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Abstract

We review the role of implicit algebraic cnrves and surfaces in computer­
aided geometric design, and disrw,.'I its possible evolution. implicit curves
and surfaces OfTllf certain strengths t.hat complement the strength of para­
metrir curVE'S llllcl surfacffi. An,f'[ reviewing nasic fads from Rigebraic ge­
ometry, we explore the prohlemll of convert.ing het.wt>en implicit and para­
llletric forms. While ronvt'rsioll from paralllf't,ric 1.0 implicit form is always
possible in principle, a number of practical problems have forced the field
to explore alternatives. We review flome of these alternatives, based on two
fundamental ideas.

First, we can defer the symbolic computation necessary for the conver­
sion, and map all geometry algorithms to an "unevaluated" implicit form
that is a certain determinant. This approach negotiates between symbolic
ami numeric",1 computation, placing greater stress all the numerical side.

Second, we can sidestep all symholic computations by not even formu­
lating an implicit form, but rather using a more general system of nonlinear
equations. Doing so simplifies a number of otherwi~e difficult geometric
operations, but requires developing a separate algorithmic infrastructure.
This second approach generalizes both implicit and parametric forms.

Introduction

By far the mO!'it ..ammon repres!:'ntation for curves and surfaces in COfnIJ1lter­
Aided Geometric Design (CAGD) is the parametric n"presentation, as is evident
from the literature. The reasons are not only historic. but are also rooted
in a well-established body of work that elegantly relates intuitive geometric
shape with the mathematical representation. and that clarifies approximation
and interpolation properties of specific classes of parametric curves and surfaces.
Nevertheless, CAGD also studies implicit algebraic curves and surfaces, for this

'Supported ill part hy ONR Contra.c:~ N000I4-90-.1-1599, hy NSF Granl CCR 86·19817,
and by NSF Grant EGD 88-03017.
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larger class of cmves and surface-s is dosed under many geometric operations
of intere-st, while t.he cla."is of parametric representations is not; e.,:;., [4]. For
e-xample. given a. base curve, its ojJs('t by a fixed distance is not, in general. a
parametric curve, and must therefore be approximated. Moreover, given a point
p, it is easy to determine whether]J is on an implicit cnrve or surface, but this
detNmination is not easy if the curve or surface is parametrically represented.

CAGD typically deals with splines; that is, with curves or surfaces that con­
sist of individual segments or patches, each belonging to a separate parametric
curve or surface. In contrast, this paper considers only individual curves and
surfaces.

The study of implicit algebraic curves and surfaces naturally draws on alge­
braic geometry, a subdiscipline of mathematics that provides some foundational
insights into the basic algebraic and geometrir. properties of algebraic curves and
surfaces, including parametric curves and surfaces. So, the paper begins with a
hrief review of selected facts from algebraic geometry, and discusses the prob­
lems of converting from parametric to implicit. and from implicit to parametric
representations. The conversions require suhstantial symbolic algebraic com.
putations, hinderin,e; the wider liSP of implicits in applications. This situation
should change as work in symholic a,lgebraic romputation advances. and recent
yean; have seen impressive progress. But past experience with implicitization
algorithms has also motivated other research on implicit curves and surfaces
that side-steps this issue altogether. Some of that research is also discussed.

Concepts from Algebraic Geometry

In all effort to eliminate exceptions and special cases from its theorems, alge­
braic geomptry tl.!'ISHmeS tllat the cnrve or surface points under consideration
may have compl(>x coordinates. a.nd that thprp. are points "at infinity." AL­
though !'Iudl generalizations are not necessarily of immediate interest to CAGD.
the geometry of a curve or surface at infinity or in the complex part of affine
space can influence the details of certain compntations, and some cases will l>e
mentioned. Al>hyankar [1] presents algebraic gl'ometry material from <I. founda­
tional view point. Hoffmann [4] presents the material from a geometric modeling
perspective, giving hoth intuition and selected technical details.

All implicit algebmic curve is given by an f'quation of the form

J(x.y) = L(ti.jXi~/ = 0,.,
where f is a polynomial; that is, f has finitely many terms of the form UjjXiyj,

where the coefficients aij are numbers and the E!xponents i and j are nonnegative
integers. The (affine) curve consists of all real or complex points (x,y) that
satisfy the equation.
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An implicit algebraic surface is given by all equation of the form

f(x, y) = L Ujjkxiyj zk = 0
i,j,k

where f is a polynomial in x, y, and z. The surface consists of all real or complex
points (:r.,y,z) that satisfy the equation.

The degree of a term is the sum of the {'xponents; that is, the degree of
aijXiyj is i + j, and the degree of fLjjkxiyizk is i + j + k. The degree of a
polynomial is the maximum of the degrees of iLs terms.

