
Simulations are essential tools in many
fields of science and engineering. Re-
searchers use them to crash-test automo-
biles before building them, to study the

interaction between a hip implant and the femur,
to evaluate and renovate medieval bridges, to as-
sess the effectiveness of electronic circuit pack-
aging, and to build virtual wind tunnels. In par-
ticular, finite-element analysis (FEA) plays a
prominent role in engineering. FEA systems
compute a variety of physical parameters over
the simulation’s time span, such as position, ve-
locity, acceleration, stress, and pressure. The vi-
sual presentation of the results then goes to
generic postprocessors or for studying specific
scientific visualization contexts.

Three-dimensional computer graphics has ad-
vanced tremendously, driven mostly by the popu-
larity of entertainment applications. Consumer-
level-priced personal computers with add-in
graphics cards can produce high-quality images of
complex 3D scenes at interactive rates and run so-
phisticated animation software systems that pro-

vide (offline) video sequences that closely approach
photorealism. Because of real-world commercial
applications, most animation systems focus on min-
imizing the animation’s production effort and max-
imizing its entertainment value—essentially, ren-
dering quality and expressivity, not the laws of
physics. Put succinctly, if it looks good, it is good.

Our team’s goal was to produce a visualization of
the September 11th attack on the Pentagon that
combined commercial FEA codes and animation.
The project had two distinct parts. During the first
phase, we designed, tested, and ran at full scale the
FEA simulation of the aircraft hitting the building.
For this, we chose LS-DYNA (www.lstc.com), a
commercial FEA system often used in crashwor-
thiness assessment simulations. Another choice we
looked at was MSC-DYTRAN (www.mscsoftware.
com). Both codes implement explicit time-march-
ing schemes, but LS-DYNA can handle geometric
and material nonlinearities as well as fluid–struc-
ture interaction.1 Implicit time-integration
schemes would be inappropriate for impact prob-
lems that involve high-frequency response.2 In the
second phase, our efforts focused on producing a
high-quality visualization of the massive data from
the simulation. To do this, we created a scalable
link between the FEA system and a commercial an-
imation system called 3ds max (www.discreet.
com/products/3dsmax/). You can use the link to
create animations with physical fidelity regardless

52 COMPUTING IN SCIENCE & ENGINEERING

MODELING, SIMULATION,
AND VISUALIZATION:
THE PENTAGON ON SEPTEMBER 11TH

CHRIS HOFFMANN, VOICU POPESCU, SAMI KILIC,
AND METE SOZEN

Purdue University

1521-9615/04/$20.00 © 2004 IEEE
Copublished by the IEEE CS and the AIP

C O M P U T A T I O N A L
M O D E L I N G

Researchers used a custom importer to simplify and load simulation data from the

September 11th Pentagon attack into a commercial animation system. The resulting high-

quality impact visualization combines state-of-the-art graphics with a state-of-the-art

engineering simulation.

JANUARY/FEBRUARY 2004 53

of the scientific or engineering domain.
Ironically, the model’s geometric data came from

a 3ds max model that we hand-imported into the
FEA analysis. Based on our experience, we have
several ideas about how to make this link at least
semiautomatic and what tools other researchers can
use to simplify this process, which is the most time-
consuming part of the simulation and analysis step.
Our work goes a long way toward accelerating the
overall cycle of modeling, simulation, animation,
and model refinement, which is what we describe
in this article.

Purpose
High-quality visualization of scientifically accu-
rate simulation data has at least three important
advantages:

• It can effectively communicate results and in-
sights to the public at large.

• It has the ability to build a case for a project’s
merits, especially for large-scale projects that
require grass-roots support.

• It offers better collaboration among members
of interdisciplinary teams.

A high-quality visualization of a simulation’s re-
sults requires state-of-the-art rendering techniques.
A second requirement is that the simulation be
placed in the context of the immediate surrounding
scene. For this, we must model and render the scene
along with the simulation results. Such visualization
makes the simulation’s results and conclusions di-
rectly accessible to people outside the simulation
community without sacrificing scientific accuracy.

A good visualization ultimately leads to im-
provements on the simulation itself: high-quality
images quickly reveal discrepancies with observed
experimental data. Scientific simulations will soon
be powerful tools routinely used in a variety of
fields including national security, emergency man-
agement, forensic science, and the media.

