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Abstract

The design of an extensible system is discussed in which the behavior of physical objects is
simulated from their models. Complex objects can be defined in a multiplicity of domains.
including their geometric shape, their dynamic response to applied forces. and their controlled
behavior. In response to unforeseen changes, e.g., for unexpected collisions, the object models
are modified automatically during the simulation.
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1. Introduction

Model driven programming, where code for automatic assembly of objects is derived from

a data base description of the assembly has long been a dream of researchers. A major stumbling

block is automatic motion planning, presently a forbidding task requiring extensive mathematical

knowledge and prodigious resources. A first step towards model driven programming that does

not require a solution to the motion planning problem is a model driven simulation system. Such

a system requires a collision detection algorithm but not a complete motion planning algorithm.

When considering how useful a proposed strategy for motion planning might be, a

geometric simulation driven by an emulated program is required. Yet such an approach is limited

whenever the dynamic aspects of the situation are important. Consider the grasping strategy for a

hinge plate by Paul [14] in which use is made of both the situational geometry as well as the fric­

tion between the hinge plate and the work table. This strategy could not be verified by a system

based purely on geometry. What is needed is a model-driven simulation system that duplicates

the true behavior in the worle cell as accurately as required by the nature of the problem. Such a

system would need the capability to simulate motion of objects under external forces and it could

be used to verify many other aspects of off-line robot programming as well.

In fact, such a simulation system, driven largely from a geometrical model, would have

wide spread applicability: It could be used in electronic prototyping to verify aspects of a design

such as the removability of each board in a computer frame for servicing or the proper unfolding

of an antenna on a satellite. It could be used to simulate the workings of mechanisms, either for

design refinement or for training. In fact, it could become the basis of a sophisticated tool for

engineering design and analysis. A system of this kind would have substantial payoffs: It would

allow design changes much later in the design cycle since revalidation only involves rerunning

lhe validating algorithms. Furthermore, devices designed and developed to operate in unusual

conditions not easily approximated in the laboratory such as the deployment of an antenna in

space that will not support its weight under gravity can easily be prototype<!.

Previous work on simulation is too extensive to discuss in detail. However, a number of

unifying aspects and assumptions may be identified in lhe large majority of this work, including

the following design limitations:

(1) Once a scenario to be simulated has been modeled, the simulation program cannot modify

this model in significant ways during the course of the simulation. Yet such self­

modification is needed to account for unforeseen changes in the scenario, e.g., when an

unexpected collision takes place.

(2) The simulation system is specialized to a fixed speClrum of physical properties and

behavior. It is not normally possible to extend the physical coverage of such systems.

In the more specific domain of robot simulation systems. the dynamic aspects of the simulated

manipulator often are not included. e.g., in the LM system [9]. When dynamics is accounted for.
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e.g.• in [5. 17J. the simulation concentrates on the manipulator itself and docs not include deep

interaction with the surrounding environment. Some systems, such as ADAMS [2], show an evo­

lution towards the goals we outline here, but do not have the capacity to respond to unexpected

events and do not make essential use of geometric informatiOIL In [6], Gilmore describes a two­

dimensional dynamic simulation system for polygons that is also capable of self-modification. It

contains a number of ingenious geometric techniques which unfortunately do not generalize to

the three dimensional case.

We describe a general simulation system that is designed to be extensible and to be capable

of self-modifying object models to account for unforeseen changes in the object configurations.

In such a system it must be possible to define arbitrary collections of objects and to simulate their

physical behavior in a multiplicity of domains, including the geometric. dynamic, and controlled

aspects of behavior. The complexity of implementing the system dictated a global design in

which it is possible to substitute a new version of an existing system component without affecting

the rest of the system. Indeed, it is possible to construct component interfaces in such a way that

any system component can be modified or replaced by a new version as long as the interface

information can be computed. For example, we are able to replace the solid modeler in the

geometric component with any solid modeling system as long as a number of basic operations are

implemented by it. Moreover. since a precise simulation in multiple modeling domains uses

extensive resources. the system should be instructed in a language that permits abstracting out

some domains whenever this is appropriate. For example. a well controlled active system does

not need a full dynamic simulation when only kinematic aspects of lhe situation are of interest

In this paper, we describe the design and implementation of a first version in which only the

basic geometric. dynamic. and control aspects of modeled objects are considered. Throughout.

our design is illustrated by a number of examples. demonstrating the approach we have taken.

The exposition is organized as follows: First, a global view of the systems structure is presented.

Thereafter, the individual components and subsystems are discussed. Then, some of the features

of the specification and simulation language are explained. The interface structure of the system

is explained after each major subsystem has been described.

2. System Overview

The object of this work is the simulation and analysis of systems of physical objects. The

user specifies the shape, material composition, and mechanical interrelationship of objects. From

this description the system constructs a variety of models, sometimes guided by additional user

specifications. where each model captures the object behavior in a specific physical domain.

At this time. we have restricted the scope to the behavior of rigid bodies that can be hinged

and interrelated in a number of ways. Given the description of shape and material composition, a

set of motion equations is formulated automatically that expresses the dynamic behavior of the
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objects in Newtonian mechanics. Composition of rigid bodies is made by connecting them

through mechanical hinges (including temporary contact) and/or by force relationships such as

mass-less springs and dampers. These generalized hinges are selected from a standard set, e.g.,

revolute joint, ball and socket joint, etc. It is pIarmed to augment the set by a definitional melhod

for constructing new types of hinges from existing primitives. As primitive objects are combined

through hinges, their motion equations are modified to correctly reflect the behavioral constraints

so introduced.

