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Abstract. A central issue in dealing with geometric constraint systems
that arise in Computer Aided Design and Assembly is the generation
of an optimal decomposition recombination plan that is the foundation
of an efficient solution of the constraint system. Though complex, this
issue has evolved and crystallized over the past few years, permitting us
to take the next important step: for the first time, in this paper, we for-
malize, motivate and explain the optimal decomposition-recombination
(DR) planning problem as a problem of finding a sequence of graph
transformations T; that maximizes an objective function subject to a
certain criteria. We also give several performance measures phrased as
graph transformation properties by which DR, planning algorithms can
be analyzed and compared. These measures include: generality, validity,
completeness, Church-Rosser property, complexity, best and worst choice
approximation factors, (strict) solvability preservation, and the ability to
deal with under-constrained systems.

The clear and precise formulation of the problem and performance mea-
sures in terms of graph transformations allow us to systematically de-
velop a new DR-planner which we call the Frontier Algorithm (FA),
which represents a significant improvement over existing algorithms in
analysis and comparison based on all of these performance measures. We
analyze the performance of FA and compare FA to previously existing
algorithms.

1 Introduction and Motivation

This paper shows that a core problem in geometric constraint solving is to find
a sequence of graph transformations that satisfies certain formal requirements.
We refer to it as Decomposition-recombination-planning problem to be described
later.

A geometric constraint problem consists of a finite set of geometric objects
and a finite set of constraints between them. Geometric objects include points,
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lines, planes, circles, and so on. Constraints between them include parallel, per-
pendicular, distance, tangency, and so on. Some of these constraints are logical,
such as incidence or tangency; others are dimensional such as distance or angle.
A solution to a geometric constraint problem is a placement of geometric objects
that satisfies the constraints. For example solving the geometric constraint prob-
lem shown in left half of Figure 1 is equivalent to determining coordinates of the
three points in 2d, given the distances between them. This reduces to finding
real solutions of a system of quadratic equations. In general solving a geometric
constraint problem reduces to solving a nonlinear algebraic system over reals.

Industrial relevance. Geometric constraints are at the heart of computer aided
engineering applications (see, e.g., [11,12]), and also arise in many geometric
modeling contexts such as virtual reality, robotics, molecular modeling, teach-
ing geometry etc. For recent reviews of the extensive literature on geometric
constraint solving see, e.g, [3, 18, 5].

In particular, the constraint decomposition approach to geometric constraint
solving is so successful that most of the major CAD systems such as I-DEAS or
Pro/ENGINEER have licensed a commercial solver based on this principle. This
solver uses a repertoire of subgraph patterns and construction rules to decompose
the constraint graph and break it into small subsets that can be solved easily. It
is highly successful in planar constraint solving, but barely adequate for spatial
constraint solving.

As pointed out in [2], the pattern repertoire quickly becomes unmanageable
when extending the geometric coverage from a simple subset of planar constraint
configurations to more complex ones. In spatial constraint solving, using a reper-
toire of patterns is not very satisfactory, as pointed out in [15], and a more gen-
eral decomposition strategy is needed. This general strategy, first approached in
[13], is the subject of this paper. It manages to break the barrier that keeps the
pattern approach to constraint solving from becoming fully effective in spatial
constraint solving and in more general planar constraint solving. We would not
be surprised if a commercial implementation would be attempted based on this
work. The first and third authors have past and ongoing confidential industrial
contracts related to this work.

1.1 Need for decomposition-recombination plans

The major issue in solving geometric constraint problems is efficiency: comput-
ing the solution of the nonlinear algebraic system that arises from geometric
constraints is computationally challenging, and except for very simple geometric
constraint systems such as the example in Figure 1, this problem is not tractable
in practice without further machinery. The overwhelming cost in a geometric con-
straint solving is directly proportional to the size of the largest subsystem that
is solved using a direct algebraic/numeric solver. This size dictates the practical
utility of the constraint solver, since the time complexity of the constraint solver
is at least exponential in the size of the largest such subsystem.