A Step-by-Step Process
In previous research, M. Pauline Baker and her col-
leagues described the simulation of a bomb blast
and its impact on a neighboring building.3 The sce-
nario they investigated matched the 1996 attack on
the Khobar Towers in Saudi Arabia. The authors
first computed the blast propagation using CTH
shock-physics code4 at the US Army’s research lab
in Vicksburg (see www.hpcmo.hpc.mil/Ttdocs/
UGC/UGC98/papers/3b_chal/). They then used
the results of the CTH calculation as initial pres-
sure loadings on the buildings; they next used

Dyna3D to model the building’s structural response
to the blast.5 The authors visualized the results in
the Dyna3D postprocessor and the Visualization
Toolkit (see http://public.kitware.com/VTK), us-
ing standard slicing and isosurfacing visualization
techniques. They reported the difficulty of visual-
izing large data sets, and solved the problem by us-
ing reduced resolution, decimation, and extraction
of smaller regions of interest. They concluded by
mentioning they would attempt to enhance the vi-
sualization’s quality by using photographs.

A considerable body of literature in nuclear en-
gineering is dedicated to simulating the crash of an
aircraft into a concrete structure. In fact, provisions
for aircraft impact on reinforced concrete struc-
tures are incorporated into the civil engineering
codes used in nuclear-containment structure de-
sign. Takahiro Sugano and his colleagues con-
ducted a full-scale test to measure the impact that
fighter aircraft could exert on a reinforced concrete
target slab.6 The study provided important infor-
mation on the aircraft’s deformation and disinte-
gration, and gave experimental evidence that the
airframe and the aircraft’s skin alone did not likely
cause major damage on reinforced concrete targets.

Our first step in simulating the Pentagon attack
was to generate finite-element meshes suitable for
FEA. To keep the scene complexity within man-
ageable limits, we meshed only the most relevant
components of the aircraft and the building. Then,
we tuned the material models during test simula-
tions to achieve correct load-deflection behavior.
Finally, we ran the FEA code on full-resolution
meshes to simulate the first 250 milliseconds of the
impact over 50 recorded states.

The visualization part of the project began with
modeling the Pentagon from architectural blue-
prints via AutoCAD. We enhanced the geometric
model of the building and its surroundings with tex-
tures projected from high-resolution satellite and
aerial imagery by using a custom tool. We obtained
the 3ds max aircraft model we used for visualizing
the approach from a 3D gaming company (Amaz-
ing 3D graphics, www.amazing3d.com). A custom
plug-in simplified, converted, and imported into the
animation system the 3.5 Gbytes of state data that
described the mesh deformations. The system then
aligned the imported meshes with the surrounding
scene and enhanced them by rendering material
properties. Finally, we rendered the integrated
scene to produce the desired animations. Figure 1
shows the simulation results at the same time step
from nearly identical views, once using our system
that coupled the simulation with 3ds max, and once
with the LS-DYNA software’s postprocessor.

54 COMPUTING IN SCIENCE & ENGINEERING

To contextualize the simulation, we next had to
model and render the Pentagon’s surroundings.
Research in image-based rendering (IBR) produced
several successful approaches for rendering com-
plex, large-scale, natural scenes. The QuicktimeVR
system, for example, models the scene by acquiring
a set of overlapping same-center-of-projection
photographs that it stitches together to form
panoramas.7 During rendering, the desired view is
confined to the centers of these panoramas. We had
to allow for unrestrained camera motion, so we dis-
missed this approach.

IBR by warping (IBRW) relies on images en-
hanced with per-pixel depth.8 The depth and color
samples are 3D warped (reprojected) to create
novel views. Airborne LIDAR (which stands for
LIght Detection And Ranging) sensors can provide

the depth data at appropriate resolution and preci-
sion. No depth maps of the Pentagon scene were
available for our project, so we couldn’t use IBRW.
In light-field rendering, the scene is modeled with
a database containing all the rays potentially
needed during rendering. However, this method
does not scale well: the number of images that must
be acquired as well as the ray database grow to im-
practical sizes for large-scale scenes.

