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ABSTRACT 

We study exact representations for offset curves and surfaces, for equal-distance curves 
and surfaces, and for fixed- and variable-radius blending surfaces. The representations 
are myekeme of nonlinear equationn that define the curves and surfaces as natural projec- 
tions from a bigherdimeneional space into &space. We show that the systems derived 
by-naively trsnalating the geometric constrainb defming the curves and mufaces can en- 
tail degeneracies that result in additional solutions that hawe no geometric aigdicancc. 
We characterize these extraneous solution points geometrically, and then augment the 
syetems with auxiliary equations of a uniform structure that exclude all extraneous so- 
lutions. Thereby, we arrive at representations that capture the geometric intent of the 
curve and surface definitions precisely. 

Keywords: geometric modding, faithful problem formulation,.offsets, blends, equidis- 

tame surfaces, extraneous s o l u t i o ~  

I. Introduction 

Geometric modeling uses a number of surface operations that are intuitively 
straightforward, yet pose significant mathematical problems. Examples include 
offset  surface^,^^^^^^^^^^^^ equidistant or Voronoi surface~,81~ and fixed- and variable- 
radius In order to find closed-form solutions, elimination algorithms 
could be used in principle. However, the problems arising in practical settings are 
well beyond the current state of the art and current hardware re~ources.'~ In view 
of this, the conventional approach is to approximate these  surface^.^^^*'^ 

In a number of papers it has been argued that such surface operations can be 
expressed conveniently as systems of nonlinear equations that are formed by ex- 
pressing equationally, one by one, the geometric constraints entailed by the surface 
operation. That is, the desired surface can be represented exactly by a system 
of nonlinear equations?~9*12 Furthermore, uniform efficient techniques have been 
developed to analyze these equation systems and the surfaces they define.12J4J5 

While the resulting equations do indeed represent the desired surfaces, they may 
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1. Introduction

Geometric modeling uses a number of surface operations that are intuitively
straightforward, yet pose significant mathematical problems. Examples include
offset surfaces,1,2,3,4,5,6,1 equidistant or Voronoi surfaces,8,9 and fixed- and variable
radius blends.S,9,lO,1l In order to find closed-form solutions, elimination algorithms
could be used in principle. However, the problems arising in practical settings are
well beyond the current state of the art and current hardware resources.12 In view
of this, the conventional approach is to approximate these surf~ces.2,5.13

In a number of papers it has been argued that such surface operations can be
expressed conveniently as systems of nonlinear equations that are formed by ex
pressing equationally, one by one, the geometric constraints entailed by the surface
operation. That is, the desired surface can be represented exactly by a system
of nonlinear equations.8•9,12 Furthermore, uniform efficient techniques have been
developed to analyze these equation systems and the surfaces they define.12,14,15

While the resulting equations do indeed represent the desired surfaces, they may



entail additional solutions that do not have geometric significance in the context 
of the operation.'2 Such additional solutions arise when, at certain points, some of 
the equations become interdependent or vanish outright. In this paper, we describe 
a method for augmenting the system of equations with additional equations that 
effectively exclude such extraneous solutions. 

Roughly speaking, there are two sources that can generate extraneous solutions. 
First the equation system may have solutions unrelated to the geometric intent 
with which the equations were constructed. This is the problem we solve in this pa- 
per. Secondly, if the equations are subsequently processed symbolically, eliminating 
some or all auxiliary variables, the resulting closed-form representation may include 
extraneous solutions introduced by the elimination procedure. We do not address 
this problem here, and refer to the sizable literature on the subject.3~16~17*18~19*20 

In the second section, we define the term extraneous solution, and characterize 
informally how extraneous solutions arise in offsets, equidistant curves and surfaces, 
and fixed- and variable-radius blends. We then describe two devices for eliminating 
extraneous solutions from the problem formulation, and prove that they eliminate 
all extraneous solutions. We also give some examples illustrating the method. 

2. Geometric Operations and Extraneous Solutions 

In general, the geometric operations we consider define new curves and surfaces 
in terms of given base eurues or surfaces. Consider the ofbet curve. Here, the base 
curve is defined by a given equation f (x, y) = 0. The d-offset curve consists of all 
points which are at distance d from some footpoint on the base curve, where the 
distance is measured along the normal to the base curve at: the footpoint. The 
point on the offset curve and the footpoint are said to correspond with each other 
if they satisfy this relationship. We translate these geometric requirements into 
nonlinear equations, thereby expressing the offset curve as a system of equations. 
The translation is shown explicitly below, and each type of curve or surface is 
discussed in depth. 

For the cases of offset curves and surfaces and for equal-distance curves and 
surfaces, we will define extraneous solutions as follows: 

A solution is extraneous if it corresponds to a footpoint which corre- 
sponds to infinitely many solutions. 

Blending surfaces require a different definition, which we will give later. Since we 
are interested in physical interpretations of these systems of equations, we restrict 
our work to  points in real, affine space. 

entail additional solutions that do not have geometric significance in the context
of the operation.12 Such additional solutions arise when, at certain points, some of
the equations become interdependent or vanish outright. In this paper, we describe
a method for augmenting the system of equations with additional equations that
effectively exclude such extraneous solutions.

Roughly speaking, there are two sources that can generate extraneous solutions.
First the equation system may have solutions unrelated to the geometric intent
with which the equations were constructed. This is the problem we solve in this pa
per. Secondly, if the equations are subsequently processed symbolically, eliminating
some or all auxiliary variables, the resulting closed-form representation may include
extraneous solutions introduced by the elimination procedure. We do not address
this problem here, and refer to the sizable literature on the subject.3,16,17,lS,19,20

In the second section, we define the term extraneous solution, and characterize
informally how extraneous solutions arise in offsets, equidistant curves and surfaces,
and fixed- and variable-radius blends. We then describe two devices for eliminating
extraneous solutions from the problem formulation, and prove that they eliminate
all extraneous solutions. We also give some examples illustrating the method.

2. Geometric Operations and Extraneous Solutions

In general, the geometric operations we consider define new curves and surfaces
in terms of given base curves or surfaces. Consider the offset curve. Here, the base
curve is defined by a given equation f(x,y) =O. The d-offset curve consists of all
points which are at distance d from some footpoint on the base curve, where the
distance is measured along the normal to the base curve at the footpoint. The
point on the offset curve and the footpoint are said to correspond with each other
if they satisfy this relationship. We translate these geometric requirements into
nonlinear equations, thereby expressing the offset curve as a system of equations.
The translation is shown explicitly below I and each type of curve or surface is
discussed in depth.

For the cases of offset curves and surfaces and for equal-distance curves and
surfaces, we will define extraneous solutions as follows:

A solution is extraneous if it corresponds to a footpoint which corre
sponds to infinitely many solutions.

Blending surfaces require a different definition, which we will give later. Since we
are interested in physical interpretations of these systems of equations, we restrict
our work to points in real, affine space.



2.1. Offset Carves 

Offset curves provide a good starting point for looking at extraneous solutions 
which arise when using the higher-dimensional method for curve and surface con- 
struction because the system which defines the offset curve has a very simple strut- 
ture. The d-offset to a given curve C : f(u, v) = 0 can be formulated by 1-3: 

For convenience of notation, here and throughout the paper all partials are assumed 
to be evaluated at their respective points, i-e., f, = fu(u, v )  in general, or fu = 
f,(u, fi) when we are considering a particular point (ti, 6 )  on C. 

If (z ,  y, u, v) is a solution to 1-3 then p = (u, v) is on the curve C, and x = (x, y) 
is both on the circle centered at p of radius d and on the normal to f at p. Hence 
x is a point on the offset curve which corresponds to footpoint p on the base curve. 
However, if p is a singular point of f ,  then 3 vanishes. Thus all of the points on 
the circle centered at p of radius d will correspond with p, and so that circle will 
be extraneous. It is also clear that only if p is singular will the third equation 
vanish independently of x and.y. Moreover, the second equation will never vanish 
independently of z and y. Thus for offset curves, extraneous solutions arise only 
when the base curve has singularities, and the extraneous solutions all correspond 
to the singular points. 

We will present methods that eliminate extraneous solutions by augmenting the 
equation system. In some cases, these methods will eliminate finitely many mean- 
ingful points as well. For example, consider the curve given by vZ - u3 = 0 and its 
1-offset described by the system 

v2 - u3 = 0 
(z - u ) ~  + (y - v ) ~  - 1 = 0 

-24% - u) + 3u2(y - v) = 0 

At (0,O) the base curve is singular, so the points (x,y,O,O) with z2 + y2 = 1 also 
satisfy the system, although almost all of these points do not lie on the 1-offset of 
the base curve. By augmenting the system suitably, we succeed in removing the 
points ((3, y,O,O) I x2 + y2 = 11, including the points (1,0,0,0) and (-1,0,0,0) 
which define the offset points (1,O) and (- 1,O). 