Therefore, the geometric constraint solver should use geometric domain knowl-
edge to develop a Decomposition-Recombination (DR) plan (to be formally de-
fined in section 2.2) for decomposing the constraint system into small subsys-
tems, whose solutions are recombined thereby simplifying the original system on
which the decomposition-recombination is applied recursively until the system is
fully solved. To facilitate the recombination, the small subsystems in the decom-
position should be geometrically rigid. A rigid or discretely solvable subsystem of
the geometric constraint system is one for which the set of real-zeroes of the cor-
responding algebraic equations is discrete (i.e. the corresponding real-algebraic
variety is zero dimensional), after the local coordinate system has been fixed ar-
bitrarily. Discretely solvable systems of equations are also called wellconstrained
or (consistently) overconstrained. A system of equations that is not rigid is also
called underconstrained.

Example. There are many ways to fix a local coordinate system in Figure 1,
one way for example is to place a point, say P1 at origin and place the point
P3 so that the line segment (P1,P3) coincides with the x-axis. After the local
coordinate system is fixed, the corresponding algebraic equations either have 2
real solutions (placing P2 above or below x-axis) or no real solutions (for example
ifA+B< ().

Note. It is important to distinguish “discretely solvable” from “has a real solu-
tion.” Although overconstrained (or even certain wellconstrained) systems may
have no real solutions at all, by our definition, since their set of real zeroes is
discrete, they would still be considered “discretely solvable.”

An important performance measure of a DR-plan is that the subsystems in
the decomposition should be as small as possible: as previously mentioned, the
complexity of solving a subsystem by an algebraic/numeric solver is proportional
to the size of the subsystem. The optimal DR-plan is the one that minimizes the
size of the largest such subsystem.

A problem of finding a DR-plan if one exists is called a DR-problem and we
differentiate it from the problem of finding the optimal DR-plan. An algorithm
that solves the DR-problem by constructing a DR-plan for an input geometric
constraint system is called a DR-planner. To our knowledge, despite its long-
standing presence, the DR-problem has not yet been clearly isolated or precisely
formulated, although there have been many prior, specialized DR-planners that
utilize geometric domain knowledge, e.g.[2,21,22,15], [16,19,6,7,4,10,17], [1,
23,18,27,26].

1.2 Using graph rewriting for solving DR-problems

In order to solve a DR-problem we employ a geometric constraint graph struc-
ture (described in the following section) to represent a geometric constraint
system. Using this graph structure the DR-problem can be informally described
as decomposing the entire graph into small subgraphs of certain type and replac-
ing these small subgraphs by other subgraphs until the resulting graph is small



enough. Hence, using terminology of [20] it could be said that DR-plan is a se-
quence of applications of graph productions, where the left hand side is the small
subgraph to be replaced, the right hand side is the new subgraph that replaces it
and the embedding transformation specifies the edges or constraints between the
new subgraph and the rest of the graph. Thus solving the DR-problem requires
defining a graph grammar that on one hand is general enough to allow rewriting
of any subgraph that represents a solvable subsystem, and on the other hand
is meaningful with respect to the geometric context, i.e graph transformations
should not change solvability of the underlying system. Also, the right hand side
of the graph production should be smaller than the left hand side, since this
influences the time performance of the DR-planner. Finally, the total number of
grammar rules should be small for the computer implementation to be efficient.

In this paper we describe an efficient DR-planner, that uses a particular graph
grammar. We would like to note that while we did not use theoretical foundations
of graph rewriting theory when proving correctness and convergence properties
of our particular DR-planner, we anticipate that a rewriting framework will be
helpful for studying general DR-planners. However we are aware of very little
previous work [8,24,25] on applying graph grammars to CAD systems. One
example is [8] that uses graphs as a data structure, so nodes and edges of the
graph represent certain objects and relations between these objects respectively.
Thus the task of adding new objects or modifying relations between objects
can be stated as graph productions. This allows for natural implementation
and maintenance of the data structure, however the question of actually solving
constraint systems is not addressed.