An approach frequently used for modeling
large urban scenes combines images with coarse
geometry into a hybrid representation. A repre-
sentative example is the Façade system,9 which
maps photographs onto buildings modeled with
simple primitive shapes. Paul Debevec and his
colleagues used this system to model and realis-
tically render a university campus environment.9

The Pentagon building’s relatively simple geom-
etry and the availability of photographs of the
area motivated us to choose such a hybrid geom-
etry–image approach.

Large-Scale Simulation
LS-DYNA is a nonlinear finite-element code that
can model fluid-structure interaction by using a
Lagrangian mesh for solid elements and an Euler-
ian mesh for fluids.

The fluid’s motion is based on the Navier-Stokes
equations from computational fluid dynamics; ad-
vection transfers the fluid mass among Eulerian
cells. LS-DYNA reports each cell’s fractional occu-
pancy as the solution progresses from one time step
to the next. Figure 2 shows the part of the Eulerian
mesh consisting of nonempty cells at the initial state.

When the different parts of the model that ap-
proach each other come into contact, time-step size
scales down further to capture more accurately the
nonlinear behavior of the large deformations and
material failure. Time-step reduction on contact sig-
nificantly influences the computation’s running time.

In our overall analysis, we spent the most time
on mesh generation and model assembly. The sim-
ulation for the largest mesh size took four days of
runtime—mainly, because we had to use a very
short time step to correctly capture the large de-
formations and to allow coupling of the Eulerian
and Lagrangian meshes.

Two basic notions validate our simulation’s results.
The first is qualitative and based on a visual inspec-
tion of the behavior of the model’s individual com-
ponents. The fuselage’s tail shell buckling in the
study (see Figure 1a) is a typical example of visual in-
spection. Similarly, the fluid dispersion that occurs
after the wings hit the building’s columns provides
an initial assessment of the results’ admissibility. The

Figure 1. Visualization of the simulation. (a) The visualization our system
produced, and (b) a similar view produced with the postprocessor.

(a)

(b)

JANUARY/FEBRUARY 2004 55

fluid properties used in the simulation represent the
typical kerosene jet fuel contained in wing tanks.

The second notion is based on quantitative eval-
uation of the model components’ response against
benchmark case studies. For the full simulation of
the Pentagon with spirally reinforced concrete
columns, we created a case study for investigating
the behavior of a single column impacted by a block
of fluid. We calibrated the constitutive concrete ma-
terial model such that the column’s response agreed
with the results available from experimental studies
and well-established hand-calculation models.

LS-DYNA’s standard concrete models were not
sufficiently accurate for our purpose, so we adjusted
the nonlinear material model for concrete and se-
lected a suitable erosion criterion. Without going
into too much detail, we used test cases of single
concrete pillars impacted with a block of fluid, as
shown in Figure 3, and adjusted the model para-
meters accordingly, drawing on our previous expe-
rience with concrete behavior.10

We then adjusted the fluid properties to repre-
sent water. The main physical properties of the
fluid used in the Eulerian approach are density and
viscosity. An equation of state defines the pres-
sure–volume relationship for the compressible fluid
and its initial thermodynamic conditions.

The full simulation consisted of approximately 1
million nodes and took 68 hours of runtime on an
IBM Regatta system for a simulation time of a
quarter of a second. We modeled the reinforced
concrete columns in the impact area’s vicinity with
higher fidelity than the columns further away; the
Eulerian mesh for the liquid was finer than in ear-
lier simulation runs we made.

Figure 2. An Eulerian mesh defines the liquid fuel in the aircraft’s wing and central tanks. The figure shows the cells occupied
with fuel at the initial state for (a) the overall view and (b) a more detailed view. The figure shows only the cells that have fuel;
in other words, all cells shown are nonempty.

(a) (b)

Figure 3. Finite-element mesh of a concrete column. (a) The
confined concrete core (pink), rebars (brown), outer concrete fluff
(light blue), and anchor (red). (b) Erosion of elements and column
destruction caused by an impacting block of water.

(a)

(b)

56 COMPUTING IN SCIENCE & ENGINEERING

Mesh Generation
For the simulation, we generated a mesh via a set
of custom programs. This choice reflected our dif-
ficulty in obtaining meshing tools that could gen-
erate hexahedral meshes for complex geometries.
Our program tools are specific to the type of object
generated—that is, separate tools generated indi-
vidual column, wing, and aircraft-body meshes.
This choice made meshing time-consuming, but
we felt from the outset that mesh densities should
be parametrically adjustable, and we wanted full
control over how to do that.

