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The Problem of Accuracy and Robustness
Geometric Computation

Christoph M. Hoffmann'

Abstract

Except in very simple cases, input and output of geometric algo
rithms are data structures containing both numerical and symbolic
data. While it. is fair to assume that the symbolic data is exact, the
numerical data usually is not. In consequence, the geometric algo
rithm must account for the possibility of internal data inconsistency,
and foundational techniques must he developed that are capable of
dra wing meaningful conclusions. We will sketch the dimensions of this
problem and outline a number of approaches that might succeed in
dealing with it.

1 Introduction
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in dealing with interacting numeric and symbolic data, or as a problem of
avoiding degenerate positions. Here, degenerate position could refer to po
sitional incidence, or to tangential, as opposed to transversal, intersection.

In fact, these issues are interrelated, and are rooted in the problem that
objects conceptually belonging to a continuous domain are analyzed by al
gorithms doing discrete computation, treating a very large discrete domain,
e.g., the set of all representable floating-point numbers, as if it were a con
tinuous domain. There are many situations in which this approach leads
to acceptable results, but it appears that except for very simple geometric
objects this simplification does not work very well, and that it expresses it
self in occasional failure of the implemented algorithm operating on correct
inputs. The purpose of this paper is to examine these problems, to survey
the various approaches proposed, and to assess their potential for devising
complete and efficient solutions. We restrict our analysis to objects with
linear elements, since substantial problems already arise in this case.

Linear geometric objects, in three dimensions, usually consist of points,
edges, and polygonal faces, that are in specific spatial relationship to each
other. The specification of such objects consists then of two parts: nu
merical information, recording, e.g., vertex coordinates or plane equations,
and symbolic data specifying face and edge boundaries, adjacencies, and
incidences.

Usually, the arithmetic data describing a geometric object is given only
approximately, using, e.g., a floating-point representation. In consequence,
the imprecise results may lead to contradictory information about the object
that is input. For instance, the object description may require that four
adjacent faces meet in a common vertex, yet the numerical plane coefficients
for the faces may specify four planes that intersect in four closely-spaced
points, rather than one single one.

In many geometric operations, the result of numerical computation must
be used to infer symbolic fact, e.g., that a vertex of A is inddent to a face
of B. Here, using limited precision arithmetic has the consequence that the
outcome of the computation may crucially depend on the detailed sequence
of calculations. Since there is uncertainty associated with approximate arith
metic computation, some dedsions are made with incomplete information.
Different decision so made must be logically consistent. Moreover, there
are certain symbolic facts that caD be determined by different sequences
of arithmetic calculation which could result in contradictory answers. For
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example, determinjng whether a vertex u of A coincides with a vertex v of
B can be done as follows:

1. Compute the distance of u from each of the planes intersecting in v.

2. If the distance from all planes is smaller than a fixed tolerance, then
declare that u and v are coincident.

In this computation, interchanging the role of u and v could result in con
tradictory conclusions, e.g., we might determine that u is incident to v but
not vice versa.

Given these possibilities, it must be asked what it means that a geo
metric algorithm is correct, and that it delivers an acceptable result for all
legitimate inputs. Indeed, the implementations of virtually all geometric
algorithms will fail for certain correct inputs. In this paper, we examine
the problem, explore a number of approaches that have been suggested, and
comment on their potential.

2 Floating Point Computation

Using a very simple example, Dobkin and Silver [2J have illustrated the dif
ficulty of accurately carrying out geometric computations. They consider a
pentagon A in the plane. Drawing the five diagonals of A, their intersec
tions define an inscribed pentagon B. Let us call the operation of passing
from A to B as going in, and wrhe symbolically B = inCA). Similarly, we
can extend the five sides of A to their outer intersections, thus obtaining
a circumscribing pentagon C. We call this operation going out, and write
C = out(A). Clearly A = out(in(A)) and A = in(out(A)). Taking a pen
tagon A, they iterate the going in operation m times, obtaining B = inm(A),
and then compute C = Qutm(B). Then they compare the coordinates of the
vertices of A and of C. Ideally, they should be equal. In practice, they can
differ by a large error even for values of m as small as 2 or 3.