1.3 Organization of the paper

Section 2 describes the geometric constraint graph structure that is used for
solving DR-problems, formally defines a DR-plan in terms of this structure and
introduces various performance measures for comparison of various possible DR-
plans. Section 3 describes new DR-planner, called Frontier Algorithm, which
was systematically developed to excel in the performance measures defined in
Section 2, as shown in last subsection where FA is compared to previously known
algorithms.

2 Using graph transformations for finding DR-plans
2.1 Geometric constraint graph and degree of freedom analysis

A geometric constraint system C' could be represented by a geometric constraint
graph. A geometric constraint graph G = (V, E,w) is weighted and undirected
with n vertices V' (corresponding to the geometric objects of C') and m edges
E (corresponding to the geometric constraints of C); weight w(v) is the number
of degrees of freedom available to a vertex v and w(e) is the number of degrees
of freedom removed by an edge e. The number of degrees of freedom of a rigid



object is roughly the minimum number of independent variables needed to fix
this object (or its local coordinate system) in space.

Example. A point in 2d has 2 translational degrees of freedom and a distance
constraint in 2d determines 1 degree of freedom. See Figure 1 for a geometric
constraint graph corresponding to the geometric constraint problem described
in the previous section.

D:(x1-Xx2)"2+(y1-y2)*2-Ar2=0
E:(x2-x3)"2+(y2-y3)"2-BA2=0
P2 Fi(x3-x1)"2+(y3-y1)"2-Cr2=0

P1 P3

Fig. 1. Geometric constraint problem and corresponding constraint graph

Note that the constraint graph could be a hypergraph, since geometric con-
straints that involve more than two geometric objects are represented as hyper-
edges.

A vertex-induced subgraph A C G that satisfies

a(4) = Y w(e) = Y wlw) > =D 1)

ecA vEA

is called dense. The function d(A) is called the density of A and meaning of
constant D will be explained in the next few paragraphs.

The density of a graph could be used to analyze discrete solvability of a cor-
responding geometric constraint system because of the following arguments. In
the generic case we assume that if a number of equations in constraint system
is greater than or equal to the number of its variables,then this system is dis-
cretely solvable. Similarly, the genericity assumption for constraint graphs is the
following;: if the total number of degrees of freedom removed by constraints (plus
a constant number D) is greater than or equal to the total number of degrees
of freedom available to the objects, then the corresponding constraint system is
discretely solvable. This is because generically the geometric objects can then be
placed rigidly with respect to each other by using only the constraints between
them. The absolute position of these objects in space can be fixed by removing
D more degrees of freedom. In 2d, D is equal to 3: the number of translational
and rotational degrees of freedom of a rigid planar object. In 3d, D is equal to 6
in general: 3 rotational and 3 translational degrees of freedom. If the object and



its local coordinate system are already fixed with respect to a global coordinate
system, then D = 0.

Therefore we call a minimal dense subgraph (i.e one that does not contain a
proper dense subgraph) discretely solvable since it generically represents dis-
cretely solvable (i.e wellconstrained or consistently overconstrained) subsystems
of the corresponding geometric constraint system. A subgraph that is not dense
generically represents a system that is not discretely solvable i.e undercon-
strained.

If the dense graph A is not minimal, the system corresponding to it could still
be underconstrained, even in the generic case: density of A could be the result
of embedding an overconstrained subgraph B C A,d(B) > —D. Hence dense
subgraphs do not in general represent discretely solvable subsystems unless they
are minimal. For a non-minimal dense subgraph A to generically correspond to
a discretely solvable subsystem, A should remain dense even after replacing any
of its overconstrained subgraphs B by any (other) wellconstrained subgraph of
density exactly equal to —D.

