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A Road Map To Solid Modeling 
Christoph M. Hoffmann and Jaroslaw R. Rossignac 

Abstract-The objective of solid modeling is to represent, manipulate, and reason about; the three-dimensional shape of solid 
physical objects, by computer. Such representations should be unambiguous. 

Solid modeling is an application-oriented field that began in earnest in the early 1970s. [46]. Major application areas include 
design, manufacturing, computer vision, graphics, and virtual reality. Technically, the field draws on diverse sources including 
numerical analysis, symbolic algebraic computation, approximation theory, applied mathematics, point set topology, algebraic 
geometry, computational geometry, and data bases. Monographs and major surveys of solid modeling include [13], [19], [27], [37], 
WI, [451, [461. 

In this road map article, we begin with some mathematical foundations of the field. We review next the major representation 
schemata of solids. Then, major layers of abstraction in a typical solid modeling system are characterized: The lowest level of 
abstraction comprises a substratum of basic service algorithms. At an intermediate level of abstraction there are algorithms for 
larger, more conceptual operations. Finally, a yet higher level of abstraction presents to the user a functional view that is typically 
targeted towards solid design. Here, we will look at some applications and at user interaction concepts. 

The classical design paradigms of Solid Modeling concentrated on obtaining one specific final shape. Those paradigms are 
becoming supplanted by feature-based, constraint-based design paradigms that are oriented more toward the design process and 
define classes of shape instances. These new paradigms venture into territory that has yet to be explored systematically. 
Concurrent with this paradigm shift, there is also a shift in the system architecture towards modularized confederatiogs of plug- 
compatible functional components. We explore these trends lightly in the last section. 

Index Terms-Solid modeling, solid representations, conversion between solid representations, feature-based design, 
constraint-based design. 

+ 
1 MATHEMATICAL FOUNDATIONS 

N algebraic halfspace is defined as the point set H = ((x, y, z) A I p(x, y, z) I 0 ), where p(x, y, z) is a polynomial in x, y, and 
z with real coefficients. A semialgebraic set is any point set ob- 
tained as the result of a finite number of set operations (union, 
intersection, difference) applied to algebraic halfspaces. 
Bounded, homogeneously three-dimensional, semialgebraic 
sets were proposed in the 1970s as mathematical models for 
solids [43] by Requicha, who called such sets r-sets. Requiring 
homogeneous three-dimensional sets conforms with the intui- 
tion of modeling physical solids. The requirement to build r- 
sets from finitely many set operations applied to algebraic half- 
spaces is intuitively a variational restriction on the solid 
boundary. It conforms to the intuition that any line should not 
intersect the solid boundary infinitely often. 

In recent years, more general mathematical models of solids 
have been proposed that do not require homogeneously three- 
dimensional sets. The relaxation responds to applying the tools 
of solid modeling to more general problem domains. For ex- 
ample, in some approaches to robot motion planning, configu- 
ration spaces are modeled and analyzed, and those spaces usu- 
ally are dimensionally inhomogeneous. In fact, they may re- 
quire higher dimensional spaces with noneuclidean metrics. 

Other applications require modeling an inhomogeneous 
solid interior, for instance in the investigation of composite 
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structures, such as certain industrial parts or electronic 
components. When geological structures are modeled for 
the oil industry, dimensionally inhomogeneous structures 
arise as well. Such models require sets of semialgebraic sets 
to express internal boundaries and irregularities. 

Tools from algebraic geometry have been applied sys- 
tematically to problems in geometric and solid modeling. 
Such tools include elimination techniques that algorithmi- 
cally reduce the number of variables in a system of nonlin- 
ear equations, or else transform such systems to equivalent 
ones that are in a form that is especially well-suited to 
solving the system. For an introduction and a sampling of 
some of the results in this subject see, e.g., [4], [7], [8], [14], 
[19], [53].  Such symbolic computation algorithms tend to 
require highly sophisticated adaptations to geometric 
problems, because applying them straightforwardly usually 
leads to unacceptable running times or to mathematical 
representations that are computationally fragile. 