For numerical processing14 of the augmented system, this is generally not a 
problem, since the points that have been lost are a lower-dimensional set than the 
solution we want. Moreover, should we derive closed-form solutions by variable 
elimination, then these points would be reinstated by conbinuity. 

2.1. Offset Curves

Offset curves provide a good starting point for looking at extraneous solutioDB
which arise when using the higher-dimensional method for curve and surface con
struction because the system which defines the offset curve haa a very simple strue
ture. The d-offset to a given curve C : I(u, v) =°can be formulated by 1-3:

I(u,v) =0

(z - u)2 + (y - V)2 ~ d2 = °
- Iv(z - u) + lu(Y - v) =°

(1)

(2)

(3)

For convenience of notation, here and throughout the paper all partials are assumed
to be evaluated at their respective points, i.e., lu = lu( u, v) in general, or lu =
lu(fi,v) when we are considering a particular point (u,v) on C.

If (x, Y, u, v) is a solution to 1-3 then p = (u, v) is on the curve C, and x =(x, y)
is both on the circle centered at p of radius d and on the normal to I at p. Hence
x is a point on the offset curve which corresponds to footpoint p on the base curve.
However, if p is a singular point of f. then 3 vanishes. Thus all of the points on
the circle centered at p of radius d will correspond with p, and so that circle will
be extraneous. It is also clear that only if p is singular will the third equation
vanish independently of x and·y. Moreover, the second equation will never vanish
independently of x and y. Thus for Qffset curves, extraneous solutions arise only
when the base curve has singularities, and the extraneous solutions all correspond
to the singular points.

We will present methods that eliminate extraneous solutions by augmenting the
equation system. In some cases, these methods will eliminate finitely many mean
ingful points as well. For example, consider the curve given by v2 - u3 =°and its
I-offset described by the system

V
2

_U
3 =0

(z - u)2 + (y - v)2 - 1 == °
-2v(x - u) + 3u2(y - v) == °

At (0,0) the base curve is singular, so the points (x,y,O,O) with x2 + y2 == 1 also
satisfy the system, although almost all of these points do not lie on the I-offset of
the base curve. By augmenting the system suitably, we succeed in removing the
points {(x,y,O,O) I x 2 + y2 = I}, including the points (1,0,0,0) and (-1,0,0,0)
which define the offset points (1,0) and (-1,0).

For numerical processing14 of the augmented system, this is generally not a
problem, since the points that have been lost are a lower-dimensional set than the
solution we want. Moreover, should we derive closed-form solutions by variable
elimination, then these points would be reinstated by continuity.



2.2. Offset Surfoces 

Offset surfaces are defmed analogously to offset curves: a point is on the d-offset 
of a surface if it is distance d along the normal to  some footpoint on the base surface. 
The normal condition for surfaces is expressed as two equations linear in z ,  y, and z, 
and a t  some points on the base surface theee two equations may be dependent. That 
is, while neither equation vanishes outright, it is possible that the two equations 
can be reduced to  a single equation at certain points, thus reducing the number of 
constraints on the system and introducing extraneous solutions. When this happens, 
we say that the normal is degenerate; otherwise, the normal is well-defined. A system 
for the offset surface is given by 4-7: 

If (2 ,  y,z,u, u,w) is a solution of this system of equations, then p = (u,v, w )  lies 
on the base surface given by f ,  and x = (z,  y, z) is distance d from p along the 
normal to  f at p. As in the case of o h t  curves, if p is singular, 6 and 7 vanish 
independently of x. In thia case, all points on the sphere of radius d centered at p 
will be extraneous solutions corresponding to p. 

Additionally, the normal may exist, but it may not be well-defined by the system. 
In the particular definition given, this can happen just in case f, = 0. Then 6 and 
7 are multiples of each other, and geometrically, they no longer define the normal 
line but only a plane in which the normal lies. This is not enough information 
to completely specify a unique point on the offset surface corresponding to the 
footpoint, thus we have as extraneous solutions the points on the circle obtained 
by intersecting the sphere of radius d centered at p with this plane, forming a tube 
whcxle spine is the space curve (f = 0) n (f, = 0). 

We could actually choime any two of 

to specify the normal condition. Choosing a different pair would merely alter the 
curve along which the tube of extraneous solutions lies. For example, using the 
second and third equations, extraneous solutions would arise along the curve which 
is the intersection of f = 0 and fw = 0. 

.;.\ ~~"-: :

2.2. Offset Surfaces

Offset surfaces are defined analogously to offset curves: a point is on the d-offset
of a surface if it is distance d along the normal to some footpoint on the base surface.
The normal condition for surfaces is expressed as two equations linear in z, y, and z,
and at some points on the base surface these two equations may be dependent. That
is, while neither equation vanishes outright, it is possible that the two equations
can be reduced to a single equation at certain points, thus reducing the number of
constraints on the system and introducing extraneous solutions. When this happens,
we say that the normal is degenerate; otherwise, the normal is well-defined. A system
for the offset surface is given by 4-7:

I(u,v,w) = 0

(z - u)2 + (y - v)2 + (z - w)2 - rP =0

-/v(z - u) + lu(Y- v) = 0

- Iw(Y - v) + Iv(z - w) = 0

(4)

(5)

(6)

(7)

If (z,y, z, U,v, w) is a solution of this system of equations, then p = (u,v, w) lies
on the base surface given by I, and x = (z, y, z) is distance d from p along the
normal to I at p. As in the case of offset curves, if p is singular, 6 and 7 vanish
independently of x. In this case, all points on the sphere of radius d centered at p
will be extraneous solutions corresponding to p.

Additionally, the normal may exist, but it may not be well-defined by the system.
In the particular definition given, this can happen just in case Iv = O. Then 6 and
7 are multiples of each other, and geometrically, they no longer define the normal
line but only a plane in which the normal lies. This is not enough information
to completely specify a unique point on the offset surface corresponding to the
footpoint, thus we have as extraneous solutions the points on the circle obtained
by intersecting the sphere of radius d centered at p with this plane, forming a tube
whose spine is the space curve (I =0) n (Iv = 0).

We could actually choose any two of

-/v(z - u) +lu(Y - v) =0

-lw(Y- v) +11I(z -w) = 0

-/u(z - w) + Iw(z - u) =0

to specify the normal condition. Choosing a different pair would merely alter the
curve along which the tube of extraneous solutions lies. For example, using the
second and third equations, extraneous solutions would arise along the curve which
is the intersection of 1= 0 and Iw = o.



2.9. Equal-Distance Curves 

Equal-distance curves can be defined in terms of offset curves. A point is on the 
equal-distance curve of two curves f and g if it is on the d-offset curve of both f 
and g ,  for some d. 

Equal-distance curves have an additional layer of complexity. This additional 
complexity comes from having to consider the geometric relationship between the 
two base curves and their respective normal directions. There are two footpoints 
to  consider, one on each curve, and different results depending on whether both of 
them are regular, both are singular, or one is singular while the other is not. Also, 
we must consider what happens when the two footpoints coincide, that is, when the 
curves intersect each other. In certain situations, this yields extraneous solutions, 
while in others it does not. 

The algebraic counterpart to these geometric considerations involves the depen- 
dence between equations related t o  one of the curves with equations related to 
the other curve. Using the system for offset curves given above, we can write the 
equal-distance system 8-13: 

From the discussion of offiet curves above, if (z ,  y, ul , v l  , uz, v2, d) is a solution to 
this system, (2, y )  is on the d-offset of f and on the d-offset of g , and hence it is a 
point on the equal-distance curve of f  and g. 

However, as in the previous cases, singularities in the footpoints cause extraneous 
solutions. If one of the footpoints is singular, say p = (ul , vl) , then for every point 
q on g there is a point x = (z, Y) and a d such that x corresponds to the footpoints 
p and q. GeometricaUy, this means that we get as extraneous solutions the curve 
of points which are at  equal distance to the singular point p and the curve defined 
by g. See Figure 1. When q is also singular, the perpendicular bisector of pq is 
extraneous as well, since in this case both 10 and 13 vanish. Then the only equations 
depending on x and y  are the two circles 9 and 12, and as d varies, the bisector is 
obtained. 

Moreover, when p = q ,  further extraneous solutions can arise. If both points are 
regular, but the curves meet tangentially at  the footpoints, then the common normal 
line is extraneous. Similarly, if one of the curves is regular a t  the footpoint while 
the other is singular, the normal line to the curve which is regular is an extraneous 

2.3. Equal-Distance Curves

Equal-distance curves can be defined in terms of offset curves. A point is on the
equal-distance curve of two curves! and 9 if it is on the d-offset curve of both !
and g, for some d.

