing explicitely with equality is necessary in teaching the notion of proof.
It must be handled similarly as human beings do it. Encoding it at the object
level into geometric axiomatizations would not be really helpful.
Efficient treatment of the equality predicate in Automated Deduction is well
known as a difficult problem. Our new calculus (E-hyper-resolution) pro-
vides useful features for handling it in the context of the considered class of
problems: E-hyper-resolution prevents the generation of non-ground clauses
and strongly reduces the search space.



Emphasizing Human Techniques in Automated Geometry Theorem Proving 299

– Handling theories. As HOARDATINF, Geometry Expert uses special mech-
anisms to handle basic geometric properties (commutativity, collinearity,
transitivity, . . . ).
The main idea in [8] is to reflect these properties in the structured database.
We put them in the inference rule (more precisely in the unification algo-
rithm).
Geometry Expert also uses a special mechanism for generating new auxil-
iary points during proof search. Explicit generation of auxiliary points is
avoided into our system, since this process is encoded into the considered
axiomatization, using axioms with constructors, for example:

(AB) ‖ (CD) ∨ intersection((AB), (CD)) ∈ (AB)

Using this axiom, the point corresponding to the intersection of (AB) and
(CD) is added into the set of clauses as soon as (AB) and (CD) are proven
to be non-parallel. This point is denoted by intersection((AB), (CD)).
The inference rules in [8] does not use function symbols, hence the use of
existential quantifiers and explicit skolemization is needed.
It is worth noticing that the heuristic used by Geometry Expert to guide the
application of the generation of new auxiliary point rule can be simulated by
the strategy described in Appendix B, which consists in first saturating the
set of clauses without considering non-nested clauses, and then adding the
set of non-nested clauses into the set of saturated clauses. Since non-nested
clauses (in our terminology) corresponds exactly to existential axioms in
[8], this strategy is essentially equivalent to the one used by the Geometry
Expert for generating auxiliary points.
However, since we want to preserve refutational completeness, we do not —
in contrast to [8] — impose further restrictions on the use of auxiliary points.
Chou, Gao and Zhang assume that all the auxiliary points are constructed
using only non-auxiliary points. In our terminology, this could correspond to
limiting the depth of terms to 2 (i.e. all terms occurring in the clause set must
be constructed from constant symbols). Such additional restrictions could of
course be easily added into our system (at the cost of loosing refutational
completeness).

– Strategy. Whereas Geometry Expert uses a depth-first strategy, the system
HOARDATINF uses a breath-first one for non-nested clauses. This strategy is
necessary, since non nested clauses may lead to non-termination. On the
other hand, Geometry Expert does not use a complete search strategy: it
uses a depth-first strategy, together with some restrictions on the use of the
non-nested geometric rules (i.e. the rules used to add new auxiliary points) in
order to insure termination of the process (i.e. to limit the number of points
that can be considered). Since all the other rules correspond to nested clauses
(since they do not contain any function symbol) this condition is sufficient
to ensure the termination of the saturation process in [8] (see Appendix B).

– Computing geometric figures. As in [8], HOARDATINF allows to com-
pute automatically geometric figures for a given geometric configuration.



300 Ricardo Caferra, Nicolas Peltier, and François Puitg

However, the method in [8] is restricted to very particular geometric con-
figuration (called linear by the authors) whereas our method can be used
on any configuration, provided that the corresponding set of algebraic equa-
tions is solvable. Even if it is not solvable, the generation of additional logical
consequences of the clause set may help to find a solution.
In particular, it is easy to see that geometric configurations that are linear
(in the sense of [8]) corresponds to a set of algebric equations that is already
in solved form. Therefore, the generation of the model is straightforward in
this case (no use of any formal system such as Maple, and no generation of
further properties from the geometric configuration is needed).

– Using diagrams. In [8], diagrams are used only to handle negative condi-
tions (notice that this could result in logically incorrect “proofs”!). We have
investigated in the present work the use of diagrams to guide the search for
a proof, by suggesting proof plans. To the best of our knowledge, no other
work proposes a systematic use of diagrams to get proof plans.

6 Conclusion and Future Work

The reported research has hopefully shown that a general approach to a qualita-
tive improving of theorem proving is realistic. Obviously, to be usable in practice
it must be combined with techniques specialized to a particular domain.

In this work, computer assisted learning of the notion of proof through ge-
ometry has been chosen and the corresponding specialized techniques have been
introduced.

It should be emphasized that our present goal and the one for the near future
are not to compete with the excellent (algebraic-based) existing geometric the-
orem provers (benefiting from significant programming efforts for many years)
but to set theoretical bases in order to incorporate powerful features of human
reasoning using general techniques. This goal seems to us necessary in some
uses of automated theorem proving, particularly in assisted learning. The ex-
periments with our prototype for assisted learning have confirmed this idea. A
lot of work remains to be done. We mention the main directions of present and
future research:

– Combining HOARDATINF with other existing systems. We shall
deepen our comparison with Geometry Expert [8] and evaluate to which
extent our approaches can be combined to obtain a more powerful system.
We shall also study the possibility of incorporating some features of
HOARDATINF to the well-known system Cinderella [31].

– Incorporating symbolic computation systems. Geometric problems of-
ten require various form of symbolic computation (e.g. dealing with relation
on lengths or angles). These kinds of reasoning cannot be efficiently encoded
in first-order logic. In the present work we have used MAPLE in an ad
hoc manner. In the future the use of symbolic computation tools (MAPLE,
MATHEMATICA, . . . ) should be systematic.



Emphasizing Human Techniques in Automated Geometry Theorem Proving 301

– Experimenting with abduction. Abduction, i.e. identifying hypothesis
allowing to prove a given formula (or to explain a given fact) is an impor-
tant form of the human inference activity. Abduction is one more application
of our general approach (see [7,3,12]). Recently, in [29] an algebraic-based
method has been proposed for discovering additional hypotheses in order
to make true a given statement. We will compare possibilities of both ap-
proaches.

– Exploiting full capabilities of our approach to analogy. To handle
analogy in this work only a very weak version of the algorithm implementing
our approach [11,13,12] was necessary. Using the full capabilities of it will
allow to investigate much deeper geometric properties (see Remark 11).

– Using diagrams in logical frameworks. One of the authors have worked
on geometry modeling in Coq ([26,27]) and appreciated the utility of dia-
grams and the use of analogy (for example in generating lemmata or in proof
planning) when interactively proven in Coq. Combining ideas and techniques
in this paper with logical frameworks is an important spin-off of our work,
presently under investigation.

References

1. N. Balacheff. Apprendre la preuve. In J. Sallantin and J.-J. Szczeniarz (eds.), Le
concept de preuve à la lumière de l’intelligence artificielle, pages 197–236. PUF,
Paris, 1999.

2. W. W. Bledsoe. Non-resolution theorem proving. Artificial Intelligence, 9:1–35,
1977.

3. C. Bourely, G. Défourneaux, and N. Peltier. Building proofs or counterexamples
by analogy in a resolution framework. In Proceedings of JELIA 96, LNAI 1126,
pages 34–49. Springer, 1996.

4. R. Caferra and M. Herment. A generic graphic framework for combining infer-
ence tools and editing proofs and formulae. Journal of Symbolic Computation,
19(2):217–243, 1995.

5. R. Caferra, M. Herment, and N. Zabel. User-oriented theorem proving with the
ATINF graphic proof editor. In Fundamentals of Artificial Intelligence Research,
LNCS 535, pages 2–10. Springer, 1991.

6. R. Caferra and N. Peltier. Extending semantic resolution via automated model
building: Applications. In Proceeding of IJCAI’95, pages 328–334. Morgan Kauf-
man, 1995.

7. R. Caferra and N. Peltier. Disinference rules, model building and abduction. Logic
at Work. Essays dedicated to the memory of Helena Rasiowa (Part 5: Logic in
Computer Science, Chap. 20). Physica-Verlag, 1998.

8. S.-C. Chou, X.-S. Gao, and J.-Z. Zhang. A deductive database approach to auto-
mated geometry theorem proving and discovering. Journal of Automated Reason-
ing, 25(3):219–246, 2000.

9. S.-C. Chou. Mechanical Geometry Theorem Proving. Mathematics and its Appli-
cations. D. Reidel, 1988.

10. H. Coelho and L. Moniz Pereira. Automated reasoning in geometry theorem prov-
ing with Prolog. Journal of Automated Reasoning, 2(4):329–390, 1986.



