Finding Solvable Subsets of Constraint Graphs

Christoph M. Hoffmann' Andrew Lomonosov?>

Meera Sitharam??

Abstract. We present a network flow based, degree of freedom analysis
for graphs that arise in geometric constraint systems. For a vertex and
edge weighted constraint graph with m edges and n vertices, we give an
O(n(m + n)) time max-flow based algorithm to isolate a subgraph that
can be solved separately. Such a subgraph is called dense. If the constraint
problem is not overconstrained, the subgraph will be minimal.

For certain overconstrained problems, finding minimal dense subgraphs
may require up to O(n’>(m + n)) steps. Finding a minimum dense sub-
graph is NP-hard. The algorithm has been implemented and consistently
outperforms a simple but fast, greedy algorithm.

Keywords: Extremal subgraph, dense graph, network flow, combinatorial
optimization, constraint solving, geometric constraint graph,
geometric modeling.

1 Introduction

A geometric constraint problem consists of a finite set of geometric objects and
a finite set of constraints between them. Geometric objects include point, line,
plane, circle, and so on. Constraints between them might be parallel, perpendic-
ular, distance, tangency, and so on. Some of these constraints are logical, such
as incidence or tangency; others are dimensional such as distance or angle. Geo-
metric constraint systems are the basis for design and manipulation in geometric
modeling, and arise in virtual reality, robotics, and computer graphics as well.
For applications in CAD, see, e.g., [12, 14, 23]. There is an extensive literature
on geometric constraint solving. For recent reviews see, e.g, [7].

Geometric constraint problems can be solved algebraically. Briefly, the geo-
metric objects are coordinatized, and the constraints between them are expressed
in the form of polynomial equations. The resulting system of equations is usu-
ally nonlinear, and most constraint solvers use techniques for decomposing the

! Computer Science, Purdue University, West Lafayette, Indiana 47907, USA. Sup-
ported in part by NSF Grants CDA 92-23502 and CCR 95-05745, and by ONR
Contract N00014-96-1-0635.

2 Mathematics and Computer Science, Kent State University, Kent, Ohio 44242, USA

3 Supported in part by NSF Grant CCR 94-09809.

system into small subsystems that can be solved separately where possible; e.g.,
[2, 8,13, 17]. Such a decomposition increases solver efficiency and robustness sub-
stantially. Direct attempts at processing the entire system include using Grébner
bases [24] or the Wu-Ritt method [3]. They are general but typically do not scale.

Graph Based Constraint Analysis A large class of solvers translates the
constraint problem into a graph. Graph vertices represent geometric objects,
edges represent constraints. For ternary and higher constraints, the graph is a
hypergraph. Analysis and decomposition of the problem is based on isolating
subgraphs that correspond to subsystems of the equations that can be solved
separately. The graph is weighted; both edges and vertices have a positive integer
weight. The weight of a vertex is the degree of freedom of the represented geo-
metric entity.* The weight of an edge equals the degrees of freedom determined
by the represented constraint.

In the case of planar constraint problems, a class widely studied, several
solvers decompose the constraint graph recursively into triangles and solve each
triangle separately [2, 20, 21]. This decomposition is a special case of a degree
of freedom analysis. For example, in the solver [2, 7], the geometric objects are
points, lines, and rigid clusters of them, with the respective degrees of freedom
of 2, 2, and 3. Two specific situations are considered in these graph analyses:

1. An edge of weight 1 is incident to vertices of weight 2. The associated con-
straint subproblem can be solved: for example, if the vertices are points and
the edge a distance constraint, then the solution is a pair of points at fixed
distance moving as a rigid body with 3 degrees of freedom.

2. A triangle with vertices of weight 3, and edges weight 2 represents incidences
between geometric objects in 3 clusters. By placing the three incident pairs
according to the constraints derived from their relative position within each
rigid cluster, the three clusters can be placed rigidly with respect to each
other and are merged into a bigger cluster.

Many interesting results are known about the properties of this type of constraint
analysis, e.g., [9, 10].

