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This foundational perspective does not disclose that computing a solution of the nonlinearsystem is computationally challenging, and except for simple constraint systems, the problemcannot be solved in practice without further machinery. Direct approaches to algebraicallyprocessing the entire system include standard methods for ideal membership and locatingsolutions in algebraically closed �elds, for example using Gr�obner bases [27] or the Wu-Rittmethod [4]; numerous algorithms and implementations for solving over the reals based onthe methods of, for example, [3, 25, 5, 20] etc.; and algorithms for decomposing and solvingsparse systems of polynomial equations based on [16, 28, 17] etc. They apply to generalsystems of polynomial equations, hence have at least exponential time complexity, are slowin practice, and do not exploit special properties of geometric constraints. They should beused primarily for preprocessing or solving small, compact subsystems. The problems wouldbe further compounded if we allowed constraints that must be expressed as inequalities, suchas \point P is to the left of the oriented line L in the plane." Such additions necessitate usingcylindrical algebraic decomposition based techniques [5], such as in [7, 21, 29] which have atheoretical worst-case complexity of O(2n2), where n is the algebraic size of the problem, ornonlinear optimization techniques, all of which are slow enough in practice that they do notrepresent a viable option for large problem sizes.1.1 Problem DecompositionIf we wish to solve a geometric constraint problem, without discarding the algebraic perspec-tive outright, we will need an e�ective way in which to decompose the equation system. Suchdecomposition could be done purely algebraically, using symbolic computation techniquessuch as those for sparse systems discussed in the previous section, but doing so is inferior, inmany cases, to a generalized degree-of-freedom analysis. The latter approach �rst translatesthe constraint problem into a graph in which the graph vertices are the geometric elementsand the constraints between them are incident edges.In the constraint graph, it is possible to abstract all geometric elements by numbersthat characterize the number of generalized coordinates that must be determined in orderto instantiate the element, i.e, the degrees of freedom of the geometric element. In planarEuclidean geometry, for example, a point and a line each have two degrees of freedom, acircle has three, an ellipse �ve, and so on. These numbers are a�xed to the graph verticesas weights. Similarly, the constraints can be abstracted by the number of coordinates thatare �xed by the constraint, usually the number of equations that express the constraintalgebraically. Again, in the Euclidean plane, an incidence constraint between a point anda line determines one coordinate value, whereas an incidence constraint between two pointsdetermines two. Therefore, the respective number is a�xed to the graph edge representingthe constraint, as weight of the edge.As was shown in [12], a key step in the decomposition of the constraint graph intogenerically solvable subsystems is to �nd minimal dense subgraphs. A weighted undirectedgraph is a graph where every vertex and every edge has a nonzero integer weight.Let G be a weighted undirected graph, G = (V;E; vi; eij), with n vertices V and2



m edges E, where vi, 1 � i � n, are the weights of vertices and eij, 1 � i; j � n,are the weights of edges. We want to �nd an induced subgraph A � G such thatXe2A e�Xv2A v > k (1)Such a subgraph A is called dense.More precisely, we want to �nd a minimal dense subgraph, that is, a dense subgraph A suchthat A does not contain a proper dense subgraph B. The related problem of �nding theminimum dense subgraph A is shown to be NP-hard.Broadly speaking, a minimal dense subgraph corresponds to a subproblem of the geo-metric constraint problem that can be solved separately in the generic case, and thereforecan be used to decompose the nonlinear system of equations. The constant k depends onthe geometry, and, in some cases, on symmetries of the subproblem.As soon as a subgraph of the appropriate density has been found, the correspondinggeometric objects can be placed rigidly with respect to each other (or with respect to aglobal coordinate system) using only the constraints between them. The solver would thencontinue by condensing the constraint graph, coalescing the placed elements into a new graphvertex and suitably inducing edges to the other vertices. The description of this process isgiven in Section 5.1.2 Prior Work on Constraint Graph AnalysisPrior attempts at a degree-of-freedom analysis for constraint