With full control, we could experiment with dif-
ferent types of meshes and different densities of
each mesh. For instance, instead of eroding shell
elements with a maximum strain imposed, we
could replicate the nodes and assign a lower strain-
failure limit to coincident nodes. With this alter-
native, individual shell elements simply separated
rather than entire shell elements eroding, so the
system’s mass remained constant.

We obtained the aircraft’s mesh from a 3ds max
model (see Figure 4). The model simplified the
body to an ovoid cylinder fitted to two swept
cones; the wings were composed from four hexa-
hedral sections. We added in the main cabin’s floor
as well as stringers and ribs. We derived the geom-

etry from a small set of hard points whose coordi-
nates we read from the 3ds max model.

Typically, finite-element meshes simplify the
geometric model by eliminating small details. This
can be justified by the insignificant contribution
such details make to overall structural behavior and
integrity. In this spirit, we eliminated the rounding
of the leading wing edges.

Surrounding Scene
Modeling the surrounding scene has forensic rele-
vance because it enables a virtual reenactment of
the events, which is important for corroborating
eyewitness accounts and interpreting the low-res-
olution, slow-shutter video footage of whatever
nearby surveillance cameras recorded. Modeling
the surrounding scene also places the simulation

Figure 5. Camera matching. (a) The initial reference photograph, (b)
the pose used to start the camera-matching search, and (c) the
matching pose found by the search.

Figure 4. A 3ds max model. (a) The airplane model, and (b) the constructed finite-element mesh.

(a) (b)

(a)

(c)

(b)

JANUARY/FEBRUARY 2004 57

results in context to make them easily understood
by someone outside the investigation. The physi-
cally accurate, visually realistic animations we pro-
duced clearly document the destructive events.

As described earlier, we modeled the surrounding
scene by using a hybrid geometry–image approach.
From the architectural blueprints, we produced an
AutoCAD model of the building and modeled the
damage in the collapsed area by hand to match avail-
able photographs; we modeled the region surround-
ing the Pentagon as flat terrain. We enhanced the
geometric models’ color by using high-resolution
satellite and aerial imagery (see www.spaceimaging.
com/gallery/9-11/default.htm).11

Projective texture mapping colors the geometric
primitives (or triangles) via photographs;12 it’s con-
ceptually equivalent to transforming the camera
into a projector. The rays emanating from the cam-
era deposit pixel colors on the model’s surface to
automatically create the individual texture maps
used during rendering. First, we must establish the
position and orientation of the camera with which
we acquired each of the reference photographs (see
Figure 5). Second, we create from the reference
photograph texture maps that uniformly sample
each triangle. Note that we cannot use the refer-
ence photograph directly as a texture by projecting
the vertices back in the camera view; we must elim-
inate the reference photograph’s perspective dis-
tortion first.

Not having the camera at hand for intrinsic pa-
rameter calibration complicated camera matching
for our study, so in addition to the camera pose’s six
extrinsic parameters, we also calibrated for the
camera’s focal length. We searched for the seven
parameters using the downhill simplex method and
a manually established initial guess. On a 3,000
× 2,000-pixel image, with 10 correspondences, the
matching error was 3.5 pixels on average.

Once we knew the view, we could build the indi-
vidual texture maps by first finding triangles visible
in the photograph, and then for each visible trian-
gle, allocating texture and setting each visible texel
(a texture-map pixel) by projecting it in the refer-
ence photograph.

We collected visible triangles by rendering
within an item buffer that stores IDs and depth.
We determined the texture resolution by using the
particular triangle’s photograph area; the texture is
defined in model space, so the texels uniformly
sample the triangle, which removes the reference
photograph’s perspective projection. We deter-
mined the visible texels by using the item buffer.
We textured partially visible triangles and invisible
triangles from other photographs.