302 Ricardo Caferra, Nicolas Peltier, and François Puitg

11. G. Défourneaux, C. Bourely, and N. Peltier. Semantic generalizations for proving
and disproving conjectures by analogy. Journal of Automated Reasoning, 20(1–
2):27–45, 1998.

12. G. Défourneaux and N. Peltier. Analogy and abduction in automated reasoning. In
M. E. Pollack (ed.), Proceedings of IJCAI’97, pages 216–225. Morgan Kaufmann,
1997.

13. G. Défourneaux and N. Peltier. Partial matching for analogy discovery in proofs
and counter-examples. In W. McCune (ed.), Proceedings of CADE-14, LNAI 1249,
pages 431–445. Springer, 1997.

14. C. Fermüller and A. Leitsch. Decision procedures and model building in equational
clause logic. Journal of the IGPL, 6(1):17–41, 1998.

15. H. Gelernter, J. Hansen, and D. Loveland. Empirical explorations of the geometry
theorem-proving machine. In J. Siekmann and G. Wrightson (eds.), Automation
of Reasoning, vol. 1, pages 140–150. Springer, 1983. Originally published in 1960.

16. H. Hong, D. Wang, and F. Winkler. Algebraic Approaches to Geometric Reasoning.
Special issue of the Annals of Mathematics and Artificial Intelligence 13 (1-2).
Baltzer, Amsterdam, 1995.

17. J. Hsiang and M. Rusinowitch. Proving refutational completeness of theorem
proving strategies: The transfinite semantic tree method. Journal of the ACM,
38(3):559–587, 1991.

18. D. Kapur and J. E. Mundy. Geometric Reasoning. MIT Press, 1989.
19. A. Leitsch. The Resolution Calculus. Texts in Theoretical Computer Science.

Springer, 1997.
20. V. Luengo. A semi-empirical agent for learning mathematical proof. In S. P. Lajoie

and M. Vivet (eds.), Artificial Intelligence and Education, pages 475–482. IOS
Press, Amsterdam, 1999.

21. V. Luengo. Cabri-Euclide: Un micromonde de preuve intégrant la réfutation. Thèse
de doctorat, I.N.P.G., France, Septembre 1997.

22. N. Peltier. Combining resolution and enumeration for finite model building. In
P. Baumgartner and H. Zhang (eds.), FTP’00 (Third International Workshop on
First-Order Theorem Proving), St-Andrews, Scotland, pages 170–181. Technical
Report, Universität Koblenz-Landau, July 2000.

23. N. Peltier. On the decidability of the PVD class with equality. Technical report,
LEIBNIZ Laboratory, 2000. To appear in the Logic Journal of the IGPL.

24. D. A. Plaisted and Y. Zhu. Ordered semantic hyperlinking. Journal of Automated
Reasoning, 25(3):167–217, 2000.

25. G. Polya. How to Solve It: A New Aspect of Mathematical Method (second edition).
Princeton University Press, 1973.

26. F. Puitg and J.-F. Dufourd. Formal specifications and theorem proving break-
throughs in geometric modelling. In Theorem Proving in Higher-Order Logics,
LNCS 1479, pages 401–422. Springer, 1998.

27. F. Puitg and J.-F. Dufourd. Formalizing mathematics in higher-order logic: A case
study in geometric modelling. Theoretical Computer Science, 234:1–57, 2000.

28. A. Quaife. Automated development of Tarski’s geometry. Journal of Automated
Reasoning, 5:97–118, 1989.

29. T. Recio and M. Vélez. Automatic discovery of theorems in elementary geometry.
Journal of Automated Reasoning, 23(1):63–82, 1999.

30. R. Reiter. A semantically guided deductive system for automatic theorem proving.
IEEE Transactions on Computers, C-25(4):328–334, 1976.

31. J. Richter-Gebert and U. Kortenkamp. The Interactive Geometry Software Cin-
derella. Springer, 2000.



Emphasizing Human Techniques in Automated Geometry Theorem Proving 303

32. M. Rusinowitch. Démonstration automatique par des techniques de réécriture.
Thèse d’état, Université Nancy 1, France, 1987. Also available as textbook, In-
ter Editions, Paris, 1989.

33. J. R. Slagle. Automatic theorem proving with renamable and semantic resolution.
Journal of the ACM, 14(4):687–697, 1967.

34. J. Slaney. scott: A model-guided theorem prover. In Proceedings IJCAI-93, vol. 1,
pages 109–114. Morgan Kaufmann, 1993.

35. L. Wos. Automated Reasoning: 33 Basic Research Problems. Prentice Hall, 1988.
36. L. Wos, R. Overbeek, E. Lush, and J. Boyle. Automated Reasoning: Introduction

and Applications (second edition). McGraw-Hill, 1992.
37. L. Wos, G. Robinson, and D. Carson. Efficiency and completeness of the set of

support strategy in theorem proving. Journal of the ACM, 12:536–541, 1965.

Acknowledgements

We thank an anonymous referee for a lot of detailed and constructive remarks
that helped us to improve the presentation of this paper.

A An (Automatically Generated) Proof for Example 2

Remark 15. The justifications provided by the system (e.g. “propriete 2, chap.
8”, etc.) refer directly to the geometric theorems and definitions given in the
considered textbook (see Section 2.5).

- e est le milieu de [ak] (hypothese)

- (ak) et (ke) sont paralleles, car e est le milieu de [ak] (par definition)

- f est le milieu de [bk] (hypothese)

- (bk) et (kf) sont paralleles, car f est le milieu de [bk] (par definition)

- k est le milieu de [ab] (hypothese)

- (ab) et (bk) sont paralleles, car k est le milieu de [ab] (par definition)

- (ab) et (kf) sont paralleles car (bk) et (kf) sont paralleles,

et (ab) et (bk) sont paralleles (propriete 1, rappels)

- (ab) et (ak) sont paralleles car: k est le milieu de [ab] (par definition)

- (ab) et (ke) sont paralleles car (ak) et (ke) sont paralleles

et (ab) et (ak) sont paralleles (propriete 1, rappels)

- (ke) et (kf) sont paralleles car (ab) et (kf) sont paralleles

et (ab) et (ke) sont paralleles (propriete 1, rappels)

- (ke) et (ef) sont paralleles car (ke) et (kf) sont paralleles (par definition)

- (ak) et (ef) sont paralleles car (ak) et (ke) sont paralleles

et (ke) et (ef) sont paralleles (propriete 1, rappels)

- j est le milieu de [ac] (hypothese)

- i est le milieu de [bc] (hypothese)

- (ab) et (ij) sont paralleles car j est le milieu de [ac]

et abc est un triangle et i est le milieu de [bc] (propriete 1, chap. 8)

- (ak) et (ij) sont paralleles car: (ab) et (ak) sont paralleles

et (ab) et (ij) sont paralleles (propriete 1, rappels)

- (ij) et (ef) sont paralleles car: (ak) et (ef) sont paralleles

et (ak) et (ij) sont paralleles (propriete 1, rappels)



304 Ricardo Caferra, Nicolas Peltier, and François Puitg

- (ck) et (je) sont paralleles car e est le milieu de [ak]

et ack est un triangle et j est le milieu de [ac] (propriete 1, chap. 8)

- (ck) et (if) sont paralleles car f est le milieu de [bk]

et bck est un triangle et i est le milieu de [bc] (propriete 1, chap. 8)

- (if) et (je) sont paralleles car: (ck) et (je) sont paralleles

et (ck) et (if) sont paralleles (propriete 1, rappels)

- fije est un parallelogramme car (ij) et (ef) sont paralleles

et (if) et (je) sont paralleles (definition 14, rappels)

- abc est isocele en c (hypothese)

- (ck) est la mediane issue de c du triangle cab car k est le milieu de [ab]

(definition 10, rappels)

- (ck) est la hauteur issue de c du triangle cab car abc est isocele en c

et abc est un triangle et (ck) est la mediane issue de c du triangle cab

(propriete 5, chap. 10)

- (ab) et (ck) sont perpendiculaires car (ck) est la hauteur issue de c du

triangle cab (definition 10, rappels)

- (ck) et (ij) sont perpendiculaires car (ab) et (ij) sont paralleles et

(ab) et (ck) sont perpendiculaires (propriete 3, rappels)

- (ij) et (if) sont perpendiculaires car (ck) et (if) sont paralleles

et (ck) et (ij) sont perpendiculaires (propriete 3, rappels)