2.2 DR-plans in terms of graph transformations

Consider Figure 2. The top depicts a geometric constraint graph G, where the
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Fig. 2. Geometric constraint graph and a tree of dense subgraphs

weight of each edge is 1, the weight of each vertex is 2, and the dimension depen-
dent constant D is equal to 3. One of the plans for decomposing and recombining



G (and the geometric constraint system that G represents) into small discretely
solvable subgraphs (representing subsystems), is to decompose into dense sub-
graphs a = {1,2,3,4},b={5,6,7,8},c={9,10,11,12},d = {13,14,15,16},e =
{17,18,19, 20}, recombine their solutions appropriately into a simplified graph
so that they can be recombined, say by representing them as vertices a, b, ¢, d, €;
recursively decompose the simplified graph into I = {a,b,c}, II = {d, e}; repre-
sent and recombine their solutions as vertices I, II; and so on until the entire
graph is recombined and represented as a single vertex. Hence a DR-plan should
indicate a sequence of subgraphs or subsystems chosen at every stage whose
containment relationships are shown at the bottom of Figure 2.

Formally, a DR-plan @ of a geometric constraint graph G is a sequence of graphs
G;. This sequence has the following properties.

1. Gy =G

2. Decomposition. For all ¢, there is a minimal dense subgraph S; C G;

3. Recombination. Graph G, is a modification of G;, constructed by replac-
ing subgraph S; by an abstraction or simplification subgraph T;(S;) which
induces a transformation T3(G;) = G;y1. This transformation T, defined for
all subgraphs of G;, is also called simplifier (this is analogous to substituting
the solution of S; into the remaining equation system).

4. S, =G,

Typically the DR-plan @ is specified not just by the sequence of graphs G;, but
also by the corresponding sequence of discretely solvable subgraphs S; and the
corresponding sequence of graph simplifier transformations 75.

s =
e () s
)
G G=T 1(Gy) G=T2(G2) GFTn1 T1(G1)

Fig. 3. DR-plan

Figure 3 shows a general DR-plan. Note that there could be many DR-plans for
a given geometric constraint graph G. These plans depend upon the choices of
S; and T3(S;) at every iteration ¢. In the next subsection, we will formalize what
these choices could be.

2.3 Properties of graph transformations

Graph simplifiers T; must satisfy the following three natural requirements.



(1) If A is a subgraph of B then T;(A) is a subgraph of T;(B).
(2) T;(A) UT;(B) is the same as the graph T;(A U B).
(3) T;(A) NT;(B) is the same as T;(AN B).

Note. Any subgraph is understood to be vertex induced. The union of (resp.
intersection) of two subgraphs A and B is the graph induced by the union (resp.
intersection) of the vertex sets of A and B.

According to the definition of the DR-plan, every DR-plan must satisfy following
four requirements, together called validity.

(4) Every constraint graph G; in the DR-plan can be written as S; U R;, where
S; is discretely solvable, S; and R; do not have common edges.

(5) For every A C R;, T;(A) is isomorphic to A

(6) The initial map T} is an identity mapping upon the subsets of G;

(7) All the pre-images of every S;, i.e Tj_lT]jrll...Ti__l1 (Si)forall1 <j<i—1,
are discretely solvable.

Another natural rule for the DR-plans is to prevent the graph simplifiers T;
from mapping discretely solvable subgraphs to not discretely solvable ones and
vice versa. The DR-plan @ of G is discretely solvability preserving (or solvability
preserving for short) if for all ¢ and for all subgraphs A C G;, A is discretely
solvable and whenever AN S; = @ or A C S; then the corresponding simplified
subgraph T;(A) is discretely solvable and viceversa. The DR plan @ of G is
strictly solvability preserving, if for all ¢ and for all subgraphs A C G;, A is
discretely solvable implies T;(A) is discretely solvable and viceversa. The DR
plan @ of G is complete if for all ¢+ and for all discretely solvable subgraphs B
of the subgraphs S; chosen by @ it holds that B = T;_1T;_»...T;(S;) for some
j<i—1.