Either with a single body, or else with a hinge, one may associate a control system. This

system, which must be modeled explicitly, actuates components either by outright prescription of

motion (perfect control), or else by applying forces and torques at selecled features. These forces

and torques can be given by a user-supplied program that may make use of the current state of the

mechanical system.

Having defined a mechanical system, possibly with active components, a simulation is done

that captures the behavior of Ihe physical system according to the various models. Ordinarily,

this is a cycle that begins with solving the motion equations accounting for hinges and for forces

applied through control. Following the detennination of new accelerations and constraint forces,

the position of the individual bodies is updated and graphically rendered. In response to certain

events, the models of the physical system may have to be changed. For example, it is possible

that two objects fonnerly in contact separate, or that two objects collide. In each such event, an

analysis is perfonned whose outcome is an appropriate modification of the state of the physical

system, and of the models describing its now different future behavior.

Globally, the system is divided into I:hree major components: A definitional system lhat

permits definition of objects and their behavior, including the instantiation of objects and the

declaration of world characteristics such as gravity; an analysis system that simulates how the

defined objects behave over time and handles exceptional events; and a report system that gives

summaries of the simulation by graphically rendering key scenes or numerically swnmarizing

key aspects such as internal forces, accelerations, etc.

The major system components are subdivided into subsystems, each with a specific respon­

sibility. For instance, the definitional component coordinates a number ofmodelers, each model­

ing different aspects of object characteristics and behavior. The analysis component directs sub­

systems concerned with solving differential equations, interpreting solutions of dynamic equa­

tions, interrogating the modeling subsystem for possible interference and collision, and updating

models in response to exceptional events. Finally, the report system contains components capa­

ble of visually rendering key events or animating the simulation, and giving textual summaries of

periodic or exceptional events.

The organization of the system is shown graphically in Figure 2.1. External program emu­

lation is used for complex control systems, and is synchronized through a common clock. In the

prototype presently implemented the program emulation has not yet been so separated. Rather,
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user supplied subroutines for conlrol are automatically incorporated at the interface level and are

called at the appropriate times from the event handler.

A longer term goal is to extend lhe analysis system so that functions other than pure simula­

tion can be supported. For instance. in order to detennine the needed physical strength of a revo­

lute joint, the constraint forces acting at the joint must be monitored and related to material pro­

perties of the hinge. We would also like to extend the physical coverage by adding finite clement
capabilities.

3. The Definitional System

Objects are either primitive or composite. A primitive object is a rigid body of specified

shape. Composite objects consist of a number of primitive objects that are joined by generalized

hinges.

All objects are modeled in a number of domains describing categories of behavior. In each

domain one constructs a model of the object's relevant characteristics. For instance, in the

geometric domain the shape is described, and in the dynamic domain the motion equations of the

object are formulated. The set of models describing a primitive object is fairly straightforward.

A complex object is described in each domain by combining the models of its primitive com­

ponents, and by making certain modifications and additions to the component models. These

changes are needed to account for the nature of the interaction among the primitive components.

Currently, we have the following domains: abstract, geometric, control, interference, and

dynamic. The different domain-specific models are coordinated through a fixed interface design.

For the overall system to be viable, it must be possible to extend the list of modeling domains as

the system matures and is used in a broader range of applications. For example, one may wish to

add an electrical characteristics domain to model VLSI components. Moreover, since the design

and implementation of lhe system requires man years of effort, we auempt to make use of exist­

ing components such as separately developed solid modelers and display packages.

3.1. Abstract Model

The abstract model of a primitive object consists of a name and a property list containing

material, density, color, etc. A composite object is represented by a graph whose vertices

represent primitive objects and whose edges represent relations between lhese objects. Examples

of relations are touching, rigidly connected, hinged in a particular way, and so on. Each edge has

a list of properties as do vertices, and these properties may be interrogated by other subsystems.

Example 3.1:

Consider the anthropomorphic shape shown in the motion sequence in Figure 3.1. It consists of
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several rigid bodies linked by revolute joints. For each rigid body, there is a separate abstract

model recording properties such as density and COIOf, as well as the fact that these bodies are

components of a composite object To the figure itself there corresponds an abstract model that is

essentially a graph whose vertices are the rigid components and whose edges represent the joints.
o

From the specified properties other characteristics are derived. For instance, using density

and volwnetric properties of the geometric model, mass and inertia of a primitive object are

determined, and given the material we can supply simple friction models automatically. Other

properties can be added as needed when enlarging lhe number of modeling domains. For

instance, elasticity properties will be needed when modeling defonnable bodies.

3.2. Geometric Model

The geomelric modeling subsystem represents both the shape and the position/orientation of

objects in 3-space. In the definition phase, the subsystem is used to consLruct the shape of primi­

tive objects and to position primitive components with respect to each other or relative to a global

coordinate frame. The usual operation during simulation is to move an object to a new

position/orientation. In addition, the subsystem supports a number of capabilities that are needed

for automated operations, including locating the centroid and computing the volume, computing

the volumetric tensor of inertia, determining the coordinates of object features, and determining

the features in which two primitive objects touch or intersect.

In order to facilitate coordination between geometric and dynamic models, we presently

assume that primitive objects are homogeneous and that the local coordinate frames agree.

Heterogeneous rigid bodies must be modeled as composite objects whose primitive components

are rigidly attached to each other.