Problem Statement and Results A weighted undirected graph is a graph
where every vertex and every edge has a positive integer weight. We consider
the following problem:

G = (V,E,w) is a weighted undirected graph with n vertices V' and m
edges E; w(v) is the weight of the vertex v and w(e) is the weight of the
edge e. Find a vertex-induced subgraph A C G such that

Z w(e) — z w(v) > K (1)
ecA vEA

4 Roughly speaking, the number of independent variables coordinatizing a geometric
object is the number of degrees of freedom.

Such a subgraph A is called dense. Typically, edge and vertex weights have a
constant bound. In constraint solving, we seek a minimal dense subgraph, that
is, a dense subgraph that does not contain a proper dense subgraph.

We design, analyze and implement an algorithm to find dense subgraphs in
O(n(m + n)) steps. It is essentially a modified version of an incremental, maxi-
mum flow algorithm where edge capacities are saturated in certain natural order.
This modification is crucial, however, in that it allows one to use existing flows
in order to derive useful information about the densities of already examined
subgraphs. If the graph arises from a geometric constraint problem that is not
overconstrained, then the subgraphs found will be minimal and m will be O(n).
For overconstrained problems, additional processing is needed and may require
up to O(n?(m + n)) steps. In our experiments, the algorithm has consistently
outperformed a simple but fast, greedy algorithm. The related problem of finding
the minimum dense subgraph A is NP-hard.

Dense Subgraphs and Degrees of Freedom We seek a subgraph of the
constraint graph in which the weights of the vertices minus the weights of the
edges equals a fixed constant D, exactly the situation expressed by Inequality
(1) with K = —(D+1). In the example of planar constraint solvers [2, 7], D = 3
because a rigid planar figure has three degrees of freedom (absent symmetries).
In 3-space, D = 6 in general. If the subproblem is to be fixed with respect to a
global coordinate system, then D = 0 is required.

When a subgraph of the appropriate density has been found, the correspond-
ing geometric objects can be placed rigidly with respect to each other using only
the constraints between them. It is advantageous to find small dense subgraphs
so that the associated equation system is as small as possible.

Having processed a dense subgraph, the solver then contracts the the sub-
graph to a single vertex v, of weight D, suitably inducing edges between v, and
the other vertices. The full description of this process is beyond the scope of
the conference paper, but we note that our algorithm extends to address this
iterated dense subgraph problem.

If G is a constraint graph and A a dense subgraph, then density d(A4) =
D means that the corresponding subproblem is generically well-constrained: in
general, the geometric problem has a discrete set of solutions. For instance, for
six points in space and twelve distance constraints between them, in the topology
of the edges of an octahedron, the configuration is rigid, [15, 25]. However, for
special distance values we obtain Bricard octahedra and then there would be
nonrigid solutions; i.e., the problem would be actually underconstrained [26].

Prior Work on Constraint Graph Analysis Prior attempts at a degree of
freedom analysis for constraint graphs often concentrated on recognizing spe-
cific dense subgraphs of known shape, such as the triangles of [2, 20, 21] or the
patterns of [2, 15, 16]. This approach has limited scope. The scope can always
be extended by increasing the repertoire of patterns of dense subgraphs. How-
ever, doing so results in greater combinatorial complexity and eventually makes

efficient implementation too difficult.

More general attempts reduce the recognition of dense subgraphs in a degree-
of-freedom analysis to a maximum weighted matching problem in bipartite graphs
using methods from, e.g., [18]. A variation [1] of this approach does not use a
degree-of-freedom analysis and directly deals with the algebraic constraints. In
this case, a maximum cardinality bipartite matching is used, since no weights
are required. The approach can be generalized to a weighted version required for
a degree-of-freedom analysis by replicating vertices. We discuss briefly in Section
2 why both approaches are less efficient than the approach presented here. In
particular, having found the required matching, finding a dense subgraph re-
quires significant additional work, and it becomes difficult to isolate minimal
dense subgraphs. The general approach of [17] appears to be exponential.

A different approach to constraint graph analysis uses rigidity theorems; e.g.,
[4, 11]. Corresponding decomposition steps may be nondeterministic or require
difficult symbolic computations when computing a solution.

2 Finding a Dense Subgraph

We devise a flow-based algorithm for finding dense subgraphs assuming that
K =0 in Equation (1). We discuss the case K # 0 in Section 4.

