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Abstract

We review the role of implicit algebraic curves and surfaces in computer-
aided geometric design, and discuss its possible evolution. Implicit curves
and surfaces offer certain strengths that comnplement the sirength of para-
melric curves and surfaces. Afier reviewing basic facts from algebraic ge-
ometry, we explore the problems of converting between implicit and para-
melric forms. While conversion [rom parametric Lo implicit form is always
possible in principle, a number ol practical problems have forced the field
to explore alternatives, We review some of these alternatives, based on two
fundamental ideas.

First, we can defer the symbolic computalion necessary for Lhe conver-
sion, and map all geometry algorithms to an “unevaluated” implicit form
that is a certain determinant. This approach negotiates belween symbolie
and numerical computation, placing greater stress on the numerical side.

Second, we can sidestep all symbolic computations by not even lormu-
laling an implicit form, bul rather using a more general system of nonlinear
equations. Doing so simplifies a number of otherwise difficult geometric
operations, but requires developing a scparate algorithmic inlrastructure.
This second approach generalizes both implicit and parametrie forms.

Introduction

By far the most common representation for curves and surfaces in Compuler-
Atided Geometric Design (CAGD) is the parametric representation, as is evident
from the literature. The reasons are not only historic. but are also rooted
in 2 well-established body of work that elegantly relates intuitive geometric
shape with Lhe mathematical representation. and that clarifies approximation
and interpolation properties of specific classes ol parametric curves and surfaces.
Nevertheless, CAGD also studies implicit algebraic curves and surfaces, for this

*Supported in part hy ONR Contracl N00014-90-1-1599, by NSF Grant CCR 88-19817,
and by NSF Grant ECD 88-03017.




larger class of curves and surfaces is closed under many geometric operations
of interest, while the class of parametric representations is not: e.g., [4. For
example, given a base curve, its offset by a fixed distance is not, in general. a
parametric curve, and must therefore be approximated. Moreover, given a point
P, it is easy to determine whether p is on an implicit curve or surface, but this
determination is not easy if the curve or surface is parametrically represented.

CAGD typically deals with splines; that is, with curves or surfaces that con-
sist of individual segments or patches, each belonging to a separate parametric
curve or surface. In contrast, this paper considers only individual curves and
surfaces.

The study of implicit algebraic curves and surfaces naturally draws on alge-
braic geometry, a subdiscipline of mathematics that provides some foundational
insights into the basic algebraic and geometric properties of algebraic curves and
surlaces, including parametric curves and surfaces. So, the paper begins with a,
briel review of selected facts from algebraic geometry, and discusses the prob-
lems of converting from parametric to implicit and from implicit to parametric
representations. The conversions require substantial symbolic algebraic com-
putations, hindering the wider use of implicits in applications. "Chis situation
should change as work in symbolic algebraic computation advances. and recent
years have seen impressive progress. But past experience with implicitization
algorithms has also motivated other research on implicit curves and surfaces
that side-steps this issue altogether. Some of that research is also discussed.

Concepts from Algebraic Geometry

In an eflort to eliminate exceptions and special cases from its theorems, alge-
braic geometry assumes that tlie curve or surface points under consideration
may have complex coordinates, and that there are points “af infinity.” Al-
though such generalizations are not necessarily ol immediate interest to CAGD.
the geometry of a curve or surface at infinity or in the complex part of affine
space can influence the details of certain compntations, and some cases will be
mentioned. Abhyankar (] presents algebraic geometry material from a founda-
tional view point. Hoffmann {4] presents the material [rom a geometric modeling
perspective, giving both intuition and selected technical details.
An implicit algebraic curve is given by an equation of the form

flz.y)=> aizay’ =0
i

where [ is a polynomial; that is, [ has finitely many {erms of the form a,-jx"yj,
where the coefficients a;; are numbers and the exponents : and j are nonnegative
integers. The (affine) curve consists of all real or complex points (z,y) that
satisly the equation.



An implicil algebraic surface is given by an equation of the form

(z,y)= Zaukmy-’* =0
L.k

where f is a polynomial in z, ¥, and z. The surface consists of all real or complex
points (i, ¥, z) that satisfy the equation.