A conceptual design decomposition P of a geometric constraint graph G is a
collection of discretely solvable subgraphs P; C G, which are partially ordered
with respect to the subgraph relation. A DR-plan @ is said to incorporate a
design decomposition P, if the sequence of discretely solvable subgraphs S; in
@ embeds a topological ordering of P as a subsequence (a topological ordering
is a linear order that is consistent with the natural partial order given by the
subgraph relation on P).

In order to define an optimal DR-plan we need to first define the size of
a geometric constraint graph A and the size of a DR-plan ). The size of an
arbitrary subgraph A C G; = G is equal to ), . , w(v). The size of an arbitrary
subgraph A C G; is computed by adding the appropriate constant D (3 in 2d,
6 in 3d, as explained earlier) for any of the images of S; contained in A and
adding weights of the vertices of A that are not contained in any such image.

The size of a DR plan of G is the maximum of the sizes of the corresponding
discretely solvable subgraphs S;. The optimal size of the constraint graph G is
the minimum of sizes of all DR-plans of G. The optimal DR-plan of G is the
DR-plan that has size equal to the optimal size of G. The approximation factor



of a DR-plan @) of the graph G is defined as the ratio of the optimal size of G
to the size of (). The optimal DR-planning problem is a problem of finding an
optimal DR-plan.

Note. The optimal DR-planning problem is NP-hard. This follows from our
result in [13] showing that the problem of finding a minimum dense subgraph
is NP-hard, by reducing this problem to the CLIQUE. The CLIQUE problem
is extremely hard to approximate [9], i.e, finding a clique of size within a n!=¢
factor of the size of the maximum clique cannot be achieved in time polynomial
in n, for any constant e (unless P=NP). However our reduction of CLIQUE to
the optimal DR-planning problem is not a gap-preserving reduction thus the
polynomial time approximability of this problem is still an open question.

In addition to the above performance measures for the DR-plans, next we de-
fine several performance measures for DR-planning algorithms or DR-planners.
We assume that all DR-planners use randomized choices at each step where an
arbitrary selection of a vertex or an edge is needed.

The worst-choice approximation factor of a DR-planner on input graph G
is the minimum of the approximation factors of all DR-plans () obtained over
all possible random choices. The best-choice approzimation factor of the DR-
planner on input graph G is the maximum of the approximation factors of all
the DR-plans ) obtained over all possible random choices.

A DR-planner is general if it terminates with a DR-plan when given a dis-
cretely solvable system as input. A DR-planner is said to have a Church-Rosser
property, if it terminates with a DR-plan irrespective of which discretely solv-
able graph S; is chosen at the i** stage. Given the Church-Rosser property, at
each step, a discretely solvable subgraph S; can be chosen greedily to satisfy the
requirements of the planner. This prevents exhaustive search.

A DR-planner X adapts to underconstrained constraint graphs G if every
(partial) DR-plan produced by X terminates with a G, consisting of a set W =
{A1,..., A} of discretely solvable subgraphs (instead of a single subgraph S,
in case of a well-constrained graph G), such that W is maximal, i.e no union of
subset of W gives a discretely solvable subgraph.

3 A new DR-planner: Frontier Algorithm

In this section, we present a new DR planner whose development is systematically
guided by the performance measures discussed in the previous section. This
new algorithm called Frontier Algorithm (FA) is designed by apriori choosing a
particular type of graph transformation 7; for the DR-plan.

FA uses an earlier algorithm developed by the authors for locating the min-
imal dense subgraphs S; at each stage ¢. This algorithm is based on a subtle
modification of incremental network flow. This algorithm, called “Algorithm
Dense” first isolates a dense subgraph, and then finds a minimal dense subgraph
inside it, which ensures its discrete solvability. The interested reader is referred
to [13] for a description as well as implementation results, and to [14] for an ex-
tensive comparison with prior algorithms for isolating discretely solvable/dense



subgraphs with respect to performance measures discussed in the previous sec-
tion.