Equal-distance curves have an additional layer of complexity. This additional
complexity comes from having to consider the geometric relationship between the
two base curves and their respective normal directions. There are two footpoints
to consider ,one on each curve, and different results depending on whether both of
them are regular, both are singular, or one is singular while the other is not. Also,
we must consider what happens when the two footpoints coincide, that is, when the
curves intersect each other. In certain situations, this yields extraneous solutions,
while in others it does not.

The algebraic counterpart to these geometric considerations involves the depen
dence between equations related to' one of the curves with equations related to
the other curve. Using the system for offset curves given above, we can write the
equal-distance system 8-13:

!(U1,V1) =0
(x - U1)2 + (y - V1)2 - d2 = 0

- !I/l(X - ut) + !Ul(Y -11.) = 0

g(U2,V2) = 0

(x - U2)2 + (y - V2? - d2 = 0

-gl/2(X - U2) + gU2(Y - 112) = 0

(8)

(9)

(10)

(11)

(12)

(13)

From the discussion of offset curves above, if (x, y, U1, V1> U2, V2, d) is a solution to
this system, (x, y) is on the d-offset of ! and on the d-offset of g, and hence it is a
point on the equal-distance curve of! and g.

However, as in the previous cases, singularities in the footpoints cause extraneous
solutions. Ifone of the footpoints is singular, say p = (U1' 111), then for every point
q on 9 there is a point x::: (x,y) and a d such that x corresponds to the footpoints
p and q. Geometrically, this means that we get as extraneous solutions the curve
of points which are at equal distance to the singular point p and the curve defined
by g. See Figure 1. When q is also singular, the perpendicular bisector of pq is
extraneous as well, since in this case both 10 and 13 vanish. Then the only equations
depending on x and yare the two circles 9 and 12, and as d varies, the bisector is
obtained.

Moreover, when p =q, further extraneous solutions can arise. If both points are
regular, but the curves meet tangentially at the footpoints, then the common normal
line is extraneous. Similarly, if one of the curves is regular at the footpoint while
the other is singular, the normal line to the curve which is regular is an extraneous



'f 
Fig. 1. C is the extraneous eqd-distance curve between f and the singular point q. 

solution. Finally, if both points are singular, then 9 and 12 sweep out the entire 
xy-plane as d varies, hence the whole plane is extraneous. 

2.4. EquaCDistance Surfaces 

Equal-distance surfaces are defined analogously to equal-distance curves: a point 
is on the equal-distance curve of two surfaces f and g if it- is on the d-offset surface 
of both f and g, for some d. A system of equations which defines the equal-distance 
surface between two surfaces f and g can be given by 1421:  

From the discussion of ofbet surfaces, if (x, y, z, ul  , vl , wl , UZ,  v2, w2, d) is a so- 
lution to  the system, then x = (x, y, z )  is on the equal-distance surface between f 
and g. And, as in the case of equal-distance curves, we have extraneous solutions 
depending both on the regularity or singularity of the footpoints and on whether 
the footpoints coincide or not. 

If both footpoints p = (ul , vl, wl) and q = (ua, va, wz) are regular, then extr* 
neous solutions arise when the normal lines are not well-defined by the system. If 
both normal lines are well-defined, extraneous solutions can arise only when the 

1
Fig. 1. C is the extraneous equal-distance curve between 1 and the singulal' point q.

solution. Finally, if both points are singular, then 9 and 12 sweep out the entire
xy-plane as d varies, hence the whole plane is extraneous.

2..1. Equal-Distance Surfaces

Equal-distance surfaces are defined analogously to equal-distance curves: a point
is on the equal-distance curve of two surfaces 1 and 9 if it is on the d-offset surface
of both 1 and g, for some d. A system of equations which defines the equal-distance
surface between two surfaces 1 and 9 can be given by 14-21:

I(UI,Vl.WI) = 0

(x - UI)2 + (y - vI? + (z - wd2
- d2 = 0

- 1"1 (x - uI) + IU1 (y - vd =0

-IW1(Y- VI) + l"l(Z - wI) =0

g(U2,V2,W2) = 0

(x - U2)2 + (y - V2)2 + (z - W2)2 - d2 =0

-g,,~(x - U2) + gu~(Y - V2) == 0

-gW2(y - V2) + g,,~(z - W2) =0

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

From the discussion of offset surfaces, if (x,y,z,UI,VI,WI,U2,V2,W2,d) is a so
lution to the system, then x = (x,y,z) is on the equal-distance surface between 1
and g. And, as in the case of equal-distance curves, we have extraneous solutions
depending both on the regularity or singularity of the footpoints and on whether
the footpoints coincide or not.

If both footpoints p =(UI' VI, wI) and q == (U2, V2, W2) are regular, then extra
neous solutions arise when the normal lines are not well-defined by the system. If
both normal lines are well-defined, extraneous solutions can arise only when the



footpoints and their respective normals coincide. Otherwise, the two normal lines 
intersect in at most one point, so if a solution exists, it must be unique. 

If one normal line is well-defined while the other is degenerate, then, again, there 
is at most one solution unless p and q are identical and the well-defined normal 
lies in the plane defined by the degenerate normal conditions. However, the point 
which is a solution of the algebraic system may not satisfy the geometric criteria 
of lying on the normals to both surfaces, since there is no guarantee that the point 
lies on the normal to the surface of the point with the degenerate normal condition. 
We call such algebraically valid but geometrically meaningless solutions spurious. 

Similarly, when both normal conditions are degenerate, an extraneous line exists 
when p # q. This line is the intersection of the plane M defined by 15 and 19, which 
is the bisector of pq, and the plane P defined by the degenerate normal conditions. 
When p = q, if any solution at all exists, the entire plane P satisfies the system, 
and therefore is extraneous. 

When one footpoint is singular, again suppose it is p, the two linear equations 16 
and 17 vanish. As in the case of equal-distance curves, for every point q on g, there 
is a point x and a distance d such that p and q are footpoints which correspond 
to x. This means that the surface of points at equal distance from p and g is 
extraneous. When the two remaining planar equations 20 and 21 are dependent,, 
they define a single plane P, and the intersection of P with M is an extraneous 
line. If in addition the footpoints coincide, then the entire line or plane defined by 
20 and 21 ia dso extraneous. 

Findy,  when both footpoints are singular, the plane M is extraneous. If the 
two footpoints coincide in this case, then the entire zyz-apace is swept out by the 
spheres and is considered extraneous. 

2.5. ConsdanGRadius Blending Surfaces 

Constant-radius blending surfaces can be defined in terms of fixed-radius offsets 
to the two surfaces being blended. First, locate a point offset fiom both f and g 
by a distance d. Then join the two footpoints p and q on f and g, respectively, 
by the circle of radius d which lies in the plane spanned by the normals of f and 
g at p and q .  This circle is determined by the intersection of a sphere of radius d 
centered at the common offset point and the plane spanned by the normals at the 
footpoints. This technique gives more than desired, since for each corresponding 
pair of footpoints, it generates a full circle. The surface must later be trimmed in 
order to get only those points which lie "close to" the base surfaces. In terms of 
equations, the constant-radius blending surface of radius d between f and g can be 
given by 22-31 : 

footpoints and their respective normals coincide. Otherwise, the two normal lines
intersect in at most one point, so if a solution exists, it must be unique.

If one normal line is well-defined while the other is degenerate, then, again, there
is at most one sQlution unless p and q are identical and the well-defined normal
lies in the plane defined by the degenerate normal conditions. However, the point
which is a solution of the algebraic system may not satisfy the geometric criteria
of lying on the normals to both surfaces, since there is no guarantee that the point
lies on the normal to the surface of the point with the degenerate normal condition.
We call such algebraically valid but geometrically meaningless solutions spurious.

Similarly, when both normal conditions are degenerate, an extraneous line exists
when p :f; q. This line is the intersection of the plane M defined by 15 and 19, which
is the bisector ofpq, and the plane P defined by the degenerate normal conditions.
When p = q, if any solution at all exists, the entire plane P satisfies the system,
and therefore is extraneous.

When one footpoint is singular, again suppose it is p, the two linear equations 16
and 17 vanish. As in the case of equal-distance curves, for every point q on g, there
is a point x and a distance d such that p and q are footpoints which correspond
to x. This means that the surface of points at equal distance from p and 9 is
extraneous. When the two remaining planar equations 20 and 21 are dependent,
they define a single plane P, and the intersection of P with M is an extraneous
line. If in addition the footpoints coincide, then the entire line or plane defined by
20 and 21 is also extraneous.

Finally, when both footpoints are singular, the plane M is extraneous. IT the
two footpoints coincide in this case, then the entire :z:yz-space is swept out by the
spheres and is considered extraneous.