Definition For A C @ define the density function d

d(A) = Z w(e) — Z w(v)

e€A vEA

Suppose that we want to find a most dense subgraph A C G, i.e, one for which
d(A) is maximum. We could maximize, over subgraphs A of G, the expression

d(A)+ > ww) = wle) + > w(v) (2)

vEG e€A vgA

or, in other words, minimize

min(3" w(e) + 3 w(e) ©
T e¢A vEA
To do this, consider a bipartite graph G = (M, N, E,w) associated with
the given graph G = (V, E,w). The vertices in N are the vertices in V and
the vertices in M are the edges in E. Moreover, the edges of G are E =
{(e,u), (e,v) | e = (u,v),e € E}. The weights w now appear on the vertices
of G. Maximizing the expression (2) reduces to finding a maximum weighted
independent set in the bipartite graph G, or, equivalently, the minimum weight
vertex cover.
There are two ways to try to find the minimum weight vertex cover. The
minimum cardinality vertex cover in a bipartite graph can be identified with a
maximum cardinality matching and can be found using network flow in O(y/nm)

time [5]. To take advantage of this algorithm, however, we need to replicate edges
and vertices corresponding to the weights, find a minimum cardinality vertex
cover in this larger graph, and then try to locate a corresponding minimum
weight vertex cover in G and the corresponding dense subgraph in the graph G.

The unweighted version of bipartite matching can be used naturally when
variables are directly represented as vertices and the algebraic equations are
represented as edges (instead of analyzing degrees-of-freedom). This results in a
constant factor increase in the size of the graph. Using this approach, the problem
of finding a dense subgraph — when K = —1 — was solved in [1], however, it is
not clear how to extend the algorithm for general K.

A second way is to search for a minimum weighted vertex cover by solv-
ing the maximum (vertex) weighted bipartite matching problem. A maximum
(edge) weighted bipartite matching problem can be solved in O(y/nmlogn) time
for bounded weights, [22]. This trivially gives a solution to the maximum (ver-
tex) weighted bipartite matching problem. The catch is that, unlike in the un-
weighted case, a minimum weighted vertex cover does not correspond directly to
a maximum weighted matching. Having found a maximum weighted matching,
a significant amount of work is needed to obtain the minimum weight vertex
cover, and, from it, the corresponding dense subgraph in G.

In general, the maximum matching approach has the following disadvantages.
(1) The maximum (weighted) matching in (G) does not directly correspond to
the dense subgraph in G. (2) We need only some subgraph of a specific density,
not necessarily a most dense one. (3) Maximum matching provides no natural
way of finding a minimal dense subgraph. We develop a more efficient method
analogously based on a different optimization problem (see [19]), but which will
be seen to address both drawbacks.

Construction of the Network From the graph G, construct a bipartite di-
rected network G* = (M, N, s,t, E*, w), where M, N and E* are as in G. The
source s is connected by a directed edge to every node in M, and every node
in N is connected by a directed edge to the sink ¢. The capacity of the network
edge (s,e), e € M, is the weight w(e) of the edge e in G. The capacity of the
network edge (v,t), v € N, is equal to the weight w(v) of the vertex v in G. The
capacity of the network edge (e,v), e € M, v € N, is infinite. There are no other
network edges. See also Figure 1.

<

Fig. 1. Constraint graph (left) and associated network (right).

A minimum cut in G* directly defines a subgraph A that minimizes Expres-

sion (3). It can be found as the max flow using a netflow algorithm. Now we
are only interested in finding a dense subgraph and not necessarily the most
dense one. So, we are interested in a small enough cut in G*, not necessarily the
smallest one. Thus, to find a dense subgraph, there should be an algorithm that
is faster than a general maximum flow (or minimum cut) algorithm.

The algorithm is a modification of the incremental max flow algorithm. The
idea of the algorithm is to start with the empty subgraph G’ of G and add to
it one vertex at time. When a vertex v is added, consider the adjacent edges e
incident to G'. For each e, try to distribute the weight w(e) to one or both of
its endpoints without exceeding their weights; see also Figure 2. As illustrated
by Figure 3, we may need to redistribute some of the flow later.