The degree of a term is the sum of the exponents; that is, the degree of
a,-j:r"yj is ¢ + 7, and the degree of rz,-_,-ka:"yjz"" is ¢4+ 7 + k. The degree of a
polynomial is the maximum of the degrees of ils terms.

An implicit equation of degree | defines a straight line or a plane. Conversely,
a straight line in 2-space or a plane in 3-space can always be represented by an
implicit equation of degree 1. Degree 2 implicit equations define conics and
quadrics. Conversely, every conic or quadric can be defined by a quadratic
implicit equation.

A conic or quadric could be degenerate. A degenerate conic consists of two
lines (parallel, intersecting, or coincident), and a degenerate quadric consists of
two planes {parallel, intersecting, or coincident). It is well-known that a conic
or quadric is degenerate if, and only il, the polynomial of its implicit equation
can be factored into two linear factors, possibly with complex coeflicients.

The degree of the implicit equation corresponds to the geometry of the im-
plicit curve as follows: If the equation has degree n, then all but finitely many
lines intersect the curve in n points. Similarly, a surface equation of degree n
means that all but finitely many lines in space interseci the surface in exactly n
points. This requires counting some intersection points as multiple intersections
and considering intersections “at infinity.” A more general statement is made
by Bezout’s theorem:

Theorem {Bezout)

Two algebraic curves of degree m and n intersect in either nm poinis, or
else in infinitely many points.

Bezout'’s theorem for implicit surfaces is not stated here because this would
also require discussing algebraic space curves and the question ol how they
should be represented implicitly.

Implicitization of Parametric Curves and Surfaces

Every inlegral or rational parametric algebraic curve in the plane can be rep-
resented by an implicit algebraic equation, and every integral or rational para-
metric surface in 3-space can be represented by an implicit algebraic equation.
The process of converting a parametric curve or surface to implicit form has
been called implicitization. Technically, the conversion amounts to eliminating
the parametric variable(s) from the equations defining the parametric curve or



surface. For example, consider the parametric curve

is obtained. In the case ol surfaces, two parameters must be eliminated. Ior
example, let

.= hi(s,1) y = ha(s,t) = fia(s, 1)
ho(s,t) ho(=,1) ho(s,t)
be a parametric sutface. Then the surface is implicitized by eliminating s and
t from the system
z ho(s,t) —yis,t} = 0
yho(s,1) — Ra(9,t)
zho(s,t} = ha(s,t) = 0

(1)

thereby obtaining a single equation of the form
flz,y,2)=10

Thus, the problem of implicitizing a paramelric curve or surface can be reduced
to the problem of eliminating one or two varjables from a system of nonlinear
algebraic equations. The technical issues are how one can do variable elimination
algorithmically, and whether the elimination algorithm introduces eziraneous
faclors, i.e., whether the resulting polynomial is f(z,y,%)= filz,y,2) falz,¥,2)
where fi{(z.y,2) = 0 is the implicit equation and fo(z,¥,2)is unnecessary.!
The process of eliminating variables from systems ol linear equations is
widely known. There are also well-established techniques for eliminating vari-
ables from nonlinear algebraic equations, but they are less well-known and
are technically more demanding. The three main algorithmic approaches are

resultant-based elimination. the Wu-Ritt method, and the Grobner bases method.

Hoffmann [4] gives an introduction to resultants and Grébner bases [rom a ge-
ometric modeling perspective. Kapur and Lakshman [7] survey all three ap-
proaches [rom the vantage point of elimination theory. .

Resultant-Based Elimination Methods

The oldest, and by now best-known, methodology for eliminating variables is the
resultant method, whose development began in the last century. The resultant
of a system of n + 1 algebraic equations in n+4 m variables Z1, ..., Tno Y1y oo Ym IS

1if ihe surface lias base points. the sysiem (1) may entail extraneous solulions Lhal must
be excluded with special techniques, as explained later.




an expression in m variables Y1+ ¥m that vanishes for a specific set of values
of the y; if, and only if, the original system has a solution for the same values
of the y;. )

In the simplest case, n = land m = 0, we are given two polynomials fandg
in onhe variable, The Sylvester resullant of the two polynomials is a determinant
whose entries are (he coeflicients of f and g. The resultant is zero jff the two
polynomials f and g have a common root.