The found discretely solvable subgraph S; is simplified or abstracted as fol-
lows. The subgraph of S; induced by its internal vertices (that are not adjacent
to any vertex outside of S;) is replaced by one vertex (the core vertex) c;. The
frontier vertices of S; (i.e not internal), edges connecting them, and their weights
remain unchanged. The core vertex is connected to each frontier vertex v of S;
by a combined edge e whose weight is the sum of the weights of the original edges
connecting internal vertices to v. The weight of the core vertex is chosen so that
the density of T;(.S;) is exactly equal to —D where D is the geometry-dependent
constant explained earlier.

For example, consider Figure 4. The graph on the left is the graph G;, with
all edge-weights being 1, all vertex-weights being 2, the dimension dependent
constant D in this case is equal to 3. Assume that the discretely solvable sub-
graph ABCDEF is chosen to be S; at the current stage. Then B and D are
frontier vertices of S;, A,C, E, F are internal ones. Thus S; will be simplified
by FA into a graph consisting of three vertices ¢;, B, D, with the weight of B
and D being 2 (the same as in G;), the weight of edges (¢;, B) and (¢;, D)
being 3 (given by w(AB) + w(CB) + w(EB) and w(CD) + w(ED) + w(AD)
respectively) and the weight of ¢; being 5; whereby the density of T;(S;) is
w(¢;B) + w(e; D) — w(ce;) — w(B) — w(D) = —3, as required for rigid bodies in
2d.

Fig. 4. Geometric constraint graph before and after simplification

Formally, the DR-planner FA could be described by specifying the simplifier
transformations. Let S; be the minimal dense subgraph of G; found at stage i, let
ST be the subgraph induced by the inner vertices of S;, let F'I be the subgraph
induced by the frontier vertices of S;, and let A be any subgraph of G;. The
simplifier transformation T; is defined as follows:

—IANSI=0,then T;(A) = A



—If AN SI # 0, then T;(A) = (Vra,Era) where V4 is the union of all
vertices of A\ SI and all vertices of FI plus the core vertex c¢;. The set of
edges Er4 is the union of all the edges of A and of all the edges of S;, with
the exception of edges that have at least one endpoint in SI. Edges that have
at least one endpoint outside ST are combined (their weights are combined
as well). Edges that have all endpoints in ST are removed completely.

— The weight assigned to ¢; is such that the density of T;3(S;) becomes exactly
—D.

3.1 Performance analysis of FA

In this section, we state properties of the new DR-planner FA with respect to
the various performance measures defined in Section 2.

Proposition 1. FA is a valid DR-planner with the Church-Rosser property. In
addition, FA finds DR-plans for the mazimal discretely solvable subgraphs of
underconstrained graphs.

Proof. If the graph G is not underconstrained, then it will remain so after the
replacement of any discretely solvable subgraph by a subgraph of density —D,
i.e, after a simplification step by FA. Thus, if G = G is dense, it follows that all
of the G; are dense. Moreover, we know that if the original graph is discretely
solvable, then at each step, FA will in fact find a minimal dense subgraph S;
that consists of more than one vertex, and therefore the size of G;4; is strictly
smaller than the size of G; (using our definition of size) for all . Thus the process
will terminate since the entire graph will eventually be minimal dense, and at
that stage, the termination condition S,, = G,, holds. This is independent of
which discretely solvable subgraph S; is chosen to be simplified at the it* stage,
showing that FA has the Church-Rosser property.

On the other hand, if G is underconstrained, since the subgraphs S; chosen
to be simplified are guaranteed to be dense/discretely solvable, the process will
not terminate with one vertex, but rather with a set of vertices representing the
simplification of a set of maximal discretely solvable subgraphs (such that no
combination of them is discretely solvable). This completes the proof that FA is
a DR-planner that can adapt to underconstrained graphs.