- fije est un rectangle car: fije est un parallelogramme et (ij) et (if) sont

perpendiculaires (propriete 30, rappels)

B An (Automatically Generated) Proof for Example 3

- h est le milieu de [ad] (hypothese)

- g est le milieu de [cd] (hypothese)

- (ac) et (gh) sont paralleles car h est le milieu de [ad], acd est un triangle

et g est le milieu de [cd] (propriete 1, chap. 8)

- f est le milieu de [bc] (hypothese)

- e est le milieu de [ab] (hypothese)

- (ac) et (ef) sont paralleles car f est le milieu de [bc], abc est un triangle

et e est le milieu de [ab] (propriete 1, chap. 8)

- (gh) et (ef) sont paralleles car (ac) et (gh) sont paralleles

et (ac) et (ef) sont paralleles (propriete 1, rappels)

- (bd) et (gf) sont paralleles car g est le milieu de [cd], bcd est un triangle

et f est le milieu de [bc] (propriete 1, chap. 8)

- (bd) et (he) sont paralleles car h est le milieu de [ad], abd est un triangle

et e est le milieu de [ab] (propriete 1, chap. 8)

- (gf) et (he) sont paralleles car (bd) et (gf) sont paralleles

et (bd) et (he) sont paralleles (propriete 1, rappels)

- fghe est un parallelogramme car (gh) et (ef) sont paralleles, ghef est un

quadrilataire et (gf) et (he) sont paralleles (definition 14, rappels)

- (ac) et (bd) sont perpendiculaires (hypothese)

- (ac) et (he) sont perpendiculaires car (ac) et (bd) sont perpendiculaires

et (bd) et (he) sont paralleles (propriete 3, rappels)

- (he) et (ef) sont perpendiculaires car: (ac) et (ef) sont paralleles, (ac)

et (he) sont perpendiculaires (propriete 3, rappels)

- fghe est un rectangle car fghe est un parallelogramme et (he) et (ef) sont



Emphasizing Human Techniques in Automated Geometry Theorem Proving 305

perpendiculaires (propriete 30, rappels)

- longueur(segment(a,c)) = longueur(segment(b,d)) (hypothese)

- longueur(segment(g,h)) = longueur(segment(a,c))*0.5 car h est le milieu de

[ad], acd est un triangle et g est le milieu de [cd] (propriete 1, chap. 8)

- longueur(segment(g,f)) = longueur(segment(b,d))*0.5 car g est le milieu de

[cd], bcd est un triangle et f est le milieu de [bc] (propriete 1, chap. 8)

- longueur(segment(g,h)) = longueur(segment(g,f)) car

longueur(segment(a,c)) = longueur(segment(b,d)),

longueur(segment(g,h)) = longueur(segment(a,c))*0.5

et longueur(segment(g,f)) = longueur(segment(b,d))*0.5 (par definition)

- longueur(segment(e,f)) = longueur(segment(a,c))*0.5 car f est le milieu de [bc]

abc est un triangle et e est le milieu de [ab] (propriete 1, chap. 8)

- longueur(segment(g,f)) = longueur(segment(e,f)) car

longueur(segment(a,c)) = longueur(segment(b,d)),

longueur(segment(g,f)) = longueur(segment(b,d))*0.5

et longueur(segment(e,f)) = longueur(segment(a,c))*0.5 (par definition)

- longueur(segment(h,e)) = longueur(segment(b,d))*0.5 car h est le milieu de [ad]

abd est un triangle et e est le milieu de [ab] (propriete 1, chap. 8)

- longueur(segment(g,f)) = longueur(segment(h,e)) car

longueur(segment(g,f)) = longueur(segment(b,d))*0.5

et longueur(segment(h,e)) = longueur(segment(b,d))*0.5 (par definition)

- fghe est un losange car longueur(segment(g,h)) = longueur(segment(g,f)),

longueur(segment(g,f)) = longueur(segment(e,f)), ghef est un quadrilataire

et longueur(segment(g,f)) = longueur(segment(h,e)) (definition 15, rappels)

- fghe est un carre car fghe est un losange et fghe est un rectangle

(propriete 32, rappels)



Higher-Order Intuitionistic Formalization
and Proofs in Hilbert’s Elementary Geometry

Christophe Dehlinger, Jean-François Dufourd, and Pascal Schreck

Laboratoire des Sciences de l’Image, de l’Informatique
et de la Télédétection (UMR CNRS 7005)
Université Louis-Pasteur de Strasbourg

Pôle API, boulevard S. Brant
67400 Illkirch, France

{dehlinge,dufourd,schreck}@lsiit.u-strasbg.fr

Abstract. We propose the basis of a higher-order logical framework to
axiomatize and build proofs in Hilbert’s elementary geometry in which
intuitionistic aspects are emphasized. More precisely, we use the Calcu-
lus of inductive constructions and the system Coq to specify geometric
concepts and to study and interactively handle proofs for the first two
groups of Hilbert’s axiomatics. It is the first step to a formalization well
adapted to the definition of primitive operations that are used in many
different geometric algorithms.

1 Introduction

We study a formalization of geometry well adapted to computer-related aspects
of geometry, including computational geometry, geometric modelling, geometric
construction and robotics. In this paper, we propose the basis of a higher-order
logical framework to axiomatize and build proofs in Hilbert’s elementary geom-
etry in which intuitionistic aspects are emphasized.

The interest of an axiomatization of geometry for computer science has been
well demonstrated by several authors, for instance Toussaint [16] and Knuth
[14], in order to better understand geometric universes and well define primi-
tive operations that are used in many different algorithms. Our research group
has reached the same conclusion for topology-based geometric modelling [22].
Moreover, in spite of the impressive results of the mechanical geometry theorem
proving based on polynomial algebra [23,3], the crucial issue of round-off errors
often makes logical reasoning in pure geometry preferred to computing in ana-
lytic geometry when possible. This is the case for knowledge-based systems that
symbolically solve geometric constraints, for instance in CAD [6].

In computer science, the need to actually build and manipulate geometric
objects favors an intuitionistic approach, proscribing the excluded middle axiom
or equivalent ones [11]. This point of view has been defended by Heyting [12]
and developped by von Plato [17,18,19] in a new approach of affine concepts.
But instead of following a not much frequented way to address geometry (see
for instance [23,1] for various propositions related with this topic), we opted to

J. Richter-Gebert and D. Wang (Eds.): ADG 2000, LNAI 2061, pp. 306–323, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Higher-Order Intuitionistic Formalization in Hilbert’s Elementary Geometry 307

attack a commonly accepted geometry, hence our choice of Hilbert’s axiomatics.
Thus, following the progression of Hilbert’s Grundlagen der Geometrie [13], we
have tried to express the beginning of this axiomatics and the proofs of funda-
mental theorems in the chosen logical framework. When it was not natural for us,
we have adapted Hilbert’s formulation, especially by distinguishing intuitionistic
and classical aspects.

More precisely, our framework is the Calculus of inductive contructions (CIC)
which is based on type theory and offers a high abstract generic level of speci-
fication and proof. It is implemented in system Coq developped at the INRIA
and already used by von Plato for geometry and our research group for discrete
topology [20,21,22].

The paper is structured as follows. Section 2 shortly presents the calculus
of inductive constructions and Hilbert’s geometry with its five axiom groups.
Section 3 gives some basic formal definitions of geometric types and relations in
Coq. Section 4 specifies the axioms of the first Hilbert’s group. Sections 5 and 6
each present a theorem of the first group. Section 7 does the same for the axioms
and two theorems of the second group. Then, Section 8 develops the proof of a
larger theorem which requires additional data types, and Section 9 gives some
conclusions. Rather than giving a complete view of the results, we will focus on
the novelties that come up at each step.

2 Basic Notions

2.1 Calculus of Inductive Constructions

Type theories are logical frameworks the objects of which are typed lambda-
terms. They can be distinguished by the power of their typing system and their
underlying logic (see for instance [10]). Examples are Church’s higher order logic,
Martin-Löf intuitionistic type theory and the Calculus of inductive constructions
(CIC) [5]. A typed lambda-term formalism is related with its logical semantics
by the Curry-Howard isomorphism, which states that:

– any proof p is represented by a lambda-term P
– any proposition s is represented by a type S
– p is a proof of s iff P is of type S

The typing system of CIC is based on Girard’s polymorphic lambda-calculus,
a very powerful typing system that allows the representation of proofs as well
as types by lambda-terms, the underlying logic being intuitionistic. Another im-
portant feature of CIC is the possibility to inductively define types that are used
to define usual logical constructions with connectors and quantifiers as well as
user application-oriented data types and predicates. Fundamentally, the generic
inference rules, or type-checking rules, of CIC allow introduction or elimination
of the universal quantifier, of the lambda-abstraction or of inductive constructs.
All usual quantifiers and connectors manipulation rules can be considered to be
derived from them.



