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FUNDAMENTAL TECHNIQUES
FOR GEOMETRIC AND SOLID MODELING'

Abstract

We review traditional and novel paradigms for representing solids and
interrogating them. The traditional paradigms reviewed are the bound
ary, constructive, and spatial subdivision representations. The novel rep
resentation paradigms are the B-rep index, the dimensionality paradigm,
and the skeleton (medial-axis transform).

The B-rep index is a polyhedral representation that integrates bound
ary and subdivision representation. We show how to construct it and
explain some of the advantages this representation offers for operations
such as point/solid and line/solid classification. We also discuss how it
can account for the robustness problem.

The dimensionality paradigm is a technique for representing exactly
complex surfaces that satisfy prescribed constraints, and we discuss some
of the algorithmic infrastructure available to manipulate and interrogate
this surface representation. This paradigm generalizes both implicit and
parametric representations, and can deal with surfaces that otherwise
could be obtained exactly only through elimination computations of for
bidding complexity.

The skeleton is a solid representation originally proposed in computer
vision. It is an informationally-complete solid representation, and seems
to facilitate operations such as automatic mesh generation for finite
element computations, and geometric tolerancing. We show how the
skeleton relates to the cyclographic map, a concept from classical de
scriptive geometry, and also explain the relationship between the skeleton
and the Hamilton-Jacobi equation. Finally, we review some algorithms
for two-dimensional mesh generation based on the skeleton.

ITo appear in Advance.!! in Conlroland Dynamic!, C. T. Leondes, ed., Academic Press.
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1. INTRODUCTION

There are three well-established paradigms for representing solids that are
based on the boundary, on spatial subdivision, and on construction from prim
itives using regularized set operations. Around these paradigms, a substantial
literature has grown and many efficient and ingenious algorithms have been de
vised for working with solids so represented. Yet despite this extensive work,
many tasks of interest remain that appear to be cumbersome to implement
based on these traditional solid and surface representations. For instance, given
a solid, how can we derive a new solid that is the offset of the old one, having

ISupport,ctl in rart by ONR Contrad N00014-90-J-1599, NSF GriUlt CCR 86-19817, md
NSF Grant ECD 88-03017.
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a surface that is at constant distance from the old one? To devise a complete
algorithm for this task is not simple. In fact, the mathematical difficulty of
offsetting a general curved surface is in marked contrast to the simplicity with
which this ta::;k can be defined and communicated between people. Difficulties
of this kind suggest that we remain on the lookout for new solid and surface
representations that might facilitate such operations.

In this chapter, we present a number of new paradigms for representing
solids and surfaces. These new approaches show potential for pressing practical
problems, and, in some ca::;ea, have already delivered. Yet one should not
conclude that they will therefore displace traditional representation paradigms.
Indeed, a representation is intimately linked with algorithmic efficiency and
convenience, and so one should expect that there will always be a need to
switch to a different representation in response to the algorithmic problem at
hand. The new representations we discuss here are intended to supplement the
repertoire of geometric and solid modeling, not to supplant it.

In accordance with our outlook that many representations will continue
to coexist, we begin by reviewing the three classical representation paradigms
and the algorithmic ideas underlying their interrogation. So, we review spa
tia/ subdivision, boundary representation, and constructive solid geometry. We
then discuss in some detail the B.rep index, a spatial subdivision structure
that integrates boundary-ba::;ed and spatial-subdivision representations. The
B-rep index has proved to be extremely valuable in applications in which a
large number of moving objects are queried for collision, and where, upon col
lision, a geometric analysis must be made of the locale at which a contact has
been determined. The favorable performance of the B-rep index in this situ
ation is ba::;ed on the ease with which lines and points can be cla::;sified, with
respect to a solid. But the B-rep index also does well in generating rectangular
meshes of solid domains, and is also amenable to algorithmic enhancements
that significantly increase the robustness of geometric computations.

Technically, constructing the B-rep index from a boundary-based represen
tation (B-rep) is akin to the problem of converting a B-rep to constructive
solid geometry. This problem is fully solved in the polyhedral case, but only
partially solved in the curved-surface case.

Just as the performance of a solid representation depends on the operation
one has in mind, surface representations exhibit a similar relativity. The two
major paradigms are the parametric and the implicit surface representations.
Again, each has specific strengths and weaknesses, and certain rather intuitive
and desirable operations, including offsetting, are difficult to carry out exactly.
Here, the dimensionality paradigm offers some attractive alternatives. We re
view the dimensionality paradigm in the section on constrained-surface repre
sentations, giving a detailed example illustrating the method, and discussing
how some of the standard interrogation algorithms on surfaces so represented
can be implemented.
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A major strong point of the dimensionality paradigm is its ability to rep
resent exactly the bisectors of curved surfaces. That is, given two surfaces,
we can represent exactly those points in three space that have equal distance
from the given surfaces. This allows us to represent the skeleton precisely, an
other alternate solid representation scheme that recently has generated much
interest.

Originally proposed as a shape representation in computer vision, the skele
ton ha.s been used successfully in a number of algorithms for generating finite
element meshes completely automatically. Furthermore, the skeleton is inti
mately related to a classical geometric concept, the cyclographic map, which
can be thought of a.s an explicit map of the Euclidean distance of the points in
space from a given geometric shape. More than that, the skeleton is the locus
of the shocks in the Hamilton-Jacobi equation, and thus can be computed in
principle with standard PDE solvers.

We discuss the skeleton in the final section of this chapter, explaining how it
relates to cyc10graphic maps and to the Hamilton-Jacobi equation, and discuss
several algorithms for computing the skeleton. We then review two algorithms
for finite-element mesh generation, and remark on potential applications in
geometric tolerancing.

II. TRADITIONAL PARADIGMS FOR REPRESENTING
SOLIDS

Point set topology provides a precise language for describing the basic proper
ties of solids, [1]' Let E3 denote three-dimensional Euclidean space with the
usual topology, and let A be a subset of E 3 . The interior of A is denoted by
iA, the boundary of A by bA, and the complement of A by cA. Note that the
interior, the boundary and the complement of A partition E3 . The closure of
A, kA, is obtained by adding to A the limits of convergent point sequences
in iA. The point set A is regular if A = kiA. If A is not regular, then we
regularize it by forming rA = kiA. A set is bounded if it is contained in an
open ball. An r-set is a regular and bounded set.

Geometrically, the boundaries of r-sets may be extremely complex [2]. In
solid modeling, only surfaces that are simple in a technical sense are of in
terest [3]. Roughly speaking, the boundary must be finitely describable, and
must be of finite variationj i.e., any line segment is contained or intersects the
boundary in finitely many points. Then solids are r-sets that are simple in this
sense.