graphs often concentrated onrecognizing speci�c dense subgraphs of known shape, such as the triangles of [2, 22, 23] or thepatterns of [2, 13, 14]. This approach has limited scope: certain constraint problems can bedecomposed very e�ciently, but many well-constrained problems cannot be decomposed andthe solvers give up on them. The scope can always be extended by increasing the repertoire ofpatterns of dense subgraphs. However, doing so results in greater combinatorial complexityand eventually makes an e�cient implementation too di�cult.More general attempts reduce the recognition of dense subgraphs in a degree-of-freedomanalysis to a maximum weighted matching problem in bipartite graphs using methods from,e.g., [18]. A variation [1] of this approach does not use a degree-of-freedom analysis anddirectly deals with algebraic constraints. In this case, a maximum cardinality bipartitematching is used, since no weights are required. The approach then relies on decomposinginto strongly connected components, and one can attempt to generalize it to a weightedversion required for a general degree-of-freedom analysis either by replicating vertices, or byretaining weighted vertices, as in [?]. We discuss in Section 2.3 why all of these approachesare incomplete and less e�cient than the approach presented here. In particular, havingfound the required matching, or maximum ow, �nding a dense subgraph requires signi�cantadditional work; it becomes di�cult to isolate minimal dense subgraphs, and the approachesonly work for density 0, and do not generalize to arbitrary densities. The general approachof [15] appears to be exponential. 3



A di�erent approach to constraint graph analysis uses rigidity theorems; e.g., [6, 11].Corresponding decomposition steps may be nondeterministic or require di�cult symboliccomputations when computing a solution.2 Dense SubgraphsIn decomposing a geometric constraint system, one would ideally like to locate the smallestpossible subsystems. This corresponds generically to �nding a minimum dense subgraphof the weighted constraint graph. A provable bound on the size of the minimum densesubgraph, for example, would permit a feasible search for one. Unfortunately (even withthe common assumption that the weights of the vertices and edges are bounded) it is easyto construct graphs that have arbitrarily large minimum dense subgraphs. In fact, the nextsection renders a feasible search unlikely, by showing that the problem (when the weights ofthe vertices and edges is unbounded) is NP hard.2.1 Finding a Minimum Dense Subgraph is NP-hardFor a weighted undirected graph G and a constant p, let SMALL-DENSE be the problem ofdeciding whether there is a dense subgraph (without loss, for K = 0) in G with at most pvertices.For an input undirected graph G, let CLIQUE be the problem of deciding whether thereis a complete subgraph in G with at least p vertices. Recall that CLIQUE is NP-complete.A polynomial time reduction of CLIQUE to SMALL-DENSE shows that SMALL-DENSE isNP-hard:PropositionSMALL-DENSE is NP-complete.ProofThat SMALL-DENSE is in NP is obvious. Let G0 = (V;E; w) be a weighted undirectedgraph. Every vertex has the weight w(v) = p(p � 1)=2, and every edge has the weightw(e) = p. Let G = (V;E) be the corresponding undirected graph, and (G; p) an instanceof CLIQUE. If G has a clique of size p, then the corresponding subgraph of G0 is dense.Conversely, let S be a dense subgraph of G0 of size s at most p. Because of the weights,s < p is not possible. Therefore, since s = p, there must be p(p � 1)=2 edges in S; that is,there is a clique of size p in G.2.2 A Greedy AlgorithmNext we give the straightforward greedy algorithm for �nding dense (not necessarily mini-mum, or even minimal), subgraphs and show that it runs for exponential time in the worstcase.De�nition 4



For A � G de�ne the density function d(A) asd(A) =Xe2Aw(e)�Xv2Aw(v)The idea of the greedy algorithm is to start with an empty list of subgraphs L. SubgraphsA 2 L are built by adding one vertex at a time and computing the density function d(A[fvg).One could expect that L is simply the list of all possible subgraphs considered so far andthat its size would increase exponentially. However, it turns out that it is sometimes possibleto ignore A [ v or A, so that the size of L does not always increase when adding a vertex.Let B be the set of all vertices that were already considered. If A[ fvg is dense then weare done. If not, then if d(A [ fvg) � d(A) we can replace A by A [ fvg, thus keeping thesize of L unchanged. If d(A [ fvg) < d(A)and d(A [ fvg) + Xe=(u;u0);u2B;u0 62Bw(e) � d(A)then we will not add (A [ fvg) to L and keep A in L, so the size of L is unchanged.Therefore, we only increase the size of L by adding A [ fvg when d(A [ fvg) < d(A) andd(A [ fvg) + cut(v;G�B) > d(A)Pseudocode for the Greedy Algorithm1. L = fg2. B = fg3. for every v in G4. B = B [ fvg5. for A 2 L6. if d(A [ fvg) � 0 then7. return A [ fvg8. else if d(A [ fvg) � d(A) then9. replace A by A [ fvg10. else if d(A [ fvg)+ cut(v;G� B) > d(A) then11. L = L [ (A [ fvg)12. endif13. endfor14. endforPerformance of the Greedy AlgorithmWhen G is not dense, the algorithm may require exponential time. For example, if G isthe rectangular grid, the weight of all vertices is 2, and the weight of all the edges is 1, thenthe algorithm creates a list L of exponential length.5