308 Christophe Dehlinger, Jean-François Dufourd, and Pascal Schreck

To develop our specifications and proofs we have worked with system Coq,
a CIC-based conversational proof assistant. The user communicates with the
system through a high-level language called Gallina that allows the definition
of axioms, parameters, types, functions and predicates. Coq also supports in-
teractive proof constructions in which reasoning steps are specified by the user
through commands called tactics, which in fact implement the CIC inference
rules. This point will be illustrated in the subsequent geometric proofs.

2.2 Hilbert’s Axiomatics

In the late XIXth century, geometry is still based on Euclid’s theory, which
itself is based on intuition. The creation of non-euclidian geometries leads a few
mathematicians to go back to the roots of geometry and find alternate or better
ways to found it. In 1899, David Hilbert publishes Grundlagen der Geometrie
[13] in which he proposes a new axiomatics for elementary geometry. Hilbert
pays special attention to issues such as axiom classification, independence and
minimality. He is also the first one to abstractly link arithmetics and geometry
by creating a linear and area calculus system. Hilbert classifies his axioms in five
groups:

I. Incidence axioms
II. Order axioms

III. Congruence axioms
IV. Parallel axiom
V. Continuity axioms

We have only studied group I and a significant part of group II so far. Each
group features a number of important theorems in addition to the axioms, the
proof of many of which is not given. Hilbert’s style is informal, therefore many
formalization problems arise. We will focus on the methodology we used to over-
come these problems. Besides, Hilbert works in a classical logical framework,
whereas we try to be constructive. Therefore, we are especially concerned about
the use of excluded middle axiom or its equivalents.

3 Definitions

Group I of Hilbert’s axioms deals with incidence. They express relations between
points, lines and planes, these are abstract beings at the very beginning. Thus,
in Gallina, they may be seen as belonging to one of three types designated by
parameters declared by:

Parameters point, line, plane: Set.

In Gallina, t : T reads “t is of type T”, and Set, which has nothing to do with set
theory, is used to refer to “the type of concrete types”, i.e. the type of the type
of the objects that are actually built and studied. This command adds point,



Higher-Order Intuitionistic Formalization in Hilbert’s Elementary Geometry 309

line and plane as three new constants of type Set in the environment. It can
be understood as the axiom “there exist three objects of type Set named point,
line and plane”. Hilbert then considers two abstract binary incidence relations,
one between points and lines, the other between points and planes. They are also
declared through parameters:

Parameter inc-pt-ln: point -> line -> Prop.
Parameter inc-pt-pl: point -> plane -> Prop.

In these functional notations, Prop is the built-in type of logical propositions.
Group II of axioms deals with a ternary betweenness relation between points.
As before, it is declared through a parameter:

Parameter between: point -> point -> point -> Prop.

Thus, (between A B C) stands for “B is between A and B”. Finally, it is con-
venient to define some other relations built from those parameters, using the
Gallina definition mechanism. For instance, alignment of three points is defined
by:

Definition aligned3: point -> point -> point -> Prop:=
[A,B,C: point]

(EX l: line
| (inc-pt-ln A l) /\ (inc-pt-ln B l)

/\ (inc-pt-ln C l)).

This definition abbreviates the term [A,B,C: point](...) into the symbol
aligned3 of type point → ... → Prop. The square-bracketed expression
[A,B,C: point] represents the lambda-abstraction of variables A,B and C, and
the expression (EX l: line | ...) represents the existential quantification over
variable l. Thus, the whole term intuititively means “given three points A,B et C,
there exists a line l such that A,B et C are incident to l”. Likewise, we represent
incidence between a line and a plane with the following definition:

Definition inc-ln-pl: line -> plane -> Prop:=
[a: line ;a’: plane]

(A: point)
(inc-pt-ln A a) -> (inc-pt-pl A a’).

where the notation (A: point)(...) represents the universal quantification of
variable A. The whole definition means “given a line a and a plane a’, for any
point A, if A is incident to a, then it is incident to a’”. Many other definitions are
built in a similar way. Note that, adapting Hilbert’s notation, we name points,
lines and planes with capital, minuscules and quoted minuscules, respectively.



310 Christophe Dehlinger, Jean-François Dufourd, and Pascal Schreck

4 Axioms of the First Group

We can then use these variables and definitions to give a naive Gallina translation
of the first group of Hilbert’s axioms. The first of them is written by Hilbert:

Axiom (I,1): “For any given two points A and B, there is a line l to
which both A and B are incident.”

According to this formulation, A and B may be identical. However, when he
refers to several beings of the same kind, Hilbert always assumes that they are
all distinct. This will prove important to use axiom (I,1) constructively. Thus,
when translating these axioms into Gallina, we systematically mention that all
variables of the same kind are distinct. For instance, a Gallina version of axiom
(I,1) in which A and B are supposed to be distinct is the following:

Axiom AI-1:
(A,B: point)

˜A=B -> (EX a: line |
(inc-pt-ln A a) /\ (inc-pt-ln B a)).

This term can be understood as: “for any two points A and B, if A and B are not
equal, then there exists a line a, such that A is incident to a and B is incident to
a”. In a similar way, Hilbert writes the second axiom:

Axiom (I,2): “There is no more than one line to which two given points
A and B are incident.”

Note that A and B are here obviously meant to be distinct, as this state-
ment would otherwise be false in “natural” geometry, which Hilbert’s axioms
are supposed to formalize. This axiom is much harder to express formally. In-
deed, Hilbert’s formulation actually means “the number of lines to which two
given points A and B are incident is no more than one”. Should we try to trans-
late this statement directly, we would have in some way to formally describe
the counting of lines satisfying a proposition. This is rather cumbersome as it
would probably require the introduction of concepts such as naturals, infinite
sets and cardinals, especially if performed in a constructive framework. But the
main problem is that we have no way to make sure that our method of counting
lines will yield the same results as Hilbert’s, as he did not give any properties
of this process. The best we can do is saying that line counting is a rather easy
and clear concept, and that Hilbert probably meant the same thing as we do.
However, we choose a formal presentation of this axiom which is syntactically
far from a direct translation, but semantically acceptable:

Axiom AI-2:
(A,B: point)(a,b: line)

˜A=B -> (inc-pt-ln A a) -> (inc-pt-ln B a)
-> (inc-pt-ln A b) -> (inc-pt-ln B b)
-> a=b.



Higher-Order Intuitionistic Formalization in Hilbert’s Elementary Geometry 311

which can be read as: “For any two given points A and B and any two given
lines a and b, if A and B are distinct, if A and B are incident to a, and if A and
B are incident to b, then a and b are identical”. Although other formulations
are equivalent in classical logic, ours is rather powerful in intuitionistic logic,
mainly because it yields a positive result [11], which had already been used by
[18]. Similar considerations that we cannot develop any further can be done on
the six remaining axioms of the first group.

5 Theorems of the First Group

This section discusses the proof of Theorem I, which is given by Hilbert in his
work. For modularity reasons, we have split it into four parts, numbered Ia to
Id. Thus, Theorem Ia informally writes:

Theorem Ia: “Two lines have at most one common point.”

which can be translated in Gallina into:

Theorem Ia:
(a,b: line)(A,B: point)

˜a=b -> (inc-pt-ln A a) ->(inc-pt-ln B a)
-> (inc-pt-ln A b) -> (inc-pt-ln B b)
-> A=B.

where counting is handled in a way similar to axiom (I,2). Thus Theorem Ia
can read: “all points common to two distinct lines are equal”. To illustrate the
basic mechanisms of the Coq system, we detail the proof of this theorem. In
fact, the proof requires the addition of an axiom of excluded middle, or at least
of decidability of point equality. But we can start by constructively proving a
weaker version of this theorem:

Theorem Ia-weak:
(a,b: line)(A,B: point)

˜a=b -> (inc-pt-ln A a) -> (inc-pt-ln B a)
-> (inc-pt-ln A b) -> (inc-pt-ln B b)
˜˜A=B.

which can read: “any points common to two distinct lines cannot be proved
different”.