A solid can be represented explicitly by its boundary, or by its volume,
or implicitly by specifying operations on volumetric primitives that construct
it. Accordingly, there are three dominant schemM: boundary representations,
cell-decomposition representations, and constructive solid geometrYi e.g., [2,4].
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Figure 1: Top Face of Box Represented by the Winged-Edge Data Structure;
Edge Node Format.

A. BOUNDARY REPRESENTATIONS

The boundary of a solid consists of vertices, edges and faces. For each of these
entities, the geometric part ofthe representation fixes the shape and/or location
in space, and the topological part records the adjacencies. The combination
of the topological and geometrical information is a boundary representation
(B-rep) of a solid.

In all, there are nine adjacency relationships between the three types of
topological entities. For example, the face-edge adjacency relationship speci
fies for each face the adjacent edges. A complete solid modeling representation
must allow the retrieval of any topological entity and any of the nine adjacency
relationships. However, explicitly maintaining all nine adjacency relationships
is redundant. Weiler has shown that three of the ordered adjacency relation
ships are sufficient to obtain all others [5]. There is a space/time tradeoff:
explicitly maintaining all adjacency relationships requires more space but little
time retrieving them. On the other hand, maintaining only sufficient adjacency
relationship requires little space but more time to derive the others. A com
parison of the space/time tradeoffs of different representation schemas, each
consisting of a different subset of the topological adjacency relationships, can
b, found in [6J.

Many different kinds of boundary representations are used for representing
solids with a manifold surface. An early representation schema is Baumgart's
winged-edge data structure for manifold solids {7J. In the winged-edge data
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Figure 2: Diagrams of Directed-Edge Based Data Structure Where VE, ED,
DE, and FA Mark Vertices, Edges, Directed Edges and Faces.

structure, an edge node records the information about the edge orientation,
the face adjacencies, and the clockwise and counterclockwise successor and
predecessor edges about the adjacent faces. An example representing the top
face of a box is shown in Figure 1. The representation assumes that the faces
are simply connected. Multiply connected faces need to be partitioned in this
representation.

Braid modified the winged-edge data structure to include multiply con
nected faces by introducing a fourth topological entity called a loop. In Braid's
data structure, each face consists of one or more edge loops, each bounding a
hole in the face [8].

Yamaguchi and Tokieda modified the winged-edge data structure differ
ently by introducing bridge edges to allow multiply connected faces [9]. A
bridge edge is a double edge that connects two edge cycles of a given face.
In their representation, all faces are trianguJated using bridge edges. Other
manifold representations are Mantyla's half-edge data structure [4], Guibas
and Stolfi's quad-edge representation [10], Hanrahan's face-edge representa
tion [11], and Ansaldi, De Floriani and Falcidieno's hierarchical face adjacency
hypergraph [12]. There are others.

The result of set operations can be a solid with a nonmanifold boundary.
Manifold representations such as the winged-edge data structure [7,13] can han
dle nonmanifold solids only in special cases, and this complicates the algorithms
for set operations unnecessarily (14]. In response, nonmanifold representations
have been investigated; e.g., by Kevin Weiler who introduced the radial-edge
data structure {IS]. The radial-edge data structure can accommodate general
non manifold models. More generally, the data structure can model arbitrary
solids and structures that are not regularized. For example, a single object
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Figure 3: The Odree Data Structure.

may contain wire· frames, isolated vertices and edges, and arbitrary regions
that need not be bounded. Focusing on regularized set operations, others have
developed variations of the half-edge data structure to allow nonmanifolds.
Two similar such data structures are Karasick's star-edge data. structure [16],
and Vanecek's fedge-based data structure [17,18J. Karasick's representation
contains face loop and shell information explicitly. Vanecek's representation
uses bridge edges instead, but without triangulating faces. An example of
Vanecek's representation is shown in Figure 2.

B. CELL-DECOMPOSITION REPRESENTATIONS

Instead of representing the boundary of an object, the object can be represented
explicitly by its volume. The volume is represented as a collection of cells of a
partition of space. The various data structures differ in how they organize the
cells and what information about the object each cell contains. Some widely
used data structures are hierarchical and subdivide space recursively.

The simplest hierarchical data structure is the region octree based on regular
decomposition. The method partitions a cuboidal region into eight equal sized
oetants. The region is represented by a node in the region octree , and the eight
octants are its eight children. Each node in the tree is labeled either as a gray
node, if it is further decomposed, a white node if it is completely outside the
object, or a black node if it is completely inside the object. A simple example
is shown in Figure 3.

Region octrees are suitable only for solids with faces that are parallel to the
principal axes. Solids with inclined faces are approximated by region octrees.
Thus they give only a rough description of the boundary of the object. The
accuracy of the approximation depends on the subdivision level. For a thorough
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Figure 4: Examples of Face, Edge, and Vertex Nodes of Extended Octree.

djscussion of octrees, hierarchical data structures, and related algorithms, see
Samet [191.

Region octrees have been generalized to take the object boundary into
account, economizing the space requirements of the tree. Samet and Webber
developed the PM-octree which added nodes of type vertex, edge and face to
the already present black, white and gray nodes. For regions that contain
portions of the boundary, the recursive decomposition terminates when the
region contains exactly one vertex, one edge or one face. For example, a region
with a vertex and its adjacent edges and faces is represented directly and is
not further decomposed. Variations ofPM-octrees are the polytree by Carlbom,
Chakravarty and Vanderschel [20J, and the extended oclree of Navazo, Ayala
and Brunet [21J.

The two tree structures differ in minor ways. Extended octrees assume only
manifolds, while poly trees allow non manifolds. Extended octrees maintain for
each leaf node a list of the oriented support planes of the faces intersecting the
region, along with information on how to construct the faces. In contrast, in
poly trees each leaf node contains a list of polygons representing the parts of

"" the faces that intersect that region. No adjacency information is kept between
the edges of two adjacent polygons in one region or between adjacent regions.
Thus all regions have independent information.

Both the extended octree and the polytree are allowed to grow only to
a prespecified depth. For certain solids, larger trees would be required, for
instance, for a solid two vertices that are very dose together. A region might
then require further decomposition, but is not decomposed. Instead, it is
represented by a nasty node that stores a list of pointers to all the planes (or
polygons) it contains. The size of region octrees, extended octrees and polytrees
is proportional to the solid's surface area and resolution [22,21]. Furthermore.
the tree structure is sensitive to rotations other than by 90°.

A generic drawback of the octree and its variants is that the topological
structure of the boundary is not readily available. A single face of a solid might

7
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Figure 5: 2D Example of Solid and Its BSP Tree. Regions 5 and 6 are Inside.

extend across many nodes. If a boundary representation is needed, it must be
derived. In the case of region octrees this computation is intricate. On the
other hand, the octree inherently localizes space so that most problems can be
solved recursively in a small volume of space rather that globally. Extended
octrees and poly trees are more compact than the region octrees, and provide
implicitly an exact representation of the boundary.