As illustration, let us consider a pentagon with vertices at (0,0), (1,0),
(0,1), (1 +p,l), and (1,1 + p), for several values of m and of p. See also
Figure 1. Table 1 shows the results, with all computations performed in
single precision IEEE standard floating point arithmetic. The table demon
strates dramatically that the numerical output from very simple geometric
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P out'( in'()) out3(in 3()) in'(out'()) in3( aut3())

0.1 3 .10-5 3 . 10-4 1 .10-5 4 _10- 5

0.01 2.10-3 9 ·10-' 7.10-3 7 ·10-2
0.001 2.10-1 2 15 45
0.0001 5.10-1 00 3 ·10' 00

0.00001 00 00 6.108
00

Table 1: Absolute Error for Iterating going in and going out Operations

operations can be quite inaccurate. [2] suggests extending the precision of
the calculation as needed, until the calculation achieves an acceptable out
put precision for the specific problem. Let us consider the consequences of
this suggestion.

The two operations Herated on the pentagon involve finding the equa
tion of the line containing two given points 1t and v, and computing the
coordinates of the intersection of two lines. Of these computations, finding
the intersection of two lines,

alz+b1Y+Cl = 0

a2x +b2y + C2 0,

is the more delicate one, as it involves inverting the matrix

The accuracy with which the matrix can be inverted can be estimated by
the condition number

See, e.g., [5). Roughly speaking, the larger the condition number, the more
the solution will be sensitive to random perturbations of the equation co
efficients. Such perturbations will occur in floating point arithmetic due
to rounding and cancellation errors. Simplifying somewhat, we estimate
that a relative perturbation of the line coefficients by (" leads to a relative
perturbation of the point coordinates proportional to Hi.
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The condition number of the matrix A can be expressed in terms of the
angle between the two lines. Assume that one of the lines has a. 45° slope.
With fJ the angle between two lines, we can show that the condition Dumber
is

1
-Ui) = 6in«(3/2)

Under extremely favorable circumstances, we expect a perturbation of the
input coefficients of order 2-1

, where t is the machine precision. That is, the
computed result will differ from the true result only by roundoff in the last
representable digit. For small angles fJ we have sin(fJ/2) :=::: fJ/2. Hence, for
an intersection angle of 1/2m we expect to lose approximately m +1 binary
digits.

A specific difficulty with geometric computation is the fact that we want
to subject a geometric object to several operations in sequence, that is, that
these computations are iterated. Hence, the precision loss is additive, e.g.,
when iterating computations such as the going in and going out operations.

We demonstrate the loss of precision due to small perturbation. Assume
that the line intersection (u, v) is computed as follows:

D a1b2 - a2bl

U (C2bl-Clb2)/D

v (U2cl-alc2)/D

We use the pair of lines:

-x + y = 0

-(I +q)x + (I - q)y + 2q = 0

With q = 1/2m and m > 5, these lines intersect exactly in the point (1,1),
at an angle q of less than one degree. Moreover, as long as m does not
exceed the mantissa length, the coefficients are exact in floating-point rep
resentation. With these precise numbers, the point (1,1) is determined
without error by floating point arithmetic. We then perturb the coefficients
by p = 1/21

, choosing t to machine precision. Specifically, we solve the fol
lowing perturbed system, expected to lead to the largest deviations with a
coefficient error no greater than machine precision:

-(I+p)x+(I-p)y 0

-(1+ q - p)x + (I - q + ply + 2q 0
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With q = 1/218
, the two lines intersect at approximately one arc second,

resulting in a condition number of 219 . So, we expect to lose about 19
significant binary digits when perturbing the system by machine precision.
Indeed, while the computation for the unperturbed system yields (1.0,1.0)
exactly, the perturbed system, with t = 23, yields the point (1.07,1.07), in
good agreement with predictions.

We now return to the pentagon problem. Suppose we could guarantee an
angle of no less than one arc second, between any pair of lines encountered
dudng the iteration. Then computing going in three times followed by three
going out operations would require doing the calculation at more than triple
precision, to guarantee a meaningful result. Quadruple precision calculation
would yield, in the worst case, only 14 significant binary digits, Le., a little
more than four decimals. Note that the internal precision needed depends
on

1. an estimate of the minimum occurring angle, and

2. fixing in advance the sequence of operations to be done.

Both factors may be unknown for the geometric problem at hand.