Proof. – Tactic Unfold 1 not unfolds the first occurence of symbol ˜, thus
expanding the subterm ˜˜A=B into ˜A=B → False.

– Tactic Intros introduces (a,b: line), (A,B: point), ˜a=b, (inc-pt-
ln A a), (inc-pt-ln B a), (inc-pt-ln A b), (inc-pt-ln B b), A=B
as hypotheses, the only conclusion being False.

– Tactic Absurd a=b allows us to prove any goal, in particular False, provided
we prove ˜a=b and a=b.



312 Christophe Dehlinger, Jean-François Dufourd, and Pascal Schreck

– Tactic Assumption proves ˜a=b which is among the hypotheses.
– Tactic Apply AI 2 with A:=A B:=B applies axiom AI 2 with convenient ef-

fective parameters, and leads to five subgoals, which are all among hypothe-
ses.

– Finally, tactic Assumption used five times removes all of them.
��

Then, the complete proof of Theorem Ia is easily obtained from the Theorem
Ia-weak and the excluded middle axiom:

Axiom EM: (p: Prop) p \/ ˜p.

or, what is equivalent here, the axiom of decidability of point equality:

Axiom DEC_EQ_PT (A,B: point) A=B \/ ˜A=B.

The use of these axioms is natural in classical logic, but is prohibited in intu-
itionistic logic. In fact, the lack of ways to infer a point equality with our axioms
suggests that Theorem Ia cannot be proved constructively. Thus if we assume
DEC EQ PT, a proof of Theorem Ia is:

Proof. – As above, Tactic Intros introduces all premises into the local con-
text.

– Tactic (Elim DEC EQ PT A B) generates two subgoals:
• A=B→A=B: removed by Tactic Trivial.
• ˜A=B→A=B: Tactic Intro introduces ˜A=B into the local context.
• Tactic Absurd ˜A=B replaces the current goal by two subgoals ˜A=B and
˜˜A=B.

∗ Tactic Assumption removes the first subgoal.
∗ Tactic Apply Ia-weak with a:=a b:=b applies Theorem Ia-weak,

and generates one subgoal for each premise of Ia-weak.
∗ Finally, Tactic Assumption used five times removes the remaining

subgoals.
��

The second part of Hilbert’s Theorem I expresses:

Theorem Ib: “Two distinct planes either have no common point or
have a common line.”

Its naive Gallina translation is:

Theorem Ib:
(a’,b’: plane)

˜a’=b’
-> ˜(EX A: point | (inc-pt-pl A a’)

/\ (inc-pt-pl A b’))
\/ (EX a: line | (inc-ln-pl a a’)

/\ (inc-ln-pl a b’)).



Higher-Order Intuitionistic Formalization in Hilbert’s Elementary Geometry 313

As previously, we can prove this theorem using the excluded middle or an equiv-
alent. Here again, we conjecture that it cannot be proved constructively. This
time, the reason is that it is a classification theorem, and that nothing in our
axioms allows reasoning by cases. This anomaly is fixed by adding the excluded
middle to the axioms. As in Theorem Ia, we can constructively prove for this
theorem a weaker version, with which the excluded middle directly yields the
full theorem. The third part of Hilbert’s Theorem I writes:

Theorem Ic: “Two distinct planes with a common line have no common
point outside this line.”

There are several ways to formalize this theorem, for instance:

Theorem Ic-neg:
(a’,b’: plane)(a: line)(A: point)

˜a’=b’
-> (inc-pt-pl A a’) -> (inc-pt-pl A b’)
-> (inc-ln-pl a a’) -> (inc-ln-pl a b’)
-> ˜˜(inc-pt-ln A a).

which expresses the fact that the planes a’ and b’ in play have no common
point outside the common line a, or:

Theorem Ic-pos:
(a’,b’: plane)(a: line)(A: point)

˜a’=b’
-> (inc-pt-pl A a’) -> (inc-pt-pl A b’)
-> (inc-ln-pl a a’) -> (inc-ln-pl a b’)
-> (inc-pt-ln A a).

which expresses the fact that all points common to planes a’ and b’ are incident
to the common line a.

We have proved Ic-neg constructively, and Ic-pos classically with the ex-
cluded middle. Once again, we conjecture that Ic-pos cannot be proved con-
structively. Finally, the fourth part of Theorem I writes:

Theorem Id: “A plane and a line that is not incident to this plane have
at most one common point.”

No new kind of problem arises in the treatment of this theorem.

6 Theorem II

In Group I of Hilbert’s axiomatics, Theorem II deals with existence and unicity
of the plane incident to a line and a point, or to two lines:

Theorem II: “There is a single plane incident to two given distinct
convergent lines, or to a given line and point apart from this line.”



314 Christophe Dehlinger, Jean-François Dufourd, and Pascal Schreck

Like Theorem I, Theorem II is split into four parts, or “subtheorems”. The last
two parts, which address unicity of the considered planes, can be formalized
easily and proved constructively. The first two parts, which address existence of
the planes, are slightly harder to formalize, and their proofs use the decidability
of point equality.

Here, decidability occurs in a new way. Indeed, decidability was previously
used at the very beginning of the proof to produce two cases, one being proved
constructively, and the other being proved by refutation. Thus Theorems Ia to
Id can be seen as direct classical corollaries of constructive lemmas. In the first
two parts of Theorem II, decidability applies to points built in the middle of the
proofs, and is used to decide which of two constructions must be chosen. Here
constructive parts and classical decision parts are interwoven in a more complex
way than in Theorem I, thus non-constructivity must be handled in a different
manner. A method would be to prove a lemma for each constructive part of
the complete classical proof. The problem is that those lemmas are not very
meaningful by themselves. Our method is to weaken the two existence-related
subtheorems by adding an hypothesis, which will be used during the proof to
make the decision that was previously made by the use of decidability in the
classical proof. This extra hypothesis, called can-build-other-point-on-line
is a much weaker and more specialized version of point equality decidability:

Definition can-build-other-point-on-line:=
(A: point)(a: line)

(inc-pt-ln A a)
-> (EX B: point | ˜A=B /\ (inc-pt-ln B a)).

which states that, given a line and a point on this line, one can build another
point on this line. Using this definition we can express and constructively prove
the following theorem:

Theorem IIexll-weak:
can-build-other-point-on-line ->

(a,b: line)(A: point)
˜a=b
-> (inc-pt-ln A a) -> (inc-pt-ln A b)
-> (EX a’: plane |

(inc-ln-pl a a’) /\ (inc-ln-pl b a’)).

which states that, assuming can-build-other-point-on-line, one can build
a plane incident to two distinct given lines that have a common point. Once
again, we have managed to express the full theorem as a classical corollary of this
constructive theorem, as can-build-other-point-on-line is a consequence of
point equality decidability. However, this weak constructive version is actually
much weaker, as can-build-other-point-on-line must be assumed whenever
we want to use it. This extra hypothesis can also be understood as a property
we wish we had in our axiomatics, and could be used as a hint as to how to



Higher-Order Intuitionistic Formalization in Hilbert’s Elementary Geometry 315

modify Hilbert’s classical axiomatic in order to build a constructive one. The
other existence subtheorem is handled in the same way.

All theorems of the first group have been formally proved in classical logic,
and almost none were proved in constructive logic. This strongly suggests that
Hilbert’s axioms are not naturally well adapted for constructive reasoning, and
need to be tweaked in order to fill our needs.

7 Axioms and Theorems of the Second Group

7.1 Axioms of the Second Group

The four axioms of Group II of Hilbert’s geometry describe relation between
(see Sect. 3). They are straightforwardly translated to Gallina, the first one
being split into two parts numbered a and b:

Axiom (II,1) part a: “If B is between A and C, then A, B, C belong
to a line.”

translated in Gallina into:

Axiom AII-1a:
(A,B,C: point)

˜A=B -> ˜A=C -> ˜B=C -> (between A B C)
-> (aligned3 A B C).

Note that as usual we only consider distinct points.

Axiom (II,1) part b: “If B is between A and C, then B is also between
C and A.”

translated into:

Axiom AII-1b:
(A,B,C: point)

˜A=B -> ˜A=C -> ˜B=C -> (between A B C)
-> (between C B A).

Axiom (II,2): “Given two points A and C, there exists at least one
point B belonging to line AC such that C is between A and B.”

Thanks to Axiom AII-1a, explicitely stating that A, B and C are aligned is
redundant:

Axiom AII-2:
(A,B: point)
˜A=B -> (EX C: point |

˜A=C /\ ˜B=C /\ (between A B C)).



