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Abstract

We present a flow-based method for decomposing the graph of a geometric con-
straint problem. The method fully generalizes degree-of-freedom calculations, prior
approaches based on matching specific subgraph patterns, as well as prior flow-based
approaches. Moreover, the method generically iterates to obtain a decomposition of
the underlying algebraic system into small subsystems.
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1 Introduction

Informally, a geometric constraint problem consists of a (finite) set of geometric elements
and a (finite) set of constraints between them. The geometric elements are drawn from a
fixed universe such as point, lines, circles and conics in the plane, or points, lines, planes,
cylinders and spheres in 3-space. The constraints are logical constraints such as incidence,
tangency, perpendicularity, etc., or metric constraints such as distance or angle.

The solution of a geometric constraint problem is an instantiation of the geometric ele-
ments such that all constraints are satisfied. Here, it is understood that such a solution is
in a particular geometry, for example the Euclidean plane, the sphere, or Euclidean 3-space.

In general, every geometric constraint problem can be translated mechanically into a set
of nonlinear equations. The equations are usually algebraic, and nonalgebraic formulations
involving trigonometric functions can be avoided in nearly all cases. The equations express
the constraints, the variables are the coordinates of the geometric elements, in a suitable
coordinate system.
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96-1-0635.
tSupported in part by NSF Grant CCR 94-09809.



This foundational perspective does not disclose that computing a solution of the nonlinear
system is computationally challenging, and except for simple constraint systems, the problem
cannot be solved in practice without further machinery. Direct approaches to algebraically
processing the entire system include standard methods for ideal membership and locating
solutions in algebraically closed fields, for example using Grobner bases [27] or the Wu-Ritt
method [4]; numerous algorithms and implementations for solving over the reals based on
the methods of, for example, [3, 25, 5, 20] etc.; and algorithms for decomposing and solving
sparse systems of polynomial equations based on [16, 28, 17] etc. They apply to general
systems of polynomial equations, hence have at least exponential time complexity, are slow
in practice, and do not exploit special properties of geometric constraints. They should be
used primarily for preprocessing or solving small, compact subsystems. The problems would
be further compounded if we allowed constraints that must be expressed as inequalities, such
as “point P is to the left of the oriented line L in the plane.” Such additions necessitate using
cylindrical algebraic decomposition based techniques [5], such as in [7, 21, 29] which have a
theoretical worst-case complexity of 0(2"2), where n is the algebraic size of the problem, or
nonlinear optimization techniques, all of which are slow enough in practice that they do not
represent a viable option for large problem sizes.

1.1 Problem Decomposition

If we wish to solve a geometric constraint problem, without discarding the algebraic perspec-
tive outright, we will need an effective way in which to decompose the equation system. Such
decomposition could be done purely algebraically, using symbolic computation techniques
such as those for sparse systems discussed in the previous section, but doing so is inferior, in
many cases, to a generalized degree-of-freedom analysis. The latter approach first translates
the constraint problem into a graph in which the graph vertices are the geometric elements
and the constraints between them are incident edges.

In the constraint graph, it is possible to abstract all geometric elements by numbers
that characterize the number of generalized coordinates that must be determined in order
to instantiate the element, i.e, the degrees of freedom of the geometric element. In planar
Euclidean geometry, for example, a point and a line each have two degrees of freedom, a
circle has three, an ellipse five, and so on. These numbers are affixed to the graph vertices
as weights. Similarly, the constraints can be abstracted by the number of coordinates that
are fixed by the constraint, usually the number of equations that express the constraint
algebraically. Again, in the Euclidean plane, an incidence constraint between a point and
a line determines one coordinate value, whereas an incidence constraint between two points
determines two. Therefore, the respective number is affixed to the graph edge representing
the constraint, as weight of the edge.

As was shown in [12], a key step in the decomposition of the constraint graph into
generically solvable subsystems is to find minimal dense subgraphs. A weighted undirected
graph is a graph where every vertex and every edge has a nonzero integer weight.

Let G be a weighted undirected graph, G = (V, E, v;, €;;), with n vertices V' and
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m edges F, where v;, 1 < i < n, are the weights of vertices and e;;, 1 < 1,5 < n,
are the weights of edges. We want to find an induced subgraph A C G such that

e > v>k (1)

ecA veEA

Such a subgraph A is called dense.

More precisely, we want to find a minimal dense subgraph, that is, a dense subgraph A such
that A does not contain a proper dense subgraph B. The related problem of finding the
minimum dense subgraph A is shown to be NP-hard.