2.5. Constant-Radius Blending Surfaces

Constant-radius blending surfaces can be defined in terms of fixed-radius offsets
to the two surfaces being blended. First, locate a point offset from both f and 9

by a distance d. Then join the two footpoints p and q on f and g, respectively,
by the circle of radius d which lies in the plane spanned by the normals of f and
9 at p and q. This circle is determined by the intersection of a sphere of radius d

centered at the conunon offset point and the plane spanned by the normals at the
footpoints. This technique gives more than desired, since for each corresponding
pair of footpoints, it generates a full circle. The surface must later be trinuned in
order to get only those points which lie "close to" the base surfaces. In terms of
equations, the constant-radius blending surface of radius d between f and 9 can be
given by 22-31:

f(Ul,Vl,WI) = 0

(u - ud2 + (v - vd2 + (w - Wl)2 - d2 =0

(22)

(23)



where MI and Mg are the normals off  and g, respectively. In this definition, if the 
point ( x ,  y,z, u,v, w,ul,  vl, w1,u2,v2, w2) is a solution to the system of equations, 
then p = (ul,vl,wl) lies on 6, q = ( u 2 , v 2 , ~ )  lies on g, and m = (u,v,w) is the 
common d offset to f and g corresponding to footpoints p and q,  respectively. The 
point x = (z, y, z) is the point which is actually on the blending surface. 

Originally we defined extraneous to mean that a footpoint on one of the surfaces 
corresponded to infinitely many points on the surface being defined. This definition 
no longer suffices, since every pair of footpoints corresponds to a curve on the blend. 
Instead, a solution is extraneous if either footpoint has extraneous offset points or 
if for the given footpoints and offset point, there is a sphere of points which satisfy 
the system. 

From the discussion of offset surfaces above, it is easy to see when extraneous 
solutjons arise because of extraneous offset points. If both p and q are regular, and 
both of them have a well-defined normal, then there are no extraneous solutions, 
since the normals can meet in just one point. If one of the normals is degenerate, 
there is still a t  most one possible point which geometrically is offset to the footpoint 
whose normal is well-defined, but it may be spurious with respect to the footpoint 
with degenerate normal. If both normals are degenerate, then each offset subsystem 
defines an extraneous circle in the plane y = vl = v2, and the number of offset 
solutions depends on how these two circles intersect. 

If p is singular while q is regular, then if the linear equations associated with 
g do not degenerate at q ,  the point m is unique. Otherwise, if the normal at q 
is degenerate, the offiet subsystem gives an extraneous circle of solutions, and the 
number of extraneous offset points for the equal-distance surface are determined by 
the way in which that circle intersects the sphere of radius d centered at p, given 
by 23. 

Lastly, if both footpoints are singular, then m is a single point if the two spheres 
given by 23 and 26 meet tangentially. I t  is a point on the intersection circle if 
they meet transversally, and if the footpoints coincide, then the entire sphere is 
extraneous. 

If m is the unique point which is on the d-offset of both f and g, then extraneous 
solutions can still arise when 31 vanishes independently of z ,  y, and z. This happens 

- 1111 (u - uI) + lUI (v - vI) = 0

- IWI (v - vI) + fill (w - wI) = 0

9(U2,V2,W2) = 0

(U - U2)2 + (V - V2)2 + (W - W2)2 - d2 = 0

-g"2(U - U2) + 9U2(V - V2) = 0

-gW2(V - V2) + gV2(W - W2) = 0

(z - U)2 + (y - V)2 + (z - W)2 - d2 =0

(x - u,y - v, z - w) . (Nj(Ul' VI, wI) X Ng(u2' V2, W2)) == 0

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

where Nj and Ng are the normals of f and 9, respectively. In this definition, if the
point (z,y,z,u,V,W,UlIVl,Wl,U2,V2,W2) is a solution to the system of equations,
then p = (UI,VI,wI) lies on f, q = (U2,V2,'W2) lies on g, and m = (u,v,w) is the
common d offset to I and 9 corresponding to footpoints p and q, respectively. The
point x = (x,y,z) is the point which is actually on the blending surface.

Originally we defined extraneous to mean that a footpoint on one of the surfaces
corresponded to infinitely many points on the surface being defined. This definition
no longer suffices, since every pair of footpoints corresponds to a curve on the blend.
Instead, a solution is extraneous if either footpoint has extraneous offset points or
if for the given footpoints and offset point, there is a sphere of points which satisfy
the system.

From the discussion of offset surfaces above, it is easy to see when extraneous
solutions arise because of extraneous offset points. If both p and q are regular, and
both of them have a well-defined normal, then there are no extraneous solutions,
since the normals can meet in just one point. If one of the normals is degenerate,
there is still at most one possible point which geometrically is offset to the footpoint
whose normal is well-defined, but it may be spurious with respect to the footpoint
with degenerate normal. If both normals are degenerate, then each offset subsystem
defines an extraneous circle in the plane y = VI = V2, and the number of offset
solutions depends on how these two circles intersect.

If pis singular while q is regular, then if the linear equations associated with
9 do not degenerate at q, the point m is unique. Otherwise, if the normal at q
is degenerate, the offset subsystem gives an extraneous circle of solutions, and the
number of extraneous offset points for the equal-distance surface are determined by
the way in which that circle intersects the sphere of radius d centered at p, given
by 23.

Lastly, if both footpoints are singular, then m is a single point if the two spheres
given by 23 and 26 meet tangentially. It is a point on the intersection circle if
they meet transversally, and if the footpoints coincide, then the entire sphere is
extraneous.

If m is the unique point which is on the d-offset of both I and g, then extraneous
solutions can still arise when 31 vanishes independently of x, y, and z. This happens



if and only if Nj(p) x Ng(q)  = (0,0,0), and results in an extraneous sphere in the 
blending surface, given by 30. 

2.6. Variable-Radius Blending Surfaces 

Circular blends of variable radius can also be defined as systems of equations. In 
the case of constant-radius blends, the spine of the blend is defined as the intersec- 
tion of the d-offsets o f f  and g, where d is fixed. The circular arcs of the blending 
surface are then centered on the spine. For variable-radius blends, the spine must 
lie on the equal-distance surface between the two base surfaces so that a sphere 
centered on the spine will touch both f and g .  Such a spine can be obtained by 
intersecting the equal-distance surface of f and g with a reference surface h. The 
variable-radius blend between f and g is then defined as the envelope of the family 
of spheres whose centers lie on the spine and whose radii are such that each sphere 
touches both f and g. 

To write the variable-radius blending surface as a system of equations, we need 
the equations for the equal-distance surface between f and g, which we know from 
the previous discussion, and the equation for the reference surface h. We also require 
an equation which defines the family of spheres, and an equation which defines the 
envelope of that family. Each sphere S d  must be centered on the spine, and since 
it must touch f and g, its radius d must be the same as the distance of its center 
to  the footpoints on f and g .  Finally, to get the envelope of the family of spheres, 
the derivative of S d  in the tangent direction must be zero. For further details, see 
e.g. (Refs. 9, 25). The system is then given by 32-42: 

O S d  OSd  a s d  
( x j z 7 K ) - ( N h  x Nv) = O  

where S d  is given by 41, Nh is the normal to h at (u,v,w), and Nv is the normal 
to the equal-distance surface at  (u, v, w). 

As with the constant-radius blends, extraneous solutions arise if extraneous sw 
lutions exist in the equal-distance surface. However, in the variable-radius case, 

if and only if N,(p) x Ng(q) = (0,0,0), and results in an extraneous sphere in the
blending surface, given by 30.

2.6. Variable-Radius Blending Surfaces

Circular blends of variable radius can also be defined as systems of equations. In
the case of constant-radius bleJ;lds, the spine of the blend is defined as the intersec
tion of the d-offsets of! and g, where d is fixed. The circular arcs of the blending
surface are then centered on the spine. For variable-radius blends, the spine must
lie on the equal-distance surface between the two base surfaces so that a sphere
centered on the spine will touch both ! and g. Such a spine can be obtained by
intersecting the equal-distance surface of ! and g with a reference surface h. The
variable-radius blend between! and g is then defined as the envelope of the family
of spheres whose centers lie on the spine and whose radii are such that each sphere
touches both! and g.

To write the variable-radius blending surface as a system of equations, we need
the equations for the equal.distance surface between f and g, which we know from
the previous discuBBion, and the equation for the reference surface h. We also require
an equation which defines the family of spheres, and an equation which defines the
envelope of that family. Each sphere Sd must be centered on the spine, and since
it must touch! and g, its radius d must be the same as the distance of its center
to the footpoints on ! and g. Finally, to get the envelope of the family of spheres,
the gerivative of Sd in the tangent direction must be zero. For further details, see
e.g. (Refs. 9,25). The system is then given by 32-42:

!(Ul,Vl,Wl) = 0 (32)

(u - Ul)2 + (v - vd + (w - wd - d2 =0 (33)

-!Vl(U- UI) + !Ul(V - VI) = ° (34)

-!W,(V-VI)+!Vl(W-WI) =0 (35)

g(U2,V2,W2) = ° (36)

(u - U2)2 + (v - V2)2 + (w - W2)2 - d2 =0 (37)'

-gv.(u - U2) + gu,(v - V2) =0 (38)

-gw,(v - V2) + gv,(w - W2) =° (39)

h(u,v,w) =° (40)

(x - u)2 + (y - v)2 + (z - w)2 - d2 = 0 (41)

( asd aSd aSd). (N N) - ° (42)
au ' av ' aw h x v -

where Sd is given by 41, Nh is the normal to h at (u,v,w), and Nv is the normal
to the equal-distance surface at (u,v,w).