316 Christophe Dehlinger, Jean-François Dufourd, and Pascal Schreck

Another option was to give the name “line XY ” to the line built between X and
Y using axiom AI-1.

Axiom (II,3): “Among three points on a line, there is no more than
one that is between the other two.”

translated into:

Axiom AII-3:
(A,B,C: point)

˜A=B -> ˜A=C -> ˜B=C -> (between A B C)
-> ˜(between B A C).

Propositions ˜(between C A B), ˜(between A C B) and ˜(between B C A)
can then be deduced using AI-1 and AII-1b.

Axiom (II,4) (or axiom of Pasch): “Let A, B and C be three un-
aligned points and a a line of plane ABC that meets none of A, B and
C; if line a meets any point of segment AB, then it meets either a point
of segment BC or a point of segment AC.”

To make things shorter, we first introduce a predicate which states that a given
line meets a point of a given segment represented by its ends:

Definition line-meets-seg:=
[a: line][A,B: point]

(EX C: point | ˜A=C /\ ˜B=C
/\ (inc-pt-ln C a) /\ (between A C B)).

Now we can write Axiom (II,4):

Axiom AII-4:
(A,B,C: point; a: line)

˜(aligned3 A B C)
-> ˜(inc-pt-ln A a)
-> ˜(inc-pt-ln B a) -> ˜(inc-pt-ln C a)
-> (line-meets-seg a A B)
-> (line-meets-seg a A C) \/ (line-meets-seg a B C).

This axiom is central in Hilbert’s axiomatic, as it spawns the most interesting
and meaningful consequences. In our axiomatic, it is also the first axiom that
allows to infer a disjunction.

7.2 Theorems of the Second Group

Hilbert proposes a number of theorems and gives nonconstructive proofs for
them. As in Theorem IIexll-weak, we obtain constructive analog theorems by
adding weaker versions of excluded middle to the premises of these theorems.



Higher-Order Intuitionistic Formalization in Hilbert’s Elementary Geometry 317

Theorem III: “Given two points A and C, there is at least one point
D on the line AC between A and C.”

In Gallina, this classical theorem writes:

Theorem TIII:
(A,C: point)

˜A=C
-> (EX D: point | ˜A=D /\ ˜C=D

/\ (between A D C)).

The only purely classical step in Hilbert’s proof is the construction of a point E
not aligned with A and C, which cannot be done constructively without an extra
assumption. Such an assumption is that, given two distinct points, one is able
to build a third point such that the three points are not aligned:

Definition can-build-unaligned-point: Prop:=
(A,B: point) ˜A=B -> (EX C: point | ˜(aligned3 A B C)).

Thus, adding this definition to the premises of Theorem III makes it construc-
tively provable. This hypothesis is natural enough to consider that we do not go
too far away from the spirit of Hilbert’s axiomatics. Theorem IV is handled in
a similar way:

Theorem IV: “Of three aligned points A, B and C, there is one that
is between the two others.”

This classical theorem writes:

Theorem TIV:
(A,B,C: point)
˜A=B -> ˜A=C -> ˜B=C -> (aligned3 A B C)
-> (between B A C) \/ (between A C B) \/ (between A B C).

It is easily proved in classical logic, and requires the addition of two hypotheses
to be proved in constructive logic. The first one is that all intersection points
of distinct lines are equal, the second one is that the relation between is decid-
able. They are respectively named eq-line-inter and dec-between. Finally,
Theorem V writes:

Theorem V: “Given four points of a line, they can be designated by A,
B, C and D so that B is between A and C and between A and D, and
that C is between A and D and between B and D.”

This theorem has not been formally proved as it is a special case of Theorem VI,
which is proved further. However, Hilbert’s proof uses two interesting lemmas
which can be seen as transitivity properties of between:



318 Christophe Dehlinger, Jean-François Dufourd, and Pascal Schreck

Lemma V-1: “If B belongs to segment AC and C belongs to segment
BD, then B and C belong to segment AD.”

Lemma V-2: “If B belongs to segment AC and C belongs to segment
AD, then C belongs to segment BD and B belongs to segment AD.”

Both of the lemmas can be proved classically, but also constructively when
adding the previously defined hypotheses can-build-not-aligned-point and
eq-line-inter. They will be crucial in the proof of Theorem VI, as they pro-
vide a rather powerful manipulation tool for relation between that is much more
intuitive than Pasch’s axiom.

8 Theorem VI

Theorem VI is an example of complex result that requires the introduction of
new proof techniques. It writes:

Theorem VI: “Given a finite number of points of a line; it is possible
to designate them by A, B, C, D, E, . . . , K so that B is between A
and every other point, that C is between A, B on the one hand and D,
E, . . . , K on the other hand, that D is between A, B, C on the one
hand and D, E, . . . , K on the other hand, and so on. Only the opposite
denomination K, . . . , E, D, C, B, A shares the same properties.”

In his book [13], Hilbert does not give any proof for this theorem. Except for
the unicity part, we have proved it semi-constructively with the help of Coq in
the style of Theorems III to V. The formulation of this theorem is much trickier
than in the previous theorems for two reasons. The first reason is that Theorem
VI applies to a variable amount of points, which requires quantification on point
sets rather than on individual points. The second reason is that we need to
formalize the notion of point designation. We choose to represent a point set by
a linear list of points, the designation of a point in this set being assimilated to
its rank in the corresponding list. The theorem then translates into:

Theorem VI (reformulated): “Any list l of distinct points of a line
can be sorted into a list l′, such that each point in l′ is between all of its
predecessors in l′ and all of its successors in l′.”

In order to formally prove this theorem, we must axiomatize the notion of list
and perform an induction on the list structure.

8.1 Axiomatization of Lists

We can immediately use Coq’s built-in lists, the inductive polymorphic type of
which is defined by:

Inductive list [A: Set]: Set:=
nil: (list A)

| cons: A -> (list A) -> (list A).



Higher-Order Intuitionistic Formalization in Hilbert’s Elementary Geometry 319

Thus list is an inductive type parametered by a set A and generated by the two
constructors nil and cons. The standard Coq library provides some functions to
manipulate or observe lists, such as In which tests whether an element belongs
to a list, length that computes the length of a list, and rev that reverses a
list. With these we define several auxiliary predicates: (external-point A l)
which states that, on a line, a given point A is not between any two elements of
the point list l (note that A may belong to l); (distinct l) which states that
the points of a list l are all distinct; (permutation l l’) which states that l
is a permutation of l’; (sorted l) which states that l is sorted with respect to
between as described above; (aligned l) which states that all points of l are
aligned. Using all these notions Theorem VI formally writes:

Theorem TVI:
dec-between ->
can-build-unaligned-point -> eq-line-inter
-> (l: (list point))

(aligned l) -> (distinct l)
-> (EX l’: (list point) |

(permutation l l’)
/\ (sorted l’) /\ (distinct l’)).

The proof of this theorem uses Lemma EXISTS-EXTERNAL-POINT, which finds in
a point list a point that is external to this list. It is presented in the following
section.

8.2 Proof of EXISTS-EXTERNAL-POINT

This lemma formally writes:

Lemma EXISTS-EXTERNAL-POINT:
dec-between
-> can-build-unaligned-point -> eq-line-inter ->

(l: (list point))
(aligned l) -> ˜l=(nil point)
-> (distinct l)
-> (EX A: point | (In A l)

/\ (external-point A l)).

Proof. The Coq system is asked to perform induction on the structure of l
through Tactic Induction. There are two cases:

– l=(nil point): a contradiction is inferred with hypothesis l=(nil point).
– l=(cons N l’): a second induction is performed on l’, with anew two cases:

• l’=(nil point): N is easily proved to be a suitable external point to l.
• l’=(cons H1 l’’): a third induction is performed on l’’, with anew

two cases:



320 Christophe Dehlinger, Jean-François Dufourd, and Pascal Schreck

∗ l’’=(nil point): N is again easily proved to be a suitable external
point to l.

∗ l’’=(cons H2 l’’’): we are in the general case, which is handled
as follows.

The general case is solved using as induction hypothesis the fact that EXISTS-
EXTERNAL-POINT is satisfied for the list l’=(cons H1 (cons H2 l’’’)). This
hypothesis is used to build a suitable point X external to l’ that also belongs to
l’.