Broadly speaking, a minimal dense subgraph corresponds to a subproblem of the geo-
metric constraint problem that can be solved separately in the generic case, and therefore
can be used to decompose the nonlinear system of equations. The constant k£ depends on
the geometry, and, in some cases, on symmetries of the subproblem.

As soon as a subgraph of the appropriate density has been found, the corresponding
geometric objects can be placed rigidly with respect to each other (or with respect to a
global coordinate system) using only the constraints between them. The solver would then
continue by condensing the constraint graph, coalescing the placed elements into a new graph
vertex and suitably inducing edges to the other vertices. The description of this process is
given in Section 5.

1.2 Prior Work on Constraint Graph Analysis

Prior attempts at a degree-of-freedom analysis for constraint graphs often concentrated on
recognizing specific dense subgraphs of known shape, such as the triangles of [2, 22, 23] or the
patterns of [2, 13, 14]. This approach has limited scope: certain constraint problems can be
decomposed very efficiently, but many well-constrained problems cannot be decomposed and
the solvers give up on them. The scope can always be extended by increasing the repertoire of
patterns of dense subgraphs. However, doing so results in greater combinatorial complexity
and eventually makes an efficient implementation too difficult.

More general attempts reduce the recognition of dense subgraphs in a degree-of-freedom
analysis to a maximum weighted matching problem in bipartite graphs using methods from,
e.g., [18]. A variation [1] of this approach does not use a degree-of-freedom analysis and
directly deals with algebraic constraints. In this case, a maximum cardinality bipartite
matching is used, since no weights are required. The approach then relies on decomposing
into strongly connected components, and one can attempt to generalize it to a weighted
version required for a general degree-of-freedom analysis either by replicating vertices, or by
retaining weighted vertices, as in [?]. We discuss in Section 2.3 why all of these approaches
are incomplete and less efficient than the approach presented here. In particular, having
found the required matching, or maximum flow, finding a dense subgraph requires significant
additional work; it becomes difficult to isolate minimal dense subgraphs, and the approaches
only work for density 0, and do not generalize to arbitrary densities. The general approach
of [15] appears to be exponential.



A different approach to constraint graph analysis uses rigidity theorems; e.g., [6, 11].
Corresponding decomposition steps may be nondeterministic or require difficult symbolic
computations when computing a solution.

2 Dense Subgraphs

In decomposing a geometric constraint system, one would ideally like to locate the smallest
possible subsystems. This corresponds generically to finding a minimum dense subgraph
of the weighted constraint graph. A provable bound on the size of the minimum dense
subgraph, for example, would permit a feasible search for one. Unfortunately (even with
the common assumption that the weights of the vertices and edges are bounded) it is easy
to construct graphs that have arbitrarily large minimum dense subgraphs. In fact, the next
section renders a feasible search unlikely, by showing that the problem (when the weights of
the vertices and edges is unbounded) is NP hard.

2.1 Finding a Minimum Dense Subgraph is NP-hard

For a weighted undirected graph G and a constant p, let SMALL-DENSEFE be the problem of
deciding whether there is a dense subgraph (without loss, for K = 0) in G with at most p
vertices.

For an input undirected graph GG, let CLIQUE be the problem of deciding whether there
is a complete subgraph in G with at least p vertices. Recall that CLIQUF is NP-complete.
A polynomial time reduction of CLIQUFE to SMALL-DENSFE shows that SMALL-DENSE is
NP-hard:

Proposition
SMALL-DENSE is NP-complete.
Proof

That SMALL-DENSE is in NP is obvious. Let G' = (V, E, w) be a weighted undirected
graph. Every vertex has the weight w(v) = p(p — 1)/2, and every edge has the weight
w(e) = p. Let G = (V, E) be the corresponding undirected graph, and (G, p) an instance
of CLIQUE. If G has a clique of size p, then the corresponding subgraph of G’ is dense.
Conversely, let S be a dense subgraph of G’ of size s at most p. Because of the weights,
s < p is not possible. Therefore, since s = p, there must be p(p — 1)/2 edges in S; that is,
there is a clique of size p in G. 4

2.2 A Greedy Algorithm

Next we give the straightforward greedy algorithm for finding dense (not necessarily mini-
mum, or even minimal), subgraphs and show that it runs for exponential time in the worst
case.

Definition



For A C G define the density function d(A) as

d(A) => wle) = > w(v)

ecA vEA

The idea of the greedy algorithm is to start with an empty list of subgraphs L. Subgraphs
A € L are built by adding one vertex at a time and computing the density function d(AU{v}).
One could expect that L is simply the list of all possible subgraphs considered so far and
that its size would increase exponentially. However, it turns out that it is sometimes possible
to ignore AU v or A, so that the size of L does not always increase when adding a vertex.