A difficult subject in need of foundational work is toler- 
ancing and the general problem of drawing logical conclu- 
sions from computations that are inexact. Further discussed 
in Section 3.1, these subjects pose extremely demanding 
problems that remain wide open to future advances. 

2 SOLID REPRESENTATIONS 

The three dominant solid representations in use are constructive 
solid geometry (CSG), boundary representation (Brep), and 
spatial subdivision. There are other representation schemata 
as well, less widely used. Conversion between different rep- 
resentations is in some cases an open problem. 

Any solid representation should admit the unambigu- 
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ous, algorithmic determination of point membership: Given 
any point p = (x, y ,  z), we have to be able to determine algo- 
rithmically whether the point is inside, outside, or on the 
surface of a solid. Moreover, restrictions on ,the topology of 
the solid and its embedding are desirable that exclude, for 
example, fractal solids. 

These restrictions are intuitive. However, as indicated 
before, increasingly solid modeling departs from this 
strict notion of solid and permits representing a mixture 
of solids, surfaces, curves and points. Such generaliza- 
tions require the development of new or extensively 
modified classical data structures to represent solids. 

2.1 Constructive Solid Geometry 
Classical Constructive Solid Geometry, CSG, represents a 
solid as a set-theoretic Boolean expression of primitive 
solid objects, of a simpler structure. Both the surface and 
the interior of the final solid are thereby implicitly de- 
fined. The CSG representation is valid if the primitives are 
valid. A solid's surface is closed and orientable and en- 
closes a volume. The traditional CSG primitives are block, 
sphere, cylinder, cone, and torus. 

A solid is represented as an algebraic expression that 
uses rigid motions and regularized set operations. The 
traditional operations are regularized union, intersec- 
tion and difference. A regularized set operation requires 
taking the closure of the interior of the set-theoretic re- 
sult. Regularization eliminates lower-dimensional com- 
ponents from the solid representation such as interior, 
or dangling exterior, faces, edges, and vertices. 

Each solid has a default coordinate system. Using a rigid 
body transformation, the solid is positioned relative to a 
global coordinate system. A Boolean operation then com- 
bines the solids with respect to the common coordinate sys- 
tem. The result solid can be repositioned by another rigid- 
body transformation. 

As example, consider Fig. 1. Using the coordinate system 
conventions for the primitives as shown, the CSG representation 
of the T-bracket is the expression 

block(8, 3, 1) <* move(block(1, 3, 3 ) ,  (0, 4, 1)) 
- * move(cylinder(0.5, l), (1.8, 1.8,  - 0 . 5 ) )  (1) 

where the * indicates a regularized operation. 

Fig. 1. Left and middle: CSG primitives block(w, d, k) and cylin- 
der(?, h) with default coordinate systems. Right: T-bracket as union of 
two blocks minus a cylinder. 

Basic Operations one performs on CSG representations are 
classifymg points, curves, and surfaces with respect to a solid; 
detecting redundancies in the representation; and approxi- 
mating CSG objects systematically. 

More general primitives are obtained by considering the 
volume coyered by sweeping a solid along a space curve, or 
sweeping a planar contour bounding an area. Defining a 
sweep is delicate, requiring many parameters to be exactly 
defined, but simple cases are widely used. They are extru- 
sion, i.e., sweep along a straight line; and revolution, i.e., a 
sweep about an axis. The evaluation of general sweeps can be 
done by a number of methods; e.g., [l], [27], [40]. Spatial de- 
formations of solids are another way to obtain new solids, 
whether they be used as primitives or as final solids. A gen- 
eral set of primitives is the set of algebraic halfspaces; [4]. 