The proof of validity follows straightforwardly from the properties of the
simplifier mapping. O

Proposition 2. FA is solvability preserving, but not strictly solvability preserv-
ing in the general case.

Proof. Consider for example Figure 5. Initially ABC and BCD are dense. After
ABC has been simplified into EB (B is frontier vertex, E is core vertex), the
image of dense subgraph BC'D is EBD which is no longer dense. O
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Fig. 5. Original graph is dense, simplified by FA is not

However in geometric applications, situations like this do not arise, i.e where
the “inner” part BC' imposes some constraints on the “outer” part BD. A more
illuminating analysis of FA can be accomplished by assuming that the input
is restricted to graphs that have geometrically meaningful interpretations. The
dense graph G is said to be geometrically consistent if and only if for any two
rigid or discretely solvable subgraphs A and B of G such that A contains some
inner vertices of B, the union of A and B is rigid as well.

Note. For example, consider case of vertices representing points and edges rep-
resenting distances in 2d. Here if any two rigid clusters share internal vertices,
then they must share more than one frontier vertex, and from 2d geometry, this
would mean that their union is rigid as well. Similarly in 3d, if two rigid clusters
share internal vertices, then they must share more than 2 frontier vertices, and
by 3d geometry, this would mean that their union is rigid as well.

Proposition 3. If the graph G is geometrically consistent, then FA is solvability
preserving and strictly solvability preserving.

Proof. Let B be a dense graph, and suppose that the dense cluster S; was sim-
plified by FA. Then B would only be affected by this simplification if B contains
at least one internal vertex of S; (recall that frontier vertices of S; remain un-
changed). But then, by the definition of the simplifier, T;(B) is the same as
T;(BUS;). Now, by definition of T;, T;(B U S;) is obtained by replacing S; by
T;(S;), which has weight exactly —D. Due to geometric consistency, B U S; is
discretely solvable, and a discretely solvable graph remains dense even after any
of its discretely solvable (well or overconstrained) subgraphs is replaced by any
(other) subgraph of density exactly —D. Thus T;(B) = T;(B U S;) is also dis-
cretely solvable. O

Proposition 4. FA is complete
Proof. This is because FA finds minimal dense subgraphs at each stage. O

Proposition 5. FA has worst-choice approxzimation factor O(1/n) (even for
geometrically consistent graphs) (proof can be found in [14]).

Proposition 6. The best-choice approximation factor of FA is at least % for
geometrically consistent graphs.



Proof. Let G be the weighted constraint graph. Let ) be an optimal DR-plan
of G, let ¢ be the size of @ (i.e the size of every cluster S; simplified under
the optimal DR-plan is less than ¢ + 1). We will show that FA could produce
a DR-plan Q' that is “close to” ). Complete resemblance (@ = Q') may not
be possible, since the internal vertices of the cluster S;-, found by FA at the it
stage, are simplified into one core vertex, thereby losing some information about
the structure of the graph. However we will show that there is a way of keeping
the size of @' within an additive constant of the size of Q.

Suppose that FA is able to follow the optimal DR-plan @ up to the stage
i, i.e §; = S;. Suppose that there is a cluster S; in the DR-plan @ such that
i < j and S; contains some internal vertices of S;. Therefore the simplification
of S; by FA maybe different from the simplification of S; in (). However, since
the union of S; and S; is discretely solvable (due to geometric consistency), FA
could use S;- = T;(S;) U S; instead of S;. The size of S; differs from the size of
S; by at most D units, where D is the constant depending on the geometry of
the problem. Hence the size of Q' is at most ¢ + D, and since q is at least D, the
result follows. O

Proposition 7. FA can incorporate a design decomposition of the input graph
if and only if all pairs of subgraphs A and B in the given design decomposition
satisfy: the vertices in AN B are not among the internal vertices of either A or
B (proof can be found in [14]).