Let B be the set of all vertices that were already considered. If AU {v} is dense then we
are done. If not, then if d(A U {v}) > d(A) we can replace A by A U {v}, thus keeping the
size of L unchanged. If

d(AU{v}) < d(A)

and

d(AU{v}) + Z w(e) < d(A)

e=(u,u'),u€e Bu'¢B

then we will not add (AU {v}) to L and keep A in L, so the size of L is unchanged.
Therefore, we only increase the size of L by adding A U {v} when d(A U {v}) < d(A) and
d(AU{v}) + cut(v,G — B) > d(A)

Pseudocode for the Greedy Algorithm

1. L={}
2. B={}
3. for every v in G
4. B =BU{v}
5. for Ac L
6. if d(AU{v}) > 0 then
7. return AU {v}
8. else if d(AU {v}) > d(A) then
9. replace A by AU {v}
10. else if d(AU {v})+ cut(v,G — B) > d(A) then
11. L=LU(AU{v})
12. endif
13. endfor
14. endfor

Performance of the Greedy Algorithm

When G is not dense, the algorithm may require exponential time. For example, if GG is
the rectangular grid, the weight of all vertices is 2, and the weight of all the edges is 1, then
the algorithm creates a list L of exponential length.



2.3 Prior Work Using Flow-Based Approaches

Suppose that we want to find a most dense subgraph A C G, i.e, one for which d(A) is
maximum. We could maximize, over subgraphs A of G, the expression

d(A) + > wv) => wle)+ > w(v) (2)

veG ecA v A

or, equivalently, minimize

5“58(2 w(e) + > w(v)) (3)
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To do this, consider a bipartite graph G = (M, N, E, w) associated with the given graph
G = (V, E,w). The vertices in N are the vertices in V' and the vertices in M are the edges in
E. Moreover, the edges of G are F = {(e, u), (e,v) | e = (u,v), e € F}. The weights w now
appear on the vertices of G. Maximizing the expression (2) reduces to finding a maximum
weighted independent set in the bipartite graph G, or, equivalently, the minimum weight
vertex cover.

There are two ways to try to find the minimum weight vertex cover. The minimum
cardinality vertex cover in a bipartite graph can be identified with a maximum cardinality
matching and can be found using network flow in O(y/nm) time [8]. To take advantage of this
algorithm, however, we need to replicate edges and vertices by the corresponding weights.
For example, a vertex of weight 3 is tripled. In this larger graph, we find a minimum
cardinality vertex cover, and then we try to locate a corresponding minimum weight vertex
cover in G and the corresponding dense subgraph in the graph G. No efficient method is
known for the latter part.

The unweighted version of bipartite matching in G can be used naturally when variables
are directly represented as vertices in G; the algebraic equations are assumed to kill only one
degree of freedom, and are represented as edges in G (instead of analyzing general degrees-
of-freedom). This again results in a constant factor increase in the size of the graph. The
matching naturally induces a direction on the edges of the original graph G, and the strongly
connected components provably yield a decomposition into minimal dense subgraphs in the
case when the density is chosen to be exactly 0 (K = —1). This approach was used in [1], and
in fact, gives a natural way of decomposing the entire graph into minimal dense subgraphs.
However, it is not clear how to extend the algorithm for general K, or for general, weighted,
degree of freedom analysis, with constraints that kill more than one degree of freedom.

An attempt to directly extend this method to general degree of freedom analysis, i.e,
to weighted graphs can be found in [24], although it preceded [1]. The method is also a
flow-based method and is superficially similar to ours, however, it differs in crucial aspects.
Create a source and sink in G corresponding to the M and the N sets of vertices respectively,
assigning capacities to M and N corresponding to the weights of the edges and vertices in GG
respectively. Now a mazimum flow is found, which corresponds to a “generalized” matching
and induces a natural direction on the edges of the graph G as in [1]. Unlike in the unweighted
case, however, the strongly connected components are neither guaranteed to correspond to



minimal dense, or even dense subgraphs of G, nor do they provide a natural decomposition
method, even for the zero-density case, i.e, K = —1.