@g Ogé@ < > 125@

Fig. 2. Two different flows for the constraint graph of Figure 1

Ao

Fig. 3. Initial flow assignment that requires redistribution later

If we are able to distribute all edges, then G is not dense. If no dense subgraph
exists, then the algorithm will terminate in O(n(m+mn)) steps and announce this
fact. If there is a dense subgraph, then there is an edge whose weight cannot be
distributed even with redistribution. The last vertex added when this happens
can be shown to be in all dense subgraphs A C G'.

Distributing an edge e in G now corresponds to pushing a flow equal to the
capacity of (s,e) from s to ¢ in G*. This is possible either directly by a path of
the form (s,e,v,t) in G*, or it might require flow redistribution achieved by a
standard search for augmenting paths [6], using network flow techniques. Note
that the search for augmenting paths takes advantage of the fact that the flow
through each vertex in M is distributed to exactly 2 vertices in N (lines 4-7).

If there is an augmenting path, then the resulting flows in G* provide a
distribution of the weight of each edge e in the current subgraph G’ consisting
of the examined vertices and edges of the original graph G as follows: the weight

w(e) of each edge e connecting the vertices a and b is split into two parts f¢ and
£t such that fo+ f = w(e) and, for each vertex v € G, Dem(u) fo Sw(v).

If there is no augmenting path for the residual flow on (s,e), i.e, the flow

w(e) is undistributable, then a dense subgraph has been found and is identified
based on the flows in G* starting from e.

Algorithm Dense

1. G' =0.
2. for every vertex v do

w

for every edge e incident to v and to G' do
Distribute the weight w(e) of e
if not able to distribute all of w(e) then
A = set of vertices labeled during Distribute
goto Step 12
endif
endfor
add vertex v to G’
endfor
if A =0 then no dense subgraph exists
else A is a dense subgraph

Algorithm Distribute searches for augmenting paths in G* to achieve the required
flow and the labeling. It repeats a Breadth First Search for augmentation until all
of w(e) has been distributed or until there is no augmenting path. The technique
is somewhat similar to the one used in max-flow algorithm in [19].

Algorithm Distribute
Input: (G*, f,edge), where G* = (N, M, s,t, E*,w), f is a set of flows f?

e R

and edge is the edge that is being distributed.

Initialize scan(v) = 0,label(v) = 0, scan(e) = 0,label(e) =0 for all v € N,e € M
vert =0, capvert =0
label(edge) = 1, pathcap(edge) = w(edge)
while (w(edge) > >°, f24,.) or not all labeled nodes have been scanned
for all labeled e € M, with scan(e) =0
label unlabeled neighbors of e (i.e v € N)
scan(e) = 1, pred(v) = e, pathcap(v) = pathcap(e)
endfor
for all labeled v € N with scan(v) =0
if min(w(v) —3°, f2, pathcap(v)) > capvert then
vert = v, capvert =min(w — Y, f2, pathcap(v))
else
label all unlabeled ' € M s.t f% >0
endif
scan(v) =1
endfor

16. if vert > 0 then

17. An augmenting path from s to ¢t has been found: backtrack from
vert using pred() and change the values of f? as requirted.

18. for allee M,ve N

19.. label(e) = 0, scan(e) = 0, label(v) = 0, scan(v) =0

20. endfor

21. vert = 0, capvert = 0, label(edge) = 1

22. pathcap(edge) = w(edge) — >_, flage

23. endif

24. endwhile

\ 3
1

Fig. 4. Current graph G’ and corresponding network G*, the edge marked by
asterisk is currently being distributed

Fig. 5. The augmenting path and the distribution of edges in original graph G’

Lemma 1

Let G* be the bipartite network constructed from G, and e € M. If, after
checking all possible augmenting paths originating at e, the flow through (s,e)
is less than the capacity of (s,e), and A = (Ea,Va) is the set of edges and
vertices labeled after the search for an augmenting path, then d(A4) > 0.