An implicit equation of degree I defines a strai!!;ht line or a plane. Conversely,
a straight line in 2-Rpace or a plane in 3-spar.p. ran always be represented by an
implicit equation of degree 1. Degree 2 implicit equations define conics and
quadrics. Conversely, every conic or quadric can be defined by a quadratic
implicit equation.

A conic or quadric could be degenerate. A degenerate conic consists of two
lines (parallel, intersecting, or coincident), and a degenerate quadric consists of
two planes (parallel, intersecting, or coincident). It is well-known that a conic
or quadric is degenerate if, and only if, the polynomial of its implicit equation
can be factored into two linear factors, possibly with complex coefficients.

The degree of the implicit equa.tion correRponds to the geometry of the im­
plicit curve as follows: If the equation has de.e;ree n, then all but finitely many
lines intersect the curve in n points. Similarly, a. snrface equation of degree n
means that aU but finitely many lineR in space intersect the surface in exactly n
points. This requires counting some intersection points as multiple intersections
and considering intersections "at infinity." A more general statement is made
by Bezout's theorem:
Theorem (Bezout)

Two algebraic curves of degree m and n intersect in either nm lJOints. or
else in infinitely many poinLs.

Bezout's theorem for implicit surfaces js not stated here because this would
also require discul'ising algebraic space curvp.s and the question of how they
should be represented implicitly.

Implicitization of Parametric Curves and Surfaces

Every inl.£'~ral or ratioll~,l param£'tric algebraic" C".lIrve in the plane can be rep­
respnted hy an impliC"it. al.e;ebr::tk equation, ;'lIId every integral or rational para­
metric surface in ;j-space can he rE'presented hy an implicit algebraic equation.
The proces!'i of convert.in.e; a parametric curvE' or sllrface to implicit form has
been called implicitization. Technically, the converl'iion amounts to eliminating
the parametric variablE'(s) from the equations defining the parametric curve or
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surface. For example, consider the parametric curve

_/'y_.

If t is eliminated from the two equations. the implicit curve equation

h, (s,l) h,(s,t) h,(s,t)
x= y= z=

1,0(s,/) ho(",I) ho(s,t)

be a parametric surface. Then the surface is implicitized by eliminating sand

t from the system

is obtained. In the case of surfaces, two pa.rameters lIluSt be eliminated. For

example, let

x ho{s,t) - ht{s,t)

yho(s,t) - h,(s,t)

zho(s,t) - h1{·~,t)

o
o
o

( 1)

therehy ohtaining a sin!!;le equation of the form

!(x,y,z) = 0

Thus, the problem of implicitizinp; a parametric curve or surface can be reduced
to the problem of eliminating one or two variahles from a system of nonlinear
algebraIc equations. The technical issues are how one can do variable elimination
algorithmically, a.nd whether the elimination algorithm introduces extraneous
factors. Le .• whether the resulting polynomial is J(x,y,z) = !J(x,y,z)h(x,y,z)
where fl(X,y,Z) = 0 is the implicit equation and h(x,y,z) is unnecessary.l

The process of eliminating variables from systems of linear equations is
widely known. There are also well-established techniques for eliminating vari­
ables from nonlinear algebraic equations, hut they are less well· known and
are technicaHy more demanding. The three main alp;orithmic approaches are
resultant-based elimination. the Wu-Ritt method. and the Grabner bases method.
Hoffmann [4] gives an introduction to resultants and Grabner bOUies from a ge­
ometric modeling perspective. K<l-pnT and Lakshman [i] survey all three ap­
proaches from the vantage point of elimination theory.

Resultant-Based Elimination Methods

The oldest. and by now best-known. methodology for eliminating v<triables is the
resultant method, whose development began in the last century. The resultant
of a system of 11 +1 algebraic equa.tions in n +m variables Xl> ... , X n, Hi. ... , Yrn is

1 t( the snrrac:e has bM;e poinls. the system (I) ma.v entail e~lraneou9 solutions Lhal must

be ex:cluded wilh special techniques. as ex:plaiued later.



an expression in m variables YI, "', Yrn that V<tllishes for a specific set of values
of the !Ii if, and only if, the original system has a. solution for the same values
oftheYi.

In the simplest ca."e, n = 1 and m =0, we are given two polynomials J and 9
in one variable. The Sylve!~ier resultant of the two polynomials is a determinant
whose entries are the coefficients of f and g. The resultant is zero jff the two
polynomials f and ,l} have a common root..