A second method for dealing with weights is to search for a minimum weighted vertex
cover in G by solving the maximum (vertex) weighted bipartite matching problem. A max-
imum (edge) weighted bipartite matching problem can be solved in O(y/nmlogn) time for
bounded weights, [26]. This trivially gives a solution to the maximum (vertex) weighted
bipartite matching problem. The catch is that, unlike in the unweighted case, a minimum
weighted vertex cover does not correspond directly to a maximum weighted matching. Hav-
ing found a maximum weighted matching, a significant amount of work is needed to obtain
the minimum weight vertex cover, and, from it, the corresponding dense subgraph in G.

Summarizing, the above approaches have the following disadvantages.

1. The maximum (weighted) matching or maximum flow in G does not directly yield
dense subgraphs in G.

2. We need only some subgraph of a specific density, not necessarily a most dense one.
Hence, in the flow based approaches, it is not necessary to find the maximum flow.

3. The above approaches provide no natural way of finding a minimal dense subgraph for
arbitrary weighted graphs, for arbitrary densities or values of K.

We develop a more efficient method analogously based on a different optimization problem
(see [19]), but which will be seen to address all of these drawbacks.

3 Finding a Dense Subgraph

We devise a flow-based algorithm for finding dense subgraphs assuming that K = 0 in
Equation (1). We discuss the case K # 0 in Section 4.

3.1 Construction of the Network

From the graph G, construct a bipartite directed network G* = (M, N, s,t, E*, w), where M,
N and E* are as in G. The source s is connected by a directed edge to every node in M, and
every node in N is connected by a directed edge to the sink ¢. The capacity of the network
edge (s,e), e € M, is the weight w(e) of the edge e in G. The capacity of the network edge
(v,t), v € N, is equal to the weight w(v) of the vertex v in G. The capacity of the network
edge (e,v), e € M, v € N, is infinite. There are no other network edges. See also Figure 1.

Notice that the construction of the network extends to hypergraphs representing ternary
or other constraints, where each hyperedge involves an arbitrary number of vertices.

A minimum cut in G* directly defines a subgraph A that minimizes Expression (3). It
can be found as the max flow using a netflow algorithm. Now we are only interested in
finding a dense subgraph and not necessarily the most dense one. So, we are interested in a
small enough cut in G*, not necessarily the smallest one. Thus, to find a dense subgraph,
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Figure 1: Constraint graph (left) and associated network (right).
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Figure 2: Two different flows for the constraint graph of Figure 1

there should be an algorithm that is faster than a general maximum flow (or minimum cut)
algorithm.

The algorithm given in the next section relies on a subtle, but crucial modification of the
incremental max flow algorithm which seems tailormade for the current application in that
it simultaneously addresses all the drawbacks of the previous algorithms mentioned in the
previous section.

3.2 The Dense Algorithm

The idea of the algorithm (Algorithm Dense below) is to start with the empty subgraph G’
of G and add to it one vertex at time. When a vertex v is added, consider the adjacent edges
e incident to G'. For each e, (for ease of exposition, we assume the edges are binary) try to
distribute the weight w(e) to one or both of its endpoints without exceeding their weights;
see also Figure 2. As illustrated by Figure 3, we may need to redistribute some of the flow
later.

If we are able to distribute all edges, then G’ is not dense. If no dense subgraph exists,
then the algorithm will terminate in O(n(m + n)) steps and announce this fact. If there
is a dense subgraph, then there is an edge whose weight cannot be distributed even with
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Figure 3: Initial flow assignment that requires redistribution later



redistribution. The last vertex added when this happens can be shown to be in all dense
subgraphs A C G'.

Distributing an edge e in G now corresponds to pushing a flow equal to the capacity of
(s,e) from s to ¢t in G*. This is possible either directly by a path of the form (s, e, v,t) in G*,
or it might require flow redistribution achieved by a standard search for augmenting paths
[9], using network flow techniques, see Figures 4, 5. Note that the search for augmenting
paths takes advantage of the fact that the flow through each vertex in M is distributed to
exactly 2 vertices in NV (lines 4-7) in Algorithm Distribute. While this decreases running
time by a constant factor, it doesn’t affect complexity.

If there is an augmenting path, then the resulting flows in G* provide a distribution of
the weight of each edge e in the current subgraph G’ consisting of the examined vertices
and edges of the original graph G as follows: the weight w(e) of each edge e connecting the
vertices ¢ and b is split into two parts f® and f° such that f¢ + f° = w(e) and, for each
vertex v € G', Y., fo < w(v).

If there is no augmenting path for the residual flow on (s,e), i.e, the flow w(e) is undis-
tributable, then a dense subgraph has been found and is identified based on the flows in G*
starting from e.