Proof: A is a subgraph of G because for every labeled edge e € E both of its
vertices will be labeled. For all v € V4, the network edges (v,t) are saturated,
otherwise there is an augmenting path from e to v and the flow through (s, €) can
be increased. Let f be the maximum flow through (E4,Vy4). Since all (v,t) are
saturated, f = > -4 w(v), but since at least one edge (s,e) is not distributed

<Y .cawl(e); therefore d(A) =3, 4 w(e) — Y, cqw(v) >0.0

Complexity Amnalysis In the worst case, constructing an augmenting path
labels at most m +n nodes are labeled. Since the algorithm stops when the total
edge weight exceeds the total vertex weight by K, the total edge weight that is
distributed is at most K plus the total vertex weight times a constant bound
b. Each augmentation increases the flow by least 1 unit. Therefore, the number
of augmentations cannot exceed O(n). Hence, Algorithm Dense has complexity

O(n(m + n)).

3 Finding a Minimal Dense Subgraph

s
-2
Yo
2
Fig. 6. This subgraph is dense for K = —4, so is upper triangle

Let G' = (V', E') be the subgraph already examined by Algorithm Dense. That
is, assume that the vertices V' have been examined and the weight w(e) of all
induced edges e has been distributed. Let v be the first vertex that is about to
be examined next, such that the weight of one of its incident edges e adjacent to
G' cannot be distributed. Let V4 C V' be the set of vertices labeled while trying
to distribute w(e), (which includes the vertex v), and let A be the subgraph
induced by V4. By Lemma 1, A is a dense subgraph.

Lemma 2
Every dense subgraph of A contains v.

Proof: Let A’ be a dense subgraph of A not containing v. Then there should be
an edge e € A’ such that e was not distributed before v was considered. However,
this contradicts our assumption that all edges in G’ have been distributed. O

Remark

Similarly, if (v, v1), (v, v2), ..., (v, v}) are undistributed edges of v then every dense
subgraph of A contains at least one edge from this list. If £ = 1 then every dense
subgraph of A contains (v,vy).

Proposition 3

If the amount of undistributable flow, i.e, the density of A is d(4) and A’ is a
dense proper subgraph of A, then 0 < d(A’) < d(A) (in general, K < d(A") <
d(A)).

Proof: Note that the excess flow comes from the edges incident to v. Suppose
A" C A is dense and d(A") > d(A). By Lemma 2, A’ contains v. Consider the

relative complement A* of A’ with respect to A. Then d(A*) < 0, which implies
that the vertices of A* could not have been labeled after distributing the flow of
the edges of v. Since all vertices in V4 are labeled, we know that A = A'. O

Corollary 4
If d(A) = 1 then A is minimal. In general, if d(A) = K + 1, then A is minimal.

In particular, when K = 0, well-constrained or underconstrained problems have
d(A) < 1. Then, by Corollary 4, we know that the subgraph found by Algorithm
Dense is minimal. Moreover, if overconstrained problems are rejected, then a
first test for overconstrained would be to determine » .., w(e) — >, cqw(v) >
1 in linear time. This test would reject many overconstrained problems. The
remaining cases would be found by noting whether d(A) > 1 when Algorithm
Dense terminates.

We may accept consistently overconstrained problems. In that case, the graph
A may have to be analyzed further to extract a minimal dense subgraph. We now
develop a method for performing this extraction, once a dense subgraph A has
been found by Algorithm Dense and d(A) > 1. The algorithm to be developed
post-processes only the subgraph A.

Without loss of generality, assume that A contains the vertices {v1, ..., v, vi41},
and v;41 was the last vertex examined when A was found. The density d(A) is
the total undistributed weight of the edges between v;41 and {vy,...,v}. We
begin with the knowledge of a subgraph B of A that is contained in every dense
subgraph of A. By Lemma 2, B contains initially the vertex v; 1. The algorithm
to be developed is to determine either an enlargement of the graph B, or else a
reduction of the graph A.