2.2 Boundary Representation 
In boundary representation, Brep, the solid surface is repre- 
sented as a quilt of faces, edges, and vertices. A distinc- 
tion is drawn between the topological entities, vertex, 
edge, and face, related to each other by incidence and ad- 
jacency, and the geometric location and shape of these 
entities; Fig. 2. For example, when representing polyhe- 
dra, the faces are polygons described geometrically by a 
face equation plus a description of the polygon boundary. 
Geometrically, the entities in a Brep must not intersect 
anywhere except in edges and vertices that are explicitly 
represented in the topology data structure. In addition to 
the classification operations mentioned for CSG, Boolean 
union, intersection and difference operations are usually 
implemented for Brep systems. Both regularized and non- 
regularizing Boolean operations may occur. 

. 
Fig. 2. Topological entities of a box. Adjacency and incidence are 
recorded in boundary representation (Brep). Dotted arrows indicate 
face orientation. 

Different Brep schemata appear in the literature, di- 
vided into two major families. One family restricts the 
solid surfaces to oriented manifolds. Here, every edge is 
incident to two faces, and every vertex is the apex of a 
single cone of incident edges and faces. The second 
family of Brep schemata allows oriented nonmanifolds 
in which edges are adjacent to an even number of faces. 
When these faces are ordered radially around the com- 
mon edge, consecutive face pairs alternatingly bound 
solid interior and exterior 1621. See Fig. 3 for examples. 

More general nonmanifold Breps are used in systems that 
combine surface modeling with solids modeling. In such rep- 
resentation schemata, a solid may have interior (two-sided) 
faces, dangling edges, and so on [62]. Such systems are used, 
for example, by the oil industry for modeling geological 
structures, or to model civil engineering projects. 
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Fig. 3. A nonmanifold solid without dangling or interior faces, edges and 
vertices; the nonmanifold edges and vertices are drawn with a thicker pen. 

The topology may be restricted in more technical ways. 
For instance, the interior of a face may be required to be 
homeomorphic to a disk, and edges to have two distinct 
vertices. In that case, the Brep of a cylinder would have 
four faces, two planar and two curved. Such restrictions 
often reflect algorithmic requirements of the implementation 
and are sometimes transparent to users of the system. 

2.3 Spatial Subdivision Representations 

Spatial subdivision decomposes a solid into cells, each with a 
simple topological structure and often also with a simple 
geometric structure. We categorize subdivision representa- 
tions into boundary conforming and bounda y approximating. 

Boundary conforming subdivision schemata include 
meshes [60] and the b i n a y  space partition tree (BSP tree) [38]. 
Mesh representations are used in finite element analysis, a 
method for solving continuous physical problems. The 
mesh elements can be geometric tetrahedra, hexahedra, or 
other simple polyhedra, or they can be deformations of 
topological polyhedra so that curved boundaries can be 
approximated exactly. 

Binary space partition trees are recursive subdivisions of 
3-space. Each interior node of the tree separates space into 
two disjoint point sets. In the simplest case, the root denotes 
a separator plane. All points of R3 below or on the plane are 
represented by one subtree, all points above the plane are 
represented by the other subtree. The two point sets are 
recursively subdivided by half planes at the subtree nodes. 
The leaves of the tree represent cells that are labeled in or 
out. The (half) planes are usually face planes of a polyhe- 
dron, and the union of all cells labeled in is the polyhedron 
modeled. 

A selective geometric complex (SGC) is a collection of semi- 
algebraic sets in n-space that are dimensionally homogeneous; 
[48]. The cells are disjoint, open, and connected. Since 
curved boundaries are modeled, SGCs are a boundary- 
conforming subdivision schema. Adjacency information 
can be added in a compact form. When allowing that cells 
be disconnected, not necessarily open, and dimensionally 
inhomogeneous, constructive nonregularized geometry can 
be defined. Algorithms for this more general representation 
are discussed in [49]. 

Boundary approximating representations are grids [60] 
and octrees [6], [51]. In grids, space is subdivided in confor- 

mance with a coordinate system. Typically, the division is 
into hexahedra whose sides are parallel to the Cartesian 
coordinate planes. When a different coordinate system is 
used, the division would differ accordingly. For instance, 
for cylindrical coordinates the division would be into con- 
centric sectors, and so on. The grids may be regular or 
adaptive, and may be used to solve continuous physical 
problems by differencing schemes. Changes in the coordi- 
nate system may be used to simplify the numerical treat- 
ment of the differential equations to be solved with the 
grid; 1601. Rectilinear grids that are geometrically deformed 
can be boundary-conforming. Otherwise, they only ap- 
proximate curved boundaries. 