2.3 Prior Work Using Flow-Based ApproachesSuppose that we want to �nd a most dense subgraph A � G, i.e, one for which d(A) ismaximum. We could maximize, over subgraphs A of G, the expressiond(A) +Xv2Gw(v) =Xe2Aw(e) +Xv 62Aw(v) (2)or, equivalently, minimize minA�G(Xe62Aw(e) +Xv2Aw(v)) (3)To do this, consider a bipartite graph ~G = (M;N; ~E;w) associated with the given graphG = (V;E; w). The vertices in N are the vertices in V and the vertices inM are the edges inE. Moreover, the edges of ~G are ~E = f(e; u); (e; v) j e = (u; v); e 2 Eg. The weights w nowappear on the vertices of ~G. Maximizing the expression (2) reduces to �nding a maximumweighted independent set in the bipartite graph ~G, or, equivalently, the minimum weightvertex cover.There are two ways to try to �nd the minimum weight vertex cover. The minimumcardinality vertex cover in a bipartite graph can be identi�ed with a maximum cardinalitymatching and can be found using network ow in O(pnm) time [8]. To take advantage of thisalgorithm, however, we need to replicate edges and vertices by the corresponding weights.For example, a vertex of weight 3 is tripled. In this larger graph, we �nd a minimumcardinality vertex cover, and then we try to locate a corresponding minimum weight vertexcover in ~G and the corresponding dense subgraph in the graph G. No e�cient method isknown for the latter part.The unweighted version of bipartite matching in ~G can be used naturally when variablesare directly represented as vertices in G; the algebraic equations are assumed to kill only onedegree of freedom, and are represented as edges in G (instead of analyzing general degrees-of-freedom). This again results in a constant factor increase in the size of the graph. Thematching naturally induces a direction on the edges of the original graph G, and the stronglyconnected components provably yield a decomposition into minimal dense subgraphs in thecase when the density is chosen to be exactly 0 (K = �1). This approach was used in [1], andin fact, gives a natural way of decomposing the entire graph into minimal dense subgraphs.However, it is not clear how to extend the algorithm for general K, or for general, weighted,degree of freedom analysis, with constraints that kill more than one degree of freedom.An attempt to directly extend this method to general degree of freedom analysis, i.e,to weighted graphs can be found in [24], although it preceded [1]. The method is also aow-based method and is super�cially similar to ours, however, it di�ers in crucial aspects.Create a source and sink in ~G corresponding to theM and the N sets of vertices respectively,assigning capacities to M and N corresponding to the weights of the edges and vertices in Grespectively. Now a maximum ow is found, which corresponds to a \generalized" matchingand induces a natural direction on the edges of the graphG as in [1]. Unlike in the unweightedcase, however, the strongly connected components are neither guaranteed to correspond to6



minimal dense, or even dense subgraphs of G, nor do they provide a natural decompositionmethod, even for the zero-density case, i.e, K = �1.A second method for dealing with weights is to search for a minimum weighted vertexcover in ~G by solving the maximum (vertex) weighted bipartite matching problem. A max-imum (edge) weighted bipartite matching problem can be solved in O(pnm logn) time forbounded weights, [26]. This trivially gives a solution to the maximum (vertex) weightedbipartite matching problem. The catch is that, unlike in the unweighted case, a minimumweighted vertex cover does not correspond directly to a maximum weighted matching. Hav-ing found a maximum weighted matching, a signi�cant amount of work is needed to obtainthe minimum weight vertex cover, and, from it, the corresponding dense subgraph in G.Summarizing, the above approaches have the following disadvantages.1. The maximum (weighted) matching or maximum ow in ~G does not directly yielddense subgraphs in G.2. We need only some subgraph of a speci�c density, not necessarily a most dense one.Hence, in the ow based approaches, it is not