Implicitizing the rational parametric curve

I(t)x= __
h(t)

g( t)
Y = hit)

(2)

is the case n .:::: 1, m.:::: 2, for it may be considered as the problem of eliminating
t from the system

xh(t)-/(t) 0

yh(t) - get) = 0

The two polynomials of the system are thought of as polynomials in the variable
i with coefficients that are, in turn, polynomi<l.ls in x and y. Applying the
Sylvester resultant then given the implicit (orm. Manocha and Canny prove
that the algebraic set defined by the polynomial obtained with the resultant
is irreducihle provided the parameterization han 110 base points, that is, if, for
certain parameter values, the denominator <l,nd the numerator functions vanish
simultaneollsly. Implicitizing Curves without ba."e points that are given by an
unfa.ithful parameterization still may lead to lligher multiplicity. For example,
as discussed by Recio, the Sylvester resultant for x == t2, Y = fl is (x 2 _

y)'l. However, higher multiplicity can be determined by GeD computations, a
substantially cheaper operation than polynomial factorization.

The Sylvester resultant is of limited use, because it does not apply directly
to the prohlem of implicitizing parametric surfaces. It is possible to use the
Sylvest"r resultant if we consider eliminatin~ the parametric variables sand t
successively. As noted in f7J, however, this a.[lproach is inefficient. Moreover, it
may introduce extraneous factors; sC'e [4J, ChaJl1.f'r 5.

MallY different resulta.nt formUlations have hf'pn proposed at the beginninl!;
of this CClltury, both for curve and for surfaff' illlplicitization; see, e.g., [9J. For
example, the Macaulay resultant eliminates all arbitrary number of variables at
once, but requires homogeniZing the polynomials and is sensitive to the behavior
of the system at infinity. There is also current research on resultant formulations,
especially ill the presence of base points.

Grobner Bases MethOds

The concept of Grabner basis is clue to Buchberger, and is surveyed in [2J. Let
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be a finite set of polynomials in n variables. The set of common roots of t.he
Ii is Gl.lled the algebraic .<;et defined by F. The set F is equivalent to another
set G iff the two sets of polynomials define the same algebraic set. accounting
for multiplicities. It may be t.hat the set (; allows us to better understand the
algebraic set it defines than the original set F. For example, if the Ii are linear
in the ~j and tne set (; is ('quival~nt but in triaul'!;ular form, then the solutions of
c: <tre easily found. The idea of Buchberger was to construct, from a given set F
of polynomialf'i, an equiva.lent set G l.hat allowf'i hetter insight into the structure
of the associated algebra.ic set, and he called such a set a Grabner ba.'iis.

When applied to implicitization. the initial set F consists of two or three
polynomials defining the parametric curve or surface, respectively, and the set
G will be such that it contains the implicit form of the curve or surface. In
the ca.<;e of rational curves and surfaces. additional polynomials are needed that
account for the possibility of base points.

Thpre is a bro<'l-d lit~rature developing the lise of Grebner bases in symbolic
computation and its application. Chapter i of [4J gives an introduction into the
method a.nd it,::; tlvplications t.o I'!;eometric modf'Jilll'!;. Here, only the uasic idea
of the al/!;orithm is sketched aud how it applies 1.0 the implicitization problem.
[t is \lot possible 1.0 describe the technical dC'tail,::; of the method in this paper.
so we confine the descrjption to an intuitive outline of the computational stages
and their motivation.

In order to derive an equivalent set G that makes explicit the properties of
the algebraic Ret, the initial set F of polynomials is rewritten. Two activities
are carried out:

1. New polynomials. called S-'JOlyn.omia/.'J. a.re formed from pairs of old poly­
Ilomials by a certain rule, reminiscent of the way in which the least com­
mon multiple of two numbers is formed.

1. The polynomials me reduced by rewritinl'!;, a process in which suitable
multiples of other polynomials in Fare subtra.cted to cancel complicated
terms.

Tn the course of this comptrt<ttioll. the Humher of polynomials in the set will
fluctuate: Some of the Hew polynomials will rE'duce to zero and thus do not
contribute to the sel. of polynomials. Some old polynomiall'i may all'io reduce
to zero when certain new polynomitlls have bE'en added to the set. When all
S-polynomitl,ls redllc<' to zero. the RE't of polynomials is a Grebner uasis.