Algorithm Dense
G =10.

for every vertex v do
for every edge e incident to v and to G’ do
Distribute the weight w(e) of e
if not able to distribute all of w(e) then
A = set of vertices labeled during Distribute
goto Step 12
endif
9. endfor
10. add vertex v to G'
11. endfor
12. if A = () then no dense subgraph exists
13. else A is a dense subgraph

O N O OtE W=

Algorithm Distribute searches for augmenting paths in G* to achieve the required flow and
the labeling. It repeats a Breadth First Search for augmentation until all of w(e) has been
distributed or until there is no augmenting path. The technique is similar to the one used
in the max-flow algorithm in [19].

Algorithm Distribute
Input: (G*, f,edge), where G* = (N, M, s,t, E*,w), f is a set of flows f”
and edge is the edge that is being distributed.

0. Initialize scan(v) = 0,label(v) = 0, scan(e) = 0, label(e) = 0 for all v € N,e € M
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Figure 4: Current graph G' and corresponding network G*, the edge marked by asterisk is
currently being distributed

Figure 5: The augmenting path and the distribution of edges in original graph G’

1. wert =0, capvert =0

2. label(edge) = 1, pathcap(edge) = w(edge)

3. while (w(edge) > 3=, foy,.) or not all labeled nodes have been scanned

4. for all labeled e € M, with scan(e) =0

5. label unlabeled neighbors of e (i.e v € N)

6. scan(e) =1, pred(v) = e, pathcap(v) = pathcap(e)

7. endfor

8. for all labeled v € N with scan(v) =0

9. if min(w(v) — X, f2, pathcap(v)) > capvert then

10. vert = v, capvert = min(w — Y., f, pathcap(v))

11. else

12. label all unlabeled ¢’ € M s.t f3 >0

13. endif

14. scan(v) =1

15. endfor

16. if vert > 0 then

17. An augmenting path from s to ¢ has been found: backtrack from
vert using pred() and change the values of f? as requirted.

18. forallee M,ve N

19.. label(e) = 0, scan(e) = 0, label(v) = 0, scan(v) = 0

20. endfor

21. vert = 0, capvert = 0, label(edge) = 1

22 pathcap(edge) = w(edge) — 3, foyge

23. endif

24. endwhile

Lemma 1
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Figure 6: This subgraph is dense for K = —4, so is upper triangle

Let G* be the bipartite network constructed from G, and e € M. If, after checking all
possible augmenting paths originating at e, the flow through (s, e) is less than the capacity
of (s,e), and A = (E4,Va) is the set of edges and vertices labeled after the search for an
augmenting path, then d(A) > 0.

Proof: A is a subgraph of G because for every labeled edge e € E both of its vertices will
be labeled. For all v € Vy, the network edges (v,t) are saturated, otherwise there is an
augmenting path from e to v and the flow through (s,e) can be increased. Let f be the
maximum flow through (E4,V4). Since all (v,t) are saturated, f = Y, .4 w(v), but since
at least one edge (s,e) is not distributed f < Y., w(e); therefore d(A) = Y .caw(e) —

Ypeaw(v) > 0. O

The correctness of Algorithm Dense follows from the above Lemma, since if the graph con-
tains any dense subgraph, Algorithm Dense will find it.

Complexity Analysis

In the worst case, constructing an augmenting path labels at most m + n nodes. Since the
algorithm stops when the total edge weight exceeds the total vertex weight, the total edge
weight that is distributed is at most the total vertex weight times a constant bound b. Each
augmentation increases the flow by least 1 unit. Therefore, the number of augmentations
cannot exceed O(n). Hence, Algorithm Dense has complexity O(n(m + n)).

3.3 Finding a Minimal Dense Subgraph

Let G’ = (V', E') be the subgraph already examined by Algorithm Dense. That is, assume
that the vertices V' have been examined and the weight w(e) of all induced edges e has been
distributed. Let v be the first vertex that is about to be examined next, such that the weight
of one of its incident edges e adjacent to G’ cannot be distributed. Let V4 C V' be the set
of vertices labeled while trying to distribute w(e), (which includes the vertex v), and let A
be the subgraph induced by V4. By Lemma 1, A is a dense subgraph.

Lemma 2

Every dense subgraph of A contains v.

Proof: Let A’ be a dense subgraph of A not containing v. Then there should be an edge
e € A’ such that e was not distributed before v was considered. However, this contradicts
our assumption that all edges in G’ have been distributed. O
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Remark

Similarly, if (v, v1), (v, v2), ..., (v, v) are undistributed edges of v then every dense subgraph
of A contains at least one edge from this list. If £ = 1 then every dense subgraph of A
contains (v, vy).