necessary to �nd the maximum ow.3. The above approaches provide no natural way of �nding a minimal dense subgraph forarbitrary weighted graphs, for arbitrary densities or values of K.We develop a more e�cient method analogously based on a di�erent optimization problem(see [19]), but which will be seen to address all of these drawbacks.3 Finding a Dense SubgraphWe devise a ow-based algorithm for �nding dense subgraphs assuming that K = 0 inEquation (1). We discuss the case K 6= 0 in Section 4.3.1 Construction of the NetworkFrom the graph G, construct a bipartite directed network G� = (M;N; s; t; E�; w), where M ,N and E� are as in ~G. The source s is connected by a directed edge to every node inM , andevery node in N is connected by a directed edge to the sink t. The capacity of the networkedge (s; e), e 2 M , is the weight w(e) of the edge e in G. The capacity of the network edge(v; t), v 2 N , is equal to the weight w(v) of the vertex v in G. The capacity of the networkedge (e; v), e 2M; v 2 N , is in�nite. There are no other network edges. See also Figure 1.Notice that the construction of the network extends to hypergraphs representing ternaryor other constraints, where each hyperedge involves an arbitrary number of vertices.A minimum cut in G� directly de�nes a subgraph A that minimizes Expression (3). Itcan be found as the max ow using a netow algorithm. Now we are only interested in�nding a dense subgraph and not necessarily the most dense one. So, we are interested in asmall enough cut in G�, not necessarily the smallest one. Thus, to �nd a dense subgraph,7
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Figure 1: Constraint graph (left) and associated network (right).
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Figure 2: Two di�erent ows for the constraint graph of Figure 1there should be an algorithm that is faster than a general maximum ow (or minimum cut)algorithm.The algorithm given in the next section relies on a subtle, but crucial modi�cation of theincremental max ow algorithm which seems tailormade for the current application in thatit simultaneously addresses all the drawbacks of the previous algorithms mentioned in theprevious section.3.2 The Dense AlgorithmThe idea of the algorithm (Algorithm Dense below) is to start with the empty subgraph G0of G and add to it one vertex at time. When a vertex v is added, consider the adjacent edgese incident to G0. For each e, (for ease of exposition, we assume the edges are binary) try todistribute the weight w(e) to one or both of its endpoints without exceeding their weights;see also Figure 2. As illustrated by Figure 3, we may need to redistribute some of the owlater.If we are able to distribute all edges, then G0 is not dense. If no dense subgraph exists,then the algorithm will terminate in O(n(m + n)) steps and announce this fact. If thereis a dense subgraph, then there is an edge whose weight cannot be distributed even with
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redistribution. The last vertex added when this happens can be shown to be in all densesubgraphs A � G0.Distributing an edge e in G now corresponds to pushing a ow equal to the capacity of(s; e) from s to t in G�. This is possible either directly by a path of the form hs; e; v; ti in G�,or it might require ow redistribution achieved by a standard search for augmenting paths[9], using network ow techniques, see Figures 4, 5. Note that the search for augmentingpaths takes advantage of the fact that the ow through each vertex in M is distributed toexactly 2 vertices in N (lines 4-7) in Algorithm Distribute. While this decreases runningtime by a constant factor, it doesn't a�ect complexity.If there is an augmenting path, then the resulting ows in G� provide a distribution ofthe weight of each edge e in the current subgraph G0 consisting of the examined verticesand edges of the original graph G as follows: the weight w(e) of each edge e connecting thevertices a and b is split into two parts fae and f be such that fae + f be = w(e) and, for eachvertex v 2 G0, Pe=(v;�) f ve � w(v).If there is no augmenting path for the residual ow on (s; e), i.e, the ow w(e) is undis-tributable, then a dense subgraph has been found and is identi�ed based on the ows in G�starting from e.Algorithm Dense1. G0 = ;.2. for every vertex v do3. for every edge e incident to v and to G0 do4. Distribute the weight w(e) of e5. if not able to distribute all of w(e) then6. A = set of vertices labeled during Distribute7. goto Step 128. endif9. endfor10. add vertex v to G011. endfor12. if A = ; then no dense subgraph exists13. else A is a dense subgraphAlgorithm Distribute searches for augmenting paths in G� to achieve the required ow andthe labeling. It repeats a Breadth First Search for augmentation until all of w(e) has beendistributed or until there is no augmenting path. The technique is similar to the one usedin the max-ow algorithm in [19].Algorithm DistributeInput: (G�; f; edge), where G� = (N;M; s; t; E�; w), f is a set of ows f veand edge is the edge that is being distributed.0. Initialize scan(v) = 0; label(v) = 0; scan(e) = 0; label(e) = 0 for all v 2 N; e 2M9