An octree divides a cube into eight subcubes. Each sub- 
cube may be further subdivided recursively. Cubes and 
their subdivision are labeled white, black or grey. A grey 
cube is one that has been subdivided and contains both 
white and black subcubes. A subcube is black if it is inside 
the solid to be represented, white if it is outside. Quadtrees, 
the two-dimensional analogue of octrees, are used in many 
geographical information systems [50]. 

2.4 Medial Surface Representations 
Medial axis and medial surface can unambiguously represent 
two-dimensional domains and three-dimensional solids, 
respectively. The representations are not widely used for 
this purpose at this time. However, as explained later, some 
sophisticated meshing algorithms are based of the medial 
axis and the medial surface, and some commercial systems 
are implementing medial surface construction algorithms. 

The medial axis of a two-dimensional domain is defined 
as the closure of the locus of centers of disks inscribed 
within the domain. A disk is maximal if no other disk properly 
contains it. An example is shown in Fig. 4 along with some 
maximal disks. 

... ,... - -... 

Fig. 4. L-shaped domain and associated medial axis. Some maximal 
inscribed circles contributing to the medial axis are also shown. 

The medial surface of a solid is the closure of the locus of 
centers of maximal inscribed spheres. When we know the 
radius (the limit radius in case of closure points) of the cor- 
responding sphere for each point on the medial surface, 
then an unambiguous solid representation is obtained that 
is sometimes called the medial axis transform (MAT). The 
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MAT has a number of intriguing properties that have been 
explored in mathematics and physics; [Zl]. For example, by 
enlarging the radius values by a constant, the MAT of a 
dilation of the solid is obtained. 

etween Representations 

Most solid modeling systems use Brep. Conversion from CSG 
to Brep is well understood, and is implemented as regular- 
ized Boolean operations on Brep solids. An extensive litera- 
ture addresses these complex algorithms; [13], [19], [37]. 

The conversion from Brep to CSG is not fully under- 
stood. In the polyhedral case, the conversion is essentially 
the same as the conversion from Brep to BSI' tree [23]. The 
major issue in the conversion is to find cells that partition 
the solid interior and are boundary conforming. Briefly, the 
controlling number of cells, as well as finding surfaces that 
make the cells boundary-conforming, constitute obstacles 
that are difficult to surmount. Conversion involving higher 
degree surfaces is largely open [53], [54]. However, some 
progress has been made recently by Naylor and Rogers [39] 
in the case of Bkzier curves and B-splines. Roughly speak- 
ing, a coarse BSI' tree is constructed that encloses sections 
of the curve in convex polygonal regions. On demand, the 
tree can be extended dynamically thereby refining the en- 
closing regions. In this way, points may be classified effi- 
ciently with respect to the curve to a required resolution. 

There are several algorithms for converting from CSG or Brep 
to the MAT. Some are based on geometric principles, some on a 
Delaunay triangulation of an approximated boundary, some on 
a grid subdivision of ambient space [12], [57], [56], [58]. The con- 
version from MAT to Brep has been addressed in [61]. 

The conversion from CSG or Brep to mesh representa- 
tions is a partially solved problem when the conversion is 
done for finite element analysis or other numerical treat- 
ment of continuum problems. In that context, the problem 
is not a geometric problem alone: The quality of the subdi- 
vision must also be judged by nongeometric criteria that 
come from the nature of the physical problem and the nu- 
merical algorithm used to solve it. Many approaches are 
based on octree subdivision, on Delaunay triangulation, 
and on MAT computations; [24]. 