Dobkin and Silver suggest computing an accuracy estimate for each ge
ometric calculation. Rather than using the condition number, however, the
inputs to the computation are systematically perturbed and the effect on the
output is measured. That is, the inputs are perturbed and the computation
repeated. [2] states that 3 or 4 different perturbations suffice to obtain an
accurate estimate of the actual output precision. Such an analysis allows
also, in principle, an estimate of the internal precision needed to solve a
problem instance with a desired accuracy.

3 Purely Symbolic Representations

We consider whether a symbolic representation can avoid the numeric prob
lems completely, while not introducing new and difficult problems. To this
purpose, we investigate geometric objects consisting of lines, given as [a, b, e],
and points, given as (u,v,w), where a, b, C, U, v, and ware symbols drawn
from a fixed universe.r;-. Here, the triple [a,b, e] symbolizes the line equation
ax+by+ez = 0, and the triple (u,v, w) projective point coordinates. Recall
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that the projective point (u, v, w) corresponds to the affine point (u/w, v/w)
whenever w f:. o.

Specifying that the point P ;:: (u, v, w) is incident to the line L ;:: [a, b, c]
shall mean that the equation au+bv+cw;:: 0 can be satisfied, and we write
this fact as L(P). We specify an arrangement of points and lines by the
following rules:

(01) All lines and points must be declared in advance, as triples of symbols.
No two lines and no two points 50 declared are equal.

(02) If a point P is incident to aline L, then this fact is explicitly stated as
L(P). If two lines L1 and L 2 intersect in the declared point P, then
tills fact is expressed explicitly by the two incidence statements L1(P)
and L,(P).

(03) No other incidences exist among declared points and lines except those
explici tly stated.

These rules have been closely modeled after common conventions in bound
ary representations of polyhedra, where one requires that vertices, edges,
and faces are all distinct, and that they do not intersect except in explicitly
stated adjacencies.

Given a symbolic object specification in the above methodology, we in
vestigate whether it can be realized as a point/line configuration in real
two-dimensional projective space p2. That is, we ask whether there exists
an assignment of real numbers to the symbols such that

1. The equations entailed by (D2) above are satisfied, and

2. all points and lines are distinct and satisfy (03).

Note that this question differs from the traditional, combinatorial question
whether there exists an abstract projective geometry satisfying the required
conditions, since we insist on an embedding into the specific geometry p2.

It is not hard to find an example of a description that cannot be realized
in p2: Consider the following configuration consisting of nine distinct points,
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and of nine distinct lines

The required incidences are as follows:

L,(P,), L,(P,),
L,(P,), L,(P,),
L,(P,), L,(P,),
L,(P,), L,(P,),
L,(P,), L,(Pa),

L,(P,), L,(P,), L,(P,),
L,(P,), L,(P,), L,(P,),
L,(F,), L,(F,), L,(P,),
L,(F,), La(F,), La(P,),
L,(F,)

L,(Po),
L,(P.),
L,(P,),
La(Pa),

This configuration exists in p2 and is shown in Figure 2. However, if the last
jncidence constraint, Ls(Ps), is removed, then there is no such configuration
in p2, since it contradicts Pascal's Theorem.

This example demonstrates that a purely symbolic representation raises
logical existence problems. Such problems would require symbolic reasoning,
and one of the questions it must answer js the logical power such a reasoning
algorithm would have to have. This logical power depends on the domain
of geometric objects. As we shall see below, the reasoning algorithm could
be quite simple for polygonal intersection. For incidence configurations in
projective geometry, it requires considerably more machinery, and partial
results exist in the area of geometric theorem proving. See, e.g., [IJ. In the
CaBe of polyhedra, it raises a number of open problems; see also Section 4
below.

Note that this example also has implications for algorithms doing nu
merical computation to determine incidence: Assume that we are given the
nine lines L1 , •• • L9 by their equations and we want to compute how they
jntersect. Then the incidences listed explicitly above would have to be in·
ferred for the line intersection points, based on numerical computation. In
that CaBe, we would have to decide whether three lines, say LlI L 3 and L8 ,

intersect in a common point. Unless we compute with exact numbers, how
ever, the three lines are likely to intersect in three closely spaced, distinct
points. A decision of whether they should be coincident, therefore, will de.
pend on other such decisions, for other sets of lines, and not solely on the
result of the numerical computation.
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4 Representation and Model

IT we accept. the possibility of imprecise numerical data, then we need to
explain first what is described by such a representation. Only after giving to
such a representation a precise geometric meaning, can we decide whether
or not a geometric algorithm has been correctly implemented. Thus, we
introduce the notions of representation and model.