Composite objects are constructed from primitive ones by composition operations. These

operations COIUlect objects by hinged or by rigid coIUlections. Objects are hinged with a

make_hinge primitive whose arguments identify the type of hinge to be constructed and the

features where the hinge attaches. In the example above, each member of the figure has been

modeled as a cuboid with cylinders attached. The members are !hen linked by a pin hinge.

3.3. Interference Model

In the course of simulation we need to ascenain whelher any objects interfere. This can be

done using the geometric model, but as geometric coverage is extended this approach quickly

becomes too slow. The purpose of the interference model is to allow quick noninterference tests

and to reserve the expensive interference test based on the geometric model to critical instances

when objects are in close proximity.
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In the interference model, an approximate hierarchical model of objects is defined permit­

ting us to tcst that two objects do not intersect The approximations are constructed using a basic

shape primitive, understood by the geometric modeling system, and a procedure for testing

whether two primitive shapes intersect Presently we use the cuboid as basic shape primitive.

The approximation levels are as follows: First, every primitive object is enclosed by a sin­

gle cuboid. On the second level of approximation, the object is approximated as the union of

several cuboids. On the last level the geometric objects must be intersected. More intermediate

levels can be added if the need arises.

A composite object has moving pans that may interfere with each other, hence only the

primilive components are approximated. For example, the moving parts of the anthropomorphic

shape in Figure 4.1 have been designated as not interfering willI each other. However, certain

pairs of components may be known a priori not to interfere with each other, and this fact is indi­

cated by connecting the corresponding cuboids by an edge. In consequence, the interference

model of an object is a layered graph, each layer representing a level of abstraction. The graph

vertices each are a union of shape primitives, and the graph edges represent the noninterference

relationship. At present this model must be defined explicitly, but it should be possible to auto­

mate much of the modeling work from the geometric specification.

3.4. Dynamic Model

The dynamic modeling subsystem represents an object by a local coordinate frame, a set of

state variables, and equation schemata that summarize the relations between the changes to state

variables, time-independent properties, and external forces acting on the object Some pertinent

information is obtained initially by interrogating models of the object in other domains. For

example. the mass is determined by obtaining the density from the abstract model and the volume

from the geometric model. The model is set up largely without explicit user direction.

Unlike the geometric model, the dynamic model of primitive components Wldergoes sub­

stantial modifications as these components are combined into composite objects. For this reason,

equation schemata are needed rather than a set of fixed equations. Given a set of applied forces,

the schemata are used to construct the proper equations for the specific situation. Moreover.

when objects are combined into a composite object, certain equations are modified to accOWlt for

internal constraint forces that appear.

A primitive object that is a rigid solid has state variables r, p, ;, and 0), corresponding to

position, orientation (in Euler parameters),linear and angular velocity. Note that these variables

are vectors. There are two vectorial equation schemata of the form mr=F and J OH-CJ)XJ ro=T.
where m is the mass and J the inertia tensor. Moreover, we assume that all external forces and

torques have been combined into a single resultant force F and torque T, applied at mass center.
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When primitive objects are combined into composite objects. the sets of state variables are

unioned together. The combining operation usually imposes constraints on the state variables

associated with it Since these constraints involve two primitive components. a composite

dynamic model is represented as a graph whose vertices are the dynamic models of the primitive

components of the object modified by the addition of constraint forces, and whose edges are the

composition operations and their implied constraint equations.

There is a primitive composition operation from which most other composition operations

can be derived. This primitive operation consttains a point on the second object to remain in con­

tact with a surface on the first object, thus constraining one degree of freedom in the relative

motion of the two objects. The point so constrained is called the hinge point. 1mplementing

other composition operations as a suitable combination of this primitive has the advantage that

the derived compositions are then expressed independent of modifications of the modeling sys­

tems.

When composing two objects by this primitive, we need to identify a surface of a primitive

component of the first object and a JXlint on a primitive component of the second object. The

ensuing constraint equation linearly relates the relative accelerations of the respective primitive

components. Moreover, the constraint foreeX transmitted at the hinge point is normal to the sur­

face of contact To account for it, the motion equation schemata of the two primitive components

must be modified, where X by convention acts negatively on the first, and positively on the

second component So, when composing two rigid bodies, the following equations result:

mlrt=F1-X

mirz=FZ+X
J 1(01+(OlxJ(01=T l-C IxX

hIDz~xJIDz=Tz'-C2XX

In these schemata, mj is the mass of body i, Jj its inertia tensor, F j is the resultant external force

and Tj the resultant external torque on body i. Furthennore, Ci is the vector from mass center to

the hinge point, for body i.

Given external forces and torques. the two hinged bodies account for 12 scalar equations

with 15 unknowns. Three scalar equations are added for the primitive hinge. Assuming there is

no dry friction at the point of contact, two of these equations are s I·X=0 and S2X=0, where the Sj

are two linearly independent vectors parallel to the plane of contact. This says that the constraint

force must act normal to the plane of contact. The third equation expresses that the point remains

in contact with the plane. It is the derivative of the equation n ·vp=O, where n is the normal to the

plane of contact and vp is the velocity ofp relative to the plane of contact This is an unfamiliar

formulation that has the advantage of simplifying the evaluation of the motion equations at each

time step.

If the hinge is due to temporary contact of two bodies with, say, a vertex of body 2 touching

a surface of body I, then the resulting hinge carmot sustain tension. In consequence, wheneverX
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becomes 0 or negative the hinge "breaks" and both the force X, as well as the three constraint

equations must be deleted. Accordingly, there is a break_hinge operation that changes the equa­

tions of the dynamic model. This is done by deleting the constraint equations associated with the

graph edge that represents the hinge and by deleting the corresponding constraint force terms in

the motion equations of the two primitive objects no longer connected by the hinge.