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Figure 5: The augmenting path and the distribution of edges in original graph G01. vert = 0; capvert = 02. label(edge) = 1; pathcap(edge) = w(edge)3. while (w(edge) > Pv f vedge) or not all labeled nodes have been scanned4. for all labeled e 2M , with scan(e) = 05. label unlabeled neighbors of e (i.e v 2 N)6. scan(e) = 1; pred(v) = e; pathcap(v) = pathcap(e)7. endfor8. for all labeled v 2 N with scan(v) = 09. if min(w(v)�Pe f ve , pathcap(v)) > capvert then10. vert = v; capvert = min(w �Pe f ve , pathcap(v))11. else12. label all unlabeled e0 2M s.t f ve0 > 013. endif14. scan(v) = 115. endfor16. if vert > 0 then17. An augmenting path from s to t has been found: backtrack fromvert using pred() and change the values of f ve as requirted.18. for all e 2M , v 2 N19.. label(e) = 0; scan(e) = 0; label(v) = 0; scan(v) = 020. endfor21. vert = 0; capvert = 0; label(edge) = 122. pathcap(edge) = w(edge)�Pv f vedge23. endif24. endwhileLemma 1 10
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Figure 6: This subgraph is dense for K = �4, so is upper triangleLet G� be the bipartite network constructed from G, and e 2 M . If, after checking allpossible augmenting paths originating at e, the ow through (s; e) is less than the capacityof (s; e), and A = (EA; VA) is the set of edges and vertices labeled after the search for anaugmenting path, then d(A) > 0.Proof: A is a subgraph of G because for every labeled edge e 2 E both of its vertices willbe labeled. For all v 2 VA, the network edges (v; t) are saturated, otherwise there is anaugmenting path from e to v and the ow through (s; e) can be increased. Let f be themaximum ow through (EA; VA). Since all (v; t) are saturated, f = Pv2A w(v), but sinceat least one edge (s; e) is not distributed f < Pe2Aw(e); therefore d(A) = Pe2Aw(e) �Pv2A w(v) > 0. 2The correctness of Algorithm Dense follows from the above Lemma, since if the graph con-tains any dense subgraph, Algorithm Dense will �nd it.Complexity AnalysisIn the worst case, constructing an augmenting path labels at most m + n nodes. Since thealgorithm stops when the total edge weight exceeds the total vertex weight, the total edgeweight that is distributed is at most the total vertex weight times a constant bound b. Eachaugmentation increases the ow by least 1 unit. Therefore, the number of augmentationscannot exceed O(n). Hence, Algorithm Dense has complexity O(n(m+ n)).3.3 Finding a Minimal Dense SubgraphLet G0 = (V 0; E 0) be the subgraph already examined by Algorithm Dense. That is, assumethat the vertices V 0 have been examined and the weight w(e) of all induced edges e has beendistributed. Let v be the �rst vertex that is about to be examined next, such that the weightof one of its incident edges e adjacent to G0 cannot be distributed. Let VA � V 0 be the setof vertices labeled while trying to distribute w(e), (which includes the vertex v), and let Abe the subgraph induced by VA. By Lemma 1, A is a dense subgraph.Lemma 2Every dense subgraph of A contains v.Proof: Let A0 be a dense subgraph of A not containing v. Then there should be an edgee 2 A0 such that e was not distributed before v was considered. However, this contradictsour assumption that all edges in G0 have been distributed. 211



RemarkSimilarly, if (v; v1); (v; v2); :::; (v; vk) are undistributed edges of v then every dense subgraphof A contains at least one edge from this list. If k = 1 then every dense subgraph of Acontains (v; v1).Proposition 3If the amount of undistributable ow, i.e, the density of A is d(A) and A0 is a dense propersubgraph of A, then 0 < d(A0) < d(A) (in general, K < d(A0) < d(A)).Proof: Note that the excess ow comes from the edges incident to v. Suppose A0 � A isdense and d(A0) � d(A). By Lemma 2, A0 contains v. Consider the relative complement A�of A0 with respect to A. Then d(A�) � 0, which implies that the vertices of A� could nothave been labeled after distributing the ow of the edges of v. Since all vertices in VA arelabeled, we know that A = A0. 