As with the constant-radius blends, extraneous solutions arise if extraneous so
lutions exist in the equal-distance surface. However, in the variable-radius case,



such points will be extraneous only if they are also contained in h. By eliminating 
all extraneous solutions to the subsystem 32-39, these extraneous points can be 
eliminated. 

Also similar to  constant-radius blends, extraneous solutions can arise for variable- 
radius blends when 42 vanishes independently of z, y, and z .  This can only occur 
if Nh x Nv = (0,0,0), and results in an extraneous sphere, given by 41. 

3. Generic Elimination Strategies 

A generic strategy for removing extraneous solutions is to exclude tho* foot- 
points with which the extraneous solutions are associated. We will give a precise 
geometric characterization of these points, and show that the addition of certain 
inequalities to the system excludes them. These inequalities are actually expressed 
equivalently by additional equations with additional variables. 

Consider the case of the offset curve, where extraneous solutions arise just in case 
the footpoint is singular. If we could eliminate the possibility of such points being 
footpoints, we would eliminate all solutions which correspond to those footpoints. 
A point is singular if and only if its normal vector is the zero-vector. So we add an 
equation which eliminates all points whose normal vector is identically zero. This 
will eliminate from the solution set all points for which the footpoint on the base 
curve is singular, and so will eliminate the extraneous solutions associated with the 
singular points. The equation we add is 

Whenever f, = f, = 0, this equation reduces to 

and then it will not have a solution. Otherwise, if f, # 0 or f, # 0, there is a 
value for a, the new variable, which will solve the added equation. Therefore this 
equation eliminates all and only those solutions which are extraneous. Note that 
the equation 

a z - 1 = O  

effectively expresses the inequality x # 0. This technique is used extensively in 
geometry theorem pr8ving.21J2*23124 

It is sometimes convenient to use a second device for excluding extraneous solu- 
tions. When defining surfaces, perpendicularity conditions may have to be expressed 
by two equations of the form: 

u - t ]  = O  
u . t 2 = 0  

Here, u is a vector that is to be perpendicular to two linearly independent tangent 
directions tl and tz. When the surface f to which tl and t 2  should be tangent is 

such points will be extraneous only if they are alao contained in h. By eliminating
all extraneous solutions to the subsystem 32-39, these extraneous points can be
eliminated.

Alao similar to constant-radius blends, extraneous solutions can arise for variable
radius blends when 42 vanishes independently of x, y, and z. This can only occur
if Nh x Nv =(0,0,0), and results in an extraneous sphere, given by 41.

3. Generic Elimination Strategies

A generic strategy for removing extraneous solutions is to exclude those foot
points with which the extraneous solutions are associated. We will give a precise
geometric characterization of these points, and show that the addition of certain
inequalities to the system excludes them. These inequalities are actually expressed
equivalently by additional equations with additional variables.

Consider the case of the offset curve, where extraneous solutions arise just in case
the footpoint is singular. If we could eliminate the possibility of such points being
footpoints, we would eliminate all solutions which correspond to those footpoints.
A point is singular if and only if its normal vector is the zero-vector. So we add an
equation which eliminates all points whose normal vector is identically zero. T~
will eliminate from the solution set all points for which the footpoint on the base
curve is singular, and so will eliminate the extraneous solutions associated with the
singular points. The equation we add is

(al.. - 1)(al" - 1) = 0

Whenever I.. = I" = 0, this equation reduces to

-1=0

and then it will not have a solution. Otherwise, if Itl. #- 0 or I" #- 0, there is a
value for a, the new variable, which will solve the added equation. Therefore this
equation eliminates all and only those solutions which are extraneous. Note that
the equation

ax-1 = 0

effectively expresses the inequality x. #- O. This technique is used extensively in
geometry theorew pr8ving.21 ,,;l2.23;24

It is sometimes convenient to use a second device for excluding extraneous solu
tions. When defining surfaces, perpendicularity conditions may have to be expressed
by two equations of the form:

u· t1 = 0

u· t 2 = 0

Here, u is a vector that is to be perpendicular to two linearly independent tangent
directions t1 and t 2 · When the surface I to which t1 and t2 should be tangent is



given implicitly, the tangents may be chosen as 

where thesubscripts denote partial differentiation. But for points on the intersection 
f, n f the tangent vectors are not linearly independent, and this causes extraneous 
solutions. They can be excluded by introducing an additional equation 

which is not redundant at the regular points of f n f,. That is, to express perpen- 
dicularity, we include the three equations 

Then, at every regular point o f f ,  at  least two linearly independent tangent direc- 
tions have been included, so the normal is well-defined. 

4. T h e  Details 

For each curve and surface discussed above, we prove what extraneous solutions 
exist and how to eliminate them. The basic strategy in each proof k to assume that 
the footpoints are h e d  and then to consider what points on the defined curve or 
surface could correspond to those footpoints. 

4.1.  Offset Curves 

Theorem 1 Let F(z,y,u,v) be the d-offset cume do C : f(u,v) = 0 defined by 
1-3. Supposex = (3 ,5 , i ,  i )  satisfies F(2) = 0. n e n ,  e i t h e r p  = ( i ,6 )  is a regular 
point of C and (3,@) is one of the two  offsets t o  C corresponding t o  p ,  o r  p is a 
singularpoint of C and (3,d) lies on the circle of radius d centered at (O,G). 

Moreover, the addition of the equation 

(aft' - l)(afv - 1) = 0 

to  the sys tem F removes all and only such extraneous solutions. 

Proof. 

In the system F, fix u = i and v = i, and consider F as a function of z and 
y. Then p = ( i ,  8 )  lies on the base curve, since f ( i ,  6) = 0. Also, if p is a regular 
point o f f ,  then a t  least one of f,, and fu is not zero. So F becomes the system 

( r - i ) 2 + ( y - i ) 2 - d 2 = 0  

-fu(z- 5)+ fu(y- 6)  = 0 

given implicitly, the tangents may be chosen as

tl = (-f,,'/z,O)

t2 =(I~,O,- fz)

where the subscripts denote partial differentiation. But for points on the intersection
fz n f the tangent vectors are not linearly independent, and this causes extraneous
solutions. They can be excluded by introducing an additional equation

u· (O,-fez'/,,) = °
which is not redundant at the regular points of fnfz. That is, to express perpen
dicularity, we include the three equations

u . (-f,,'/z,O) =0

u·(I%,O,-fz) =0

u· (O,-f%,/,,) = °
Then, at every regular point of f, at least two linearly independent tangent direc
tions have been included, so the normal is well-defined.

4. The Details

For each curve and surface discussed above, we prove what extraneous solutions
exist and how to eliminate them. The basic strategy in each proof is to assume that
the footpoints are fixed and then to consider what points on the defined curve or
surface could correspond to those footpoints.

4.1. Offset Curoes

Theorem 1 Let F(x,y,u,v) be the d-offset curve to C : f(u,v) =°defined by
1-3. Suppose x = (x,iI, il, v) satisfies F(x) = 0. Then, eitherp = (il, v) is a regular
point of C and (x, y) is one of the two offsets to C corresponding to p, or p IS a
singular point ofC and (x,iI) lies on the circle of radius d centered at (il,v).

Moreover, the addition of the equation

(afu - 1)(afv - 1) =°
to the system F removes all and only such extraneous solutions.

Proof.

In the system F, fix u = il and v = V, and consider F as a function of x and
y. Then p = (u,ii) lies on the base curve, since f(u,v) =0. Also, up is a regular
point of f, then at least one of fu and fv is not zero. So F becomes the system

(x - u)2 + (y - ii)2 - d2 = °
- fv(x - u) + fu(Y - v) = °



and neither equation is identically zero. By Bezout's theorem, there are exactly two 
solutions to this reduced system. 

If p is a singular point of C, then both fu = 0 and f, = 0, so the system 
degenerates to the single equation 

Thus p corresponds to all points on this circle, and therefore the points on the circle 
are extraneous solutions. 