The range and geometric representation of solid surfaces is 
referred to as geometric coverage. Polyhedral modeling re- 
stricts to planes. Classical CSG allows only planes, cones, cylin- 
ders, spheres, and tori. Experimental modelers have been built 
allowing arbitrary algebraic halfspaces [4]. Most commercial 
and many research modelers use B-splines (uniform or nonuni- 
form, nonrational or rational) or Bkzier surfaces. The properties 
and algorithmic treatment of these surfaces is studied by com- 
puter-aided geometric design (CAGD) and has an extensive 
literature. See, for example, [16], [30], [31] for introductions into 
the subject, and [15] for a sampling of recent results. 

Most mechanical products are assemblies of parts. To represent 
assemblies, we must represent the individual parts, as de- 
scribed before. In addition, the relationship between mating 
parts should be expressed with additional information. Such 

information tries to identify functional properties of the inter- 
acting parts and constraints they have to satisfy; e.g., [35]. 

3 LAYERS OF A SOLID MODELING SYSTEM 

A solid modeling system spans several layers: 

1) On the lowest level, there is the substratum of arith- 
metic and symbolic computations. 

2) Next, there is an intermediate level comprising the al- 
gorithmic infrastructure. This level implements larger 
conceptual operations. 

3) Finally, system interfaces present a view of the func- 
tional capabilities of the system. Such interfaces include 
the graphical user interface (GUI) as well as application 
programming interfaces (API). 

Ideally, the levels of abstraction should be kept logically 
apart. However, such a separation is fundamentally limited 
by problems that arise from the interaction of numeric and 
symbolic computation. 

3.1 The Substratum 
The substratum consists of many low-level computations 
and tests, for example vector computations, simple inci- 
dence tests, and computations for ordering points along a 
simple curve in space. Ideally, these operations create an 
abstract machine whose functionality simplifies the algo- 
rithms at the intermediate level of abstraction. But it turns 
out that this abstract machine is unreliable in a subtle way 
when implemented using floating-point arithmetic. Exact 
arithmetic would be desirable, but is widely held to be un- 
acceptably inefficient when dealing with solids that have 
curved boundaries. We call this the robustness problem of 
solid modeling. To illustrate how inexact arithmetic at the 
substratum level can impact the geometric computation, 
consider modeling polyhedral solids, the simplest possible 
situation for solid modeling. 

All computational decisions that arise in the course of a 
regularized Boolean operation on polyhedra can be reduced 
to determining the sign of 4 x 4 determinants [59]. Geometri- 
cally, this is a test of whether a point is above, on or below a 
plane. When the determinant's value is nearly zero, floating- 
point evaluation will decide based on a tolerance. But the 
decision is unreliable because logically equivalent tests may 
arise as different determinants in the course of the algorithm, 
and some of the determinants will have small, others large 
values (see [19], Chapter 4). This gives an opportunity for the 
algorithm to build inconsistent data structures and fail. The 
problems are magnified when dealing with curved solids. 

Usually, robustness problems are approached with a mix- 
ture of heuristics and user work-arounds discovered by trial- 
and-error. For example, consider the CSG expression of the T- 
bracket shown in Fig. 1. The CSG expression (1) given before 
exactly matches the faces of the two blocks. While this may 
be tolerable in principal orientation, it could result in a small 
crack between the two blocks when the bracket is rotated. 

The robustness problem has also arisen in computational 
geometry. It appears to be quite difficult to devise a solution 
that negotiates pragmatically conflicting demands of efficiency 
of computation and reliability of the decision making that 
would require in some cases extraordinary precision. Sug- 
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gested trade-offs include implementing a meta-level computa- 
tion that estimates the required precision for any particular 
geometric computation. If normal floating-point arithmetic is 
sufficient, then no further action is taken. However, if the accu- 
racy is not sufficient, then an extended precision computation 
is carried out on which to base a reliable decision; [18]. 

A problem that would appear to be related but arises 
from different roots is the tolerancing problem. Given a 
physical part and its electronic model, the physical part will 
deviate from the nominal dimensions and geometry of the 
model. Finding mathematical models that quantify such 
deviations, manipulating the models and reasoning about 
them is a subject that is of interest to solid modeling. It is 
plausible that effective tolerancing models and algorithms 
impact the robustness problem. 