2Corollary 4If d(A) = 1 then A is minimal. In general, if d(A) = K + 1, then A is minimal.In particular, when K = 0, well-constrained or underconstrained problems have d(A) � 1.Then, by Corollary 4, we know that the subgraph found by Algorithm Dense is minimal.Moreover, if overconstrained problems are rejected, then a �rst test for overconstrained wouldbe to determine Pe2G w(e) � Pv2G w(v) > 1 in linear time. This test would reject manyoverconstrained problems. The remaining cases would be found by noting whether d(A) > 1when Algorithm Dense terminates.We may accept consistently overconstrained problems. In that case, the graph A mayhave to be analyzed further to extract a minimal dense subgraph. We now develop a methodfor performing this extraction, once a dense subgraph A has been found by Algorithm Denseand d(A) > 1. The algorithm to be developed post-processes only the subgraph A.Without loss of generality, assume that A contains the vertices fv1; : : : ; vl; vl+1g, and vl+1was the last vertex examined when A was found. The density d(A) is the total undistributedweight of the edges between vl+1 and fv1; : : : ; vlg:We begin with the knowledge of a subgraphB of A that is contained in every dense subgraph of A. By Lemma 2, B contains initiallythe vertex vl+1. The algorithm to be developed is to determine either an enlargement of thegraph B, or else a reduction of the graph A.We perform the following step iteratively. Choose a vertex vk 62 B from A. Determinethe quantity c = d(A)� w(e0) + f vke0 + f vl+1e0 where e0 is the edge (vk; vl+1). That is, c is theundistributed weight of edges in A without vk. Remove the vertex vk from A along with itsedges. This would create unutilized capacity in the set of vertices adjacent to vk (that arein A) through the set Ek of incident edges. The excess vertex capacity isXe2Ekw(e)� w(vk)� w(e0) + f vke0 + f vl+1e0where e0 is the edge between vk and vl+1. This quantity is the total ow on the edges of vk;distributed away from vk. We now attempt to distribute the previously undistributed weightof the edges between vl+1 and fv1; : : : ; vlg � fvkg, using redistribution if necessary. We use12



Algorithm Distribute on the modi�ed network, setting the capacity of (vk; t) to zero. Thereare two outcomes possible:1. If we distribute all of c successfully into the newly created holes, or excess capacity onthe vertices adjacent to vk, then no subgraph of A� vk is dense, so vk belongs in everydense subgraph of A, and hence gets restored into A and, moreover, gets added to B.2. If we were unable to distribute c, then by Lemma 1, we have found a smaller densesubgraph of A � vk. This new subgraph consists only of the vertices labeled by theAlgorithm Distribute in the process of distributing one of the undistributed edgesadjacent to vl+1. This outcome reduces the size of A. Note that, by Proposition 3, thedensity (and size) of the new graph A must drop by at least 1.We repeat this process for the remaining vertices in A�B. We stop either when d(B) > 0,because then B is minimal dense, or when d(A) = 1, because then A is minimal dense.Complexity AnalysisThe complexity of each iteration described above is O(n(m + n)), since c represents theundistributed weight on at most n edges adjacent to vl+1 are distributed at each iteration.We can assume that the sum of capacities of the edges is constant, thus the determinationof a minimal dense subgraph takes O(n2(m+ n)) steps. Note, however, that by Proposition3 the actual complexity rarely reaches this upper bound.The complexity of the iteration is reduced to O(m + n) if the constraint graph hasbounded valence or if d(A) has an a-priori constant bound. The latter situation means thatthe constraint problem has a bound on the \overconstrainedness" of subgraphs, a naturalassumption if the constraint problem is speci�ed interactively and we keep track of thedensity of the full constraint graph. In those cases, the complexity reduces to O(n(m+ n))steps.Algorithm MinimalComment: The input is the output of Dense, a dense (sub)graph A of G, andthe distribution of edge weights fae and f be for each edge e = (a; b).Note that vl+1 is the last vertex added that caused A to be found,and e0 is the edge between vk and vl+1.1. B = fvl+1g2. while d(B) � 0 and d(A) > 1 do3. choose vk 2 A�B4. c = d(A)� w(e0) + f vke0 + f vl+1e05. for all v 2 N (Removing fvkg from A)6. Let e = (v; vk)7. remove e from M8. endfor 13