We sprayed the building and ground plane
model, which consisted of 25,000 triangles, with a
3,000 × 2,000-pixel photograph. The resulting tex-
ture-mapped model produced realistic visualiza-
tions of the Pentagon scene. Figure 6 shows an im-
age rendered from a considerably different view
than that of the reference photograph in Figure 5a.
The texture files’ total disk size was 160 Mbytes;
the difference when compared to the reference
photograph’s 24 Mbytes was due to

• texels outside the triangle,
• texels corresponding to the hidden part of the

triangle,
• thin triangles that have a larger texture than

their area, and

Figure 6. Novel view of the texture-sprayed model after rendering.

Figure 7. Wire-frame visualization of the simulation results.

58 COMPUTING IN SCIENCE & ENGINEERING

• our simple merging of individual texture im-
ages, which vertically collates 10 images to re-
duce the number of files.

We rendered the scene offline so the large total
texture size is not a concern. For real-time render-
ing, though, we’d need to reduce the texture size. A
simple greedy algorithm for packing the textures in-
volving shifts and rotations would likely yield good
results. The rotation could be propagated upstream
to the spraying to avoid additional resampling.

Integration
3ds max directly imports simulation result files via
a custom plug-in (see Figure 7). The 954,000 nodes
of the FEM define the 355,000 hexahedral (solid)
elements used to model the column core and the

fluff, the 438,000 hexahedral elements for the liq-
uid elements, the 15,000 quadrilateral (shell) ele-
ments used to define the fuselage and aircraft floor,
and the 61,000 segment (beam) elements used to
define the aircraft’s ribs and stringers and the
columns’ rebars. The importer subdivides the sim-
ulation scene into objects according to material to
facilitate assigning rendering materials.

Solid Objects
Ignoring the liquid for now, the 12, two, and one
triangles per solid, shell, and beam elements, re-
spectively, imply approximately 4.3 million trian-
gles for the solid materials in the simulation scene.
Eliminating internal faces—which are those shared
by two hexahedral elements and that are irrelevant
during rendering—reduces this number. Because
elements erode, initially internal faces become vis-
ible at the fracture area. To account for this, we
subdivided an object according to simulation state;
for example, subobject k groups all the elements
that erode at state k. We discarded each subobject’s
internal faces in linear time using hashing; this re-
duced the number of triangles to 1.3 million, which
the animation system easily could handle.

Importing the mesh deformation into the anima-
tion system proved to be a serious bottleneck. The
FEA code saves mesh deformations as node posi-
tions at every state. The animation system supports
per-vertex animation via controllers that move a
vertex on a linear trajectory. Because node move-
ment is not linear in general, we could have created
a controller for each of the 50 positions of each of
the remaining 700,000 nodes to interpolate linearly
between consecutive node positions. However, do-
ing so took days of computing time, and the result-
ing scene file was unusable. The practical limit on
the number of controllers is about 1 million.

We can reduce the number of animation con-
trollers in two ways. First, we could make the im-
porter not animate nodes with a total movement
(sum of state-to-state movement) below a user-
chosen threshold (typical value: 1 centimeter).
Second, we could simplify each node’s trajectories
independently by eliminating (not creating) con-
trollers for the nearly linear parts. After simplifi-
cation, 1.8 million controllers remain. We dis-
tributed the simulation scene over three files, each
covering one third of the simulation. Materials
and cameras can, of course, easily be shared
among several files. Importing the solid objects
took two hours total, out of which we needed one
hour for the third part of the simulation. Once the
solid objects loaded, the animator assigned them
standard 3ds max materials.

Figure 8. Two views of liquid–column impact visualization.

JANUARY/FEBRUARY 2004 59

Liquid Objects
The liquid data saved at every state contains the
Eulerian mesh’s node position and the fractional
occupancy values at that state. Volume-rendering
techniques directly rendered the liquid from the
occupancy data. We chose to build a surface-
boundary representation first to take advantage of
the animation system’s rendering capabilities. For
every state, the importer selects the Eulerian mesh
elements that have a liquid occupancy above a cer-
tain threshold (typically 25 percent). We eliminated
the internal faces similarly to the solid-object case.
Once the liquid was imported, the animator used
3ds max tools, including mesh modifiers and com-
plex ray-traceable materials, to produce compelling
visualizations of the liquid. In Figure 8, refraction,
surface reflections, attenuation, and variable opac-
ity show the realism. Rendering at VGA resolution
took approximately five minutes.