Recall that we have formulated the primitive hinge for the friction-less case. If dry friction

occurs, for example when modeling temporary contact between two objects, the text book

approach is to formulate two different selS of equations. one for the case when slippage occurs,

the other for the case in which the friction is sufficient to prevent relative movement between the

objccts in contact. For systems of many contacting bodies this leads to an exponential growth of

the number of alternative models that need to be investigated. In. Section 4 we discussed our way

of avoiding this problem.

Example 3.2:

We consider the hinged linkage of Figure 3.2 in two dimensions. With rod dimensions of2 and

8, we develop the motion equations needed to describe the composite object dynamically. There

is an inertial. world reference frame with x ,y coordinates. Each rod has a local coordinate frame

that at time t is in position rj and tilted by the angIe ej with respect to the x-axis; see also Figure

3.3. Moreover, the hinge point of the link with lhe active system is at position

ro: (xo=bsin(COt), Yo=O). Assuming no external. forces are acting, i.e., all movement is induced

by the constrained motion of the active system, the following equations describe the behavior of

the rods:

mlrl=X IO-XI2

m2,'2=X I2

I 181=Cto><Xlo-C 12XX 12

I 282=C21XX 12

Here mj is the mass of body i and Ii is the moment of inertia. about the 2 -axis. The vectors c.j

are vectors from the origin of the local. coordinate system i to the hinge point connecting body i

with body j. For instance, CrF(4sin8 l+cose1, sin81-4cos81). The kinematic constraint equa­

tions, added to the dynamic model when the rods were connected by the pin hinges. are
.. . 2 .. ..' 2 ..
rl-81 C12+61Clz=r2--82c21+62C21
.. . 2 .. ..' 2 ..
ro-eoc01+60COl=r1--81C lO+6tC10

where c is the vector c rotated by 1tI2. That is, if c=(u ,v) then c=(-v,u). Note that the vectors

Cij are determined from the geometric model when the hinges were defined. The second con­

straint equation simplifies since C01=(0,O). Moreover, since ro=(bsin(rot),O), we have

ro=(-b oisin(rot),O). This equation is obtained from the conlrol model of the active system. 0
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3.5. Control Model

Many situations we wish to model involve program driven objects. For example, we may

wish to debug off~line a robot program implementing an approach strategy for the gripper to

grasp an object. The robot ann will have actuators that apply forces and torques at the joints.

The actuators receive signals from a conlIol system that processes two kinds of signals. The first

type includes sensing signals that must be supplied from the simulation of the world model. The

second kind of signal originates from a program driving the control system. Sensing signals are

generated by allowing state variables to be read, dynamic forces to be determined, and geomclIic

distances to be computed.

In the simplest situation, the acceleration of an object is controlled directly. This is the case

in Example 3.2: The active system is constrained to move as the function (bsin(rot),O,O), Le., the

acceleration vector can be defined as (-b ro2sin(rot),O,O).

Example 3.3:

In [12], Chapter 7, an actuator is modeled. Ignoring Coulomb friction but accounting for both the

actuator gain and viscous damping, the equation ro=K lu-K2(O models the actuator, where u is

the input signal, K 2 the damping factor, and OJ and ro angular velocity and acceleration at the

actuated joint. K I depends on the effective inertia of the actuated link and on the actuator gain,

and could be considered constant in simple models. More complicated control models establish a

relationship between K j and other state variables, thereby incorporating feedback and feed­

forward loops. 0

In the linkage example acceleration was controlled by equating it with a specific function.

In general, the control function can be supplied by a subroutine written in Lisp. In order to avoid

problems of data dependency, these subroutines are structured as follows: As input, the value of

any state variable or force from a prior time interval may be used. The output values determined

are then available for reference at the current time.

Example 3.4:

In Section 4, a simulation sequence is shown in which an anthropomorphic figure rises from a sit­

ting position. The motion is controlled by subroutines that apply certain torques at the hip, knee

and ankle joints. The subroutines establish correct torque values by sensing velocities and posi­

tion of the joints, and calculating the torques accordingly. They are user-supplied control models

that are associated with each of the joints. The relevant state variable values are obtained by ask­

ing the interface procedures for the objects associated with the hinge and their current state.

While the subroutines in the motion sequence shown in Section 4 are not very general, more

sophisticated procedures can be developed that contain control sequences to be executed in

response to specific, interactively issued commands, thereby providing the infrastructure needed

for a high-level manipulation language. Moreover, the torque values should be determined based

not only on sensing the current state but also on the characteristics of the joint actuators they
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model. 0

3.6. Module Interfacing and Implementation

The system is implemented in Symbolics Common Lisp. The user communicates wifu the

modeling subsystem through a user interface language that is described in Section 6. The

definitions he makes are mapped to a sequence of internal instructions that engage various

domain-specific modelers and create coordinating data structures. At certain places, for example

in the dynamic modeler, other internal instructions are interpolated, thereby implementing

automatic capabilities.

The set of internal instructions and the design of the coordinating data structures constitute

the conceptual system implementation. They are fixed and mirror the steps in creating and

operating models as outlined above. Each modeling subsystem is packaged by an interface that

understands the internal instructions and data structures. At the interface level, internal instruc­

tions are executed by issuing modeler specific commands and formatting the data to be communi­

cated. For example, the data structure formulated for a primitive object is as follows:

(1) It has a name, the type primitive, and a reference to the composite object(s) containing it

directly.