We perform the following step iteratively. Choose a vertex vy € B from
A. Determine the quantity ¢ = d(A) —w(e') + f2* + f.'™" where €’ is the edge
(vk,vi41)- That is, ¢ is the undistributed weight of edges in A without vj,. Remove
the vertex vy, from A along with its edges. This would create unutilized capacity
in the set of vertices adjacent to v, (that are in A) through the set E}, of incident
edges. The excess vertex capacity is

Y wle) —w(v) —w(e') + for + £

ecE}

where €' is the edge between v, and v;y1. This quantity is the total flow on
the edges of vy, distributed away from vg. We now attempt to distribute the
previously undistributed weight of the edges between v;41 and {vy,..., v }—{vr},
using redistribution if necessary. We use Algorithm Distribute on the modified
network, setting the capacity of (v, t) to zero. There are two outcomes possible:

1. If we distribute all of ¢ successfully into the newly created holes, or excess
capacity on the vertices adjacent to vg, then no subgraph of A — vy, is dense,
so vy belongs in every dense subgraph of A, and hence gets restored into A
and, moreover, gets added to B.

2. If we were unable to distribute ¢, then by Lemma, 1, we have found a smaller
dense subgraph of A — v;. This new subgraph consists only of the vertices
labeled by the Algorithm Distribute in the process of distributing one of the
undistributed edges adjacent to vyy1. This outcome reduces the size of A.
Note that, by Proposition 3, the density (and size) of the new graph A must
drop by at least 1.

We repeat this process for the remaining vertices in A — B. We stop either when
d(B) > 0, because then B is minimal dense, or when d(A4) = 1, because then A
is minimal dense.

Complexity Analysis The complexity of each iteration described above is
O(n(m + n)), since ¢ represents the undistributed weight on at most n edges
adjacent to v;41 are distributed at each iteration. We can assume that the sum
of capacities of the edges is constant, thus the determination of a minimal dense
subgraph takes O(n2(m + n)) steps. Note, however, that by Proposition 3 the
actual complexity rarely reaches this upper bound.

The complexity of the iteration is reduced to O(m+n) if the constraint graph
has bounded valence or if d(A4) has an a-priori constant bound. The latter situ-
ation means that the constraint problem has a bound on the “overconstrained-
ness” of subgraphs, a natural assumption if the constraint problem is specified
interactively and we keep track of the density of the full constraint graph. In
those cases, the complexity reduces to O(n(m + n)) steps.

Algorithm Minimal

Comment: The input is the output of Dense, a dense (sub)graph A of G, and
the distribution of edge weights f¢ and f? for each edge e = (a,b).
Note that v;41 is the last vertex added that caused A to be found,
and €' is the edge between v and vy 1.

1. B= {vl+1}

2. while d(B) <0 and d(4) > 1 do

3. choose vy, € A— B

4. c=d(A) —w(e') + foF + fo*

5. for all v € N (Removing {v;} from A)

6. Let e = (v, vg)

7. remove e from M

8. endfor

9. remove v from N
10. Distribute (in A) excess ¢ from the edges of v
11. if there are some undistributed edges left then
12. set A = new labeled graph
13. else
14. set A= AU {v;} (as well as restoring edges of vy)
15. set B = BU {uv;}

endif

._.
o

17. endwhile
18. output B, if d(B) > 0, else output A.

4 The Case of K # 0

As presented, our algorithms satisfy Inequality (1) for K = 0: keep adding
vertices until we are unable to distribute the edge weight/capacity. The first
undistributable edge signals a dense graph A, for K = 0, and d(4) > d(4 —
v), where v was the last vertex examined. We now explain how to modify the
algorithm to accommodate different values of K.

The modification for K > 0 is trivial. Instead of exiting Algorithm Dense
when an edge cannot be distributed, exit when the total undistributable edge
capacity exceeds K. The computation of the total undistributable edge capacity
so far is based only on the weights of the labeled edges and vertices, thus ensuring
that the resulting dense graph is connected. An analogous change is in order for
Algorithm Minimal. Clearly this modification does not affect the performance
complexity of the algorithms.

When K < 0 the algorithms can also be modified without increasing the
complexity. Suppose, therefore, that K < 0, and consider Step 4 of Algorithm
Dense. If w(v) + K > 0, simply reduce the capacity of the network edge (v,t)
to w(v) + K and distribute w(e) in the modified network. If the edge cannot be
distributed, then the subgraph found in Step 6 has density exceeding K. If every
incident edge can be distributed, then restore the capacity of the network edge
when adding v to G'.