We now add the equation 

to the system of equations. If (d ,6)  is a regular point, then for every solution 
(5, y, Q,G) of the old system, (S,j),ii, G, &) is a solution of the augmented system, 
where 6 = l / f u  or ti = l / f , .  Conversely, if ( 5 ,  y,O,i,&) solves the augmented 
system, then (5, y,ii, 6) solves the original system. Now, if (ii,ir) is a singular point, 
then f, = f, = 0, and hence the augmented system has no solution. U 

4.2. Offset Surfaces 

Theorem 2 Let F(z,y,z ,u,v,  w )  be the d-oflset surface to  S : f (u ,  v, w )  = 0 de- 
fined by 4-7. Suppose i = (f ,$,i,ii,G, w) satisfies F(x) = 0. Let p = (ii,G, w). 
Then one of the following holds: 

1. p is a regularpoint of the surface S and ( 3 , j ) , f )  is one of the two offsets to 
S a t p  

2. p is a singular point of S and ( 2 , 6 , i )  lies on the sphere of radius d centered 

at P 

9. p is a regular point at which the nonnal as given by F is not well-defined and 
(2 ,y l i )  lies on a circle of radius d centered at p in the plane with normal 
direction (0, 1,O). 

The addition of the equation 

to the system F removes all and only such eztraneow solutions as arise in case 2, 
while the addition of the equation 

removes those associated with case 3. 

and neither equation is identically zero. By Bezout's theorem, there are exactly two
solutions to this reduced system.

If p is a singular point of C, then both fu = 0 and f" = 0, so the system
degenera.tes to the single equa.tion

Thus p corresponds to all points on this circle, and therefore the points on the circle
are extraneous solutions.

We now add the equation

(afu - l)(af" - 1) = 0

to the system of equations. If (11, v) is a regular point, then for every solution
(i ,y, it, v) of the old system, (x, y, 11, v, &) is a solution of the augmented system,
where & = Ilfu or a = Ilf". Conversely, if (x,y,u,v,a) solves the augmented
system, then (x, y, u,v) solves the original system. Now, if (il, v) is a singular point,
then fu = f" =0, and hence the augmented system has no solution. U

4.2. Offset Surfaces

Theorem 2 Let F(x,y,z,u,v,w) be the d-offsetsurface to S : f(u,v,w) = 0 de
fined by 4-7. Suppose i = (i,y,z,u,v,w) satisfies F(i) = O. Let p = (il,iJ,w).
Then one of the following holds:

1. p is a regular point of the surface Sand (x, y, i) is one of the two offsets to
S at p

2. p is a singular point of Sand (x, fI, i) lies on the sphere of radius d centered
at p

3. p is a regular point at which the normal as given by F is not well-defined and
(x, ii, z) lies on a circle of radius d centered at p in the plane with normal
direction (0,1,0).

The addition of the equation

(afu - l)(af" - l)(afw - 1) = 0

to the system F removes all and only such extraneous solutions as arise in case 2,
while the addition of the equation

«(3f" - 1) = 0

removes those associated with case 3.



Proof. 

The proof for cases 1 and 2 and for the validity of the equation which removes 
the extraneous points which arise from case 2 is directly analogous to the proof for 
curves given above. 

For case 3, if the normal is not well-defined, then f, must be zero. Hence, the 
last two equations of F are multiples of each other, and therefore degenerate to one 
equation. Since p is a regular point, at least one of fu and f, is not zero, so the 
equations do not both vanish. Thus, considering F as a system only in (z, y,z), the 
remaining two equations are 

which clearly is the circle 

in the plane y = 8. 

Now, in order to remove these extraneous points, the points at which f ,  = 0 
must be removed, and only thcee pointrr. This can be done by the equation 

Another alternative for removing the solutions which arise from case 3 is to 
include the equation 

-fw(x - u) +fu(z- w )  = 0 

in the original system, which enaures that the normal is well-defined a t  all regular 
points. U 

4.9. Equal-Distance Curves 

In section 2.3, the equal-dirrtance curve between base curves f and g is defined 
as the intersection of d-offsets, where d is variable. By augmenting equations 8-13 
as in Theorem 1, extraneous solutions associated with singularities of f and g are 
immediately excluded. 

In order to classify the types of solutions of the resulting system, we show for 
which pairs of footpoints on f and g extraneous solutions exist. Moreover, we must 
prove that for a fixed footpoint on one curve, say f ,  there are only finitely many 
footpoints on g which correspond to a solution. We show this assuming that the 
base curves are algebraic. The nonalgebraic case will be discussed in section 6. 

Theorem 3 Let F(z, y,ul,vl,uz, v2,a,P,d) be the equal-distance curve between 
f(ul ,vl)  = 0 and g(uz,v2), where both f and g are algebraic, defined by 8-19 

Proof.

The proof for cases 1 and 2 and for the validity of the equation which removes
the extraneous points which arise from case 2 is directly analogous to the proof for
curves given above.

For case 3, if the normal is not well-defined, then I" must be zero. Hence, the
last two equations of F are multiples of each other, and therefore degenerate to one
equation. Since p is a regular point, at le~t one of lu and Iw is not zero, so the
equations do not both vanish. Thus, considering F as a system only in (z,y,z), the
remaining two equations are

(x - u)2 + (y - v)2 + (z - w)2 - d2=0

y=v

which clearly is the circle

in the plane y =V.

Now, in order to remove these extraneous points, the points at which I" = 0
must be removed, and only those points. This can be done by the equation

Another alternative for removing the solutions which arise from case 3 is to
include the equation

- Iw(x - u) + lu(z - w) =0

in the original system, which ensures that the normal is well-defined at all regular
points. U

4.3. Equal-Distance Curves

In section 2.3, the equal-distance curve between base curves I and g is defined
as the intersection of d-offsets, where d is variable. By augmenting equations 8-13
as in Theorem 1, extraneous solutions associated with singularities of I and g are
immediately excluded.

In order to classify the types of solutions of the resulting system, we show for
which pairs of footpoints on I and g extraneous solutions exist. Moreover, we must
prove that for a fixed footpoint on one curve, say I, there are only finitely many
footpoints on g which correspond to a solution. We show this assuming that the
base curves are algebraic. The nonalgebraic case will be discussed in section 6.

Theorem 3 Let F(X,y,Ul,vl,U2,v2,OI,j3,d) be the equal-distance curve between
I(Ul,vd = 0 and g(U2,V2), where both I and g are algebraic, defined by 8-13



augmented with 

Then edraneous solutions arise if and only iff and g meet tangentially, and the 
common normal is the extraneous component. These ez iraneow solutions can be 
eliminated by augmenting the sys tem with 

Proof. 

Since the system is augmented with 43 and 44, we only need to consider regular 
points of the base curves. Suppose that p.= (Gl, 61) is a regular point on f .  Then 
equations 9 and 11-13 together define the equal-distance curve C between p and 
g .  Since g is algebraic, C" is algebraic, and by Bezout9s theorem, the normal line 
to  f at p either intersects C' a t  a finite number of points or is a component of 
C'. The latter can occur only i f f  and g intersect tangentially a t  p. For all other 
nonsingular points on f ,  there are at  mcwt finitely many footpoints on g which can 
correspond to a solution of F. 

Now suppose that q = (42, h) is a footpoint on g which, with p on f ,  corre- 
sponds to a solution to F. Then, since both points are regular, their normals are 
well-defined and, if these normals are distinct, they can meet in at most one point. 
If the normals are identical and p # q ,  then the midpoint of pq is the only possible 
solution. However, if p = q and the normals coincide, then every point on the com- 
mon normal will satisfy the system, and the normal will be extraneous. Equation 
45 eliminates these extraneous solutions since it cannot be satisifed at tangential 
intersections o f f  and g .  U 

4.4. Equal-Distance Sugaces  

As in the case of equal-distance curves, equal-distance surfaces are defined as the 
intersection of d-offsets, with d variable. Using Theorem 2, we augment the system 
14-21 with equations which eliminate singular points on both base surfaces and 
with equations which ensure that the surface normals are well-defined at all regular 
points. Then the only possible degeneracies in the system arise from the interaction 
between the two subsystems defining the d-offsets of f and g.  

Theorem 4 Let F(z,y,z,ul,vl,wl,uz,vz,wz,u,P,d) be the equaGdistance surface 
between f(ul ,vl,  wl) = 0 and g(u2, vz, w2), where f and g are algebmic, defined by 
14-21 augmented with 

augmented with

(011" - 1)(OI/v - 1) =0

({Jg" - 1)({Jgv - 1) =0

(43)

(44)

Then extraneous solutions arise il and only il I and 9 meet tangentially, and the
common normal is the extraneous component. These extraneous solutions can be

.eliminated by augmenting the system with

Proof.

Since the system is augmented with 43 and 44, we only need to consider regular
points of the base curves. Suppose that p.= (Ut, iid is a regular point on I. Then
equations 9 and 11-13 together define the equal-distance curve c- between p and
g. Since 9 is algebraic, C" is algebraic, and by Bezout's theorem, the normal line
to I at p either intersects C· at a finite number of points or is a component of
C·. The latter can occur only if I and 9 intersect tangentially at p. For all other
nonsingular points on I, there are at mast finitely many footpoints on 9 which can
correspond to a solution of F.