Rewriting;. and the fin'll nature of the Grebner hasis depend on an order­
ing of polynomials. whieh ill tum elppends on an ordering of the terms of the
Jlolynolllialf'i. Diff('f('nt term ordNilll'!;s can l>e given. In particular. the lexica­
gmpltic ordering results in a Grebner basis that has a triangular structure. In
the implicitizatioll problem tne haRis mUl'lt ('ontain the implicit form without
flxtmneOIlS factors.
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For example. assume that we are to implicitize the surface

:/; = st

We c:onstruct the Grabner basis of the input set

(3)

with respect to the lexicographic nrdf'ring induced by the variable ordering z -<
y -< x -< t -< 8. We could have chosen a different variable ordering as long as
the parametric variables sand t a.re of higher order than x, y, and z, and thus
are eliminated first. We obtain ~he following Grabner basis:

G={ x"_y2z ,

tx - y, tyz - x 3 , t2z _ x 2 ,

sy _x2, ,q,T. -tz, sf. -x,s2 -z}

(4 )

The first polynomia.l, x-t - y1 z , is the implicit form of the surface. The second
polynomial introduces the variabll-" t and proviclps a way to find the parametric
t coordinate of a surface point: Solvp tx - y = 0 for the surface point (x, y, z) to
obtaIn t. In the same wa.y,.~ can he fonnd from, say, sy - x 2 • Thus we can also
solve the inversion problem and find for a given point on the parametric surface
its (,q, t) coofclinatps.

If the curve or surface is rational, common roots of the 1ll1merator and de­
nominator polynomials ca.usp problems. To avoid this, Kalkbrener has suggested
adding certain equations to the systems (1) and (2). For ex:ample, in the rational
curve case (2) we add the equation

,,"(lj-l=O

where 1L is a new variable. The equation states in intuitive terms that h(t) does
not vanish. Thus, the roots of h(f.) are excluded and with them aU base points
of the curve.

An important variant of the computation for efficiency considerations can be
htl..c:;ed all b(l!~i.q cOnJlp.r,5ion, a compntation dllP to Faugere, Gianni, Lazard, and
Mora. In this variant, only one E'lement of the basis r; is dptermined, namely
the implicit form of the parametric. rurve or surface. See [4] for details.

Wu-Ritt Method

A different method for variable elimination was developed by Wu Wen-Tsiin
[10] using an idea proposed by Ritt [7J. WU was interested in automatically
proving theorE'ms from geometry. The theorems are translated into an algebraic
problem in which the question is investigated whether a particular polynomial
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J coding the wnclusion of the theorE!m follows from the hypotheses, encoded as
a set F of polynomials. In geometric terms. J follows from F if the algebraic
set of F is contained in the algehra.ic set of J. The method transforms the
given system F of polynomials until it has a certain form. The transformation
involves rewriting the polynomial~ ill F repeatedly, using pseudo-division, and
adding the remainders to the set F.

As in the Grahner bani!> ca.se, thp description that follow!> remains intuitive
and omits many t('chnical details. Sf'f' (7] for more details.

The objective of the Wu-Ritt Illp.thod is to transform F into a triangular
system of polynomials. Again. the variables are ordered, but now multivariate
polynomials are thought of as polynomials in the highest occurring variable
whose coefficients are polynomials in the lower-order variables. III turn, the
coefficient polynomials are also so viewed. In the ba.sic loop, a subset of F
is identified by selecting polynomials of lowest degree whose highest occurring
variable is not yet in the subset. The subset so selected is a base set, and
all polynomials in F are pseudo-divided by polynomials in the ba.se set. The
remainders so ol>tainE!d are added to F and the process is repeated. Ultimately.
110 new pol.vnomials are <Hided, ami thE! final I>a.<;e set is triangular.

When applied to sets such as ( I) or (2) with a variable ordering t -<.~ -< "',
the implicit form will be constructpcl. possibly wit.h some extraneous factors [7].
We illustrate the procedure with t.he parametric surface (3). The input set F is

x - 8t

Y _ .<;t2

;; _ 05 2

Pseudo-division of (6) by (5), with respect to 05, produces the remainder

.'I - xt

and pseudo-division of (i) by (5) procluces the remainder

(5)

(6)

(7)

(8)

(9)

Tn both polYllomial!; the va.ritlhle.q 11(1." neen pJilllinate.d, bpcause (5) is linear in
.5. Now pseudo·division of (0) by (R) produces the remainder

which is the implicit form.

Implementation

Careful implementation of <I. suitalJlE' resultant formulation can be the l>asis of
implicitiza.Lion algorithms that arp. fairly efficient. Manoclla and Canny have
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achieved good running times using numerical techniques to augment the sym­
[wlic computation. Using a modifir.ation of ba.'ii!i conversion, Hoffmann achieved
attractive speed-ups for GrCilmer btl.sed 1mpJicitization. Gao and Chou report
good results using the Wu-Ritt method for implicitization. Each approach has
its proponents who advance the computational machinery by making it more
a,nd more efficient. However, even though recent years have seen performance
improvements of several order::; of ma~nitude, the earlier, slower algorithms ha.ve
If'ft many practitioners with the impression that implicitization 1s necessarily
impractical. It is not clear whether this impression remains justified.