As in the case of solid objects, animating the liq-
uid was challenging. We had two fundamental ap-
proaches: one, to consider the liquid to be a com-
plex object that moves and deforms over the
simulation time, or two, to frequently recompute
the liquid object from the occupancy data, possibly
at every animation frame.

The first approach is in the spirit of animation sys-
tems in which the same geometric entity suffers a se-
ries of transformations over the animation’s time
span. The geometric entity’s state is known at the
simulation states; we can compute it by threshold-
ing or isosurfacing the occupancy data. To define a
morph that produces the animation frames in be-
tween the states, however, we must first establish
correspondences. This was challenging because the
liquid can change considerably from one state to an-
other; it implies that different numbers of vertices
exist along with different local topologies (such as
drops or liquid chunks separating and reuniting). We
have attempted to implement this approach using
the Eulerian mesh as a link between states. Because
the occupancy values vary considerably from one
frame to another, we generated many small liquid
objects, which led to several position controllers.

The approach of defining the liquid with inde-
pendent objects corresponding to snapshots along
the simulation timeline proved to be more practical.
Visibility controllers automatically generated by the
plug-in define each object’s appropriate life span. To
smooth the transition, the objects were faded in and
out at a negligible cost of four controllers per liquid
object. Currently, the liquid is modeled with one ob-
ject per state, with the 50 liquid objects totaling 1.5
million triangles. By interpolating the occupancy
data, we could generate one snapshot for every ani-

mation step. When playing back the 50 states over
30 seconds at 30 Hz, though, we generated 900 liq-
uid objects, which exceeds a practical geometry bud-
get. We are investigating how to generate the liquid
objects during rendering.

Our team’s civil engineering re-
searchers now regularly use the plug-
in importer and 3ds max. Scientific
simulation researchers and commer-

cial-simulation-systems developers have shown
great interest in the quality of the visualizations,
and we have initiated several collaborations.

However, we must develop further the link be-
tween simulation and animation. The current bot-
tleneck is the animation of the deforming meshes.
Paradoxically, the animation system performs bet-
ter if the animation is specified by geometry repli-
cation. We will continue to investigate this prob-
lem. Another direction is to extend the importer to
create dust, smoke, and fire automatically. For ex-
ample, when a concrete element erodes, it should
be turned into fine debris or dust animated accord-
ing to the momentum the element had before erod-
ing. This simulation-driven reproduction of low-
visibility conditions would be valuable in virtual
training. Another direction for future work is to ex-
tend our current system to include classic visualiza-
tion techniques such as isosurface enhancements.

Based on our experience with mesh generation,
we have begun to devise an interactive script lan-
guage by which to specify hexahedral meshes. The
language can partially automate the meshing of
complex geometries. We get scalability by using file
operations when necessary, so the FEA model
comes directly from the meshing operations. We
could extend this concept to a more-automated
mesh approach that closes the loop between mesh-
ing and model acquisition/inspection in 3ds max.
Namely, we envision a set of plug-ins that lets a
user select a component geometric structure in 3ds
max (or designate a part of a model by drawing on
it) and then generates the corresponding script for
this structure. The resulting mesh could then be
re-imported into 3ds max.

Acknowledgments
We thank Scott Meador for his help with 3ds max and

Jim Bottum and Gary Bertoline for providing access to

supercomputing facilities here and elsewhere in the US.

William Whitson helped with the supercomputer runs;

Hendry Lim and Mihai Mudure implemented texture

spraying; Mary Moyars-Johnson and Emil Venere

publicized this work; Amit Chourasia modeled the

60 COMPUTING IN SCIENCE & ENGINEERING

Pentagon building; Jason Doty produced the first video

illustration of our project; and Raj Arangarasan helped

with an earlier implementation. Information Technology

at Purdue at Computer Science Purdue, the US National

Science Foundation, US Army Research Office, and

DARPA supported this work.

References
1. M. Souli, “ALE and Fluid-Structure Interaction Capabilities in LS-

DYNA,” Proc. 6th Int’l LS-DYNA Users Conf. (Simulation 2000),
Livermore Software Technology Corp., 2000, pp. 15–37.