The octree is constructed uy recursively dividing a cube into eight octants.
If the cube is cut into two equal boxes instead, the structure is called a bintreej
e.g., [19}. In a bintree, space is divided into two equal halves by a single plane
that is orthogonal to one of the coordinate axes. When the cut plane can
be sloped, we obtain the binary space partition tree (BSP). A BSP tree uses
cut planes that are the support planes of the faces of the polyhedron that the
BSP tree represents. The structure of the tree is not unique, and its size may
vary. Both depend on the order in which the cut planes have been selected in
the conversion of the B-rep to BSP, because it influences the amount of edge
and face fragmentation. Thus carefully choosing the cut planes can reduce the
size of the tree significantly. Naylor has suggested a variety of heuristics for
choosing splitting planes [23).

Fuchs, Kedem and Naylor first used the BSP tree for determining visible
surfaces in computer graphics [24]. Thibault and Naylor showed later how the
BSP trees can be used to model arbitrary polyhedra [23]. They also showed
how to perform Boolean set operations on BSP trees, by merging a BSP tree
with a B-rep, and how to convert B-reps to BSP trees and BSP trees to B
reps. As an example, Figure 5 shows a polygon and its BSP tree. Recently,
{25J proposed a merging algorithm that call be used to perform Booleans on
two BSP trees directly.

With the BSP t.ree representat.ion it is easy to classify points, that is, to
determine whether the point is inside, outside or on the boundary of the solid
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Table 1: Classifying Points on Cut Planes of asp Tree.

represented by the asp tree. The Iloint is classified by starting at the root of
the asp tree and at each internal node moving down into the subtree corre
sponding to the half space containing the point. When the point reaches a leaf,
the classification of INSIDE or OUTSIDE is returned. When the point lies on
a cut plane, both subtrees are visited, and the classifications from both are
combined to determine the final classification. An example of each is shown jn
Table l.

Line classification is a direct extension of the point classification: A line is
inserted at the top of the BSP tree, cut into segments by the cut planes, and
the segments are passed to the respective subtrees. If the segment is in a cut
plane, it is passed to both subtrees, and subdivided and reclassified in a second
pass from the leaves to the root.

asp trees have been applied in computer graphics to modeling three.
dimensional scenes. They are also well· suited to problems that require an
efficient point/solid and line/solid classification, such as grid generation [26)
and collision detection and analysis [27].

C. CONSTRUCTNE SOLID GEOMETRY REPRESENTATIONS

Both the boundary-based and the volume-based representations we have dis
cussed are explicit representations. They provide information on the shape or
the volume of a solid, but not on its possible construction. If instead a solid
is described in terms of operations on simple volumetric primitives, we obtain
an implicit constructive representation. Such a representation is constructive
so[;d geometry (CSG) [3J.

A CSG representation is a tree structure in which the internal nodes repre
sent operations and transformations, and the leaves represent primitives. The
operators are regularized Boolean set operations, and transformations that po
sition and orient the solid represented by the subtree. See Figure G. The
primitives can he the set of all dosed linear half spaces. They are easy to
evaluate and can be converted readily to equivalent B-reps. CSG representa-
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Figure 6: eSG Representation and Corresponding Polyhedron

tiOllS are not restricted to linear half spaces. The standard primitives include
the natural quadrics, sphere, cone and cylinder, as well as the tOfUS. More
generally, low-degree algebraic half spaces have been used in the Bath solids
modeler [28J. Other possible primitives include swept volumes, extrusions of
planar contours, or solids of revolution.

Requicha, Voicker and Tilove, and Voelcker and Requicha presented al
gorithms for converting from eSG to B-rep, based on a generate and test
paradigm. An equivalent B-rep is obtained by traversing the eSG tree in
tersecting the surfaces bounding the half spaces or primitives. The resulting
curves are clipped with a curve/solid classification. The edges so obtained are
connected to form a wire frame. By computing the edge neighborhoods, the
faces are then determined and added, thus completing the B-rep. Converting a
B-rep to a CSG representation is more difficult. Recently, Shapiro and Vossler
have developed such conversion algorithms, in 2D, and have discussed methods
for minimizing the resulting CSG trees [29,30].

D. BOOLEAN SET OPERATIONS ON SOLIDS

Consider two solids A and B. Their set-theoretic union, difference, and in
tersection need not produce an r-set. However, the result of the set· theoretic
operation can be "trimmed" so that we obtain an roseto The trimming opera
tion is called regularization and is defined as rC = kiC. In Figure 7 we see that
regularization eliminates the dangling edges and faces left by the set-theoretic
operation.

Algorithms for, say, intersecting two solids could fIrst compute the set
theoretic intersection and then regularize it. However, it is more convenient
to incorporate regularization directly into the intersection computation. The
algorithms vary with the details of the representation, but all are conceptually
based on boundary classification. We will discuss them for CSG, fOf boundary
representations, and for octree representations.

10
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1. SET OPERATIONS IN CSG AND CONVERSION TO B-REP

The constructive representation of a solid is a tree structure in which the
internal nodes represent either the regularized set operators or rigid transfor
mations, and the leaf nodes represent primitive solids. Since thjs is an implicit
representation, performing a boolean operation on two solids given by eSG
trees is trivial: A new tree is formed by creating a new root labeled with the
set operation and with the eSG trees of the two solids as children. However,
boundary evaluation which generates the B-rep described by the given eSG,
is not trivial.

In their work on eSG, Voelcker and Requicha showed that the regularized
operations can be defined as the selective combination of certain sets, called
the classification sets. The classification sets are computed by a membership
classification function 1ltI[X, S] which partitions a candidate set X with respect
to a reference set S. The reference set S is regular in a topological space
W C E3

, while the candidate set X is regular in a subspace W' C W, in the
relative topology.

Definition 1 IfX is regular in W' and S is regular in W, then the membership
classification function, M[X, S], is defined as follows:

M[X,Sj =: (XinS,XonS,XoutS), where

XinS Xn-'iS =: k'i'(X n is),
KonS Xnw'bS, and

XoutS xn-'cs.

The classification sets XinS, XonS, and XoutS correspond to regular sub
sets of X that are respectively inside, on the boundary, or outside S, Together
they form the regular partition of X:

11



Theorem l[Tilove] If M[X,5'] == (Xin5',Xon5',XoutS) then

x == XinS U·, XonS U· I XoutS,

and

XinS n·' XonS == XonS n'"' XoutS == XinS n-I XoutS == 0.

Through the use of the membership classification function, a classification
result of a regularized composition of set operations can be expressed recur
sively in terms of the classification results. The following theorem states this
result for the intersection operation. See Tilove's Master's thesis [31] for similar
theorems for the operations of regularized union and set difference.