(2) It is described as a list of two-element lists where the first clement identifies the modeling

domain, and the second is a model description some of whose details may be speci fic to the

particular modeler and its implementation.

Similarly, a composite object has a name, type, and reference to the directly containing object. In

place of a list of models, there is a composition list identifying the components and hinges of the

object, and how they are linked.

To some depth, the domain-specific data structure is prescribed. For example, the

geometric model coru;ists of a transformation, a list specifying named features. and a shape

description that is modeler-specific. While the format of the transformation is fixed, the format in

which the shape description is given depends on the modeler. In our case it is a boundary

representation, but it could change when the geometric modeler is altered. Since the overall

structure of the interface is fixed, such changes are localized.

As example of an interface instruction, consider the mass computation of a primitive object.

It involves obtaining the volume of the object with the geometric_modetget_volume instruction,

directed to the geometric modeling interface, and the density with the

abstract_model-eetyroperty instruction, with argument density. The density is initially posted

with the abstract_model_set"property instruction.

The flexibility and modifiability of the system is the result of strictly separating the abstract

implementation, at the interface level, from the underlying concrete implementation. When large
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data volumes are communicated between components on the absttact level, however, a price may

have to be paid for uniform data formats. For example, both the geometric modeler as well as the

rendering system need the shape description of objects, a very large and intricate data SlruCWIC.

It is advantageous if both routines can work from an identical. native structure, and in our imple­

mentation they do. rather than converting between different representations. This convention

raises the difficulty of modifying these routines, since changes to the data format must be coordi­

nated. Therefore, the device of sharing implementation-specific data must be carefully limited.

In our system it is only used for the geometric shape description.

4. The Analysis System

Carrying out various engineering analyses on collections of objects requires a number of

analysis and simulation packages. These packages make up the analysis system. At present we

are primarily concerned with a program-driven dynamic simulation of a complex scene. The

major components are an integration package that integrates the differential equations that arise

in the dynamic simulation, an event handling routine that analyzes the solutions to the equations

and upon detecting exceptional events alters the models defining the scene or updates the world

state, and a language component that. by simulating a program instructing active agents in the
scene, presents external stimuli to the simulation.

As in the object modeling system other components can be added. For example, a

significant addition would be to model deformation, i.e., to incoJIXlrate finite element techniques.

4.1. Simulation Package

The simulation package integrates numerically the system of differential equations model­

ing object behavior in the various domains, for one time step. These equations are determined as

follows: Using prior values, all programmed functions of the control models are evaluated. Sub­

stituting the resulting values, all (scalarized) dynamic equations and remaining control model

equations are obtained by the event handler and are presented to the simulation system. The
equations are in the form

where x is a vector of accelerations and constraint forces. The scalar entries of the matrix A and

the vector b are functiom of state variables, external stimuli, and time.

Exceptional events result in changes to this equation system, inclUding the introduction or

deletion of unknowns. When such events are infrequent, it is desirable to precondition this sys­

tem so as to speed up its solution at each time step. Suitable methods have been proposed in,

e.g., [4], and include triangularizing A in conjunction with solving the system through back
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substitution.

It is possible that the system of equations is singular. In this case, additional assumptions

must be made. The event handler is responsible for dealing with this situation. Once x has been

detennined at time t, all state variables can be updated accordingly. Before doing so, however,

the event handler has to examine x and deteITIline whether an exceptional event has occurred.

4.2. Event Handler

The event handler examines the stale variables after each integration step in order to deter­

mine if an event has occurred that requires modification of the system equations. We are

presently recognizing the following exceptional events:

(1) With updated state variables, the geometric model indicates an interpenetration of two

objects. The moment of first contact is detennincd by interpolation or repeated subdivision

and integration. Then an impact is modeled. and from the impact model all velocities are

updated. If the contact persists, e.g., due to inelastic impact or as the result of friction, the

two contacting primitive bodies are connected by a pressure-only hinge. This entails updat­

ing the models and building a composite object.

(2) The reactive force maintaining a physical contact between two objects has become nega­

tive, so the contacting bodies separate at that point. Here we must edit the model by remov­

ing the graph edge representing the lost contact, and deleting the constraint force from the

motion equations oCthe two adjacent components.

(3) The system A.x=b is linearly dependent This typically happens when a rigid body is in

contact at more than six points and the contact forces are unknown. In this situation a more

sophisticated model of contact is needed. For example, we could model infinitesimal inter­

penetrations and corresponding resloring forces. More complicated approaches could

model elastic defonnations in greater detail.

(4) The system Ax=b has no solution. Typically, a controlled variable cannot be satisfied. For

example, we may prescribe the motion of two rods in a way that requires the two rods to

interpenetrate. In this case the model is deficient, and the simulation cannot continue.

After all exceptional events have been accounted for, a new system of equations will result and is

presented to the simulation system. Ifno new system results, or ifno exceptional event ensued to

begin with, then the stale of the world is updated using the vector x, and the cycle repeats.