Proposition 3

If the amount of undistributable flow, i.e, the density of A is d(A) and A’ is a dense proper
subgraph of A, then 0 < d(A") < d(A) (in general, K < d(A") < d(A)).

Proof: Note that the excess flow comes from the edges incident to v. Suppose A" C A is
dense and d(A’) > d(A). By Lemma 2, A" contains v. Consider the relative complement A*
of A" with respect to A. Then d(A*) < 0, which implies that the vertices of A* could not
have been labeled after distributing the flow of the edges of v. Since all vertices in V4 are
labeled, we know that A = A". O

Corollary 4
If d(A) =1 then A is minimal. In general, if d(A) = K + 1, then A is minimal.

In particular, when K = 0, well-constrained or underconstrained problems have d(A) < 1.
Then, by Corollary 4, we know that the subgraph found by Algorithm Dense is minimal.
Moreover, if overconstrained problems are rejected, then a first test for overconstrained would
be to determine .. w(e) — Y ,cqw(v) > 1 in linear time. This test would reject many
overconstrained problems. The remaining cases would be found by noting whether d(A) > 1
when Algorithm Dense terminates.

We may accept consistently overconstrained problems. In that case, the graph A may
have to be analyzed further to extract a minimal dense subgraph. We now develop a method
for performing this extraction, once a dense subgraph A has been found by Algorithm Dense
and d(A) > 1. The algorithm to be developed post-processes only the subgraph A.

Without loss of generality, assume that A contains the vertices {vy, ..., v, v}, and vy
was the last vertex examined when A was found. The density d(A) is the total undistributed
weight of the edges between v;41 and {vy,...,v;}. We begin with the knowledge of a subgraph
B of A that is contained in every dense subgraph of A. By Lemma 2, B contains initially
the vertex v;.1. The algorithm to be developed is to determine either an enlargement of the
graph B, or else a reduction of the graph A.

We perform the following step iteratively. Choose a vertex vy ¢ B from A. Determine
the quantity ¢ = d(A) — w(e') + foF + £ where ¢’ is the edge (vj, vi41). That is, ¢ is the
undistributed weight of edges in A without v;. Remove the vertex v, from A along with its
edges. This would create unutilized capacity in the set of vertices adjacent to vy (that are
in A) through the set E} of incident edges. The excess vertex capacity is

Z w(e) - U)(Uk) — w(e/) + f:/k + f:/l+l

ec Ek

where €' is the edge between v, and v, ;. This quantity is the total flow on the edges of vy,
distributed away from v,. We now attempt to distribute the previously undistributed weight
of the edges between v, 1 and {vy,..., v} — {vx}, using redistribution if necessary. We use
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Algorithm Distribute on the modified network, setting the capacity of (v, t) to zero. There
are two outcomes possible:

1. If we distribute all of ¢ successfully into the newly created holes, or excess capacity on
the vertices adjacent to vy, then no subgraph of A — vy is dense, so v belongs in every
dense subgraph of A, and hence gets restored into A and, moreover, gets added to B.

2. If we were unable to distribute ¢, then by Lemma 1, we have found a smaller dense
subgraph of A — v,. This new subgraph consists only of the vertices labeled by the
Algorithm Distribute in the process of distributing one of the undistributed edges
adjacent to v;y1. This outcome reduces the size of A. Note that, by Proposition 3, the
density (and size) of the new graph A must drop by at least 1.

We repeat this process for the remaining vertices in A — B. We stop either when d(B) > 0,
because then B is minimal dense, or when d(A) = 1, because then A is minimal dense.

Complexity Analysis

The complexity of each iteration described above is O(n(m + n)), since ¢ represents the
undistributed weight on at most n edges adjacent to v, are distributed at each iteration.
We can assume that the sum of capacities of the edges is constant, thus the determination
of a minimal dense subgraph takes O(n?(m + n)) steps. Note, however, that by Proposition
3 the actual complexity rarely reaches this upper bound.

The complexity of the iteration is reduced to O(m + n) if the constraint graph has
bounded valence or if d(A) has an a-priori constant bound. The latter situation means that
the constraint problem has a bound on the “overconstrainedness” of subgraphs, a natural
assumption if the constraint problem is specified interactively and we keep track of the
density of the full constraint graph. In those cases, the complexity reduces to O(n(m + n))
steps.