9. remove vk from N10. Distribute (in A) excess c from the edges of v11. if there are some undistributed edges left then12. set A = new labeled graph13. else14. set A = A [ fvkg (as well as restoring edges of vk)15. set B = B [ fvkg16. endif17. endwhile18. output B, if d(B) > 0, else output A:4 The Case of K 6= 0In the context of geometric constraint solving, K = 0 represents the case where the minimaldense subgraph corresponds to elements that can be placed rigidly with respect to eachother and to a global coordinate system. The case of K > 0 means that the subgraph isoverconstrained, usually by K constraints, and the case of K < 0 means that the resultinggeometric con�guration has residual motion with respect to a global coordinate system.The most important case is when K = �3 in the planar case or K = �6 in the spatialcase, signaling that the resulting geometric con�guration can move as a rigid body withrespect to the coordinate system. In [10], this property has been exploited recursively forthe purpose of cluster combination. The caseK < 0 is also the reason that symbolic algebraicdecomposition methods fail to succeed as they implicitly assume K = 0.As presented, our algorithms satisfy Inequality (1) for K = 0: keep adding vertices untilwe are unable to distribute the edge weight/capacity. The �rst undistributable edge signalsa dense graph A, for K = 0, and d(A) > d(A � v), where v was the last vertex examined.We now explain how to modify the algorithm to accommodate di�erent values of K.The modi�cation for K > 0 is trivial. Instead of exiting Algorithm Dense when an edgecannot be distributed, exit when the total undistributable edge capacity exceeds K. Thecomputation of the total undistributable edge capacity so far is based only on the weightsof the labeled edges and vertices, thus ensuring that the resulting dense graph is connected.An analogous change is in order for Algorithm Minimal. Clearly this modi�cation does nota�ect the performance complexity of the algorithms.When K < 0 the algorithms can also be modi�ed without increasing the complexity.Suppose, therefore, that K < 0, and consider Step 4 of Algorithm Dense. If w(v) +K � 0,simply reduce the capacity of the network edge (v; t) to w(v)+K and distribute w(e) in themodi�ed network. If the edge cannot be distributed, then the subgraph found in Step 6 hasdensity exceeding K. If every incident edge can be distributed, then restore the capacity ofthe network edge when adding v to G0.If the weight w(v) of the added vertex v is too small, that is, if w(v) + K < 0, then amore complex modi�cation is needed. We set the capacity of (v; t) to zero. Let e be an newedge to be distributed, and do the following.14



1. Distribute the edge weight w(e) in the modi�ed network.2. if w(e) cannot be distributed then3. we have found a dense subgraph for K; exit.4. else5. save the existing ow for Step 10.6. increase the ow of e by �(w(v) +K)7. if the increased ow cannot be Distributed then8. we have found a dense subgraph for K; exit.9. else10. restore the old ow. No dense subgraph found11. endif12. endifIn worst case the algorithm saves and restores the ows for every edge added, which requiresO(m) operations per edge. Distributing the edge ow however dominates this cost since itmay require up to O(m + n) operations per edge; so the modi�cation does not adverselyimpact asymptotic performance.5 Graph DecompositionThe ow-based degree-of-freedom analysis must be applied repeatedly to constraint graphs.Two di�erent conceptual steps are involved. When a minimal subgraph of the appropriatedensity has been found, then the vertices form a cluster of geometric elements that can beplaced rigidly with respect to each other, using only the constraints represented by the edgesof the subgraph. This cluster can be extended under certain circumstances by adding moregeometric elements that are determined by constraints involving the cluster. After a clusterhas been so extended, it must then be abstracted into a single geometric entity, and the restof the constraint graph can be searched for another minimal dense subgraph.5.1 Extended ClustersConsider the constraint graph G of Figure 7. We assume that all vertices have weight 2 andall edges weight 1. Then the vertex set fa; bg induces a minimal dense subgraph of G. Aftersolving this subgraph, i.e., after assigning coordinates to the geometric elements a and b sothat the constraint between them is satis�ed, we can place c because its two coordinates (theweight) are determined by the two incident constraints with a and b. After so placing c, wecan place, in sequence, d, e and f . Thus, all six geometric elements can be placed rigidlyrelative to each other.The structure of the solution is as follows: Beginning with a simultaneous system ofequations, the elements of the minimal dense subgraph are placed with respect to each other(and the global coordinate system in the case of K = 0). In our example, two geometricelements are placed. Then, a number of geometric elements are placed, one by one, solving15
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d

c