A representation is a description of a geometric object, possibly using
imprecise arithmetic data. Such a representation has a model, if there exists
an object in Euclidian space satisfying the symbolic part of the description
precisely, and whose numeric data is exact, although it might require infinite
precision numbers. As we have seen above, the question whether there exists
a model for a given representation is delicate, and must not be dismissed
lightly.

As example, consider the representation of a cube whose symbolic data
specifies only the topology of vertices, edges and faces, but makes no men
tion of the fact, e.g., that the faces are square and that opposite faces are
parallel. Then any six-sided trihedral polyhedron with four-sided faces will
be a model, irrespective of the approximate vertex coordinates given in the
representation. It is clear that this definition of model is too broad to be
useful, so we attempt to capture the intent of the representation better.

Clearly, the numerical data in the representation is intended to be close
to the exact data. Therefore, it makes sense to compare the exact data of
the model with the approximate data of the representation:

A model M ora given representation R is f-close, ifthe largest deviation
of the numeric data of the representation from the exact model data is
no greater than L This is an absolute error notion which suffices for the
purposes of this paper, but it could clearly be replaced by a relative error
definition.

With these concepts, we can now clarify when a k-ary geometric op
eration op is correctly implemented: The implementation of op is correct,
if for every input representation Hi there exists a model Mi such that the
following is true:

1. The algorithm constructs an output representation R without failing.

2. There is a model M of R such that M = op(MI> ...• Mk).

9



The definition can be further specialized to capture the precision of the algo
rithm as follows: Given that each model Mi is (-close to its representation,
the model M is b(r;}close to R.

Clearly, one desires assurance of the existence of a model M for all
legitimate input data, and a function 6 such that b(f) is not excessively
large compared to f.

In the case of polyhedra, it is common to assume that the representation
describes a model that is f-close to a given region, and the ( is sometimes
explicitly specified, e.g., [10]. This is often expressed by saying that there is
a "fuzz regionn enveloping the surface, and that the intended exact polyhe
dron lies within this fuzz region. From a mathematical point of view, this
appealing intuitive concept is defect, and there are no theoretical results
that guarantee the existence of such a model, unless further restrictions are
placed on the topology of the polyhedron. For instance, Hopcroft and Kahn
(private communication) prove the following theorem: Given a winged-edge
boundary representation of a trihedral polyhedron in which the intersection
of every pair of adjacent faces is connected, there exists a model satisfying
the topology exactly.

5 Limited Precision Rational Arithmetic

In [11], Sugihara has proposed to use exact rational arithmetic of bounded
precision. Sugihara approaches Boolean operations on polyhedral solids as
follows:

1. In the representation of a polyhedrall, only plane equations are given
numerically, in the form ax + by + cz + d = 0, where a, b, c, and
d are integers. All other information is symbolic: Vertices are given
as intersection of three or more planes, edges as intersection of two
planes, and so on.

2. Any polyhedron is built from a sequence of operations on primitives,
and these primitive polyhedra must be trihedral and must satisfy a
minimum feature condition.

To limit the precision of the rational numbers occurring throughout the
geometric computations, Sugihara requires that the magnitude of a, b, and
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c is less than a maximum L, and that the magnitude of d is less than L2.
The reason for giving a different bound on the magnitude of d is illustrated
in two dimensions in Figure 3. He observes that the gdd of representable
planes is more uniform with Id] < L2 than with Id] < L.

Primiti.ve polyhedra must be trihedral, i.e., exactly three faces are in
cident at every vertex. Moreover, no edge is shorter than, and no vertex
closer to any edge or face, than a fixed minimum.

When 50 limiting the set of representable planes, it is clear that there is
an absolute minimum distance between any point u that is the intersection of
three planes and a fourth plane P, whenever u is not on P. This minimum
distance gives rise to an estimate of the internal precision needed to test
correctly incidence or nonincidence of geometric structures. If the input
precision is L decimal digits, intermediate integers with up to 5£+ 2 decimal
digits will be needed, since a vertex u :; PI nP2nP3 is on a plane P4 precisel)'
when the determinant

"I bl CI dl

", b, C, d,
"3 b3 C3 d3

", b, C, d,

is zero.