Algorithm Minimal

Comment: The input is the output of Dense, a dense (sub)graph A of G, and
the distribution of edge weights f* and f? for each edge e = (a, b).
Note that v;; is the last vertex added that caused A to be found,
and € is the edge between v, and v, 1.
B = {v1}
while d(B) < 0 and d(A) > 1 do
choose v, € A— B
c=d(A) —w(e)+ fir + fi
for all v € N (Removing {v;} from A)
Let e = (v, v)
remove e from M
endfor

O NSOt W=
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9. remove v from N

10. Distribute (in A) excess ¢ from the edges of v

11. if there are some undistributed edges left then

12. sett A = new labeled graph

13. else

14. set A =AU {v;} (as well as restoring edges of vy)
15. set B=BU{uv}

16. endif

17. endwhile
18. output B, if d(B) > 0, else output A.

4 The Case of K # 0

In the context of geometric constraint solving, K = 0 represents the case where the minimal
dense subgraph corresponds to elements that can be placed rigidly with respect to each
other and to a global coordinate system. The case of K > 0 means that the subgraph is
overconstrained, usually by K constraints, and the case of K < 0 means that the resulting
geometric configuration has residual motion with respect to a global coordinate system.

The most important case is when K = —3 in the planar case or K = —6 in the spatial
case, signaling that the resulting geometric configuration can move as a rigid body with
respect to the coordinate system. In [10], this property has been exploited recursively for
the purpose of cluster combination. The case K < 0 is also the reason that symbolic algebraic
decomposition methods fail to succeed as they implicitly assume K = 0.

As presented, our algorithms satisfy Inequality (1) for K = 0: keep adding vertices until
we are unable to distribute the edge weight/capacity. The first undistributable edge signals
a dense graph A, for K = 0, and d(A) > d(A — v), where v was the last vertex examined.
We now explain how to modify the algorithm to accommodate different values of K.

The modification for K > 0 is trivial. Instead of exiting Algorithm Dense when an edge
cannot be distributed, exit when the total undistributable edge capacity exceeds K. The
computation of the total undistributable edge capacity so far is based only on the weights
of the labeled edges and vertices, thus ensuring that the resulting dense graph is connected.
An analogous change is in order for Algorithm Minimal. Clearly this modification does not
affect the performance complexity of the algorithms.

When K < 0 the algorithms can also be modified without increasing the complexity.
Suppose, therefore, that K < 0, and consider Step 4 of Algorithm Dense. If w(v) + K > 0,
simply reduce the capacity of the network edge (v, t) to w(v) + K and distribute w(e) in the
modified network. If the edge cannot be distributed, then the subgraph found in Step 6 has
density exceeding K. If every incident edge can be distributed, then restore the capacity of
the network edge when adding v to G'.

If the weight w(v) of the added vertex v is too small, that is, if w(v) + K < 0, then a
more complex modification is needed. We set the capacity of (v,t) to zero. Let e be an new
edge to be distributed, and do the following.
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1. Distribute the edge weight w(e) in the modified network.
2. if w(e) cannot be distributed then
3. we have found a dense subgraph for K; exit.
4. else
D. save the existing flow for Step 10.
6. increase the flow of e by —(w(v) + K)
7. if the increased flow cannot be Distributed then
8. we have found a dense subgraph for K; exit.
9. else
10. restore the old flow. No dense subgraph found
11. endif
12.  endif

In worst case the algorithm saves and restores the flows for every edge added, which requires
O(m) operations per edge. Distributing the edge flow however dominates this cost since it
may require up to O(m + n) operations per edge; so the modification does not adversely
impact asymptotic performance.

5 Graph Decomposition

The flow-based degree-of-freedom analysis must be applied repeatedly to constraint graphs.
Two different conceptual steps are involved. When a minimal subgraph of the appropriate
density has been found, then the vertices form a cluster of geometric elements that can be
placed rigidly with respect to each other, using only the constraints represented by the edges
of the subgraph. This cluster can be extended under certain circumstances by adding more
geometric elements that are determined by constraints involving the cluster. After a cluster
has been so extended, it must then be abstracted into a single geometric entity, and the rest
of the constraint graph can be searched for another minimal dense subgraph.

5.1 Extended Clusters

Consider the constraint graph G of Figure 7. We assume that all vertices have weight 2 and
all edges weight 1. Then the vertex set {a, b} induces a minimal dense subgraph of G. After
solving this subgraph, i.e., after assigning coordinates to the geometric elements a and b so
that the constraint between them is satisfied, we can place ¢ because its two coordinates (the
weight) are determined by the two incident constraints with a and b. After so placing ¢, we
can place, in sequence, d, e and f. Thus, all six geometric elements can be placed rigidly
relative to each other.