Parameterization of Implicits.,
We stated before that every parametric curve and surface has an implicit repre­
sentation. The converse is not true, and there are implicit curves and surfaces
that are provably not representahle in rational parametric form. The problem
of finding a parametric repre::;entll.t.ion for a given implicit algebraic curve or
surface has therefore two distinct parts:

(a) Deterlll ille if the ClHve or ::;11 rface call lJp parameterized. and if so,

(b) find a parameterization.

For nondegenerate quadrics the first part is unneCessary, because every nonde­
generate quadric can be parameterized.

There hi a geometric interpretation of the parameterization process of curves
that is best understood when parameterizing conics:

I. Pick a curve point and consider a pencil of lines through it. Note that the
lines in the pencil Can be indexed by a parameter, say the slope of the line.
and that the lilIes intersect the conic in two points, the point we picked
and one other point.

2. Determine for each line the second intersection with the conic, as a func­
tion of the parameter indexing Lhe line in the pp.llcil. The symbolic coor­
dinates of this intersection point are thp. coordinate functions of the conic.

As example, consider the unit circle

Pick as fixed point (-1,0), say. The pencil of lines through this point is given
by

Y -Ix -l = 0

Each value of t defines a particular line of the pencil. It is easy to vf'rify that
{'very such line contllins (-1, 0) aIH] t.hat t is the slope of the line. Substituting
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for y aile[ solving for x give~

1 - l2,----
·-1+t2 ( 10)

a.nd so y is given by

2'
Y=l+l' (11)

The two equations (10) and (11) constitute a parameterization of the circle.
This geometric idea generalizes to other curves in two ways:

1. ror certain hip;her-degree curves a pencil of lines suffices. but the point
must be singular of the right multiplicity so that, apart from tne fixed
point, the lines in the pencil intersect the curve in only one other point.

2. Instead of lines, a family of curves may have to be used, of fixed degree,
chosen to contain several fixed points of the curve we wish to parameterize.
Again, the fixed points must have the right multiplicity.

Note that by I3ezout's theorem a lillP intersects a. curVE' of dep;ree n in n points.
Therefore. if <l. pendl of lines is to suffice. it curve point of multiplicity n _ I
is required. Curves that possess such a point are called monoids. Conics are
trivially monoids. There are also monoidal surfaces, for instance quadrics, and
they are parameterized by an analogous construction.

The following exposition is relatively brief and omits some technicalities. For
greater detail see, e.g., [II].

Degree 2 Curves and Surfaces

Degree 2 curves call b~ parameterized lIsing the pencil-of-lines approach. A
curve point is choSE'Il. which ma.v he a point at infinit.v. For examrle, if the
parabola y - x 2 = 0 is to he parameterized, choosinp; its point at infinity,
or choosing t.he point (0,0) gives the familiar parameterization x = t, .JI =
f,2. Other points 011 the parabola could also be chosen. leading to different
parameteriz<l.tions.

A second approach translates the pencil-or-lines approach into an algebraic
procedure. Roughly speaking, the implicit curve equation is transformed so
that the y'.!-term vanishes. using a projective coordinate transformation. Ge­
ometrically, this is equivalent to cnanging the coordinate system so that the
curve conta.ins the point a.t infinity that lies in the direction of the y~axis. The
transformed curve call then be parameterized lIsing;r = l, and from this param­
eterization a parameterization of the original curve can be obtained by applying
the inverse coordinate transformation.

The third methorl for parameterization applies a numerical iteration to the
implicit equation written as a bilinea.r matrix form. The effect of the iteration
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is to diagonalize the matrix. On('.(> <Jiagonalizeet. a !'itandard parameterization is
Ilsed that I!;ives the partlmeterizatioll of the original curve after subjecting it to
the inverse of the transformatioi'hlefined by t,he iteration.

All three approaches generalize to quadric surface!'i. In the first approach,
a fixed point is chosen and a bUn<lIe of lines r,hrolll!:h that point is considered.
Each line in the bundle is now determined by two parameters instead of one.
The computational deta.ils are ron tine. In thE' second approach, the quadric is
transformed such that the conic in which the quadric intersects the plane at
infinity goes throll?;h a special point. In that case, one of the quadratic terms,
say Z2, vanishes from the quadric equation. The transformed quadric is therefore
paramE't<'rizahle with x ::= oS, y = t. In the third approach, the same numerical
iteration is applied, for it does not depend on the size of the matrix. Again.
a standa,nl parameterization of the surface, defined by the diagonal matrix, is
back transformed to a parameterization of the original surface.

Cubic Curves

Only singular cubics have a parametric form, that is, cubics that have a singular
point. ThC' singularity may not he readily a.pparent: For example, y - xJ ::= a
is <,vidently parameterized by x ::= t, y ::= tJ , hilt has no finite singular point.
Here, th<' !'iingularity is at infinity.