If the weight w(v) of the added vertex v is too small, that is, if w(v) + K < 0,
then a more complex modification is needed. We set the capacity of (v, t) to zero.
Let e be an new edge to be distributed, and do the following.

1. Distribute the edge weight w(e) in the modified network.
2. if w(e) cannot be distributed then
3. we have found a dense subgraph for K; exit.
4. else
5. save the existing flow for Step 10.
6. increase the flow of e by —(w(v) + K)
7. if the increased flow cannot be Distributed then
8. we have found a dense subgraph for K; exit.
9. else
10. restore the old flow. No dense subgraph found
11. endif
12. endif

In worst case the algorithm saves and restores the flows for every edge added,
which requires O(m) operations per edge. Distributing the edge flow however
dominates this cost since it may require up to O(m + n) operations per edge; so
the modification does not adversely impact asymptotic performance.

5 Implementation

The network flow algorithms were implemented in C. Both Dense and Minimal
were run in sequence. We tested the algorithms on low-density graphs G, where
|G| = 40, K = —1, and a typical minimal dense subgraph A’ in G would have
density 0 or 1. The number of vertices in the initial dense graph A was between
14 and 22. The dense subgraph A is usually also a minimal dense subgraph
(the situation B = A in Algorithm Minimal), this being the worst case for the
combined algorithm 4f the density of A is > 0. We tested some of the usual
(generically well or under constrained) cases where d(A) = 0 = K + 1, where the
Algorithm Minimal is unnecessary by Corollary 4. As a complexity measure, we
counted the number of times a vertex or an edge is being labeled.

Heuristically, the selection of the next vertex to be examined and saturated
and edges to be distributed can be done in a greedy fashion. That is, at each
step choose a vertex with the "heaviest” set of edges connecting it to the set of
vertices in G' and start distributing its edges in descending weight order. The
distribution and redistribution of the edges is carried out by using flows on the
bipartite network G* described earlier.

In the table, m is the number of edges of the original graph, (n = 40), A
is the dense subgraph found, A’ is a minimal dense subgraph of A, n; is the
number of operations required to find A, mny is the total number of operations
required to find A’, p is the number of augmented pathes required to find A’.

m ||A|||A||d(A)|n1 |n2 |p
14121 |20 |1 518(1644(162
100(20 {20 |0 728|728 |66
139(18 |18 |0 680|680 |76
191(22 |22 |0 903903 (91
71 | [x |x 187|187 |61
100|23 |22 |0 624|1232(134
139(20 {19 |0 623(872 (190
140(16 {14 |0 127|376 |899

Table 1. Performance of the Netflow Algorithms. The case marked * has no
dense subgraphs.

Note that since the density of A was small, the minimal part increased a
running time by a small constant factor.

We also implemented a simple, but fast greedy algorithm for finding dense sub-
graphs. In our experiments, the greedy algorithm was consistently and signifi-
cantly inferior to the network flow algorithms.

6 Conclusions

The algorithms we have developed are general and efficient. Previous degree-of-
freedom analyses usually analyze simple loops in the constraint graph, or else
are unable to isolate a minimal subgraph that is dense. Moreover, by making
K a parameter of the algorithm, the method presented here can be applied
uniformly to planar or spatial geometry constraint graphs. Extensions to ternary
and higher-order constraints can also be made.

When constraint problems are not overconstrained, a typical situation in
applications, then the algorithms perform better. This is not uncommon in other
constraint graph analyses [10], and is related to the fact that a well-constrained
geometric constraint graph has only O(n) edges.

We have implemented an extension of the algorithm that iterates finding
dense subgraphs and solves a geometric constraint problem recursively by con-
densing dense subgraphs to single vertices in the manner first described in [2, 7].
Here, a critical aspect is to account for previously constructed flows and running
Algorithm Dense incrementally.

A specific advantage of our flow-based analysis is that we can run the algo-
rithm on-line. That is, the constraint graph and its edges can be input continu-
ously to the algorithm, and for each new vertex or edge the flow can be updated
accordingly. Thus, it is a good fit with geometric constraint solving applications.