bFigure 7: Constraint graph with vertices of weight 2 and edges of weight 1. The minimaldense subgraph fa,bg can be extended sequentially by the other elements, in alphabeticorder.for each individually from as many equations as there are incident constraints on them withthe previously placed elements. In our example, each element requires solving two equationsin two variables.We call a minimal dense subgraph that has been enlarged by sequential extensions anextended dense subgraph.5.2 Recursive ApplicationAfter an extended dense subgraph has been found, the set of geometric elements that are itsvertices form a rigid geometric structure. For K = 0, this structure is �xed with respect tothe coordinate system, otherwise the structure can be moved with K > 0 degrees of freedom.We extend the decomposition and �nd other dense subgraphs, abstracting this subgraphinto a geometric construct with K degrees of freedom. This can be done applying naturalgraph reduction: Replace the dense subgraph G0 by a vertex u of weight K and combine alledges from a vertex in G0 to a vertex w not in G0. The weight of the induced edge (u; w),in the reduced graph, is the sum of weights of the edges that have been combined. Afterthe reduction, another dense subgraph is found. Reduction ends when the graph has beenreduced to a single vertex.For example, consider the graph of Figure 8. All vertices have weight 2, all edges haveweight 1. The four vertices connected by the heavy edges constitute an extended densesubgraph. After reduction of the extended dense subgraph we obtain the graph of Figure 9.Again, an extended cluster is found and indicated by the heavy edges in the graph. Reducingthis cluster, we obtain the graph of Figure 10. In this graph, a minimal cluster is found asindicated, and further reduction yields the graph of Figure 10. Here, the entire graph isminimal dense, so the last reduction yields a graph that consists of a single vertex.5.3 Church-Rosser PropertyA constraint graph G is well-constrained if the density of G is d(G) = �K and there isno vertex-induced subgraph of density greater than �K. We want to prove that a well-constrained graph can be reduced iteratively to a single vertex, no matter how the dense16



Figure 8: Constraint graph with an extended dense subgraph. Vertex weight is 2, edgeweight is 1.
3Figure 9: Constraint graph after reducing the subgraph. The cluster vertex has weight 3.
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Figure 10: Constraint graph after two subgraph reductions. The cluster vertices have weight3 each, the edge between them has weight 2.
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2Figure 11: Constraint graph after three subgraph reductions.17



subgraph is chosen by our algorithms. Intuitively this fact is a consequence of the subgraphreduction preserving the density of the graph.If a well-constrained geometric constraint graph can be reduced, by a sequence of thereduction steps described before, to a single vertex, then the geometric constraint problemis solved by the corresponding decomposition of the nonlinear equation system. We wantto show the converse: If a generic geometric constraint system is well-constrained and hasno overconstrained subsystems, then any sequence of reduction steps described before willreduce the constraint graph to a single vertex.The reduction algorithm considers a graph Gi, �nds a well-constrained subgraph Hi+1and reduces Gi to Gi+1. We denote such a reduction step byGi �!Hi+1 Gi+1The reduction terminates when no dense subgraph can be found.Theorem Let G be a well-constrained subgraph; that is d(G) = �K, and every vertex-induced subgraph A has density d(A) � �K. Consider any complete reduction sequenceG = G0 �!H1 G1 �!H2 : : : �!Hm Gmproduced by our decomposition method, where the reduction halts with Gm. The subgraphsHi are nontrivial and have been located by the Algorithm Dense. Then jGmj = 1:Proof. The proof follows immediately from the fact that the process of condensing does notchange the density. In the reduction G �!H G0we replace H with a vertex h whose weight is w(h) = d(H). Moreover, we remove theedges (r; u), where r 2 H and u 62 H and add the edge weight to the edge (h; u) of G0.Thus d(G) = d(G0), and therefore d(G) = d(G0) = d(G1) = : : : = d(Gm). Since G is well-constrained, it follows that Gm is also well-constrained. Since the decomposition methodhalts only when the current (reduced) graph does not have a well-constrained subgraph ofsize greater than 1 (by the correctness of Algorithm Dense), we can assume that Gm has nowell-constrained subgraph (including itself) of size greater than 1. Therefore, jGmj = 1; thusproving the theorem. 2References[1] S. Ait-Aoudia, R. Jegou, and D. Michelucci. Reduction of constraint systems. InCompugraphics, pages 83{92, 1993.[2] W. Bouma, I. Fudos, C. Ho�mann, J. Cai, and R. Paige. A geometric constraint solver.Computer Aided Design, 27:487{501, 1995.18
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