3.2 Algorithmic Infrastructure 
Algorithmic infrastructure is a prominent research subject 
in solid modeling that addresses the development of efficient 
and robust algorithms for carrying out major geometric 
computations that arise in solid modeling. The problems 
include point/solid classification, computing the intersec- 
tion of two solids, determining the intersection of two sur- 
faces, interpolating smooth surfaces to eliminate sharp 
edges on solids, and many more. See [13], [19], [37], [27], 
[44], [45] and the literature in CAGD. 

An important consideration when devising infrastructure 
is that the algorithms are often used by other programs or 
system components, as service routines. Therefore, they must 
be extremely reliable and completely autonomous, requiring 
no user intervention in exceptional situations. This places an 
extra burden on the development of geometric algorithms 
that is absent in many other areas of geometric computation. 

The major geometric computations implemented at the 
infrastructure level have to balance the conflicting goals of 
efficiency, accuracy, and robustness. For this reason, many 
operations that have a sizable literature already continue to 
be researched in efforts to seek new perceived optima. 
Moreover, new mathematical surface representations con- 
tinue to be devised that necessitate different approaches. 
Some of the major operations on which research continues 
include the following. 
SURFACE INTERSECTION. Given two bounded areas of two sur- 

faces, determine all intersection curve components. A 
sampling of diffqrent approaches includes [19], [29], 
[30], [31]. Many algorithms have two phases. In the first 
phase, all components of the intersection curve are 
identified and some representative points on them. In 
the second phase, each component is evaluated, for in- 
stance by a marching algorithm, and is then approxi- 
mated in a suitable format. Both phases are difficult to 
make fully reliable. 

OFFSETTING. Given a surface, its offset is the set of all points 
that have fixed minimum distance from the surface. 
Offsets can have self-intersections that must be elimi- 
nated. There is a technical relationship between offset- 
ting and forming the MAT [21]. Note that offsetting is 
used to determine certain blending surfaces, and is 
also used in the solid operation of shelling that creates 
thin-walled solids [17]. 

BLENDING. Given two intersecting surfaces, a third surface is inter- 
polated between them to smooth the intersection edge. A 
simple example is shown in Fig. 5. Several difficulties must 
be addressed; e.g., [5]. First, given two surfaces and contact 
curves on both, find a third surface touching the two given 
ones along the contact curves. Techniques exist both for im- 
plicit and for parametric surfaces; 121, [ZOI, [ZI, 1411. A sec- 
ond, less well-understood issue is how to devise the contact 
curves when dealing with solids, so that the curves connect 
properly at adjacent faces, behave correctly at vertices, and so 
on. Again, the requirement of developing a fully automated 
solution exacerbates the second issue. 

DEFORMATIONS. Given a solid body, deform it locally or globally. 
The deformation could be required to obey constraints 
such as preserving volume [42] or optimizing physical 
constraints. For example, [2] deforms a basic shape for a 
ship hull to minimize drag in fluids of various viscosities. 

Fig. 5. Left: Two cylinders intersecting in a closed edge. Right: Edge 
blended with a constant-radius, rolling-ball blend; note that the bounding 
curves of the blend are shown. 

3.3 User interfaces 
Ultimately, the functional capabilities of a solid modeling sys- 
tem have to be presented to a user, typically through a graphi- 
cal user interface (GUI). The GUI should conceptualize the 
functionalities and application needs. As in programming lan- 
guage design, this conceptual view can be convenient or in- 
convenient for a particular application. Research on GUIs 
therefore is largely done with a particular application area in 
mind. Some of the technical aspects and design paradigms that 
are involved in current conceptualizations are explored next. 

4 FEATURES AND CONSTRAINTS 

Two design paradigms are emerging for manufacturing 
applications: feature-based design and constraint-based design. 
Research on both has some history, but it has been only in 
the past five years that these paradigms are appearing in 
commercial practice. Along with this transition, specific 
technical problems are coming into focus that have received 
relatively light treatment by researchers. 