3.2 Example operation of FA

Consider a geometric constraint graph G' and design decomposition

P = {P,, P>, Ps5, P,} of Figure 6, where the weight of all vertices in G is equal
to 2, the weight of all the edges is equal to 1, the dimension dependent constant
D is equal to 3.

96 M
Yol

2134 1011 121314

256789

Fig. 6. Input constraint system and design decomposition

For this G and P, the FA planner will construct a DR-plan @) shown in
Figure 7. Crucial intermediate graphs G; in the DR-plan output by FA are
shown in Figure 8.
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Fig. 7. The structure of discretely solvable subgraphs S; in DR-plan output by FA for
input in Figure 6

The description of discretely solvable subgraphs S; found at the i** stage is
given in the table below (S;.Core is a new vertex in G;41 that replaces the inner
vertices of S; after simplification, S;.F'V is a list of frontier vertices of S;, S;.CP
is a list previously found discretely solvable subgraphs that comprise S;, S;.0V
is a list of vertices of G that has been transformed into S;).

i S;.Core(weight) S;.FV S;.CP S;.0V

10 1,23} {1,283}  {1,2,3}

2 A(2) {1,2,4} {S1,4} {1,2,3,4}

3 B (4) (2,9} (2,5,6,7,8,9} {2,5,6,7,8,9}
40 {1,10,11} {1,10,11}  {1,10,11}

5 C(3) (1,12} {8412} {1,10,11,12}

6 0 {12,13,14} {12,13,14}  {12,13,14}

7 D (2) {12,14,4} {Se,4} (12,13, 14,4}

8 H (5) (2,14} {S, 85,5} {1,2,3,4,10,...,14}
9 0 {14,15,16} {14,15,16}  {14,15,16}

10 E (3) (14,9  {Ss,9} {14,15,16,9}

1117 (5) {2,9} {S9, S10} {1,2,3,4,9,...,16}
12 J (3) {0} {S11,85}  {1,...,16}

3.3 Comparison of performance

There are 3 previously known types of DR-planners. One type of DR-planner is
based on ideas in [2,15,16,21,22]. During decomposition phase DR-planners of
this type locate subgraphs of certain shape (for example triangles). We denote
such DR-planners by SR, which stands for “Shape Recognition”. Another type
of DR-planner is based on ideas in [1,23,23,19,18]. DR-planners of this type
involve finding maximum matching in a bipartite graph formed by geometric
objects and geometric constraints. We denote such DR-planners by MM, which
stands for “Maximum Matching”. The third type of DR-planner is based on



Fig. 8. Crucial G; in DR-plan

ideas in [13]. This DR-planner behaves similarly to FA during decomposition
phase, however during the recombination phase it condenses the entire dense
subgraph S; into a single vertex. We denote such DR-planners by CA, which
stands for “Condensing Algorithm”.

The detailed descriptions of these DR-planners in terms of graph simplifiers and
proofs for their performance analysis are given in [14]. Here we briefly outline
main advantages of FA. A DR-planner of type SR can only produce DR-plans
that require the dense subgraphs S; to consist of triangles or other fixed reper-
toire of patterns. Even when restricted to such inputs, a DR-planner of type SR is
still not general and not complete. A DR-planner of type MM could only produce
DR-plans that require the discretely solvable subsystems S; to represent rigid
bodies that are fixed or grounded with respect to a single coordinate system.
Even when restricted to such inputs, a DR-planner of type MM still cannot han-
dle underconstrained graphs, cannot incorporate an input design decomposition
and is not complete.

In contrast, FA places no restrictions on inputs, it is general, it can handle under-
constrained graphs, it can incorporate design decomposition, is valid, complete,
solvability preserving and strictly solvability preserving for the geometrically
consistent graphs. While all four types of DR-planners have worst-choice approx-
imation factor of O(L), FA is the only algorithm that has constant best-choice
approximation factor.
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