Theorem 2[TiloveJ Let

MIX,A)

MIX,B]

'= (XinA,XonA,XoutA)

(XinB,XonB,XoutB)

and let S == An· B. Then M[X,5'] = (XinS,XonS,XoutS), where:

.KinS XinA n,"1 XinB,

XonS = (XinA n-' X on B) n·/(XonA nO" XinA)

nO'r' ({p E XonA no> XonB I N(p; S) = 0)) , and

X outS X ouLA u·1 XoutB U·,

r' ({p E XonA no, XonB I N(p; S) ¥ 0)) .

In the theorem, N(p; 5') is the neighborhood of the point PES. The
neighborhood is defined as the intersection of S and an open ball, B(p, r), with
radius T and center p, namely

N(p;S) = SnB(p,r), for small r > O.

Theorem 2 forms the basis of the membership classification used in regular
ized intersection. For the regularized union and difference, analogous theorems
can be formulated. Given a eSG tree S, the following algorithm evaluates the
membership classification function for a candidate set X:

MICandidate set X, CSG tree S]
if S is a primitive then

return(prim-M(X, S»)
else

ret urn comhinE' M[X, l~ft.( S)1, tvI[X, right(S)], operation(S»))

12



Prim-M is a classification function based on the known set of primitive
objects, and classifies X with respect to the primitive S. Combine merges
the classification results of the two subtrees according to the set operation
operation(S), as prescribed by Theorem 2 and its variations for the other
boolean operations.

The membership classification algorithm is used to construct the equivalent
B-rep of a CSG tree, by a generate-and-test paradigm [32]. In the incremental
version of the algorithm, the B-reps of the primitives are constructed and are
passed up the tree to the root. At each internal node, the B-reps are classified
and combined. In a single-phase algorithm, the faces, or the support surfaces
of all the primitives are classified against the entire CSG tree to obtain the
faces of the final B-rep and are then assembled. Intermediate B-reps are not
constructed in this case [2].

2. SET OPERATIONS ON BOUNDARY REPRESENTATIONS

For computing the union, intersection or difference of two solids in B-rep, we
need to find the intersection curves of their boundaries on both solids and must
classify the faces of both B-reps to determine which ones are inside, outside or
on the boundary of the other solid. With the classification, the resulting B-rep
can be constructed. We can perform the boolean operations by the following
four step algorithm, where A and B are the input B-reps:

Boundary Merging: Fragment B·rep A so that no face or edge penetrates
or grazes B, and conversely fragment B-rep B so that no face or edge
penetrates or grazes A.

Boundary Classification: Classify the faces of both A and B to obtain an

eight-way classification. The set of faces of each B-rep is partitioned into
four classification sets

F(A) =
F(B)

AoutE U AinB U AwithB U AantiB,

BoutA U BinA U BwithA U BantiA.

corresponding to the faces that are outside, inside, on the boundary with
same orientation and on the boundary with an orientation opposite to
the other solid.

Construction: Construct the resulting B-rep according to the operation by
either merging the two B-reps and removing unused faces, or by copying
the needed faces from both B-reps to form a new B-rep. The needed
faces are the faces of exactly three of the eight classification set as shown
in Ta.ble 2.
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AoutB AinB AwithB AantiB BoutA BillA BwithA BantiA
Au" B " " "An" B " " "e

e

Table 2; Faces Needed In Set Operation Indicated by EEl and e. Face Orienta
tion Must Be Reversed for e

Topological Reduction: Apply topological reduction on the resulting B.rep
to form maximally connected faces. Adjacent coplanar faces and adjacent
collinear edges are merged.

Exactly how these four steps are implemented varies in the proposed algo
rithms. Two algorithms follow the four steps exactly, the one by Laidlaw,
Trumbore and Hughes [33] and the one by MiintyUi. [4]. In Laidlaw's algo
rithm, the faces of the two objects that penetrate the other object are subdi
vided. Classification of the faces is performed by casting a ray from a face of
one object through the other object. Classifying each face separately is avoided
by first grouping together all adjacent faces that do not penetrate the bound
ary. After clMsification, faces that do not contribute to the resulting object
are removed, and the remaining faces of the two objects are glued to form the
new object. The representation assumes convex faces which somewhat sim
plifies the face/face intersection algorithm. Miintyla's set operation algorithm
allows arbitrary polygonal faces and uses a vertex-neighborhood computation
to classify the faces [14J.

Robust implementations of the boolean set operators on B-reps are diffi
cult to achieve with finite-precision arithmetic [34]. Typically, the source of
the problem is that different numerical computations may imply related geo
metric facts, such as incidence or nonincidence. In this situation, two separate
computations may lead to contradictory conclusions, and this entails failure of
the algorithm. For a survey of this problem and approaches to solving it see
[35), or [2, Chapter 4J.

3. SET OPERATIONS ON OCTREES

The union. difference and intersection operations are easy to implement
for region octrees, by a coordinated traversal of both trees. Figure 8 shows a
two-dimensional example.

Boolean operations on extended octrees and poly trees are straightforward
extensions of the region octree algorithms. Suppose we want to compute the

14
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Figure 8: Two Quadtrees and Their Union, Intersection, and Differences

intersection of two region octrees. The two input trees are simultaneously
traversed, and a new tree is constructed bottom up, combining corresponding
nodes of the input trees. Note that it may be necessary to split nodes in order
to obtain compatible levels of detail. For the extended octrees and polytrees,
the algorithms must take into account the three additional node types, namely,
the vertex, the edge, and the face nodes, as shown in Table 3. The intersection
of two face regions can result in a black node, a white node, a face node, an
edge node, or a. gray node. For example, suppose one of the nodes is a gray
node and the other is a vertex node. Since at this level, it is not known how the
vertex region interacts with the descendents of the gray node, the vertex node
region must be subdivided into eight octants. This changes the problem from
a grayjvertex pair to a gray jgray pair, at the cost of processing the eight child
pairings recursively. Eventually, nodes representing regions of the same level of
detail are reached, and are intersected. The intersection may require additional
subdivision in case the geometric structure obtained is too complicated.

It is customary to implement only one binary operation, say regularized
intersection, and to obtain the remaining operations by one intersection and
several complement operations. The complement of an extended octree is com
puted by changing all the black nodes into white nodes, changing all the white
nodes into black nodes, and changing the orientation of all the plane equations
in the other nodes.

If the recursion reaches the limit depth, further recursion is abandoned
and a nasty node is created. Nasty nodes are either left empty, or they are
associated with a list of all the faces that intersect in it. The rationale of
this step is that the regions represented are so small that referencing them js
unlikely. In the event they are referenced, they can be evaluated further on
demand.
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n- White Black Face Edge Vertex Gray
White W W W W W W
Black W B F E V G
Face W F WFEG WFEVG WFEVG G
Edge W E WFEVG WFVG WEVG G
Vertex W V WFEVG WEVG WVG G
Gray W G G G G G

Table 3: Possible Node Types For Intersection Using Octree Representation

III. MULTIDIMENSIONAL SPACE PARTITIONING

We have reviewed three schemas for representing solids: boundary represen
tations, cell decomposition representations, and constructive solid geometry.
Each has certain advantages over the others, and many geometric modeling
systems improve efficiency of their operations by maintaining solids in several
different representations, possibly converting from one representation to an
other when appropriate. Systems that use explicit representations frequently
use a B-rep as the primary representation and add some volume-ba.sed infor
mation to speed up access to parts of the B-rep. In this section, we present as
an alternative a unified representation that combines a B-rep with a volume
based representation, called the B-rep index, and show how to implement some
common geometric operations using this unified representation.