Example 4.1:

Consider the simulation sequence shown in Figure 4.1, where an anthropomorphic figure rises

from a sitting position. A replay of the actual simulation is shown in which certain snapshots of

the animation sequence are placed side-by-side. The dialogue in the left window shows the

interaction with the animation replay tool.
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Throughout the simulation of this motion sequence. the following cycle is iterated: The

conUOI models request current state variable values and present new torque values. Based on the

current state variable values and torques, as well as gravity, the motion equations arc collected

and its terms are evaluated yielding a system of linear equations. This system is solved, and the

resulting accelerations and constraint forces are examined. During the first step the hinge model­

ing the contact between the figure and the block breaks under tension. This entails a reformula­

tion of the model. The hinge between feet and ground does not break as the pressure is main­

tained. A new update of the stale variable values is proposed and tested for interference. None is

detected, so all state variables are updated and the cycle repeats. 0

Example 4.2: In Figure 4.2 an instance of a simulated linkage motion is shown. Three

links, numbered 2. 3, and 4 from top to bottom, are connected in a chain to a fictitious link 1. To

link I, a perfect conuol system is attached that prescribes a sinusoidal motion along a line paral­

lel to the ground. For clarity, link I is displayed as a small box. The left window shows the

scalarized equations of motion collected for this specific time instance. For readability, the vari­

ables are named as follows: xi, yi, and zi refer to the linear accelerations of link i; wxi, wyi,

and wzi refer to the angular accelerations; finally, fxi, etc., refer to the constraint forces at the pin

hinge between links i and i+1. The determined values are also displayed. 0

4.3. Impact

The impact of two bodies is modeled in the usual way as an infinitesimal event that leads to

instantaneous velocity changes without changes of position. Following [18], the equation sche­

mata governing the response to impulsive forces and torques are

ml1;-=F
Jt:.=T

where f is the impulsive force applied to the body and i is an impulsive torque applied to the

body. 1100 is the change in angular velocity and /1;- the change in linear velocity at mass center.

On co!lision without friction, there is an impulsive force acting normal to the common

tangent plane of the point of collision, of unknown magnitude. It can be determined by the equa­

tion

VA =--evB

relating the relative approach velocity vB of the colliding points just prior to impact to the rela­

tive separation velocity vA immediately after the impact, in the direction normal to the common

tangent plane. Here e is the coefficient of restitution that depends on the material of the two col­

liding bodies, the geometry of lhe impacting features, and the approach velocity. The coefficient

is in the range O$e ::;;1. As first approximation, e may be taken as a constant derived from the

materials of the colliding bodies.
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When the colliding bodies are compo$ite. the hinges transmit impulsive constraint forces

and torques that are determined with the help of constraint equations that are analogous to the

kinematic constrnint equations for nonimpulsive forces and torques [18]. The situation is com­

pletely analogous to the detennination of constraint forces in the motion equations in conjunction

with the kinematic constraint equations. Note that nonimpuIsive forces do not influence the

behavior since the impulsive forces are very large by comparison. So the impact may be simu­

lated using an analogous but separate equation system.

Example 4.2:

The impact model for the two rod linkage is derived as follows. Assuming that the two rods col­

lide at u (Figure 4.3), we develop the equations for the instantaneous velocity changes. Again,

the problem is considered in two dimensions. Let i}l be the velocity of rod i just prior to colli­

sion at mass center, ef the angular velocity. Then the velocity of the colliding points on the two

bodies prior to collision is given by
8 ·8 "8

VI=r1+e t xd I2

v~=rg-t6fxd2t

Similarly, with the superscript A indicating the time just after collision, we obtain
A 'A+9'A..

Vt=rl rxal2
A 'A '.L.

V2 =r2 +ep<a21

The rods are subject to an impulse f at the colliding points, and a reactive impulse X2 at the

hinge between the two rods. In addition, there is a constraint impulse Xl acting at the hinge

between the active system and rod 1. Consequently, we have the following motion equations:
A 8 ~ ~ ~

ml(rr-rl )~F+Xr-X2
'/1"8 ~ A

mz(rz-'2)=F+X2
"A '8 ~ A A

J 1(91--a1 )=-dIZxF+c loXX I-Ct2XX2
'A '8 ~ ~

J z(92 --aZ )=dZ1'XF+c ZIXX2

Now the impulse F acts normal to the line brought into contact by the collision. Hence

f,t=fJ

where t is parallel to the contact line. Moreover, approach and separation velocities of the collid­

ing point are related as

(vt-v~)"n~e(vf -vg )'n
where n is normal to the line of contact. In addition, the hinges imply the constraints

'A s' A '
'I +clOX I =To

i~+C21Xet=rt+c 12xef.
The unknown quantities vf, if, ef, i, and Xi can now be detennined from these equations. Note

that rfFCb cocos(oot),O,O), since we assume that the active system is perfectly controlled. 0
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4.4. Restoring Forces

When a rigid body is statically supported at more than six points during simulation. then the

system Ax=b will be indeterminate. Should these support points correspond to permanent link­

ages, the model must be reformulated. However. when bodies come into multiple contact, e.g.• as

shown in Figure 4.4. the problem cannot be avoided. Here a block A rests on three equal blocks

Bi • Assuming all bodies are perfectly rigid. it is not possible to determine the exact load carried
by each supporting blockB j •

A possible way of handling this situation is to permit infinitesimal interpenetration and res­

toring forces. In effect, one now conceptualizes the area of contact as elastic with resloring forces

proportional to the interpenetration. Modifying the approach of [3] slightly, we proceed as fol­

lows. Assume given all forces acting on the body at time t. Compute the resulling acceleration

for time t+.6.r while keeping the contact forces unchanged, lhereby determining a velocity. For

each contact point, compute the relative speed of approach v and consider lhe component vn nor­

mal to the plane of contact Then the contact force increments must be proportional to the rela~

live interpenetration, i.e., we add as many equations of the fonn

M'j=kdj ,

where k is the nonnal contact stiffness and dj is the interpenetration depth at the i rh contact

point In a more sophisticated model shearing force resistance is also accounted for. Experimen­

tation is needed to assess in what situations the approach is realistic and to explore alternatives.