We then show that either H1 or H2 is distinct from X as all points in
l are distinct; that point is named H. We then use the constructive version
of Theorem IV (Sect. 7.2) to infer (between N X H) ∨ (between X H N) ∨
(between X N H). We have to study the three cases:

– (between N X H): we want to prove that N is a point external to l that
belongs to l.

– (between X H N): we want to prove that X is a point external to l that
belongs to l.

– (between X N H): we want to prove that X is a point external to l that
belongs to l.

In order to take care of the first case, we must show that (between N B C) ∨
(between N C B) for any two points B and C in l. To do so, we compare each of
B and C to each of N, X and H, and thus create 26 subgoals, each corresponding
to a combination of comparison results. The comparison is possible without
assuming point equality decidability thanks to the assumption that all points in
l are distinct. Among these subgoals, 57 lead to a contradiction and are solved
automatically using tactic Auto, and the remaining 7 show strong similarities.
Thus they are all solved with two local lemmas that are proved using Lemmas
V-1, V-2 and Axiom AII-1b, and that take advantage of those similarities. We
then have to prove that N belongs to l, which we do by using the definition of
l. The proofs for the second and third cases have the same structure as the one
for the first case, except that N is replaced by X and that there is only one local
lemma.

This ends the proof by induction on the list structure that EXISTS-EXTERNAL-
POINT is satisfied for any list. ��
Now we can prove Theorem VI itself.

8.3 Proof of Theorem VI

The proof is led by induction on the length of the entry point list l.

Proof. System Coq is asked to perform Tactic Induction on (length l), i.e.
on the structure of the naturals. There are two cases:

– (length l)=O: obviously (nil point) is a sorted permutation of l.



Higher-Order Intuitionistic Formalization in Hilbert’s Elementary Geometry 321

– (length l)=(S n): a second induction is performed on n, with anew two
cases:

• n=O: list l has a single element, and we immediately prove that l is a
sorted permutation of itself.

• n=(S n’): a third induction is performed on n’, with anew two cases:
∗ n’=O: list l has two elements, and we easily prove that l is a sorted

permutation of itself.
∗ n’=(S n’’): list l has three or more elements. We are in the general

case, which is handled as follows.

In the general case, we apply EXISTS-EXTERNAL-POINT to extract from l a point
H that is external to l. We then apply the induction hypothesis to the remaining
list l’ to produce l’’, a sorted permutation of l’. The first and last element of
l’’ are respectively denoted by F and L. As H is a point external to l’ (and thus
to l’’), we have by definition (between H F L) ∨ (between H L F). Hence
two cases are to be studied:

– (between H F L): we prove that (cons H l’’) is a sorted permutation of
l.

– (between H L F): we prove that (cons H (rev l’’)) is a sorted permu-
tation of l.

In both cases, most of the proof is performed using a common lemma that in
turn applies Lemma V-2. ��
In fact, the complete proof requires lots of tedious auxiliary operations on lists
and proofs of their properties.

9 Conclusion

In this work we have studied the first two groups of Hilbert’s axiomatics from a
constructive point of view. In order to build a constructive specification, several
variants for the same axioms and theorems have been proposed and compared.
However, obtaining all of Hilbert results absolutely requires some purely classical
features, such as decidability of some properties.

The specification itself was developed in the Gallina language of powerful
system Coq. Generic definitions have been written, and numerous lemmas and
theorems have been interactively formally proved using techniques such as in-
duction. The proof scripts amounted to roughly 120 pages, about half of which
for Theorem VI and its auxiliary types and lemmas.

This work only dealt with a very small part of Hilbert’s book [13]. Even the
study of the second group is far from being complete: polygonal lines, closed
curves, notions of inside and outside still have to be introduced and treated. In
the following groups, Hilbert introduces other fundamental notions such as angle
and figure congruence. To our knowledge, these concepts have never been ad-
dressed from an intuitionistic point of view, and that would be a good challenge
for the future.



322 Christophe Dehlinger, Jean-François Dufourd, and Pascal Schreck

As to the methodological aspects, the techniques we used to adjust classical
specifications to the intuitionistic framework could probably be generalized and
applied in fields other than geometry.

One may bring into question the advantages of axiomatic methods, like ours,
with respect to polynomial algebraic methods [23,3]. When they are formalized
and supported by proof assistants such as Coq, the former are as rigorous as
the latter, as they do not let any exception case of the theorems or lemmas be
eluded. Moreover, the former allow much easier understanding of the geometri-
cal reasoning than the latter, which almost completely hide it. Also, axiomatic
methods are not plagued by round-off issues. These are all good reasons to use
symbolic approaches in CAD systems [6].

Conversely, general interactive proof assistants like Coq provide little help for
proof discovery, whereas some geometry-dedicated algebraic systems are based
on efficient mechanization processes [23]. In order to be competitive, automatic
geometric provers based on axiomatic methods must probably be guided by
semantic verification by comparison with a sketch [9]. This way is followed in
some CAD systems [8]. Unfortunately, it is difficult to imagine systematic ways
to reveal degenerate cases with these methods.

References

1. Balbiani, P., Dugat, V., Fariñas del Cerro, L., Lopez, A.: Eléments de Géométrie
Mécanique. Hermès (1994).

2. Barras, B. et al.: The Coq Proof Assistant Reference Manual (Version 6.3.1). INRIA
(1999), http://pauillac.inria.fr/coq/doc/main.html

3. Chou, S.-C.: Mechanical Geometry Theorem Proving. D. Reidel (1988).
4. Coquand, T., Huet, G.: Constructions: A higher order proof system for mechanizing

mathematics. EUROCAL ’85, Linz, LNCS 203, Springer-Verlag (1985), 151–184.
5. Coquand, T., Paulin, C.: Inductively defined types. P. Martin-Löf and G. Mints,

editors, COLOG-88, LNCS 417, Springer-Verlag (1990), 50–66.
6. Dufourd, J.-F., Mathis, P., Schreck, P.: Geometric construction by assembling

solved subfigures. Artificial Intelligence 99 (1998), 73–119.
7. Dufourd, J.-F., Puitg, F.: Functional specification and prototyping with combi-

natorial maps. Computational Geometry — Theory and Applications 16 (2000),
129–156.

8. Essert-Villard, C., Schreck, P., Dufourd, J.-F.: Sketch-based pruning of a solution
space within a formal geometric constraint solver. Submitted (2000).

9. Gelernter, H.: Realization of a geometry theorem proving machine. Computers and
Thought, Mac Graw Hill (1963), 134–163.

10. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in The-
oretical Computer Science, Cambridge University Press (1989).

11. Heyting, A.: Intuitionism — An Introduction. North Holland (1956).
12. Heyting, A.: Axioms for intuitionistic plane affine geometry. Proceedings of an

International Symposium on the Axiomatic Method with Special Reference to Ge-
ometry and Physics (1959), 160–173.

13. Hilbert, D.: Fondations de la Géométrie — Edition critique préparée par P. Rossier,
CNRS, Dunod (1971).



Higher-Order Intuitionistic Formalization in Hilbert’s Elementary Geometry 323

14. Knuth, D.E.: Axioms and Hulls. LNCS 606, Springer-Verlag (1992).
15. Paulin-Mohring, C.: Inductive Definition in the System Coq — Rules and Proper-

ties. Typed Lambda-Calculi and Applications, LNCS 664, Springer-Verlag (1993).
16. Toussaint, G.: A new look at Euclid’s second proposition. Technical Report No

SOCS 90.21 (1990).
17. von Plato, J.: The axioms of constructive geometry. Annals of Pure and Applied

Logic 76 (1995), 169–200.
18. von Plato, J.: Organization and development of a constructive axiomatization.

LNCS 1158, Springer-Verlag (1996), 288–296.
19. von Plato, J.: A constructive theory of ordered affine geometry. Indagationes Math-

ematicae N.S. 9(4) (1998), 549–562.
20. Puitg, F., Dufourd J.-F.: Formal program development in geometric modelling.

Current Trends in Applied Formal Methods, Boppard, LNCS 1641, Springer-
Verlag (1998), 62–76.

21. Puitg, F., Dufourd J.-F.: Formal specifications and theorem proving breakthroughs
in geometric modelling. Theorem Proving in Higher Order Logics, Canberra, LNCS
1479, Springer-Verlag (1998), 401–427.

22. Puitg, F., Dufourd J.-F.: Formalizing mathematics in higher logic: A case study in
geometric modelling. Theoretical Computer Science 234 (M. Nivat, ed.), Elsevier
Science (2000), 1–57.