Sugihara's approach deals successfully with the problem of possible rapid
growth in the number of digits needed to represent numeric data in a se
quence of geometric operations. When using jt to implement a polyhedral
modeler, however, it has the drawback that rotating or translating a com·
plex polyhedron is not straightforward. To appreciate this problem, consider
Figures 4 - 6. Figure 4 shows the union of 150 triangles randomly generated
with one vertex on a circle of radius 10-3 , the other two on the unit cir
cle. One observes that the boundary of the resulting object contains many
small featurcs, such as the narrow crack shown in magnification in Figure
6. When translating or rotating the object, there is no guarantee that in
the new position therc exist representable grid lines that can bound such
a feature. In fact, upon rotation or translation, each line may have to be
'rounded' 50 that its coefficients conform to the limits in magnitude. Possi
bly, then, the feature would be altered to look as shown in Figure 7, 50 that
a simple polygon might be changed to one that is not simple.

In view of this problem, Sugihara 5Uggests the following: When trans
lating or rotating a complex polyhedron P, separately translate or rotate
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the primitives from which P has been built, and then reconstruct P from
the resulting primitive objects. Since pdmitives are trihedral and satisfy
a. minimum feature separation condition, each translated or rotated primi
tive remains topologically val..id, although it may experience small changes
in shape. For example, when rotating a cube, the faces need not remain
square or parallel, although they can be expected to remain nearly so. It is
clear that the possible slight deformation of the primitives also results in a
change of the topology of P. That is, the translated or rotated version of P
may well differ from P in the number of vertices, faces and edges.

Both, the need to reconstruct a polyhedron P and the fact that a move
of P alters its topology are limitations of this approach. Moreover, it is not
clear how the approach can generalize to geometric objects with nonlinear
elements. Two difficulties intrude: While the intersection of planes with
integer coefficients is a rational point, the intersection of quadric surfaces
with integer coefficients need not be rational. Already in two dimensions,
the intersection of:z:2 +y2 -1 =0 and :z: - y =0 is irrational. Moreover, while
again a minimum distance must exist between any two representable distinct
points, estimates of the intermediate precision needed to separate them be
come very unfavorable. Sugihara estimates the needed internal precision for
objects with quadric surfaces at 80 times the input precision.

6 Reasoning Paradigm

Assume we implement a geometric algorithm using floating point arithmetic.
We know that we must deal with imprecise numeric data, and, for some
numeric computations, it wiu be uncertain as to what conclusions may be
drawn from the results. By carefully analyzing the condition number of each
calculation, we can establish the following scenario:

A numerical computation C is carded out. Depending on whether
the outcome is positive, zero, or negative, a logical decision must
be made, on which subsequent processing depends. As long as
the magnitude of the result T exceeds a certain threshold r(C),
we can make the decision with certainty. If the magnitude of r
is smaller than r(e), the decision based on r alone is uncertain.
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When the decision is uncertain, we could make it arbitrarily, e.g., we could
require that a result r of magnitude Irl < T is understood to mean r = O.
But the fact that such a decision could have consequences for other, later
decisions obliges us to make each decision in a logically consistent manner.

As example, consider the problem of deciding if a vertex v of a polyhe
dron B is incident to a face, edge or vertex of a polyhedron A. Suppose
we have already determined that v lies in the plane containing the face f
of A, and that it js so close to an edge e of A that v is probably on e. If
we now decide that v is incident to e, then we must also decide that v is
incident to the face l' of B that is adjacent to f by the edge e. Although
this example may seem trivial, it is one of the specific numerical problems
that cause failure of many polyhedral modelers for certain inputs. One of
the major problems, then, is to determine how difficult the reasoning must
be by which the algorithm establishes that the decision to be made next is
consistent with all prior decisions. This problem has been explored in [8J.