The B-rep index is an extension of the BSP tree [23J. Ad-dimensional BSP
tree hierarchically decomposes space into d-dimensional convex regions. Given
a solid, the root node of a BSP tree represents the entire space while the leaves
represent regions that are either completely inside or completely outside the
solid. Each internal node contains an oriented cut plane that divides the region
represented by the node into two open subregions, one above and one below
the cut plane. This recursive decomposition of d-dimensional space is sufficient
to uniquely represent polyhedral solids. One of the many operations that the
BSP tree can support is the classification of a point in relation to a solid,
that is, whether the point lies inside, on the boundary or outside the solid.
However, since the BSP tree decomposes only the d-dimensional space and
does not partition the boundary of the solid which is of lower dimension, the
BSP tree cannot provide detailed information about the boundary. Yet many
geometric modeling problems including Boolean set operations, orthogonal grid
generation. and coHision detection and <l.lIalY!'ii,c:; need to retrieve this boundary
information.
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The B-rep index overcomes the deficiency of the missing boundary infor
mation by extending the BSP tree recursively. Briefly, the hyperplanes sepa.
rating the d-dimensional open regions are decomposed recursively. In the case
of solids in 3-space, therefore, space is decomposed into three, two, one and
zero-dimensional open regions. The partition is represented by a ternary tree,
called the multidimensional space partitioning (MSP) tree, in which the mid
dle subtrees represent the lower-dimensional regions contained in the dividing
hyperplanes, whereas the left and the right subtrees represent the open regions
above and below them.

In Section lILA we give an algorithm for constructing the B-rep index. The
constructed MSP tree can be compressed, as described in Section IILB. The
point/solid and the line/solid classification problems are solved both robustly
and efficiently in Section llI.C. In the remaining sections we give solutions to
three common problems, based on the MSP tree. The first is orthogonal grid
generation used in PDE solving; the second is static collision detection between
solids; and the third problem is how to perform Boolean set operations.

A. CONSTRUCTING THE B-REP INDEX

We divide d·dimensional space by oriented (d - i)-dimensional hyperplanes
defined by equations of the form

with real coefficients ai. Unlike the BSP tree, however, each hyperplane is
recursively decomposed by (d - 2)-dimensional hyperplanes

bo + brYl + ... + bd-lYd_l :::: 0

which in turn are decomposed using (d - 3)-dimensional hyperplanes and so
on. Note th.at this formulation entails a coordinate change. In the B-rep
index, the coordinate change is avoided and all lower dimensional hyperplanes
are represented implicitly as the intersection of certain (d - i)-dimensional
hyperplanes, that are on the path from the root to the current node in the
tree.

In the 3-dimensional case, we orient the plane

a:c+by+cz+d:::: 0

by the convention that the half space in the direction (a,b,c) is considered
above the plane. We denote an oriented plane, the half space above it, and the
half space below it by P, P+, and P- ,respectively. Each internal node n of
the tree repr('!'iPIlLs a region R.(n), and specifies a plane, P(n), that intersects
R(n). The three children of the node represent the subregions of R(n) that
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Figure 9: Top Face of Left Solid Partitioned by Cut Planes on Right. Plane
Pi Contains Edge e,.

lie above, on, and below Pen), and are referred to as ABOVE(n), ON(n), and
BELow(n), respectively. Thus,

R(ABOVE(n))

R(oN(n))

R(BELow(n))

~ R(n) n P(n)+

~ R(n)np(n)

R(n) n P(n)-

If the dimension, dim(n), of R(n) is d, then the regions R(ABovE(n)) and
R(BELow(n» are also d-dimensional, but the region R(oN(n)) is (d - 1)
dimensional.

Consider the support plane, P, of the top face of the solid shown in Figure 9.
The partitioned support plane and the corresponding subtree ohhe B-rep index
are shown in Figure 10.

The B-rep index is constructed in two steps. The first step creates the
B-rep index by constructing the MSP tree and attaching it to the B-rep. The
second step optionally compresses the MSP tree by removing internal nodes
with redundant cuts. This is useful when the B-rep index is used for large
classification problems such as grid generation or colUsion detection.

The B-rep index partitions space such that each region contains at most
one vertex, one edge or one face. Regions not containing boundary elements
must be entirely inside or outside the solid. A recursive function with three
arguments constructs the partition. The first argument is an entity set. The
second argument is the dimension of the region, and the third is a set of
support planes of the region, initially empty. Intuitively, the entity set contains
boundary elements that will be indexed by the subtree to be constructed at
the current node, whereas the set P records the cut planes on the path from
the root to the current node whose intersection contains the set X.

The entity set contains triples

[x, (1-\l, ... ,Pn-d, (£0, ... , £"-d],

18



Above Below

Figure 10: Subtree For Top Face of Solid in Figure 9, With 17 Nodes

where x is a face, edge, or vertex. If x is a face, the second component is a cyclic
list of n vertices bounding the face, and the third component is a list of lines
containing consecutive pairs of points in the cyclic list. Note that x can be a
subpolygon of a face ofthe B-rep. If x is an edge e, the triple is [e, {PO,Pt}, (i)J
where Po and Pi bound the edge and i is the line containing Po and Pl. Again,
e could be a segment of an edge of the B-rep. For a vertex v, the triple is
[v, (p), OJ, where P gives the coordinates of the vertex. Note that (Po, PI.) could
be two closely-spaced points on a longer edge. Thus explicitly representing the
support line increases accuracy when constructing support planes through the
two points.

CreateBreplndex(Set of triples ,f, Dimension d, Set of planes P)
if I,fl > 1 then {

let P +- ChooseCutPlane(X, d, P)
(X., ,f" Xb) ~ Cut(X,P)
io <- if Xa = 0 then OUTSIDE else CreateBreplndex(Xo,d,P)
io <- CreateBreplndex(Xo,d -l,P U {P})
ib +- if Xb= 0 then INSIDE else CreateBrepIndex(Xb,d,P)
return Node(P, io, io, ib)

} else return x giveu that ,f - (lx, (p), OJ)

The function finds an oriented cut plane, P, that contains entity x that
occurs in a triple in X and is such that P does not already appear in P. If x
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Figure 11: Set X With 15 Entities, Resulting From Cut With Plane P Through
Solids On Left.

is a face, then the cut plane is the support plane of the face. If x is an edge or
a vertex, the cut plane is the support plane of one of the adjacent faces of x.
If there is more than one adjacent face, and this may be the case for a vertex
or a nonmanifold edge, then a plane is chosen that maximizes transversality
with the planes in P. If the support plane of every adjacent face is already in
P, then P is chosen to be perpendicular to the planes in P.