Implicitizing the rational parainetric curve

VIO
Ty YT R

isthecasen = 1,m = 2, for it may be considered as the problem of eliminating
¢ from the system

zh(t) - f(t) = 0

yh(t) —g(t) = 0
The two polynomials of the system are thought of as polynomials in the variable
¢t with coefficients that are, in turn, polynomials in z and y. Appiying the
Sylvester resultant then gives the implicit form. Manocha and Canny prove
that the algebraic set defined by the polynomial obtained with the resuitant
is irreducible provided the parameterization has no base points, that is, if, for
certain parameter values, the denominator and the numerator functions vanish
simultaneously. Implicitizing curves withou( hase points that are given by an
unfaithful parameterization still may lead to higher multiplicity. For example,
as discussed by Recio, the Sylvester resultant for z — 2,y = tVis (22 —
¥ However, higher multiplicity can be determined by GCD Computations, a
substantially cheaper operation than polynomial factorization.

The Sylvester resuitant is of limited use, because it does not apply directly
to the problem of implicitizing parametric surfaces. It is possible to use the
Sylvester resuitant if we consider eliminating Lhe parametric variables s and ¢
successively. As noted in (7], however, this approach is inefficient. Moreover, it
may mtroduce extraneous factors; see [4], Chapter 5.

Many different resultant formulations have heen proposed at the beginning
of this century, botl for curve and for surface inplicitization; see, e.g., [9]. For

(2)

Grobner Bases Methods
The concept of Grébner basis is due to Buchberger, and is surveyed in [2]. Let

P = {f,—(.’r:1....,;rn) [1<i< m}
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be a finite set of polynomials in n variables. The set of common roots of the
fi is called the algebraic sel defined by F. The set F is equivalent to another
set & ifl the two sets of polynomials define the same algebraic set. accounting
for multiplicities. It may be that the set (+ allows us to better understand the
algebraic set it defines than the original set F. For example, if the f; are linear
in the 2; and the set (7 is equivalent but in triangular form, then the solutions of
G are easily found. The idea of Buchberger was to construct, from a given set §*
of polynomials, an equivalent set ' that allows hetter insight into the structure
of the associated algebraic set, and he called such a set a Grébner basis.

When applied to implicitization. the initial set F consists of two or three
polynomials defining the parametric curve or surface, respectively, and the set
G will be such that it contains the implicit form of the curve or surface. In
the case of rational curves and surfaces. additional polynomials are needed that
account for the possibility of base points.

There is a broad literature developing the use of Grébner bases in symbolic
computation and its application. Chapter 7 of [4] gives an introduction into the
method and its applications to geometric modeling. Ilere, only the basic idea
of the algorithm is sketched and how it applies to the implicitization problem.
[t is not possible to describe the technical details of the method in this paper,
so we confine the description to an intuitive outline of the computational stages
and their motivation.

In order to derive an equivalent set G that makes explicit the properties of
the algebraic set, the initial set F' of polynomials is rewritten. Two activities
are carried out:

L. New polynomials, called S-polynomials, are formed from pairs of old poly-
nomials by a certain rule, reminiscent of the way in which the least com-
mon multiple of two numbers is formed.

2. The polynomials are reduced by rewriting, a process in which suitable
multiples of other polynomials in F* are subtracted to cancel complicated
terms.

In the course of this computation, the number of polynomials in the set will
luctuate: Some of the new polynomials will reduce to zero and thus do not
contribute to the sel. of polynomials. Some old polynomials may also reduce
to zero when certain new polynomials have been added to the set. When all
S-polynomials redice to zero, the set of polynomials is a Grébner basis.

Rewriting, and the final nature of the Grébner hasis depend on an ordet-
ing of polynomials, which in turn depends on an ordering of the terms of the
polynomials. Different term orderings can be given. In particular, the lexico-
graphic ordering results in a Grébner basis that has a triangular structure. In
the implicitization problem the hasis must contain the implicit form without
extraneous factors.