In order to approach this reasoning problem, we need a strategy for
establishing that the algorithm is correct based on the decision-making pro
cess that interprets the meaning of inconclusive numerical computations.
Using the operation of intersection as an example, we need to show that the
implementation has the following properties:

1. The algorithm produces a valid output representation R for all valid
input representations R} and R2 .

2. There exist models M .. M2, and M of the representations Ri, R2, and
R, respectively, such that M = M] n M 2 •

3. If All and},/2 are i-close to R 1 and R 2 , then M is 6(i)-cl05e to R.

An important step is to establish the existence of the models M, M], and
M2 satisfying 111 = kIt n M2 • The utility of the resulting implementation,
however, will also depend on the quantification of the tolerances land 6(i).
In [8], we have shown that the intersection of two polygons can be computed
in this sense with essentially no reasoning. That is, it was shown that no
matter how incidence is decided, except, possibly the last such decision,
that models M, M1 and M2 exist satisfying 111 = M} n M2 • Technically,
this involves showing that the various edges can be suitably repositioned so
that all required. incidences exist in the models.
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In Section 3 we saw that incidence requirements can lead to difficult
reasoning problems. Polygonal intersection is free of these difficulties as
long as we do not require satisfaction of additional positional properties,
such as the collinearity of nonconsecutive edges. These constraints can be
introduced artificially, by considering the simultaneous intersection of three
or more polygons.

For polyhedral intersection considerable difficulties arise, since it is no
longer evident how to reposition a face consistently, 50 as to satisfy all inci
dence decisions. As example, consider the polyhedron A shown in Figure 8.
Assume we need to adjust the plane containing the face f to accommodate
some incidence decisions we made when analyzing the position of A with
respect to some other polyhedron B. Since we must preserve the planarity
of f, at most two verl.ices can remain in the original position. At the other
vertices, therefore, the shape and, possibly, the position of adjacent faces
must also be changed, so as to preserve the topological structure. In conse
quence, the operation of repositioning a face requires a global alteration of
the polyhedron. Whether such an alteration can be carried out, Le., whether
there exists a model of the altered polyhedron representation, is not clear.
For this reason, we can prove that a trihedral polyhedron can be correctly
intersected with a half space, but we cannot conclude from this that a tri
hedral polyhedron can be intersected with a convex polyhedron, since the
result of the first intersection need not be trihedral.

The stringent requirement that the topological data agree between rep
resentation and model also affects what bounds can be established on the
closeness 6 of the output model M, as function of the closeness f of the
input models M 1 and M 2 • The reason for this is foremost a technical one:
As stated above, when proving the correctness of an implementation in this
framework, we have to show that the elements of the input models can be
consistently repositioned so as to satisfy the incidence constraints introduced
durjng the course of the computation. In all likelihood, this repositioning
is sequential, for proof purposes. But the repositioning sequence affects the
final position of the vertices, edges and faces. As example, consider the con
figuration shown in Figure 9. Here, positioning vertices in the order 1, 3, 4,
5,2,7,6 is much more favorable than positioning them in the order 1, 2, 7,
6, 3, 4, 5, since a small position perturbation of the vertices 2, 6, and 7 leads
to a large perturbation of the vertices 3 and 5. Thus, not only would we like
to show that a consistent sequence of repositioning operations exists, for all
inputs and all incidence decisions on it, but also that the specific sequence
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chosen leads to small positional perturbations.

7 Altering the Symbolic Data

So far, we have required that the symbolic data of the representation is
literally satisfied by the model. Thus, the symbolic data is considered more
trustworthy than the numeric data, when deducing the intended meaning
of a given representation. The rationale for giving priority to the symbolic
data is that it can be represented easily without error. Assuming that there
exists a reliable method for defining geometric objects, the symbolic data in
the representation ought to be correct as given.

However, objects are often constructed from other objects by geometric
operations, and so there is a chance that the implementation has introduced
some unintended alterations into the symbolic data. Especially if some el
ements of an input object have been repositioned by large distances, the
topology of the output object could well differ from what was intended.
Therefore, if altering the symbolic data slightly would result in smaller po
sitional perturbations, we could also take the view that the numeric data is
more accurate than the symbolie data. This motivates exploring the conse
quences of changing the symbolic data, e.g., by subdividing edges and faces,
followed by slight positional perturbations of the subdivided elements.

In [9), Milenkovie has explored this approach for operations on planar
polygonal regions and for determining the topology of line arrangements in
the plane. He presents two techniques,

1. the data normalization method, and

2. the hidden variable method.