23. Wu, W.-T.: Mechanical Theorem Proving in Geometries. Springer-Verlag (1994).



Author Index

Aubry, Philippe 154

Bazzotti, Laura 104
Bokowski, Jürgen 175
Bulmer, Michael 129, 143

Caferra, Ricardo 268
Conti, Pasqualina 83

Dalzotto, Giorgio 104
Dehlinger, Christophe 306
Dufourd, Jean-François 306

Fearnley-Sander, Desmond 129
Fleuriot, Jacques D. 246

Gao, Xiao-Shan 16

Havel, Timothy F. 228
Hoffmann, Christoph M. 1
Huang, Lei-Dong 16

Jiang, Kun 16

Kortenkamp, Ulrich 193

Li, Chen 58
Li, Hongbo 199

Peltier, Nicolas 268
Puitg, François 268

Richter-Gebert, Jürgen 193
Robbiano, Lorenzo 104
Rouillier, Fabrice 26

Safey El Din, Mohab 26
Schost, Éric 26
Schreck, Pascal 306
Stokes, Tim 129, 143

Traverso, Carlo 83
Tulone, Daniela 58

Wang, Dongming 154
Wu, Yihong 199

Yang, Lu 41
Yap, Chee 58
Yuan, Bo 1

Zhang, Ju 41


	Front matter
	Automated Deduction in Geometry
	Preface
	Contents

	Chapter 1
	1 Introduction
	2 Three Ways to Solve Subproblems
	3 The Spatial Constraint Problems
	3.1 The 6p Octahedral Problem
	3.2 4p1L -- Common Tangent to Four Spheres
	3.3 The Problem 5p1L

	4 Solving Strategies
	4.1 Algebraic Approach
	4.2 Geometric Reasoning to Assist Simplification
	4.3 Construction by Computation
	4.4 An Example

	5 Further Discussion
	References

	Chapter 2
	1 Introduction 
	2 Graph Representation of Geometric Transformations 
	2.1 Graph Representation of Constraint Problems
	2.2 Geometric Transformations

	3 The Algorithm and Applications 
	3.1 The Algorithm
	3.2 Constraint Problems for Simple Polygons

	4 Conclusion
	References

	Chapter 3
	1 Introduction
	2 The Birkhoff Interpolation Problem
	2.1 Formulation
	2.2 Sketch of the Resolution

	3 Preliminary Results
	4 Algorithm 1: Using Infinitesimal Deformations
	4.1 Overview of the Algorithm
	4.2 Computing a Parametric Resolution

	5 Algorithm 2: Iterated Study of Singular Loci
	6 Experimental Results
	6.1 Methodology and Basic Algorithms
	6.2 Solution of the Problem
	6.3 Comparing Algorithm 1 and Algorithm 2

	7 Conclusions
	References

	Chapter 4
	1 Introduction
	2 Fundamental Definitions
	3 A Sketch to Dimension-Decreasing Algorithm
	4 Inequalities on Triangles
	5 Commands and Syntax
	6 More Examples
	7 Conclusion
	References

	Chapter 5
	1 Introduction
	2 Theorem Proving for Ruler & Compass Constructions
	3 Randomized Zero Testing for Radical Expressions
	3.1 Straight Line Programs
	3.2 Equivalent Transformations
	3.3 Preparation
	3.4 Main Result
	3.5 Presence of Division
	3.6 Improved Square Root Transformation

	4 Proving by Random Examples
	5 Final Remarks
	References

	Chapter 6
	1 Introduction
	2 Geometric Theorems and Algebraic Proofs
	2.1 Proof Protocols
	2.2 Configuration Equational Theorems
	2.3 Construction Protocols

	3 Paradoxes
	3.1 Real Theorems vs. Complex Theorems
	3.2 A Simple Example 
	3.3 A Weird Example 

	4 Partial Conclusions
	5 Proving Real Theorems: The Real Radical
	5.1 Algebraic Proof Tools 
	5.2 Semi-ideals, Theorems with Inequalities
	5.3 Computation of the Real Radical: An Outline
	5.4 A Simpler Algorithm for the Proof of Real Theorems
	5.5 A Criterion to Pass from a Complex Proof to a Real Proof 

	6 A Protocol Proposal: Theorems with Examples
	6.1 The Real Case: Further Extensions

	References

	Chapter 7
	1 Introduction
	2 Algebraically True Statements
	3 Optimal Hypothesis Ideals and Good Conditions
	4 The Algorithms, the CoCoA Code and Some Examples
	References

	Chapter 8
	1 Algebraic Preliminaries
	2 The Kind of Truth of a Possible Theorem
	3 Side Polynomials and Kinds of Truth
	4 Proof by Refutation and the Kind of Truth
	5 Implementation and Examples
	6 Conclusion
	References

	Chapter 9
	1 Introduction
	2 Geometrical Statements in Various Formalisms 
	3 Viewing the Complex Vector Formalism  as a Change of Coordinates
	4 Generic Truth and Gr"obner Bases 
	5 Implementation 
	6 Brianchon's Theorem for Circles 
	7 Further Timing Comparisons 
	References

	Chapter 10
	1 Introduction
	2 The Local Theory of Surfaces
	3 Decomposition of Differential Polynomial Systems
	3.1 Differential Polynomials and Triangular Systems
	3.2 Decomposition into Regular Systems
	3.3 Irreducibility, Gröbner Bases, and Simple Systems 

	4 An Algorithm for Ideal Decomposition  of Regular Systems
	5 The Fundamental Coefficients of Surfaces Revisited
	5.1 Automated Rediscovery of Theorema Egregium
	5.2 Relations between First and Second Fundamental Coefficients
	5.3 The Case F=M=0

	6 Proving Theorems about Surfaces
	References

	Chapter 11
	1 Introduction 
	2 Configurations and Arrangements
	3 Hyperline Sequences of Configurations  and Arrangements
	4 Pseudoline Arrangements and Hyperline Sequences 
	5 Extension Determined by Mutations in Rank 3
	6 Dynamic Inductive Realization
	7 Cinderella Playing with Polytopes
	References

	Chapter 12
	1 Introduction
	2 Geometric Straight-Line Programs
	3 Complex Reachability and Testing of Polynomials
	4 Remarks
	References

	Chapter 13
	1 Introduction
	2 Algorithm
	3 Examples
	References

	Chapter 14
	1 Introduction
	2 Quantum Information Processing
	3 The Pauli Algebra
	4 Multi-qubit Systems
	5 An Entanglement Paradox
	References

	Chapter 15
	1 Introduction
	2 A Few Concepts from Nonstandard Analysis 
	3 A Mechanized Theory of Hyperreal Vectors
	3.1 The HOL Methodology
	3.2 Hyperreal Vector Space
	3.3 Hyperreal Vector Geometry
	3.4 Introducing the Infinitesimal Geometry

	4 Some Infinitesimal Geometric Notions 
	5 Nonstandard Proofs of Standard Geometry Theorems
	5.1 Polygonal Area Approximation
	5.2 Polygonal Length Approximation
	5.3 Brief Remarks on the Mechanization

	6 Further Work 
	7 Concluding Remarks 
	References

	Chapter 16
	1 Introduction 
	2 The Theorem Prover HOARD_ATINF:  Principles and Main Features 
	2.1 A Restricted First-Order Language 
	2.2 The Calculus
	2.3 Mixing Up Backward and Forward Proof Search 
	2.4 Handling Theories 
	2.5 Axiomatization 
	2.6 An Example

	3 Some Additional Features 
	3.1 Proof Verification
	3.2 Model Building 
	3.3 Proof Generalization and Analogical Reasoning 

	4 Reasoning from Diagrams: An Example 
	5 Related Work 
	6 Conclusion and Future Work 
	References
	A An (Automatically Generated) Proof for Example 2
	B An (Automatically Generated) Proof for Example 3

	Chapter 17
	1 Introduction
	2 Basic Notions
	2.1 Calculus of Inductive Constructions
	2.2 Hilbert's Axiomatics

	3 Definitions
	4 Axioms of the First Group
	5 Theorems of the First Group
	6 Theorem II
	7 Axioms and Theorems of the Second Group
	7.1 Axioms of the Second Group
	7.2 Theorems of the Second Group

	8 Theorem VI
	8.1 Axiomatization of Lists
	8.2 Proof of EXISTS-EXTERNAL-POINT
	8.3 Proof of Theorem VI

	9 Conclusion
	References

	Back matter
	Author Index