Ior example, assume that we are to iinplicitize the surface

t=3s y=st% =35
We construct the Grobner basis of the input set
F={z—st,y—st? z—35%) 3)

with respect to the lexicographic ordering induced by the variable ordering z <
¥y <x <t <a3. Wecould have chosen a different variable ordering as long as
the parametric variables s and ¢ are of higher order than z, y, and z, and thus
are eliminated first. We obtain the following Grobner basis:

G={ 21-y2z,

txr —y, lyz — 23, 12z — 22, (4)

sy —z2, 8z — 1z, st —z, s* — z}
The first polynomial, z! — y?z, is the implicit forin of the surface. The second
polynomial introduces the variable ¢ and provides a way to find the parametric
¢ coordinate of a surface point: Solve tz — y = 0 for the surlace point (2,3, 2) to
obtain {. In the same way, s can be found from, say, sy - z2. Thus we can also
solve the inversion problem and find for a given point on the parametric surface
its (#,{) coordinates.

If the curve or surface s rational, common roots of the numerator and de-
nominator polynomials cause problems. To avoid this, Kalkbrener has suggested
adding certain equations to the systems (1) and (2). For example, in the rational
curve case (2) we add the equation

uwh{t)—1=10

where u js a new variable. The equation states in intuitive terms that &(1) does
not vanish. Thus, the roots of h(2) are excluded and with them all base points
of the curve.

An important variant of the computation for efficiency considerations can be
based on basis conversion, a computation due to Faugeére, Gianni, Lazard, and
Mora. [n this variant, only one element of the hasis (v is determined, namely
the implicit form of the parametric curve or surface. See [4] [or details.

Wu-Ritt Method

A different method for variable elimination was developed by Wu Wen-Tsiin
[10] using an idea proposed by RitL {7]. Wu was interested in automatically
proving theorems from geometry. The theorems are translated into an algebraic
problem in which the question is investigated whether a particular polynomial



f coding the conclusion of the theorem follows from the hypotheses, encoded as
a set 7 of polynomials. In geometric terms. f Tollows from F il the aigebraic
set of I is contained in the algebraic set of f- The method transforms the
given system F of polynomials until it has a certain form. The transformation
involves rewriting the polynomials in £ repeatedly, using pseudo-division, and
adding the remainders to the set F'

As in the Grdbner basis case, Lhe description that follows remains intuitive
and omits many technical details. See [7] for more details.

The objective of the Wu-Ritt method is o transform F into a triangular
system ol polynomials. Again. the variables are ordered, but now multivariate
polynomials are thought of as polynomials in the highest occurring variable
whose coefficients are polynomials in the lower-order variables. In turn, the
coeflicient polynomials are also so viewed. In the basic loop, a subset of F
is identified by selecting polynomials of lowest degree whose highest occurring
variable is not yet in the subset. The subset so selected is a base set, and
all polynomials in £ are pseudo-divided by polynomials in the base set. The
remainders so obtained are added to F and the process is repeated. Ultimately.,
no new polvnomials are added, and the final base set is triangular.

When applied to sets such as (1) or (2) with a variable ordering{ <8 < - -,
the implicit Jorm will be constructed. possibly with some extraneous factors [7]-
We illustrate the procedure with the parametric surface (3). The input set Fis

xr —al (5)
y ~ st® (6)
z — g2 (7)

Pseudo-division of (6) by (5), with respect to 3, produces the remainder
y—xl (8}
and pseudo-division of (7) hy {5) produces tlie remainder
22 g2 (9)

In both polynomials the variable s lias heen eliminated, because (5) is linear in
pol;

s. Now pseudo-division of (9) by (R) produces the remainder
vz — o

wlich is the implicit form.

Implementation

Careful implementation of a suitable resultant formulation can be the basis of
implicitization algorithms that are fairly efficient. Manocha and Canny have
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achieved good running times using numerical techniques to augment the sym-
bolic computation. Using a modification of basis conversion, Hoffmann achieved
attractive speed-ups for Grobner based implicitization. Gao and Chou report
good results using the Wu-Ritt method for implicitization. Each approach has
its proponents who advance the computational machinery by making it more
and more efficient. However, even though recent years have seen performance
improvements of several orders of magnitude, the earlier, slower algorithms have
lelt many practitioners with the impression that implicitization is necessarily
impractical. It is not clear whether this impression remains justified.

Parameterization of Implicits

We stated hefore that every parametric curve and surface has an implicit repre-
sentatjon. The converse is not true, and there are implicit curves and surfaces
that are provably not representable in rational parametric form. The problem
of finding a parametric representation for a given implicit algebraic curve or
surface has therefore two distinct parts:

{a} Determine if the carve or surface can be parameterized. and if sv,

(b) find a paramelerization.