Choose a pencil of lines through this singula.r point. Since the fixed point is
a double point, a line in the pencil intersects the cubic in one other point, and
determining this other point in terms of the line index t gives a parameterization
of the cubic. This approach assumes that we know where the singularity is.

There is an algebraic computation that tests whether the cubic is parame­
terizable and if so, determine!'i a parameterization. noughly speaking, the Cll bie
curve equation is trallsformed into an equation of the form

Y'=f(x)

where J could hav(> degree 4. It Ctl,n be shown that tile cubic is parameterizaule
iff f(x) has a double root. In that case, a second transformation yields an
eqnation

fi'=g(x)

where g(x) is at most quadratic. This curve can he parameterized as a conic and
the parametNizatioll is back transformed to a paramet.erization of the original
cubic.

Monoids

A monoid is a curve or surface of degree n that has an (n-l}-fold singular point.
All conics and quaetrics are monoids, uecause in this case n ::= 2 and regular
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points ha.ve multiplicity 1. For cubics it double point is required. Higher-order
monoids include tIle Steiner surfaceFi. Monoids alFio a.re called dual foml.S by
some authors be£'.ause they are so easy to parameterize provided we know an
(n - 1)-fold point.

BrieRy. monoids are parameterized using pencils of lines. If the (n - I)-fold
point is brought to the origin of the coordinate system, the monoid equation
becomes especially simple. In the case of curves it is then

hn(x,y) - hn_.(x,y) = 0

and in the case of surfaces it is

hn.(x, y, z) - hn._l (x, y, z) ::: 0

where. hn is a polynomial all of whose terms have degree 11, and hn_ 1 is a
polynomial all of whose terms have degree n - I. The curve is parameterized by

( )
Ihn_1 (5, I)

Y .". f. ::: -C'-;-'--:':-'­
"'",($,l)

Either .~ or t is set to 1. For monoidal surfacE'Fi, the parameterization is

X(T,s,t)

U(T,s,t)

z(r,s,t)

rhn l(r,8,t)
hn(r,s,t)

shn l(r,8,t)
hn(r,s,t)

thn l(r,s,l)
hn(r,s,t)

Again. one of the parameters r, 5, or t is set to 1.
For example, consider the unit sphere containing the origin

Clearly hn ::: x 2 + y2 + Z2 and h"_l :;;: -2.<:. With r ::: I, the surface 1S

parameterized by
2/

1 + .~2 + r'l
2/.2

1 + .q,2 + /.2

2"y(s,l) =

X(8, t)

1 + ~q2 +t 2

Note that we could have set 5 ::: 1 or t ::: 1 instead.
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Deferring Implicitization

Univariate ;wd multivariate r('suita-llts are es!';pntially determinants, or determi­
uitnt quotients, whose f'_ntrips are I>olynomiais il_ud whose value, in the case of
implicitization. is th('. implicit form of a parametric curve or surface. The major
cost of implicitization, using resultants, is the evaluation of this determinant
because it requires manipulating polynomials with many terms and, possibly,
large rational coefficients, assuming pxad arithmetic is usecl.

One of the strengths of the implicit form is the ability to evaluate it for a
given point, and to decluce from the value whether the point is on the surface
(zero value), or outside (negative value) or inside (positive value). Manocha and
Canny [8J observed that this evaluation can be done equivalently by evaluating,
in the resultant, each entry, followed lJy an evaluation of the now numerical
determinant. Since the polynomial E'ntries in the determinant are linear, evalu­
ating them numerically is very simple.

The approach requires that the implicit [orm, <IS evaluated by the determi­
nant, does not have. extraneous fa,Lors. In anotller paper, Manocha and Canny
prove that for curves su,h determinants always exist, although the presence of
b<lse points requires special techniques. For surfac:es the determinants also exist
provided all lJase points are simple. The C<Uie of surfaces with base points of
higher multiplicity is open.

In applications such as the intersection of two parametric surfaces, some
authors have advocated implicitizing one of the surfaces, and substituting into
it the parametric equations of the other surface. This reduces the evaluation
of surface intersection to the evaluation of plane curves. as explained in [4].
One may think of this approach to surface intersection evaluation as having a
symbolic preprocessing step, here the impliciti7.ation and substitution, followed
by a numerical computation. the evaluation of the plane curve. Mallocha and
Ca.nny [8J subRtitlite the parametric equatiollR inLo E'very determinant entry,
and tilE-II E'valuate the determinant 1l1lmeric;dly, for each curve point. Their
tl.pproac:h. thE'reforc, reelllc!!!; Lhe role of Rymholk fOmputation in preprocessing.
This reduction en\.tl-il::; additionall1l1lllE'rical fOlllpuLatioll.