2. K.J. Bathe, Finite Element Procedures, 2nd ed., 1995, Prentice Hall,
p. 1037.

3. M.P. Baker, D. Bock, and R. Heiland, Visualization of Damaged
Structures, Nat’l Ctr. for Supercomputing Applications, Univ. of
Illinois, 1998; http://archive.ncsa.uiuc.edu/Vis/Publications/
damage.html.

4. J.M. McGlaun, S.L. Thompson, and M.G. Elrick, “CTH: A Three-
Dimensional Shock Wave Physics Code,” Int’l J. Impact Eng., vol.
10, 1990, pp. 351–360.

5. J.O. Hallquist and D.J. Benson, Dyna3D User’s Manual (Nonlinear
Dynamic Analysis of Structures in Three Dimensions), tech. report
#UCID-19592-revision-3, Lawrence Livermore Nat’l Laboratory,
1987.

6. T. Sugano et al., “Full-Scale Aircraft Impact Test for Evaluation of
Impact Force,” Nuclear Eng. and Design, vol. 140, 1993, pp.
373–385.

7. S. Chen, “QuicktimeVR—An Image-Based Approach to Virtual
Environment Navigation,” Proc. SIGGRAPH ’95, ACM Press, 1995,
pp. 29–38.

8. L. McMillan and G. Bishop, “Plenoptic Modeling: An Image-
Based Rendering System,” Proc. SIGGRAPH ’95, ACM Press, 1995,
pp. 39–46.

9. P.E. Debevec, C.J. Taylor, and J. Malik, “Modeling and Render-
ing Architecture from Photographs,” Proc. SIGGRAPH’96, ACM
Press, 1996, pp. 11–20.

10. S. A. Kilic and M.A. Sozen, “Evaluation of Effect of August 17,
1999, Marmara Earthquake on Two Tall Reinforced Concrete
Chimneys,” Am. Concrete Inst. Structural J., vol. 100, no. 3, 2003,
pp. 357–364.

11. Pentagon Building Performance Report, Am. Soc. Civil Engineers,
2003.

12. M. Segal et al., “Fast Shadows and Lighting Effects Using Texture
Mapping,” Computer Graphics, vol. 26, no. 2, 1992, pp. 249–252.

Chris Hoffmann is a professor of computer science at
Purdue University. His interests are in geometric com-
putations, its applications, and visualization. He re-
ceived his PhD from the University of Wisconsin, Madi-
son. He also serves on the editorial boards of four
scholarly journals. Contact him at cmh@cs.
purdue.edu; www.cs.purdue.edu/people/cmh.

Voicu Popescu is an assistant professor of computer
science at Purdue University. His interests are in image-
based rendering, automated modeling, rendering,
computer graphics, and architectures. He received his
PhD from the University of North Carolina, Chapel Hill.
Contact him at popescu@cs.purdue.edu.

Sami Kilic is a senior research scientist at the Comput-
ing Research Institute of Purdue University. His research
interests are in structural dynamics and seismic response
of reinforced concrete structures. He received a PhD
from Stanford University and an MS from the University
of California, Berkeley. He is a member of the IEEE, the
American Society of Civil Engineers, the American Con-
crete Institute, and the Earthquake Engineering Research
Institute. Contact him at skilic@purdue.edu.

Mete Sozen is the Kettelhut Distinguished Professor of
Structural Engineering. His research interests are in the
response of reinforced/prestressed concrete structures
to static and dynamic loads. He received his PhD in civil
engineering from the University of Illinois-Urbana. He
is a member of the American Society of Civil Engineers,
the Earthquake Engineering Research Institute, and is
an honorary member of the American Concrete Insti-
tute. Contact him at sozen@purdue.edu.

Architectures
Support Services

Algorithm/Protocol Design and Analysis
Mobile Environment

Mobile Communication Systems
Applications

Emerging Technologies

IEEE Transactions on
Mobile Computing

revolutionary new quarterly journal that seeks out and delivers the very
best peer-reviewed research results on mobility of users, systems, data,
computing information organization and access, services, management,

and applications. IEEE Transactions on Mobile Computing gives you
remarkable breadth and depth of coverage …

A
To subscribe:

http://
computer.org/tmc

or call
USA and CANADA:

+1 800 678 4333
WORLDWIDE:

+1 732 981 0060

Subscribe
NOW!