For nondegenerate quadrics the first part is unnecessary, because every nonde-
generate quadric can be parameterized.

There is a geometric interpretation of the parameterization process of curves
that is best understood when parameterizing conics:

I. Pick a curve point and consider a pencil of lines through it. Note that the
lines in the pencil can be indexed by a parameter, say the slope of the lire.
and that the lines intersect the conic in two points, the point we picked
and one other point.

2. Determine for each line the second intersection with the conic, as a [unc-
tion of the parameter indexing the line in the pencil. The symbolic coor-
dinates of this intersection point are the coordinate functions of the conic.

As example, consider the unit circle
4y’ -1=0

Pick as fixed point (-!,0), say. The pencil of lines through this point is given
by

y—tlz—-t=10
Fach value of t defines a particular line of the pencil. It is easy to verily that
every such line contains (—1,0) and that ¢ is the slope of the line. Substituting



for y and solving for = gives

L
s = 10
Tiv e t9)
and so y is given by
21
= 11
V=1+2 (11)

The two equations (10) and (11) constitute a parameterization of the circle.
This geometric idea generalizes to other curves in two ways:

1. For certain higher-degree curves a pencil of lines suffices, but Lhe point
must be singular of the right multiplicity so that, apart from the fixed
point, the lines in the pencil intersect the curve in only one other point.

2. Instead of lines, a [amily of curves may have to be used, of fixed degree,
chosen to contain several fixed points of the curve we wish to parameterize.
Again, the fixed points must have the right multiplicity.

Note that by Bezout’s theorem a line intersects a curve of degree 2 in # points.
Therefore. if a. pencil of lines is to suffice, a curve point of multiplicity n — |
15 required. Curves that possess such a point are called monoids. Conics are
trivially monoids. There are also monoidal surfaces, for instance quadrics, and
they are parameterized by an analogous construction.

The following exposition is relatively brief and omits some technicalities. For
greater detail see, e.g., [1].

Degree 2 Curves and Surfaces

Degree 2 curves can be parameterized using the pencil-of-lines approach. A
curve point is chosen, which may he a point at infinity. For example, il the
parabola y — 2% = 0 is to be parameterized, choosing its point at infinity,
or choosing the point (0,0) gives the {amiliar parameterization z = ¢, y =
12, Other points on the parabola could also be chosen. leading to different
parameterizations.

A second approach translates the pencil-of-lines approach into an algebraic
procedure. Roughly speaking, the implicit curve equation is transformed so
that the y*-term vanishes, using a projective coordinate transformation. Ge-
ometrically, this is equivalent to changing the coordinate system so that the
curve contains the point at infinity that lies in the direction of the y-axis. The
transformed curve can then be parameterized using = = ¢, and from this param-
eterization a parameterization of the original curve can be obtained by applying
the inverse coordinate transformation.

The third method for parameterization applies a numerical iteration to the
implicit equation written as a bilinear matrix form. Tle effect of the iteration

10



is to diagonalize the matrix. Once diagonalized. a standard parameterization is
used that gives the parameterization of the original curve after subjecting it to
the inverse of the transformatio defined by the iteration.

All three approaches generalize to quadric surfaces. In the first approach,
a fixed point is chosen and a bundle of lines through that point is considered.
Each line in the bundle is now determined by two parameters instead of one.
The computational details are rontine. In the second approach, the quadric is
transformed such that the conic in which the quadric intersects the plane at
infinity goes through a special point. In that case, one of the quadratic terms,
say zZ, vanishes from the quadric equation. The transformed quadric is therefore
parameterizable with z = s, y = {. In the third approach, the same numerical
iteration is applied, for it does not depend on the size of the matrix. Again,
a standard parameterization of the surface, defined by the diagonal matrix, is
back transformed to a parameterization of the original surface.

Cubic Curves

Only singular cubics have a parametric form, that is, cubics that have 2 singular
point. The singularity may not be readily apparent: For example, y — 2% =
is evidently parameterized by z = ¢, y = 3, but has no finite singular point.
Here, the singularity is at infinity.

Choose a pencil of lines through this singular point. Since the fixed point is
a double point, a line in the pencil intersects the cubic in one other point, and
determining this other point in terms of the line index ? gives a parameterization
of the cubic. This approach assumes that we know where the singularity is.