4.5. Friction

Dry friction between contacting bodies is difficult to model analytically. The simplest

model assumes a frictional force of magnitude J.LN, where J.L is a constant depending on the

material and the surface characteristics, and N is the magnitude of the normal force at the contact

point The direction of the frictional force is always opposite to the resulting motion. A typical

difficulty arises from the fact that the precise distribution of the normal force over the area of

contact is unknown. Ifsliding occurs, then the resulting motion may critically depend on the dis­

,tribution [15, 16].. At this time, we assume a uniform distribution of the normal forces over the

contact area. This is similar to the approach taken in [3].

The text book approach to fonnulating motion equations in the presence of dry friction is to

formulate for each frictional contact two alternative selS of equations, one in which slippage does

not occur, and the other one for slippage. For systems with many contacts this is not an accept­

able approach. Instead, we deal with friction as follows: Each contact with dry friction is formu­

lated as friction-less in the motion equations. Then it is determined what force is needed to coun­

teract the resulting relative motion at the joint If this force does not exceed J.IN in magnitude, it

is added as external force acting at the joint, otherwise a force of J.IN is applied. The frictional

forces so detennined for time t are applied to the system at time t+Li.t.
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A more precise treatment affliction is possible if the frictional force is determined by itera­

tion. As initial step, the frictional forces at time I are applied to determine the system solution

for time l+l\t. Next, the nonnal forces are recalculated and used to refine the estimate of the fric­

tion forces assumed initially, and the calculation is repeated. We have presently no experimental

data comparing the two methods.

4.6. Interface Considerations

The key aspect to the analysis package and its extensibility is the conception of the event

handler. Basically, the event handler implements the major simulation steps in interface level

operations. In consequence, it is in no way dependent on the implementation of the modeling

subsystem. Ideally, the event handler should be programmable by the user in a high level

analysis language. At this time. such a language does not exist and the user makes only minimal

choices directly affecting the simulation.

The bulk of interaction between the analysis and modeling systems is provided by a routine

for collecting equations, a routine for checking that the state variable increments and constraint

forces make sense, and a routine for updating state variable values. These routines deal primarily

with vectorial quantities and therefore work with implementation independent data structures. In

conjunction with using the interface operations to formulate the procedures, independence from

the modeling system's implementation is easy to achieve. For example, the routine for collecting

equations begins its work: with a list of all existing objects and hinges. By addressing first the

control models of each object. and then the dynamic models, motion equations are collected

whose terms are evaluated based on current information. Note that the control models usc inputs

based on the previous simulation cycle. The collection process results in the formulation of the

system Ax=b.

State variable updates do not make sense if in the new position objects interpenetrate.

Essentially a tentative update of state variables is performed and the resulting configuration is

inspected. lfno interference is found, the update becomes pennanent. If contact forces vanish or

become negative, the event handler is infonned of the respective hinges and applies to each a

break-hinge operation after the current cycle completes. See also [6] for a similar strategy.

5. Report System

The report system generates output showing how the simulation progresses and summariz­

ing certain aspects. In the current version of the system, an animation is generated by displaying

the updated geometric model of the world at regular intervals. It is possible to store the anima­

tion sequence and replay it. Ad-hoc tools also exist for instrumenting various pans of the system,

thus we may monitor selected variables, display motion equations at certain instances, and the

like. Eventually the report system must be enhanced by formulating systematic interfaces for
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summarizing key events or for monitoring certain state variables. For example, one might wish

to tabulate the impulses upon each impact, or might wish to log the consl:raint forces acting on a

given body.

6. Definition Language

A scenario to be simulated is called a world. A world is defined by describing the objects in

it and by placing these objects into an initial configuration. Also described are certain global pro­

perties such as the presence or absence of gravity. All detailed descriptions of objects. their

shape, structure, etc., are really descriptions of generic objects, called types. When an object with

such characteristics is wanted, one declares an instance of this type as part of the world descrip"

tion.

The user describes object (types) in a source language implemented by translation to inter­

face operations. In describing primitive objects. the domain specific aspects are specified in sub­

sections. Each subsection is a single expression or list, or, for more complex definitions, is

enclosed in a begin ... end bracket For instance, the rods of Example 4.2 were described by

primitive rod begin

properties: (density: 2.0, color: red);

geometry: cuboid(I, 3, I)

where begin

top_bingepoint: (0, 1.6. 0);

bottom_bingepoint: (0, -1.6, 0)

end;

dynamics: ;

end

Here Ihe abstract properties density and color are identified, the geometric shape is defined as a

cuboid with the appropriate dimensions, and certain features of this shape are named. These

features can be referenced by the naming convention of [71. Briefly, feature x of object a is

referred to as ax, and the names of features are inherited. E.g., if a is a component of composite

object b, then feature x in a is referred to as b.ax. The dynamic model is constructed automati­

cally, so no specification is needed, but its inclusion must be indicated by stating the keyword

dynamics followed by an empty description.