In the left part of Figure 11, for example, the two solids shown are cut by
a plane P that contains the shaded face of the left solid. The cut generates
15 entities contained in the plane. Seven of them are open line segments and
these will be further isolated by other cut planes.

All entities of X that cross the cut plane P are split by the intersection
with P. The resulting subentities are then put into the sets Xa , ~l'o, and Xb
according to whether they lie above, on or below P. A face crossing P is split
into faces lying above and below, and edges lying on P. An edge crossing P is
split into the edges above and below and the vertex on P. Fjgure 12 illustrates
the fragmentation with plane P of a face, its 16 edges and its 16 vertices. After
the cut, the region above P consists of two faces, six edges and four vertices.
The region on P consists of seven vertices and six edges. The region below P
consists of three faces, nine edges, and six vertices.

Figure 12: Fragmentation of a Face, Bordering Edges and Vertices by Cut
Plane P.
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B. COMPRESSING THE B-REP INDEX

After the B-rep index has been so created, it can be used directly. However, the
B-rep index can be compressed considerably, and doing so speeds up accessing
it. Compression proceeds in three steps:

1. Locate and eliminate all redundant cut planes.

2. Reorder some cuts to uncover and eliminate additional redundant cuts.
By restructuring the tree so that the cut planes are queried in a different
order. other cut planes may become redundant and the corresponding
nodes eliminated.

3. lfthe tree is badly unbalanced (for instance in the case of convex objects)
rebalance the tree by introducing a few well-chosen redundant cuts.

We give tree rewrite rules that compress the tree and illustrate the rules
by compressing the tree of Figure 10. In prefix notation, the subtree rooted in
n is written as P(a,b,c) where P is the cut plane at n, and a, b, and c denote
the above, on, and below subtrees of n, respectively.

The first rule states that any extended region can be cut redundantly by a
plane that is transversal with that region. For PnR(a) c R(a) and dim (a) > 0,

a::} P(a,a,a).

The converse rule states that this redundant cut can be removed

Pea, a, a) ::} a.

(HI)

(H2)

If the cut plane orientation is reversed, then the order of the children must be
reversed also:

P(a,b,c) {:} -P(c,b,a).

Two transversal cuts of a given region commute as follows:

(H3)

P, (P,( a, b, ej, P,(d, e, J), P,(g, h, i)) ¢> P,(P,(a, d, g), P, (b, e, h), P, (e, f, i)).
(H4)

The above rules do not need any geometric information. In contrast, the
next mle requires knowing the orientatIon of the cut planes and generalizes
AVL tree rotation [36]. Given that the cut plane of a child node does not
intersect the cut plane of the parent node within the parent region, the order
ofthe cuts can be interchanged in a way that depends on the relative orientation
of the cut planes.

Given that PI n P2n R(n) = 0,

p,(p,(a,b,c),d,e) => { P2(a,b'Pl(c,d,e)) if

p,(p,(a,d,e),b,e) if

21
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Figure 13: Elimination of Redundant Cut P t by Rule 7.

and

P ( b P ( d )
{

p,(p,(a,b,C),d,e) if R(a) c P,+
t a, , 2 c, ,e =>

P,(c,d,P,(a,b,e» if R(a) c P,-.

From the given rules additional rules can be derived. For instance,

P,(P,(a,b,c),c,P3(c,d,e») => P,(a,b,P3 (c,d,e))

Pt (P2(a,b,c),c,P3(c,d,e)) => P3(P2(a,b,c),d,e),

and
P,(P,(a,b, c), c, c) => P,(a,b, c).

(R5b)

(R6)

(R7)

Both rules have additional variations that are derived using Rule (R3).
To illustrate the use of the rewrite rules, we compress the B-rep index of

Figure 10. When a subtree is changed, the rule that applies is indicated in the
superscript. We begin the compression by noting that Ps is redundant, and
remove it by propagating it to the bottom of the tree where it is removed by
Rule (R2).

PI (P3(out, P2(out, VJ, e3),

P5(P,(out, e" f), P,(out, e" f), P,(out, '" f))R'),
P3(P4(out, VI, el), V2, PS (P2(out, e2, 1), f, J)R7),

PS (P2(out R1 , P4(out, V4, e2), P4(out, e4, f))R4,

P4 (out, '" f), P,(out, e" f)))
PI(P3(Out, P2(Out, VJ, e3),

P2(Fs(out ,out ,out)R2, P5( e2, e2, e2)R2, Ps(f, f, J)R2)),

P3 ( P4 (out, vI, et), V2, P2 (out, e2, I)),

...)
Pt(P3(Out, P2(out, V3, e3), P2(out, e2, 1)),

P3(P4(Out, VI, el), V2, P2(Out, e2, 1)),

P4 (out, P2(out, V4, e4), Bl(out, e2, J)))
22
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Figure 14: The Compressed B-rep Index of B-rep Index of Figure 10.

Next we observe that the 511btree P2(out,e2, f) appears multiply as a cut of
Pll and 50 we exchange the order of the cuts by moving P2 up and exchanging
with Rule R4.

Pt(P3(OutRt , P2(out, va, ea), P2(out, e2, J))R4,

P3(P4(OUt, VI, ell, ti2, P2(out, e2, f))R5,

P4(outR1 , P2(OUt, 114, e4). P2(OUt, e2, J))R4)

Pt(P2(Out, Pa(ont, VJ, ez), PaCont, ea, f)),
P2(OUt, ez , P3(F4(out. vI, ell, ti2. J)),
P2(OUt, P4(OUt, V4, ez), P4(OUt, e4, J)))R4

P2(P. (out, out ,out )R2,

Pt(P3(out, VJ, ez), ez ,P4(OUt, 114, e2))R6,

PI (PaCont, ea, 1), P3(F4(out, VI, et), ti2, f),

P,(out,'"I)))

P2(out, PaCout, va. P4(out, V4, ez)),

PI (Pa(ont, ea, 1), P3(P4(out, VI, ed, ti2, I),

P,(out"" I))).

The original B-rep index tree consisted of 17 internal nodesj the final tree has
only eight nodes, as shown in Figure 14. In this simple example, we achieved
a reduction in the size of the tree by more than fifty percent. Vanecek has
shown that for a B-rep with v vertices, e edges and f faces its B-rep index has
at least v +e +J internal nodes, and 1 +2(v +e +f) leaf regions [37J. In 2D,
the number of internal nodes is at least v +e, and the number of leaf regions
is at least 1 + 2(v + 1:'). Om 2D example has [OUf vertices and four edges, so
the compressed tree with eight nodes is minimal.
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Figure 15: Anomaly Caused by a Tolerance That is Too Large.