The new design paradigms expose a need to reconsider 
solid representations at a different level of abstraction: The 
representations described before are for individual solids. 
However, in the new design methodologies we need to rep- 
resent entire classes of solids, comprising a generic design. 
Roughly speaking, solids in a class are built structurally in 
the same way, from possibly complex shape primitives, and 
are instantiated subject to constraints and dimensions that 
interrelate specific shape elements. How such a class should 
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be defined precisely, how each generic design should be 
represented, and how designs should be edited are all im- 
portant research issues of considerable depth. 

4.1 Feature-Based Design 
Feature-based design is usually understood in manufacturing 
applications to mean designing with shape elements such as 
slots, holes, pockets, etc., that have significance to manufac- 
turing applications, relating to function, manufacturing proc- 
ess, performance, cost, etc.; e.g., [52], [63]. Focusing on shape 
primarily, we conceptualize solid design in terms of three 
classes of features: generative, modifying, and referencing 
features; [26]. A feature is added to an existing design using 
attachment attributes and placement constraints. Subsequent 
editing may change both attributes and constraints. 

As example, consider the solid shown in Fig. 6 right. A 
hole was added to the design on the left. This new 
”feature” can be specified by giving the diameter of the 
hole, placing its cross section, a circle, on the side face, and 
requiring that the hole extend to the next face encountered. 
Should the slot at which the hole ends be moved or altered 
by subsequent editing, then the hole would automatically 
be adjusted to the required depth. See, e.g., [ll], [lo], [47]. 

Fig. 6. Left: Solid block with a profiled slot. Right: After adding a hole 
with the attribute “through next face,” an edited solid is obtained. If the 
slot is moved later, the hole will be adjusted automatically. 

solving. Mathematically, it is equivalent to solving a system 
of (nonlinear) simultaneous equations. Solving constraints 
in a fixed sequence is also known as parametric constraint 
solving. The latter is equivalent to solving a system of non- 
linear equations that has a fixed, triangular structure. 

Fig. 7. Geometric constraint solving. Input to solver shown left. In ad- 
dition to the constraints shown, the arc should be tangent to the adja- 
cent segments, and the two other segments should be perpendicular. 
Output of the constraint solver shown right. 

A well-constrained geometric constraint problem corre- 
sponds naturally to a system of nonlinear algebraic equations 
with a zero-dimensional set of solutions [8]. Thus, there are, 
in general, different solutions of the same, well-constrained 
geometric problem. An example is shown in Fig. 8. 

4.2 Constraint-Based Design 
Constraint-based design refers to specifying shape with 
help of constraints, when placing features or when defining 
shape parameters. For instance, assume that we are to 
design a cross section for use in defining a solid of revolution. 
A rough topological sketch is prepared (Fig. 7 left) and is 
annotated with constraints by the user. Then, a computation 
instantiates the rough sketch to one that satisfies the 
constraints precisely (Fig. 7 right). Auxiliary geometric 
structures can be added, such as an axis of rotation. 

There is an extensive literature on constraint solving, 
from a variety of perspectives. See, e.g., [14], [28], [32], [36]. 
Some authors concentrate on applications in solid modeling 
or assembly modeling of the nature similar to the example 
just given. Others investigate the use of constraints to rea- 
son about geometric properties, or as an application of 
symbolic algebraic computation. 

Commercial solid modeling systems use both features 
and constraints in the user interface. Typically, the con- 
straints on cross sections and other 2-dimensional struc- 
tures are unordered. To evaluate such constraints, the 
solver has to first derive a solution strategy. The constraints 
on 3-dimensional geometry are usually defined and consid- 
ered in a fixed sequence. Solving systems of unordered con- 
straints is sometimes referred to as variational constraint 

Fig. 8. The well-constrained geometric problem shown has two distinct 
solutions. Which one to select in a design application and how is an 
interesting research issue. 