The active system controlling the movement of the upper rod is defined as

primitive driver begin

geometry: none

where begin

hingepoint: (0,0,0)
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end;

control: acceleration =acceleratioD_foclinkage_driver

end

The driver has no material properties. yet a rudimentary abstract model is constructed to achieve

a coordination of the other modeled aspects of !.he system. For hinging the active system with the

upper rod, a special geometric description is needed in which the keyword none indicates that no

associated geometric model exists. However, a local coordinate frame is needed so that the

features by which the system will be hinged to the rod may be specified. This feature is referred

to in the usual manner as "driver.hingepoint". No dynamic model exists, so any moLion is

governed by the control model. In the control model, we specify that accelerations are to be

determined by a subroutine named "accelerationjof_linkagc_driver".

For linking three rods and the active system together, we create a composite object as fol~

lows:

composite linkage begin

components

rodl: driver,

rodl, rod3, rod4: rod;

structure begin

join rodl to rod 1 with ball.and.socket matching

(top_hingepoint hingepoint)

join rod3 to rodl with ball.and.socket matching

(top_hingepoint bottom_hingepoint)

join rod4 to rod3 with ball.and.socket matching

(top_hingepoint bottom_hingepoint)

end

end

The components of the composite object are given names rodl through rod4. They are primitive

objects but could be composite in tum. The interconnection structure is given in the structure

section and specifies that the rods are to be connected by ball and socket hinges. For each hinge

the components to be connected are identified along with the feature in each that is to be the

hinge point For different joints more complex mating may be required. For instance, a pin joint

requires mating two points on the axis of revolution. 1b.is implies a set of Qinear) constraint

equations that must be solved when instantiating the linkage in a world.

Before the simulation can begin. we must describe a world and declare all objects that are to

be instantiated in it The following description gives this information:

world cxample(x, y, z) begin

components
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links: linkage;

structure

place links by

links.driver.center at (x, y. z)

velocity = «3.14,0,0) (0, 0, 0))

properties: (gravity);

end

Here, the only object is of type linkage. Its placement is at the unspecified world location (x,y,z).

The respective coordinate values are substituted by the user when invoking the simulation. The

composite object links is given an initial linear and angular velocity.

A world simulation is then initiated by issuing the folloWing instructions to the analysis and
report subsystems:

simulate example(2, I ,0) begin

time: (0.05s, 60s);

report; animation;

end

where a simulation of the defined world is requested for a period of 60 seconds with time steps of

0.05 seconds. The parametric start position for links.rodl is chosen to be (2,1,0), and the simula­

tion should be shown as an animation.

7. Discussion

We have described an experimental simulation system in which the geometry, dynamic and

controlled behavior of models of interacting physical objects is simulated. The major design

features include system modularity and extensibility, a flexible and friendly user interfacc, and

the capacity to self-modify the models in response to exceptional situations, such as unanticipated

collisions. The system is intended for experimentation in several different areas. It is used for

developing user interfaces that will simplify the construction of simulations, and, eventually, for

experimenting with different task strategies for gripping and rotating objects. Work also contin­

ues to refine the implementation and to incorporate more sophisticated techniques.

For small worlds, including all examples discussed here, the majority of Lime is spent col­

lecting the motion equations and scalarizing them. To a large pan this is so because presently no

attempt is made to exploit model continuity over prolonged time spans, and much room for

improvement exists. For larger worlds, the solution ofAx=b is the dominant step. This can be

alleviated by taking advantage of the sparseness of A .

To understand how the thrust of our system differs from other mechanical simulation sys­

tems, we review some of the characteristics of ADAMS [2], a very successful simulation and
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analysis package. In ADAMS, a mechanism is defined as a system of interconnected rigid

bodies, called /inks. that are connected by hinges of various kinds, such as ball and socket hinges,

revolute joints, etc. The shape of links can be described by wire frame models in a user interface,

but for the internal simulation lhe bodies arc understood as local coordinate frames with mass and

inertial properties. Note Lhat mass and moments of inertia must be provided by the user. With

each link one may associate markers, that is. distinguished points akin to narned features in our

geometric models. Markers are named and referred to by numbers. Two bodies are hinged by

creating a standard joint between two markers. To orient lhe axis of revolution in a pin hinge,

say, each marker must have a local coordinate frame with a suitable orienLation relative to the

associated link.

With joints one may associate generators that model acLuators exerting, for example, con­

stant torque. These generators may be supplied as subroutines. In addition, external forces may

be applied at specified markers, as well as resisting or attracting forces between marker pairs.

The latter may be used to effect an impact model: Associate with a pair of markers a distance

dependent repelling force that is negligible except at very small distances.

It follows. that the system of motion equations never changes structurally in the course of

the ADAMS simulation [2]. In particular, the user must anLicipate all possible pairs of colliding

points over the course of the simulation and declare them as markers. In fact, the self­

modification of the models simulated is one of the basic capabilities in our system not found in

any other mechanical simulation system [6]. When using the system as a tool to test motion plan­

ning strategies, for example, this capabiliLy is clearly needed.
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yS" 1.298B194) ('ES' 13.(3) ('uyS' B.B) ('uxS" 13.13) ("x4" -9.4129(36) ('uE4" -4.985152
) ('y4" -5.954133(35) ('E4" 13.(3) ('uy4" 13.(3) ('ux4" 13.(3) ("ux1' 13.13) ("uyl' B.B) ('uE
I' B.B) ("fx1" 29.8642(32) ('fx2' 63.13489) ("fy1" -155.7<1242) ('fy2' -89.783936) ("
fd' 13.13) ('h2" B.B) ("fxS' 56.4n436) ('rys' -2S.1S5818) ('hS" 13.13»o
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