C. POINT AND LINE CLASSIFICATION

Most geometric computations reduce to point/solid and line/solid classifica
tion. This includes boundary merging, collision detection, grid generation and
ray casting. The point/solid classification determines whether a point is in
side, outside or on the boundary of a solid. With the B-rep index, if the point
lies on the boundary of the solid, the boundary entity on which it lies is also
determined. The line/solid classification partitions the line where it penetrates
or touches the boundary.

Classifying a point with the B-rep index is simple. Starting from the root,
check the position of the point relative to the cut planes of the internal nodes,
and proceed through the corresponding subtrees until a leaf is reached. At the
leaf the point classification is known.

classify(Point p, Node n)
while n is an internal node do {

Let d be the signed distance of pta Pen)

{

ABOVE(n) if d > E

n +- BELow{n) if d < -€

oN(n) otherwise
}

return n

Since an exact answer to "a lies on b" cannot he given in floating point
arithmetic, we compute an approximate answer that depends on a tolerance
E > o.

The tolerance can be viewed as a thickness of the boundary. Since using ex
act arithmetic is not practical, the tolerance will affect the classification. Recall
that a given B-rep does not have a unique r\'ISP tree. The tree structure de
pends all the order and choice of the cutting planes. The example of Figure 15
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Figure 16: Line-Segment/Solid Classification.

shows a boundary fragment with two different MSP subtrees. Figure 15(a) is

and Figure 15(b) is

and these are equivalent by Rule Mb. Now consider the point indicated by
the circle in the figures. Using tree (a), the point is found to be coincident
with VI, but using tree (b), the point is found to be coincident with 1/2. This
shows that equivalent MSP trees for a given solid do not classify points the
same way. This discrepancy is caused by a tolerance that is too large relative
to the separation between two entities. In particular, as the tolerance changes,
the classification result may change. It is possible that a point classified as
coincident with a vertex, at one tolerance, is found coincident with another
vertex at a different tolerance.

Consider now the line/solid classification problem and refer to Figure 16
for an example. The classification of the line segment pq should have the result

[out, (fl,p), in, (el' q), 12, (V4,p4), e2, (vs,ps), out], (1)

where P,Q,P4,PS are the points at which the line penetrates the corresponding
entities, and the v's, e's and J's are the vertices, edges and faces of the B-rep.

An intuitive way to classify the line is to pass the line segment down the
tree, split the line segment whenever it crosses P(n) at a node n, and classify
the portions above, on, and below recursively. This approach, however, is
problematic when the line segment forms a very small angle with a cutting
plane. Figure 17 shows a line segment, e, close to vertex v. Although ecan be
arbitrarily close to v, the line segment crosses the plane P1 far away from v,
because of the small angle between PI and the line. So the point of intersection
011 P l and the two subsegments fall into the regions outside the solid. This is
not intuitive, partly because the thickness of the ±E region around the planes

25



out

e

out

·····ei····'················
P,

f

Figure 17: Part of Face With Line Segment eCrossing at v Within Tolerance.

has not been well accounted for in the above approach. A better classification
is obtained when the interval of £ passing through the ±€ regions of PI and P2
is computed. The closest point Ton e to v is then computed by projecting v
onto £.

The line classification thus proceeds by passing the original interval [tt,t2]
from the top to the bottom of the B-rep index in phase one, followed by a
second phase in which the final line partition is determined. In phase one,
the interval (tt, t2] reaches the node n and is partitioned as either [tt, L, t+, t2]
or [tt,t+,L,l2] depending on the orientation of the plane P(n). The three
subintervals are processed in the corresponding subtrees. An interval is given
a preliminary classification at the leaf node it reaches.

Next, the sequence of intervals is reduced by merging adjacent intervals
with common classifications and by isolating the boundary penetrations. In
the example of Figure 17, after step 1, we have the classification

[out, €1, v, out, out]

After merging adjacent equal classifications, this sequence is reduced to

[out,€l,V,out]

The classification corresponds to the sequence of dimensions d;, [3,1,0,3]. We
replace each ma'dmal bitonic sequence d,. > ... > dj < ... < dk with the
triple d;, dj, dk. That is, all intervening intervals and their classification are
dropped. Then the sequence is reduced to [3,0,3] with the associated classi
fication [out, v,out]. The reduced classification is used to compute the final
interval partition, by computing the intersection of the line segment with the
remaining faces, edges, and vertices. Note that this may require projecting say
a vertex onto the line segment.

The reduction above does not address how to reduce classification sequences
that contain adjacent, different entities of the same dimension. Consider line
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Figure 18: Ambiguous Line Classification With Oversized Tolerance.

f of Figure 18. Its classification after step one is

(2)

The correct classification is either

{out,v,outj,

or
[out,el, h, e2, out,e3, 12, e4, outJ.

From Sequence (2) we cannot derive the two classifications nor can we deter
mine which one is correct. In this situation, the line has to be reclassified
with a different tolerance. In our example, a larger tolerance yields the first
classification, whereas a smaller tolerance yields the second.

In many applications, both point/solid and line/solid classification are
done. Consider the following example, and refer to Figure 17. The segment
eenters the tolerance region of edge el from the left, at a point q. There is
a part of l adjacent to q that is in the tolerance region of el, but not in the
tolerance region of v. Let p be a point on that part of e. Classified as a point,
p is found to be on the edge el. When eis classified, however, the final seg
ment classification will be [out, v,out], thus p will be determined to be out,
a contradictory classification, even though both classifications used the same
tolerance. In problems such as grid generation, we account for this possibility.

D. ORTHOGONAL GRID GENERATION

We generate orthogonal grids using line/solid dassification. Orthogonal grids
are used by finite-differencing solvers for partial differential equations (PDE),
for example in ELLPACK {38] , a system for solving elliptic PDEs. The grids
can be regular, with uniform distance between grid points, or adaptive, with
grid pojnts that are denser in some parts of the domain.

A regular three-dimensional. grid call lle specified by two extreme points
of the grid's boundJng cuboid, and by the number of grid planes n"" ny, and
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Figure 19: Grid Line Classification, (a) Before and (b) After, Consistent Clas
sification At Grid Points.

nz along each major axis. The intersection of the grid planes defines nr 7l
y
+

nynz +nznz grid lines and 7lz n yn", grid points. Our task is to classify all grid
points and determine where the grid lines cross the boundary between grid
points. It is clear from the previous section that grid points and grid lines
should not be classified independently. Instead, we classify only the grid lines
and process local inconsistencies, thus obtaining a consistent grid point and
grid line classification.