In the data normalization met.hod, we implement Boolean operat.ions
on polygonal regions in the plane. Each region is represented by a list of
vertices whose coordinates are given as floating point numbers, and a list
of edges specified by their vertices. We postulate that no two vertices are
closer to each other than some tolerance c, and that, likewise, no vertex is
closer to an edge than (. The algorithm begins by altering the input data
so as to satisfy these two requirements. Two operations are needed, vertex
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shifting, and edge cracking. These operations are illustrated in Figures 10
and 11.

Vertex shifting merges two vertices that are closer than €, into a sin
gle one. Since the representation is based on vertex coordinates, there is
no difficulty doing this. Having 50 identified all vertices that lie close, we
next subdivide any edge provided that there is a vertex that lies close to
it. If the edge is (u, v), and w lies close to it, then (u, v) is replaced by
the two edges (u,w) and (w,v). Thus, new edges and vertices are intro
duced, thereby modifying the symbolic, topological data. Milenkovic proves
that the algorithm terminates and gives bounds on the maximum positional
perturbation.

The sequential nature of eliminating near coincidence of vertices and
edges in the subdivision method can introduce positional perturbations that
are much larger than L An example for edge cracking js shown in Figure
12. Here, the initial cracking of(Uo, vol by the vertices Ut and VI brings the
vertices U2 and V2 close to the middle segment (u], vIl, which is cracked next.
This, in turn, introduces further subdivision, 50 the largest displacement is
proportional to nE, where n is the number of vertices. Combined with errors
introduced through vertex shifting, Milenkovic shows that the maximum
positional perturbation, jn the worst case, is proportional to n€p, where n
is the total number of vertices, and p is the length of the perimeter.

Milenkovic proposes a second approach in which the positional deviation
is globally bounded, called the hidden van"able method. The algorithm de
termines how a set of line segments intersect each other within a bounding
square, in a topologically consistent manner. Moreover, the coordinates of
all intersection points are determined to an accuracy bounded by 1] = 2-k D,
where D is the diameter of the bounding square and k is the length of the
mantissa. This error bound is independent of the number oflines considered.

The method replaces the input lines with xy-monotonic curves, that is,
curves guaranteed to intersect exactly once with any line parallel to the
coordinate axes. In consequence, theorems on line configurations, such as
Pascal's theorem mentioned in Section 3 above, need not be true for the
topology computed. It derives its name from the fact that these curves are
never explicitly constructed, but are known to exist.

One of the basic tools used is a set of procedures that compute, to
within predictable accuracy, the intersection of two lines. Here, auxiliary
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estimates of the intersection point coordinates make use of other point/line
information: For example, if the lines L1 and L 2 have positive slope and we
know two points u and v such that u lies above L2 and below L1I whereas v
lies below L 2 and above L 1 , then this fact entails that the intersection of L 1

and L 2 must lie in a coordinate rectangle whose diagonal is the line segment
(u, v). A large part of [9] is devoted to deriving techniques which guarantee
this consistency without having to consider all triples of points.

Note that the hidden variable method can be used to implement Boolean
operations on polygonal regions, provided we base the numerical part of the
representation on line equations rather than on vertex coordinates. Thus, in
the worst case, the hidden variable method achieves smaller perturbations
than the data normalization method, since the maximum error is indepen
dent of the number of input elements.

]n [6], Greene and Yao present a method for drawing line segment ar
rangements on a discrete grid. The objective is to draw the line segments
such that the end points and all segment intersections are on the grid points.
To this purpose, true intersection points are rounded to the nearest grid
points, and the line segments are suitably replaced with polygonal arcs.

Internally to the method, short line segments are considered between
true intersection points p and their rounding p'. Such a segment is called
a hook, and when it intersects an input line segment (u,v), then (u,v) is
also split to pass through p'. ]t is proved that a correct topology can be
constructed by first intersecting input line segments, and then intersecting
hooks with input line segments. Since the line segments are replaced by
polygonal arcs, this approach also alters the symbolic data.

Assuming that the grid points to which we round have integer coordi
nates, it is proved that the internal precision needed to locate all intersec
tions accurately depends linearly on the lengths of the coordinates of line
segment endpoints.

8 Conclusions

We saw in Section 2 that using approximate computation leads to potentially
unbounded growth in the number of digits that must be computed. This
growth becomes especially acute when geometric operations are iterated,
since the numerical errors incurred by each operation may grow multiplica-
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tively. The growth of needed precision happens irrespective of the topologi
cal structure of objects. However, the topology influences whether the error
accumulation leads only to inaccuracy or also to internal inconsistency of
the output.