There is an algebraic computation that tests whether the cubic is parame-
terizable and if so, determines a parameterization. Roughly speaking, the cubic
curve equation is transformed into an equation of the form

7 = flz)

where f could have degree 4. It can be shown that the cubic is parameterizable
iff f(z) has a double root. In that case, a second translormation yields an
equation

-2

7" = g(z)
where g(z) is at most quadratic. This curve can be parameterized as a conic and

the parameterization is back transformed to a parameterization of the original
cubic.

Monoids

A monoid is a curve or surface of degree n that has an (n—1)-fold singular point.
All conics and quadrics are monoids, because in this case = = 2 and regular

11



points have muitiplicity 1. For cubics a double point is required. Higher-order
monoids include the Steiner surfaces. Monoids also are called dual forms by
some authors because they are so easy to parameterize provided we know an
(n — 1)-fold point. '

Briefly. monoids are parameterized using pencils of lines. If the (= — 1)-fold
point is brought to the origin of the coordinate system, the monoid equation
becomes especially simple. In the case of curves it is then

hn(z,y) — hni(z,y) =10
and in the case of surfaces it is
h'!'l-(I'!yl Z) - hrl.—l('t!yl Z) = 0

where. h, is a polynomial all of whose terms have degree =, and h,_; is a
polynomial all of whose terms have degree n — 1. The curve is parameterized by

3:{-‘3.,!,) = M y(s..f) — fh'ﬂ—l(3|t}

ho(9.1) T h(s,t)

Either a or { is set to 1. Tor monoidal surfaces, the parameterization is

rhn_;(r,s,t)
hn(rssvt)

shn_1(r,9,1)
hu(r,s,t)

ih.ﬂ_l Ty 5, f.)
hn(r,s,t)

z(r,3,1) =

y(r,s,t) =

z(r,s,t)

Again, one of the parameters r, 5. or t is set to 1.
For example, consider the unit sphere containing the origin

.1:2+y2+(z—1}2—1=0

Clearly &, = % + % + 2% and h,—; = —2z. With r = 1, the surface is

parameterized by

2t

U ey

Wsl) = ——p—y
14 5°+1¢
oty = — 2
1+ a4t

Note that we could have set s = 1 or { = 1 instead.

12



Deferring Implicitization

Univariate and multivariate resultants are essentially determinants, or determi-
nant quotients, whose entries are polynomials and whose value, in the case of
implicitization, is the implicit form of a paranetric curve or surface. The major
cost of implicitization, using resultants, is the evaluation of this determinant
becanse it requires manipulating polynomials with many terms and, possibly,
large rational coellicients, assuming exact arithmetic is used.

One of the strengths of the implicit form is the ability to evaluate it for a
given point, and to deduce from the value whether the point is on the surface
(zero value), or outside (negative value) or inside {positive value). Manocha and
Canny {8] observed that this evaluation can be done equivalently by evaluating,
in the resultant, each entry, followed by an evaluation of the now numerical
determinant. Since the polynomial entries in the determinant are linear, evalu-
ating them numerically is very simple.

The approach requires that the implicit form, as evaluated by the determi-
nant, does not have extraneous factors. In another paper, Manocha and Canny
prove that for curves such determinants always exist, although the presence of
base points requires special techniques. For surfaces the determinants also exist
provided all base points are simple. The case ol surfaces with base points of
higher multiplicity is open.

In applications such as the intersection of two parametric surfaces, some
authors have advocated implicitizing one of the surfaces, and substituting into
it the parametric equations of the other surface. This reduces the evaluation
of surflace intersection to the evaluation of plane curves, as explained in [4].
One may think of this approach to surface intersection evaluation as having a
symbolic preprocessing step, here the implicitization and substitution, followed
by 2 numerical computation, the evaluation of the plane curve. Manocha and
Canny [8] substitute the parametric equations into every determinant entry,
and then evaluate the determinant numerically, for each curve point. Their
approach, therefore, reduces Lhe role of symholic computation in preprocessing,.
This recduction entails additional numerical computation.

Evaluating a plane curve numerically may require a number operations, such
as derivative evaluation. If the plane curve is represented by a determinant
whose entries are polynomials, then special algorithms are required. In [8] such
algorithms are described.