Now suppose that q = (U2,~) is a footpoint on 9 which, with p on I, corre:.
sponds to a solution to F. Then, since both points are regular, their normals are
well-defined and, if these normals are distinct, they can meet in at most one point.
If the normals are identical and p =f; q, then the midpoint of pq is the only possible
solution. However, if p = q and the normals coincide, then every point on the com
mon normal will satisfy the system, and the normal will be extraneous. Equation
45 eliminates these extraneous solutions since it cannot be satisifed at tangential
intersections of I and g. U

4.4. Equal-Distance Surfaces

As in the case of equal-distance curves l equal-distance surfaces are defined as the
intersection of d-offsets, with d variable. Using Theorem 2, we augment the system
14-21 with equations which eliminate singular points on both base surfaces and
with equations which ensure that the surface normals are well-defined at all regular
points. Then the only possible degeneracies in the system arise from the interaction
between the two subsystems defining the d-offsets of I and g.

Theorem 4 LetF(x,y,z,Ut,Vl,Wl,U2,V2,w2,n,f3,d) be the equal-distance surface

between I(U}'V}'Wl) = 0 and g(U2,V2,W2), where I and 9 are algebmic, defined by
14-21 augmented with

(a/UI - 1)(a/v1 - 1)(OIlwl - 1) = 0

(f3gU2 - 1)(f3gv. - 1)(f3gw2 - 1) = 0

(46)

(47)



Then eztraneous solutjons arise i f  and only i f f  and g meet tangentially, and the 
common normal is extraneous. All such extraneous solutions can be eliminated by 
the addition of the equation 

where D is given by 

Proof. 

The proof is completely analogous to that for equal-distance curve3.U 

4.5. Constant-Radius Blending Surfaces 

Recall that for constant-radius blending surfaces, a point is extraneous if the 
offset point corresponding to the two footpoints is an extraneous solution of the 
offsets. We eliminate all such extraneous solutions by defining the blend in terms of 
offset surfaces with no extraneous solutions, as done in Theorem 2 above. A point 
is also extraneous if its corresponding footpoints correspond to an entire sphere of 
solutions. 

Theorem 5 Let F ( x ,  y , r ,  u , v ,  w ,  ul , vl , wl , cr ,P ,u2, vz , w2,7,6)  be the constant- 
radius blending surface of non-zero radiw between f ( u l ,  vl ,w l )  = 0 and g(uz ,  vz, w z )  = 
0 defined by 22-91 augmented with 

Let p = (til, 6,, wl) and q = (62, B ,  4) be footpoints corresponding to a solution to 
F ,  and m = (ir, 8,  w) be the corresponding point on the spine of the blend. Then m is 
unique, and an eztraneous sphere of solutions arises if  and only if N j ( p )  x Ng(q) = 
( O , O , O ) .  

The eztraneous soluiions can be eliminated by augmenting the system with 

( v ( f v 1  gw:, - f W l  qua) - l ) ( r l ( f w , g u ,  - fu,  gw,) - l ) ( r l ( f w ,  gu, - fu, gw,) - 1) = 0 (55) 

-fwl(:r: - uI) + fUl{z - wI) = °
-gW2{:r: - U2) + gU2{Z - W2) = 0

(48)

(49)

Then extraneous solutions arise if and only if f and g meet tangentially, and the
common normal is extraneous. All such extraneous solutions can be eliminated by
the addition of the equation

The proof is completely analogous to that for equal-distance curves.U

4.5. Constant-Radius Blending Surfaces

Recall that for constant-radius blending surfaces, a point is extraneous if the
offset point corresponding to the two footpoints is an extraneous solution of the
offsets. We eliminate all such extraneous solutions by defining the blend in terms of
offset surfaces with no extraneous solutions, as done in Theorem 2 above. A point
is also extraneous if its corresponding foot points correspond to an entire sphere of
solutions.

Theorem 5 Let F(:r:, y,z, u, v, W, UI ,Vl ,Wl ,0 ,{3 ,U2, V2 ,W2 ",6) be the constant
radius blending surface of non·zero radius between f( UI, VI, WI) =°and g(U2, V2, W2) =°defined by 22-31 augmented with

(oful - 1)(of1l1 - 1)(ofw l - 1) =°
({3flll - 1) =°

(-ygU2 - 1)(,g1l2 - 1)(,gw2 - 1) =°
(6g1l2 -1)=0

(51)

(52)

(53)

(54)

Let P = (UI' VI ,wd and q =(U2' v:1, tU2) be footpoints corresponding to a solution to
F, and m =(u, v, w) be the corresponding point on the spine of the blend. Then m is
unique, and an extraneous sphere of solutions arises if and only if NJ(p) x N g ( q) =
(0,0,0).

The extraneous solutions can be eliminated by augmenting the system with



Proof. 

By Theorem 2, the subsystem given by 22-25, 51, and 52 defines two unique 
offset points to p ,  and the subsystem given by 26-29,53, and 54 defines two unique 
offset points to q. Since for any blend of radius greater than zero there can be 
no solutions with p = q ,  the two pairs of points cannot be identical. Hence m is 
unique. 

The system is now reduced to 

which generates extraneous solutions if and only if 57 vanishes independently of x, 
y, and z .  This can only happen if and only if Nj(p) x N,(q) = (0,0,O). Adding 
equation 55 eliminates this possibility, since the equation has a solution just in case 
at least one component of the cross-product vector is non-zero. U 

4.6. Variable-Radius Blending Surfaces 

Since the variable-radius blend between f and g is defined in terms of the equal- 
distance surface between them, we can again immediately reduce the number of 
extraneous solutions by augmenting the system with the equations necessary to  
eliminate extraneous solutions in the equal-distance surface. Because we use Theo- 
rem 4 in the proof of this theorem, we again must assume that f and g are algebraic 
surfaces. 

Theorem 6 Let F(z ,  y,z, u, v ,  w,u l ,  vl , wl , a ,  uz , v2, w2, P , d l  y) be the variable- 
radius blending surface of non-zero radius between f (ul,  ul, wl) = 0 andg(u2, v2, ws) = 
0, where f and g are algebraic, defined by 32-42 augmented with 

where D is as in theorem 4. Let p = (GI ,  GI, wl) and q = (Gal &, @) be footpoints 
corresponding to a solution to  F, and m = (G,ir, ti) be the corresponding point on 
the spine of the blend. Then m is unique, and an eztmneous sphere of solutions 
arises if and only ifNh(m) x Nv(m) = (0,0,0). 

The extraneous solutions can be eliminated by augmenting the system with 

Proof.

By Theorem 2, the subsystem given by 22-25, 51, and 52 defines two unique
offset points to p, and the subsystem given by 26-29,53, and 54 defines two unique
offset points to q. Since for any blend of radius greater than zero there can be
no solutions with p =q, the two pairs of points cannot be identical. Hence m is
unique.

The system is now reduced to

(x - u)2 + (y - v)2 + (z - w)2 - d2=°
(x - u,y - v, z - w). (N/(p) x Ng(q» =°

(56)

(57)

which generates extraneous solutions if and only if 57 vanishes independently of x,
y, and z. This can only happen if and only if N/(p) x Ng(q) = (0,0,0). Adding
equation 55 eliminates this pOBBibility, since the equation has a solution just in case
at least one component of the cross-product vector is non-zero. U

4.6. Variable-Radius Blending Surfaces

Since the variable-radius blend between f and 9 is defined in terms of the equal
distance surface between them, we can again immediately reduce the number of
extraneous solutions by augmenting the system with the equations neceBBary to
eliminate extraneous solutions in the equal-distance surface. Because we use Theo
rem 4 in the proof of this theorem, we again must assume that f and 9 are algebraic
surfaces. •

Theorem 6 Let F(x,y,z,u,V,W,Ul ,VI ,WI ,a ,u2 ,v2 ,w2 ,/3 ,d ,,) be the variable

radius blending surface of non-zero radius between f(Ul' VI, WI) =°and g(U2, V2, W2) =
0, where f and 9 are algebraic, defined by 32-42 augmented with

-fWt(X-UI)+f"t(z-wt} =0 (58)

(afUt - l)(af"t - 1)(afWt - 1) = ° (59)

-gw~(x - U2) + g.,~(z - W2) = ° (60)

(/3g.,~ - 1)(/3g,,~ - 1)(/3gw~ - I) =° (61)

(((U2 - ut} - 1)(,(V2 - vd - 1)(,(w2 - wd -l)(,D - I) = ° (62)

where D is as in theorem 4. Let p = (Ul,VltWI) and q = (U2,~,W:!) befootpoints
corresponding to a solution to F, and m= (u,v,w) be the corresponding point on
the spine of the blend. Then m is unique, and an extraneous sphere of solutions
arises if and only if Nh(m) x Nv(m) =(0,0,0).

The extraneous solutions can be eliminated by augmenting the system with

(6T., - 1)(6T" - l)(hTw - I) =° (63)



Proof. 