Although we discussed approximate floating point computation, digit
growth can also be a problem for exact rational arithmetic, unless counter
measures are built into the algorithms. It is possible to limit the growth of
digits. This requires a carefully circumscribed set of permitted geometric
operations that must not be left. We saw in Section 5 that useful sets of
such operations exist, but the topology of the geometric objects, here poly·
hedra, did require expensive computations for some very simple tasks such
as translating or rotating polyhedra.

In Section 3 we showed that the topology of certain objects may lead
to difficult existence problems. Not all object descriptions make sense. We
concentrated on purely symbolic descriptions so as to show that this prob
lem is independent of whether we have numeric data or not. However, the
main conclusion to draw from the example is that the familiar description
of geometric objects using approximate numeric data may contain subtle
errors.

The existence problem is the main motivation for drawing a distinction
between representation and model, in Section 4. It is clear that we cannot
simultaneously represent all geometric models. A simple counting argument
shows that. More importantly, we cannot naively assume that a given rep
resentation makes sense, even though, based on approximate metric data,
the computer is able to give, e.g., a graphical rendering of it. Therefore, we
seem to be left with the following choices:

1. Guarantee exact data, as in Section 5.

2. Include reasoning steps into the computation, as in Section 6.

3. Alter the meaning of geometric elements, as in Section 7.

Exact approaches so far have not made a significant impact on geometric
modeling systems in practice, due to the perceived inefficiency of the neces·
sary exact arithmetic steps. It may well turn out that the trade-off between
robustness and efficiency is much sharper than presently perceived, and that
it may require reevaluating exact techniques for incorporation into practical
systems.
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In the scenario given in Section 6, we stated that the result of certain
numerk questions is tested for its sign, and that conclusions are drawn
depending on the result being positive, zero, or negative. For instance, the
computation might determine the Euclidian distance of a point from a line,
and the result would then indicate whether the point is on the positive or
negative side of the line, or if it lies on the line. Let us call the latter case
a positional degeneracy.

Positional degeneracies can be eliminated by perturbing the position of
these elements relative to each other, after which the scenario of Section G
simplifies in that only two outcomes must be considered, namely, whether
the result is positive or negative. The challenge in deSigning a perturbation
scheme is to maintain the integrity of the geometrk objects, whose elements
are perturbed. Thus, the approach is essentially similar to the reasoning
paradJgm of Section 6. As we demonstrated in Section 3, the difficulty in
showing the correctness of a proposed perturbation scheme critically depends
on the topological structure of the geometric objects manipulated.

There has been work proposing various such perturbation schemes. The
main motivation of this work is to eliminate all degeneracies, which in many
cases simplifies the programming effort when implementing geometric op
erations. Note, however, that positional degeneracies are often intentional
in solid modeling, and their systematic elimination would be a mlstake, in
those applications.

For the 50S method, [4}, it is proved that the final perturbations elim·
inate all existing degeneracies and do not create new ones that were not
previously present. In [12], a similar technique is presented. Both schemes
require fairly simple geometric input objects. [4] considers points and elimi
nates collinearity of three and coplanarity of four or more points. [12] takes
a more abstract approach. Under the assumption that all numeric compu
tations can be expressed as fixed polynomials in the input parameters, it is
shown that consistent perturbations exist that eliminate the possibility of
any polynomial evaluating to zero.
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Figure 1: Example Pentagon for going in and going out Operations
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Figure 2: Realizable Point/Line Configuration
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Figure 3: Grid of Lines ax + by + e = 0, where lal, fbj < 4. On the left, we
have lei < 4, Oll the right, lei < 16.
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Figure 4: Union of 150 Random Triangles
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Figure 5: Border, Magnified 3 times
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Figure 6: Border, Magnified 500 times

Figure 7: Possible Feature Alteration through Translation or Rotation
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Figure 8: Repositioning the Face f Requires Changing Adjacent Faces
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Figure 9: Sequence Dependence of Positional Perturbation
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Figure 10: Vertex Shifting
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Figure 11: Edge Cracking
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Figure 12: Additive Positional Perturbation in Edge Cracking
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