References

1. S. Ait-Aoudia, R. Jegou, and D. Michelucci. Reduction of constraint systems. In
Compugraphics, pages 83-92, 1993.

2. W. Bouma, I. Fudos, C. Hoffmann, J. Cai, and R. Paige. A geometric constraint
solver. Computer Aided Design, 27:487-501, 1995.

3. S. C. Chou, X. S. Gao, and J. Z. Zhang. A method of solving geometric constraints.
Technical report, Wichita State University, Dept. of Computer Sci., 1996.

4. G. Crippen and T. Havel. Distance Geometry and Molecular Conformation. John
Wiley & Sons, 1988.

5. S. Even and R. Tarjan. Network flow and testing graph connectivity. STAM jour-
nal on computing, 3:507-518, 1975.

6. L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton Univ. Press, 1962.

7. 1. Fudos. Geometric Constraint Solving. PhD thesis, Purdue University, Dept of
Computer Science, 1995.

8. 1. Fudos and C. M. Hoffmann. Constraint-based parametric conics for CAD. Com-
puter Aided Design, 28:91-100, 1996.

9. I. Fudos and C. M. Hoffmann. Correctness proof of a geometric constraint solver.
Intl. J. of Computational Geometry and Applications, 6:405-420, 1996.

10. I. Fudos and C. M. Hoffmann. A graph-constructive approach to solving systems
of geometric constraints. ACM Trans on Graphics, page in press, 1997.

11. T. Havel. Some examples of the use of distances as coordinates for Euclidean
geometry. J. of Symbolic Computation, 11:579-594, 1991.

12. C. M. Hoffmann. Solid modeling. In J. E. Goodman and J. O’Rourke, editors,
CRC Handbook on Discrete and Computational Geometry. CRC Press, Boca Raton,
FL, 1997.

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

C. M. Hoffmann and J. Peters. Geometric constraints for CAGD. In M. Daehlen,
T. Lyche, and L. Schumaker, editors, Mathematical Methods fot Curves and Sur-
faces, pages 237-254. Vanderbilt University Press, 1995.

C. M. Hoffmann and J. Rossignac. A road map to solid modeling. IEEE Trans.
Visualization and Comp. Graphics, 2:3—10, 1996.

Christoph M. Hoffmann and Pamela J. Vermeer. Geometric constraint solving in
R? and R®. InD. Z. Du and F. Hwang, editors, Computing in Euclidean Geometry.
World Scientific Publishing, 1994. second edition.

Christoph M. Hoffmann and Pamela J. Vermeer. A spatial constraint problem. In
Workshop on Computational Kinematics, France, 1995. INRIA Sophia-Antipolis.
Ching-Yao Hsu. Graph-based approach for solving geometric constraint problems.
PhD thesis, University of Utah, Dept. of Comp. Sci., 1996.

R. Latham and A. Middleditch. Connectivity analysis: a tool for processing geo-
metric constraints. Computer Aided Design, 28:917-928, 1996.

E. Lawler. Combinatorial optimization, networks and Matroids. Holt, Rinehart
and Winston, 1976.

J. Owen. Algebraic solution for geometry from dimensional constraints. In ACM
Symp. Found. of Solid Modeling, pages 397-407, Austin, Tex, 1991.

J. Owen. Constraints on simple geometry in two and three dimensions. In Third
SIAM Conference on Geometric Design. STAM, November 1993. To appear in Int
J of Computational Geometry and Applications.

T.L. Magnanti, R.K. Ahuja and J.B. Orlin. Network Flows. Prentice-Hall, 1993.
Dieter Roller. Dimension-Driven geometry in CAD : a Survey. In Theory and
Practice of Geometric Modeling, pages 509-523. Springer Verlag, 1989.

O. E. Ruiz and P. M. Ferreira. Algebraic geometry and group theory in geomet-
ric constraint satisfaction for computer-aided design and assembly planning. IIE
Transactions on Design and Manufacturing, 28:281-294, 1996.

P. Vermeer. Assembling objects through parts correlation. In Proc. 13th Symp on
Comp Geometry, Nice, France, 1997.

W. Wunderlich. Starre, kippende, wackelige und bewegliche Achtflache. Elemente
der Mathematik, 20:25-48, 1965.

This article was processed using the I#TEX macro package with LLNCS style