EvaluatinJ!: a plane curve numerically may require a number operations, such
as derivative evaluation. If the plaue curve is represented by a determinant
whose entries are polynomials, then special algorithms are required. In [8J such
algorithms are described.

Constrained Surface Representations

Certain curves and surfaces are naturally desnibed in terms of one or more base
curvets) or surface(s) and some geometric com;traints. For instance. ,e;iven two
base surfaces / and .q, consider all points in 11pace that have equal minimum
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distance from the given surfaces. Such points form the equal-distance surface
of j and g. Other examples include offset c.urves and surfaces, and blending
surfaces obtained as envelope of a. rolling ball.

Despite the conceptua.l simplicity of defiJiing such curves and surfaces in­
tuitively, a.n exact mathematical representation of them is difficult both in the
case of the parametric and the implicit representations. Often, neither repre­
sentation can be reasonably determined, and so we seek an alternative to these
two representation schemata. The (limensionality paradigm provides such an
alternative [6].

The Dimensionality Paradigm

The definition of a constrained surface often simplifies when we cOllsider it as the
natural projection of a manifold in hil!;lter-dimensional space. The manifold can
be defined simply hy a system of nonlinear eqnations in It variables, where 1/. > 3
in general. The pxtra variables identify certain pointfi on the base slirface{s),
or .spedfy distancefi or other j:!;eolllE'Lrk elata. The surface we want is then the
natnral projection of this manifold iuto a thrf'p.-dimellsional suhspace.

If the bas", surfaces are algebraic. then the additional variables could he
eliminated from the system of equations, at least in principle, resulting in the
implicit surface equation. Such an approach is normally intractable, for the
elimination problems are usually well beyond what hardware and software can
deliver in the forseeable future. Therefore, one should work directly with the
system of equations. If the degree of the implicit form is high, and this occurs
ofteu, it is also reRsonable to expect that subsequent numerical computations
are more stable when performed on the system of equations, rather than Oil the
implicit equation.

Example Definition

Assume that two base ~urfaces f and g are given whose equal-distance surface is
fiollght. The hase ~urfar:es could hfi> parametric or implicit. Using a declarative
style. we C<lll then dli'scribe the equal-dista.nce surface as follows:

1. Let l' = (x,y,z) be a point on the equal-distance surface. Moreover, let
PJ = (u," VI, wd be a point at minimum distance from P on j, and let
P.9 = (U2' V2, 11-'2) be a point at minimum distance from p on the surface g.

Then:

2. The point PJ satisfies the equation of j, and the point PrJ satisfLes the
equation of g.

3. The distance (P,P!) is equallo the dist.ance (1',/19)'

/1. The line p,pJ is lIorlllal to j al /lJ.

14



!'j. The line TJ,Pg is normal to gal. Py.

Assertion ( l) declares the Hames of nine variil.hles tIl at comprise the coordinates
of the three points p, Pi and Pg. Assertions (2)-(5) express the geometric rela­
tionships that these points must satisfy. As shown in [5J, the assertions translate
very simply into a system of nonlinear equations. In principle, an implicit equa­
tion could be derived by eliminating the six variables {ut, VI, ••• , 'W2} from the
system, hut in almost all rases this computation is not tractable.

The entire system of equations defines a manifold in 9-dimensional space.
The projection of that mil.nifold into the (x, y, z).subspace is the equal-distance
surface. A number of papers by ehandru, Chiang, Chuang, Dutta, Hoffmann,
Lynch, Vermeer, and Zholl discuss other examples of surface definitions using
the dimensionality paradigm, in~uding offset surfaces, constant-radius blends,
variable-radins blends. rulf'd surfaces in parametric blending, and trimming sur­
faces in medial-axis computations.

Surface Interrogation

There is ii, considerable body of algorithmic infrastructure for surfaces defined
using the dimensionality paradigm, including

1. Given two snrfaces and an initial pojnt, evaluate their intersection; see
[4J. The algorithm is robUl:;t and can evaluate very high-degree surface
intersections without significant precision problems.

2. Given a surface and an initial point, evaluate locally the curvatures, and
give a local parametric or local explicit surface approximant of arbitrary
contact order, {3].

3. Given a surface and an initial point, glohally approximate the surface; [3J.
The al~oritlun has all adaptive version in which local curvature informa­
tion determines the number of approximants.

These algorithms can also be used when the system of nonlinear equations is
nonalgebraic.