Constrained Surface Representations

Certain curves and surfaces are naturally described in terms of one or more base
curve(s) or surlace(s) and some geometric constraints. For instance, given two
base surfaces f and g, cousider all points in space ilat have equal minimum

13



distance fromn the given surfaces. Such points form the equal-distance surface
of f and g. Other examples include offset curves and surfaces, and blending
surfaces obtained as envelope ol a rolling ball.

Despite the conceptual simplicity of defining such curves and surfaces in-
tuitively, an exact mathematical representation of them is difficult both in the
case of the parametric and the implicit representations. Often, neither repre-
sentation can be reasonably determined, and so we seek an alternative to these
two representation schemata. The dimensionality paradigm provides such an
alternative [G].

The Dimensionality Paradigm

The definition of a constrained surface often siinplifies when we consider it as the
natural projection of a manifold in higher-dimensional space. The manifold can
be defined simply by a system of nonlinear equations in n variables, wheren > 3
in general. The exira variables identily cerlain points on the base surface(s},
ot sperifly distances or other geometric data. ‘The surface we want is then the
natural projection of this manifold into a three-dimensional subspace.

If the base surfaces are algebraic, then the additional variables could he
eliminated from the system ol equations, at least in principle, resulting in the
implicit surface equation. Such an approach is normally intractable, for the
elimination problems are usually well beyond what hardware and software can
deliver in the forseeable future. Therefore, one should work directly with the
system of equations. If the degree of the implicit form is high, and this occurs
often, it is also reasonable to expect that subsequent numerical computations
are more stable when performed on the system of equations, rather than on the
implicit equation.

Example Definition

Assume that two base surfaces f and g are given whose equal-distance surface is
sought. The hase surfaces could he parametric or implicit. Using a declarative
style. we can then describe the equal-distance surface as [ollows:

1. Let p = {z,y,z) be a point on the equal-distance surface. Moreover, let
pr = (u1, 01, wy) be a point at minimum distance (rom p on f, and let
Py = (12, v, w;) be a point at minimum distance from p on the surface g.
Then:

2. The point py satisfies the equation of f, and the point p, satisfies ile
equation of g.

3. The distance {p,p;s} is equal to the distance (p, py).

4. The line 777 is normal to f al py.

14



3. 'I'he line 77,75, is normal to g al p,.

Assertion ( L) declares the names of nine variables that comprise the coordinates
of the three points p, py and p,. Assertions (2)~(5) express the geometric rela-
tionships that these points must satisfy. As shown in [5], the assertions translate
very simply into a system of nonlinear equations. In principle, an implicit equa-
tion could be derived by eliminating the six variables {u;,v,..., w2} {rom the
system, but in almost all cases this computation is not tractable.

The entire system of equations defines 2 manifold in 9-dimensional space.
The projection of that manifold into the (z,y, z)-subspace is the equal-distance
surface. A number of papers by Chandru, Chiang, Chuang, Dutta, Hoffmann,
Lynch, Vermeer, and Zhon discuss other examples of surface definitions using
the dimensionality paradigm, ingluding offset surfaces, constant-radius blends,
variable-radius blends. ruled surfaces in parametric blending, and trimming sur-
faces in medial-axis computations.

Surface Interrogation

There is a considerable body of algorithmic infrastructure for surfaces defined
using the dimensionality paradigm, including

1. Given two surfaces and an initial point, evaluate their intersection; see
[4]. The algorithm is robust and can evaluate very high-degree surface
intersections without significant precision problems.

2. Given a surface and an initial point, evaluate locally the curvatures, and
give a local parametric or local explicit surface approximant of arbitrary
contact order, {3].

3. Given a surface and an initial point, globally approximate the surface; [J].
The algorithin has an adaptive version in which local curvature informa-
tion determines the number of approximants.

These algorithms can also be used when the system of nonlinear equations is
nonaigebraic.

Global Approximation

It is easy to derive a marching scheme for curves such as surface intersections.
A similar scheme for evaluating surfaces requires a way to orient the exploration
in space such that the same neighborhood is not reevaluated. In {3] this prob-
lem has been addressed in the context of the dimensionality paradigm. The
technique competes well with other approaches such as Allgower’s simplicial
confinuation method. or the moving-frame method of Rheinboldt. The globat
approximation is based on the following idea. Given a manifold S by a system
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of equations and on it a point p, construct a piecewise approximation of S,
beginning at p and extending in all directions.