Therefore, the constraint solver must apply a strategy for ef- 
ficiently selecting one of the potential solutions. Since the set of 
solutions of n nonlinear simultaneous equations can be propor- 
tional to 2”, solvers do not, in general, explore the space of pos- 
sible solutions but apply heuristics. Very few solvers have the 
ability to systematically explore the entire solution space [3]. 

Symbolic algebraic computation has developed algo- 
rithms that convert a nontriangular system of nonlinear 
equations into a triangular system; e.g., [7]. The distinc- 
tion between parametric and variational constraint solv- 
ing is therefore artificial in theory, except that the variable 
ordering is determined in a parametric constraint prob- 
lem. However, full-scale triangularization of systems of 
nonlinear equations is not tractable in many cases, so the 
distinction is relevant in practice. Moreover, a predeter- 
mined sequential evaluation of constraints is simple to 
implement and can be interfaced easily with conditional 
constraint evaluation, thereby increasing the expressive 
power of the constraint system without raising fundamen- 
tal implementation issues. For these reasons, many devel- 
opers of solid modeling systems leverage core modeling 
capabilities by such extensions. 
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4.3 Semantic Problems 
When constraints and parameters are used in solid design, 
a generic design is obtained. Generic designs are instantiated 
by constraint values, and may be edited by changing the 
constraint values, the constraint schema, and the feature 
attributes. A design so edited can then be automatically re- 
instantiated by the solid modeler. A central difficulty im- 
plementing this scenario, however, is that the generic de- 
sign is usually defined visually on the basis of a particular 
instance, and when the design changes, the instance geome- 
try is no longer present. Thus, visually identified instance 
structures must be suitably described generically, so that 
re-instantiation can be carried out correctly. This persistent 
naming problem has been characterized in [22], [55]. 

As example, consider the solid shown in Fig. 9 left. It 
was constructed as follows: First, a rectangle was drawn 
and extruded into a block. On the front face of the block, a 
circle was drawn as profile of a slot across the top of the 
block. Then, the left edge of the slot was visually identified 
for rounding. The result is shown in Fig. 9 left. 

This design is now edited by altering the position of the 
circular slot profile. The correct result is shown in Fig. 9 mid- 
dle, but some systems may construct instead the shape of 
Fig. 9 right, clearly an error. The problem is how to describe 
the edge to be rounded in the generic design. An identifica- 
tion such as "left" is not reasonable because it presupposes a 
coordinate system which we do not have. Moreover, reliance 
on a default coordinate system is questionable in view of the 
great variability of the shape under constraint-based editing. 
What is needed is an unambiguous semantics for editing ge- 
neric design that is intuitive and complete. 

Fig. 9. A block with a slot and round on the left edge is shown left. 
After editing, in this case raising the depth of the slot, re-instantiation 
should produce the solid shown in the middle. However, some sys- 
tems may re-instantiate as shown to the right, an error. The confusion 
relates to the persistent naming problem. 

Closely related to defining a well-founded semantics, a 
design representation is also needed. It seems appropriate 
that the representation would be unevaluated and that it 
would be instantiated depending on parameter values, at- 
tributes, and constraints [ll]. Such a design representation 
would formalize the behavior of solid modeling operations 
also under editing that involves simply changing constraint 
values and feature attributes. 

There seems to be little published work on these topics al- 
though they are of intense commercial interest and intellec- 
tually challenging. Whether a formal, high-level representa- 
tion is devised or not, the research issues characterized before 
come up in the implementation of constraint-based, feature- 
based CAD systems, and such systems are being developed 
and offered in the commercial sector; see [9], [lo], [33], [34]. 

Since generic design representations must be responsive to 

the information content between the user interface, the core 
solid modeler, and a variety of other system components, 
devising a practical representation has implications on sys- 
tem architectures. That is, when formalizing the information 
flow between functional components, interface specifications 
are obtained. Whenever the formalization seeks independ- 
ence from the specific implementation of the system compo- 
nents, system modularization is facilitated. Ultimately, this 
will accelerate the current trend to decompose solid model- 
ing systems into standardized components that can function 
interchangeably and can be combined in a variety of ways. 
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