Global Approximation

It is easy to derive a marching scheme for curves snch as surface intersections.
A similar scheme for evaluating surfaces requires a way to orient the exploration
in spa<'e such that the same neighborllood is not reevaluated. In (:lJ this proh­
lem has been addrpssed in the context of the dimensionality paradigm. The
techni(]ue comppt.ps well with other approa<'.hps such iI,<; Allgower's simplicial
continuation methorl. or the movill~-frame mel,horl of Rheinboldt. The global
approximatiol1 is h::l.<;ed on the following idea. Given a manifold S by a system
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of equatiolls .md on it a point IJ, construct a piecewise approximation of S,
beginning at 1) and extending in all directions.

Rheinboldt's moving-frame method triangulates the tangent space at p and
transfers the triangu.lation to S using Newt"on iteration. Each vertex of the
triangulation. after projection to a point q on S. becomes the center of a new
triangulation, of the tangent space at q. The algorithm resolves local overlap,
but cannot resolve j:!;lobal overlap. Thus, when constrnctinl'!; an approximation
of a sphere hy this method, one would not know when the entire surface has
been approximated.

All!/;ower's method is based on a triangu.lation of ambient space and only
evaluates the systPlTI of equations. At each vertex of a simplex, the system of
equations is evaluated a.nd from the vector of functioll values a linear approx­
imant is constructed. Then the simplex faces that int<:m;cct the linear approx­
imant are determined, and adjacent simplices are eV<lluated in the same way.
Note that the ambient n-dimensional space is triangnlated. Thus. the number
of simplices in an elementary volume grows exponentially with the number of
variables. However, the method doel'! not require evaluating derivatives of the
equations of the system.

In the case of surface definitions with the dimensionality paradigm, the sur­
face that is ultimately of interest is the projection into a three-dimensional
subspace. It is therefore advantageous to approximate only the projection. and
Chuang's algorithm does this, using a grid in 3-space to detect whether a volume
of space has already been explored.

1. At IJ, construct a local approximant to S. The approximant has the form
Xi = hj(s,t), 1.s i;; n.

2. Determine how til(! projected approximant, (h t (s,l),h 2(s,l),h3 (s,t)), ill­
tPr!>ects the faces of the cube, as a function of 09 and t.

3. From the intersection curves. determine the coordinates (091, tt) of a point
on the approximant that lies in an adjacent cube.

4. Reline tIle estimated point with Newton iteration.

The advantage of this method is the fact that the dimension of the meshed
space does not depend on the numbf'r of variables lIsed to define S. Yet, by
determining: the (s, f) curves. each estimate (Sl, tl) can be pulled back into the
n-space in which S is given.

There is a tradeoff between the degree of the approximant. the mesh siZl:! of
the grid. a.nd lhe difficulty of determining face intersections and adjacent points
in Steps 2 and 3. With increasing degree of the approximant, a coarser mesh
can be tolerated, so that fewer approximant ca.\culations are needed. However,
detE'rmining the intersection with the faces of the ('urrent cube becomes more
difficult.
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Implementation

There are pilot implementations of all surface interro/1;atiolls, and experience
indicates that they are hoth efficient and robust. Varady and his group have
implemented rolling· ball blends, defined in the dimensionality paradigm, as part
of their solid modeler FFSOLID. Using higher-dimensional surface intersection,
the contact curves and cross sections of the blend are determined. Then the
blending surface is approximated using double-quadratic patches.

Summary

The role which implicit curves and surfaces could play in CAGD depends on
several factors. If it were easy to convert between the implicit and parametric
forms, then implicit representations could usefully supplement parametric rep­
resentations. and one would convert between representations as needed by the
geometric opE'ratioJl under rOllsidf'ration. However, aJ/!;orithmic conversion is
not so !'iimple, and on~oing researr.h has to lower the cost further before conver­
sions call become routine operations. Past years havf' Sef'll significant speed-ups
of impliciti7.ation al/!;orithms, and the continuin/!; interest of researchers should
assure continuing progress.

Two trends for bypassing implicitization offer alternative routes and have
been discussed. Manocha and Canny's unevaluated determinants trade pre­
processing costs against the cost of subsequent, numerical computations that
implement a geometric operation. Hoffmann's dimensionality paradigm pro­
vides exact representations of complex constrained curves and surfaces. and the
available infrastructure allows interrogating surfaces so defined in an efficient
<I.uri robust manner withont the concern that a derivation of the implicit form
might pose intractahle problems.

ThE'rf' have IH'PIl attempts to dp.velop al.e;orithms a.lld design paradi~ms

that are to competp. directly with the established paradigms and algorithms of
CAGD. Examples include shape modification of implidt surfaces by weighted
control point arrangements in space, space deformations, heuristics for deriving
piecewise implicit curves and surfaces, and solid modelers working with arbitrary
algebraic half spaces. This work is quite recent, and as it seeks to compete with
the long and distin/!;uished tradition of CAGD developing parametric represen­
tations, it would appear that the long-term importance of these efforts depends
much on future research.
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