Rheinboldt’s moving-frame method triangulates the tangent space at p and
transfers the triangulation to & using Newton iteration. Each vertex of the
triangulation, after projection to a point ¢ on §. beromes the center of a new
triangulation, of the tangent space at g. The algorithm resolves local overlap,
but cannot resolve global overlap. Thus, when constructing an approximation
of a sphere by this method, one would not know when the entire surface has
been approximated.

Allgower’s method is based on a triangulation of ambient space and only
evaluates the system of equations. At each vertex of a simplex, the system of
equations is evaluated and from the vector of function values a linear approx-
imant is constructed. Then the simplex [aces that intersect the linear approx-
imant are determined, and adjacent simplices are evaluated in the same way.
Note that the ambient n-dimensional space is triangulated. Thus. the number
ol simplices in an elementary volume grows exponentially with the number ol
variables. [lowever, the method does not require evaluating derivatives of the
cquations of the system.

In the case of surface definitions with the dimensionality paradigm, the sur-
face that is ultimately of interest is the projection into a three-dimensional
subspace. It is therefore advantageous to approximate only the projection, and
Chuang’s algorithm does this, using a grid in 3-space to detect whether a volume
of space has already been explored.

L. At p, construct a local approximant to §. The approximant has the form
o= hi(s,1),1 <1< n.

2. Determine how the projected approximant, (hy(s,2), ha(s,1}, a(s,1)), in-
tersects the laces of the cube, as a function of 3 and .

3. I'rom the intersection curves, deterimine the coordinates (s;,£)) of a point
on the approximant that lies in an adjacent cube.

4. Reline the estimated point with Newton iteration.

The advantage of this method is the fact that the dimension of the meshed
space does not depend on the number of variables used to define 8. Yet, by
determining the (s,1) curves. each eslimate (sy,{;} can be pulled back into the
n-space in which & is given.

There is a tradeoff between the degree of the approximant. the mesh size of
the grid. and the dilficulty of determining lace intersections and adjacent points
in Steps 2 and 3. With increasing degree of the approximant, a coarser mesh
can be tolerated, so that fewer approximant calculations are needed. However,
determining the intersection with the faces of the current cube becomes more
difficuit.
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Implementation

There are pilot implementations of all surface interrogations, and experience
indicates that they are both efficient and robust. Varady and his group have
implemented rolling-ball blends, defined in the dimensionality paradigm, as part
of their solid modeler FFSOLID. Using higher-dimensional surface intersection,
the contact curves and cross sections ol the blend are determined. Then the
blending surface is approximated using double-quadratic patches.

Summary

The role which implicit curves and surfaces could play in CAGD depends on
several factors. If it were easy to convert between the implicit and parametric
forms, then implicit representations could usefully supplement parametric rep-
resentations. and one would convert hetween representations as needed by the
geometric operation under consideration. However, algorithmic conversion is
not so simple, and ongoing research has to lower the cost further belore conver-
sions can become rontine operations. Past years have seen significant speed-ups
of implicitization algorithins, and the continuing interest of researchers should
assure continuing progress.

Two trends for bypassing implicitization ofler alternative routes and have
been discussed. Manocha and Canny’s unevaluated determinants trade pre-
processing costs against the cost of subsequent, numerical computations that
implement a geometric operation. Hoffmann’s dimensionality paradigm pro-
vides exact representations ol complex constrained curves and surfaces. and the
available infrastructure allows interrogating surfaces so defined in an efficient
and robust manner without the concern that a derivation of the implicit form
might pose intractable problems.

There have heen attempts to develop algorithms and design paradigims
that are to compete directly with tle established paradigms and algorithmns of
CAGD. Examples include shape meodification of implicit surlaces by weighted
control point arrangements in space, space deformations, heuristics [or deriving
piecewise implicit curves and surfaces, and solid modelers working with arbitrary
algebraic half spaces. This work is quite recent, and as it seeks to compete with
the long and distinguished tradition of CAGD developing parametric represen-
tations, it would appear that the long-term importance of these efforts depends
much on future research.
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