By Theorem 4,  the subsystem given by 32-39 adjoined with 58-62 defines the 
equal-distance surface between f and g with no extraneous or spurious solutions 
admitted. Thus for any two footpoints there can be at most one solution to the 
subsystem, so, since p and q are footpoints corresponding to a solution to F, m is 
unique. 

The system is now reduced to 

which generates extraneous solutions if and only if 65 vanishes independently of I, 
y, and z .  This can happen if and only if T = Nh x N v  = (0 ,0 ,  O), and can be 
eliminated by adding equation 63 since this equation can only be satisfied when 
some component of T & non-zero. U 

5. Examples 

Ezample 1 

We compute the 1-offset of the equation x2 - y2 = 0, which has a singularity at 
the origin. The system of equations is 

Using Grijbner basis techniques, the variables u and v are eliminated, producing 
the equation 

which has as kxtraneous solution the circle x2 + y2 = 1. When the system is 
augmented with 

( -2ua - 1)(2va - 1)  = 0 

the extraneous component vanishes. Grobner basis elimination now yields 

Example 2 

We compute the equal-distance curve between a parabola and a line whch meet 
tangentially at  the origin. The system of equations is 

Proof.

By Theorem 4, the subsystem given by 32-39 adjoined with 58-62 defines the
equal-distance surface between f and g with no extraneous or spurious solutions
admitted. Thus for any two footpoints there can be at most one solution to the
subsystem, so, since p and q are footpoints corresponding to a solution to F, m is
unique.

The system is now reduced to

(64)

(65)

which generates extraneous solutions if and only if 65 vanishes independently of x,
y, and z. This can happen if and only if T = Nh X Ny = (0,0,0), and can be
eliminated by adding equation 63 since this equation can only be satisfied when
some component of T is non-zero. U

5. Examples

Example 1

We compute the l-offset of the equation x 2 - y2 =0, which has a singularity at
the origin. The system of equations is

u 2 _ v2 = 0

(x - U)2 + (y - v? - 1 = °
2v(x - u) + 2u(y - v) = °

Using Grobner basis techniques, the variables u and v are eliminated, producing
the equation

which has as ~xtraneous solution the circle x2 + y2 = 1. When the system is
augmented with

(-2uO! -1)(2vO! - 1) = 0

the extraneous component vanishes. Grobner basis elimination now yields

(x2 _ 2xy + y2 _ 2)(x2+ 2xy + y2 - 2) = 0

Example 2

We compute the equal-distance curve between a parabola and a line which meet
tangentially at the origin. The system of equations is

Ul - vi = 0



(X - ~ 1 ) '  + (y - vl)' - d2 = 0 

2v1(x - u1) + (y - v1) = 0 

u2 = 0 

(a - u2)' + (y-  v2)' - d2 = 0 

y - v z = o  

When the variables ul , vl, u2, v2, and d are eliminated from this systemof equations, 
the closed-form solution obtained is 

As expected, the normal line at the origin, y = 0, appears as an extraneous factor 
in the solution. When we augment the system with the equation 

the extraneous factor is eliminated. Elimination of ul ,  vl, ua, v2, d, and a using 
Grobner basis techniques now yields 

6. Conclusion 

The goal of this work is to clarify the relationship between conceptual geometric 
curve and surface operations on the one hand, and the translation of the operations 
into a system of nonlinear equations on the other. Approaching this goal requires 
giving an exact definition of the geometric intent of every curve and surface opera- 
tion, and we have done this indirectly through our definition of extraneous solution. 
That is, we have characterized what is not the geometric intent. 

All curve and surface operations we have considered require formalizing the min- 
imum distance of a point from a curve or surface. We have consistently used a local 
distance function, where p has minimal distance from f at  q on f if the line p,q is 
perpendicular to the tangent (plane) to f at  q. If a global distance function were 
used, inequalities and quantification would be necessary, and it would no longer be 
possible to express the surface operation equationally. 

In most applications, our definition of extraneous solution is intuitively correct. 
However, it is not wholly satisfactory in all situtaions: the translation into equa- 
tions does not require any assumptions about the base curves and surfaces other 
than that they must be once continuously differentiable. For offset curves and sur- 
faces, and for constant-radius blending surfaces which are based on offsets, this is 
sufficient. However, for equal-distance curves and surfacee, and for variable-radius 
blends which are based on equal-distance surfaces, we have imposed the additional 
requirement that the base curves and surfaces be algebraic (Theorems 3 ,4 ,  and 6). 

(x - uI)2 + (y - vI)2 - d2 = 0

2Vl(X - uI) + (y - vI) =0

U2 =0

(x - U2)2 + (y - V2)2 - d2 =0

Y- V2=0

When the variables til , Vl, tl2, V2, and d are eliminated from this system of equations,
the closed-form solution obtained is

As expected, the normal line at the origin, y = 0, appears as an extraneous factor
in the solution. When we augment the system with the equation

the extraneous factor is eliminated. Elimination of Ul, VI, U2, V2, d, and a using
Grobner basis techniques now yields

16y4 _ 32x2 y2 _ 40xy2 + y2 + 16x4 - 24x3 + 12x2 - 2x = 0

6. Conclusion

The goal of this work is to clarify the relationship between conceptual geometric
curve and surface operations on the one hand, and the translation of the operations
into a system of nonlinear equations on the other. Approaching this goal requires
giving an exact definition of the geometric intent of every curve and surface opera- .
tion, and we have done this indirectly through our definition of extraneous solution.
That is, we have characterized what is not the geometric intent.

All curve and surface operations we have considered require formalizing the min
imum distance of a point from a curve or surface. We have consistently used a local

. distance function, where p has minimal distance from f at q on f if the line p, q is
perpendicular to the tangent (plane) to f at q. If a global distance function were
used, inequalities and quantification would be necessary, and it would no longer be
possible to express the surface operation equationally.

In most applications, our definition of extraneous solution is intuitively correct.
However, it is not wholly satisfactory in all situtaions: the translation into equa
tions does not require any assumptions about the base curves and surfaces other
than that they must be once continuously differentiable. For offset curves and sur
faces, and for constant-radius blending surfaces which are based on offsets, this is
sufficient. However, for equal-distance curves and surfaces, and for variable-radius
blends which are based on equal-distance surfaces, we have imposed the additional
requirement that the base curves and surfaces be algebraic (Theorems 3, 4, and 6).



Fig. 2. p corresponds to W t e l y  many points on the equal-distance curve between f and g, 
with footpoints qk. 

This requirement is necessary because for nonalgebraic baee curves and surfaces, 
there may be a point on one base component which corresponds to infinitely many 
geometrically valid solutions. According to our definition of extraneous, all of those 
solutions would be invalid. 

For example, consider the equal-distance curve between f : cos(z) - x - y - 1 = 0 
and g: z - 1 = 0. At values of z where cos(x) = 0, f has the solution (z, -z - 1). 
The normal to f is (- sin(z) - 1, -I), which is a vertical line at 

So at  these values of x, the point (x, 0) is at distance x + 1 from both f and g. 
According to our definition, all of these solutions are extraneous, because they all 
correspond to the same point p = (-1,0) on g. However, because we use a local 
distance function, they are geometrically meaningful. See Figure 2. 

Clearly, our techniques for eliminating extraneous solutions apply more broadly 
than to algebraic base curves and surfaces alone. Thus far we have not found a 
concise definition of extraneous solution that subsumes the definition given here 
and extends Theorems 3 ,4  and 6 to  the nonalgebraic case at  the same time. With 
such a definition, our technique for faithfully representing these curve and surface 
operations achieves full generality. 
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Fig. 2. P corresponds to infinitely many points on the equal-distance curve between f and g,
with footpoints qA;.

This requirement is necessary because for nonalgebraic base curves and surfaces,
there may be a point on one base component which corresponds to infinitely many
geometrically valid solutions. According to our definition of extraneous, all of those
solutions would be invalid.

For example, consider the equal-distance curve between f: cos(x) - x - y - 1 =0
and g: x-I = O. At values of x where cos(x) = 0, f has the solution (x, -x - 1).
The normal to f is (-sin(x) - 1,-1), which is a vertical line at

-1r 31r 71r
x=""2'2'2""

So at these values of x, the point (x,O) is at distance x + 1 from both f and g.

According to our definition, all of these solutions are extraneous, because they all
correspond to the same point p = (-1,0) on g. However, because we use a local
distance function, they are geometrically meaningful. See Figure 2.

Clearly, our techniques for eliminating extraneous solutions apply more broadly
than to algebraic base curves and surfaces alone. Thus far we have not found a
concise definition of extraneous solution that subsumes the definition given here
and extends Theorems 3, 4 and 6 to the nonalgebraic case at the same time. With
such a definition, our technique for faithfully representing these curve and surface
operations achieves full generality.
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