The structure of the solution is as follows: Beginning with a simultaneous system of
equations, the elements of the minimal dense subgraph are placed with respect to each other
(and the global coordinate system in the case of K = 0). In our example, two geometric
elements are placed. Then, a number of geometric elements are placed, one by one, solving
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Figure 7: Constraint graph with vertices of weight 2 and edges of weight 1. The minimal
dense subgraph {a,b} can be extended sequentially by the other elements, in alphabetic
order.

for each individually from as many equations as there are incident constraints on them with
the previously placed elements. In our example, each element requires solving two equations
in two variables.

We call a minimal dense subgraph that has been enlarged by sequential extensions an
extended dense subgraph.

5.2 Recursive Application

After an extended dense subgraph has been found, the set of geometric elements that are its
vertices form a rigid geometric structure. For K = 0, this structure is fixed with respect to
the coordinate system, otherwise the structure can be moved with K > 0 degrees of freedom.

We extend the decomposition and find other dense subgraphs, abstracting this subgraph
into a geometric construct with K degrees of freedom. This can be done applying natural
graph reduction: Replace the dense subgraph G by a vertex u of weight K and combine all
edges from a vertex in Gy to a vertex w not in Gy. The weight of the induced edge (u,w),
in the reduced graph, is the sum of weights of the edges that have been combined. After
the reduction, another dense subgraph is found. Reduction ends when the graph has been
reduced to a single vertex.

For example, consider the graph of Figure 8. All vertices have weight 2, all edges have
weight 1. The four vertices connected by the heavy edges constitute an extended dense
subgraph. After reduction of the extended dense subgraph we obtain the graph of Figure 9.
Again, an extended cluster is found and indicated by the heavy edges in the graph. Reducing
this cluster, we obtain the graph of Figure 10. In this graph, a minimal cluster is found as
indicated, and further reduction yields the graph of Figure 10. Here, the entire graph is
minimal dense, so the last reduction yields a graph that consists of a single vertex.

5.3 Church-Rosser Property

A constraint graph G is well-constrained if the density of G is d(G) = —K and there is
no vertex-induced subgraph of density greater than —K. We want to prove that a well-
constrained graph can be reduced iteratively to a single vertex, no matter how the dense
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Figure 8: Constraint graph with an extended dense subgraph. Vertex weight is 2, edge
weight is 1.

O 0O
AN /
Figure 9: Constraint graph after reducing the subgraph. The cluster vertex has weight 3.

@Q

Figure 10: Constraint graph after two subgraph reductions. The cluster vertices have weight
3 each, the edge between them has weight 2.

Figure 11: Constraint graph after three subgraph reductions.
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subgraph is chosen by our algorithms. Intuitively this fact is a consequence of the subgraph
reduction preserving the density of the graph.

If a well-constrained geometric constraint graph can be reduced, by a sequence of the
reduction steps described before, to a single vertex, then the geometric constraint problem
is solved by the corresponding decomposition of the nonlinear equation system. We want
to show the converse: If a generic geometric constraint system is well-constrained and has
no overconstrained subsystems, then any sequence of reduction steps described before will
reduce the constraint graph to a single vertex.

The reduction algorithm considers a graph G;, finds a well-constrained subgraph H;
and reduces G; to G;;1. We denote such a reduction step by

Gi —u,, Gin

i+1

The reduction terminates when no dense subgraph can be found.

Theorem Let G be a well-constrained subgraph; that is d(G) = — K, and every vertex-

induced subgraph A has density d(A) < —K. Consider any complete reduction sequence
G:Go —H Gl —>Hy --- —7H, Gm

produced by our decomposition method, where the reduction halts with G,,,. The subgraphs

H; are nontrivial and have been located by the Algorithm Dense. Then |G,,| = 1.

Proof. The proof follows immediately from the fact that the process of condensing does not
change the density. In the reduction

G —H G’
we replace H with a vertex h whose weight is w(h) = d(H). Moreover, we remove the
edges (r,u), where r € H and v ¢ H and add the edge weight to the edge (h,u) of G'.
Thus d(G) = d(G'), and therefore d(G) = d(Gy) = d(G1) = ... = d(Gy). Since G is well-

constrained, it follows that (¢, is also well-constrained. Since the decomposition method
halts only when the current (reduced) graph does not have a well-constrained subgraph of
size greater than 1 (by the correctness of Algorithm Dense), we can assume that G, has no
well-constrained subgraph (including itself) of size greater than 1. Therefore, |G,,| = 1, thus
proving the theorem. O
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