Consider the two-dimensional example of Figure 19(a) in which the two grid
lines it and £2 were classified independently. The intersections of £t and £2 are
the grid point p that is near to the vertex v. On i\, p is classified as in; on i

2
,

it is classified as out, because of the projection computation when segmenting
the lines. Classified as a point, p would be v. By shifting them to the grid
point, the two vertex projections are made coincident, giving p a consistent
classification; Figure 19(b). This approach requires that the tolerance regions
are substantially smaller than the minimum grid point separation. Otherwise,
there could be several grid points to which to shift the two projections of v.
The classification or grid points that lie within tolerance of an edge or a face
is corrected in the same way.

The cost of classifying the grid lines is 0« nzny+nynz+nznr)L(m)), where
L(m) is the cost of the line/solid classification in a MSP tree with m nodes. The
cost of correcting the grid point classifications by shifting the vertex projections
is O(nznyn",). The method has been implemented; [26J.

E. COLLISION DETECTION

Our approaCh to orthogonal grid generation is also used for collision detection
and analysis of moving solid objects, [27]. The collision problem arises in
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Figure 20: (a) Solids 81 and 82 With Respect to Local Coordinates. b) 81 and
82 Placed in Global Frame of Reference. C).'31 Mapped To Local 82-Frame of
Reference. d) 82 Mapped To Local sI-Frame of Reference.

computer simulations of physical systems, based on rigid-body dynamics; for
example, in the Newton system [39,40J. Here, objects of arbitrary shape are
permitted, and their motion cannot be predicted in advance, so that collisions
can happen anywhere and at any time. Moreover, objects may be in contact
with each other for some time, and such contacts begin and end in ways that
depend entirely on the dynamics of the system, and again cannot be predicted
beforehand. So, the positional relationships of all objects must be analyzed.

In the Newton system, the dynamics evaluation inquires at certain time
instances whether two bodies are in contact, and if so, a geometric analysis of
contact locality is required. Collision detection and analysis can be reduced to
a static problem in Newton as follows: All solids have a local frame of reference
centered at the mass center. Objects are placed in relation to each other by
a 4 X 4 transformation matrix M that positions and orients the local frame
with respect to a global frame of reference. As objects move, the matrix M is
changed accordingly.

Consider two solids 81 and 82 and their associated transforms 11;[1 and
M2• Then solid 81 can be related to the local frame of reference of 82 by
the transformation

M12 = M:;I. M1

See also Figure 20. Similarly, MIl. M2 relates 82 to the local frame of 81. We
classify each edge of 31 against 82 after transforming the edges with M 12 , and
classify each edge of 82, after transformation by M21' against SI. Note that this
strategy does not require changing the B-rep index of either solid, irrespective
of their motion over time. The method has been implemented in the Newton
system

As in the case of orthogonal /l;rid generation. floating-point arithmetic
causes rollustness prolllems. Consider an edge of 8t touching an edge of 82

at an angle. Projecting one edge onto the other determines a pair of contact
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points, one point on each edge. When classifying the edges of 81 we obtain
one pair, and when classifying the edges of 32 we obtain another pair. The
points in the two pairs should coincide, but often they do not. We resolve this
discrepancy by averaging corresponding points. It is also possible that the first
classification reports two touching edges, whereas the second classification does
not find this crossing. In this case, we give priority to the contact detection.
These strategies have been very successful in the Newton system. Clearly,
such heuristics ameliorate robustness problems but do not completely elim
inate them. Indeed, solving the robustness problem completely is extremely
costly, [2, Chapter 4]. Thus, in practice it is often acceptable to use incomplete
solutions as long as they eliminate most robustness problems that arise.

F. BOOLEAN SET OPERATIONS WITH THE B-REP INDEX

We implement the boolean set operations using the B-rep index with the four
step algorithm of Section Il.D.l. That is, we merge the boundaries, classify
the faces, construct the result solid, and then compress its representation. Let
A and B be the input solids. We could use the algorithm of Section IILA to
construct a B-rep index of both B-reps together, obtaining an MSP tree in
which the leaves have two classification fields, one for the region with respect
to solid A, the other with respect to solid H. Since the B-reps of A and H
are not explicitly subdivided, it is difficult to construct the B-rep index of the
result. In particular, extracting the curves of intersection from the joint index
would have to be done without explicit adjacency information.

A better approach is to construct (implicitly) a joint B-rep index of hoth
input solids that explicitly subdivides the boundaries of A and B, so that
the intersection curves on the surfaces can be extracted easier. Algorithm
MergeBreps does this by maintaining separate entity sets, with X initially all
boundary entities of A a.nd Y all boundary entities of H. We intend to cross
classify entities, so that, ultimately, the boundary entities of A are classified
as in or out with respect to H, or are classified by the coincident entity of
B. Likewise, the entities of H should be cross-classified with respect to A.
We associate with each entity x a classification field, C(x), initially set to
unknown. At the end, the classification will be known for coincident and
intersection entities, but not for entities that are outside or inside the other
solid.

Fjgure 21 shows two objects before and after boundary merging, with the
dotted lines indicating coincident entities. Note that the merging step, con
structing the joint MSP tree, subdivides both boundaries, but only in the
vicinity of the intersection curves. In particular, the right edge of the box in
the figure is not separated from its bounding vertices.
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Figure 21: Objects Before and After Boundary Merging.

MergeBreps(Set of entities X, Y; Dimension d; Set of planes P)
if IXI = 1 and IYI = 1 then

C(x) ~ y, and C(y) ~ x, where X = {x}, and Y = {y}
else {

let P -- ChooseCutPlane(X,Y, d, P)
(X.,Xo,X,) ~ Cut(X,P)
(Y., Yo, y,) ~ Cut(Y, P)
if X(l ::f 0 and Ya ::f (2) then

MergeBreps(Xa,Ya, d, P)
if X, # 0 and Y, # 0 then

MergeBreps(Xb• Yb, d, P)
if Xo #- (2) and Yo ::f (2) then

MergeBreps(X.,Yo,d - 1,P U {P})
}

After the joint MSP tree T has been constructed, we must cross-classify the
remaining entities. We do this by casting a ray as follows. Let x be an entity,
say of A, whose classification is unknown, and which therefore is either in or
Qut B. Note tIl at x is attached to a leaf of T that represents a convex region,
and that the parent's region is also convex. The parent's region must contain
part of the boundary of B, say some entities including y. We cast a ray from
an interior point of x to an interior point of y. Then only ray intersections with
boundary elements in the parent's region are considered, because the region
is convex, and these entities are indexed by the subtree rooted in the parent.
Thus, classifying by ray casting is very efficient, since only a small part of the
boundary must be considered.

After this second step, every entity x of either B·rep has the correct classifi
cation C(x), which is either the labels in, or out, or a pointer to a vertex, edge,
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or face of the other B-rep. Note that this step can be incorporated directly into
the construction of the joint MSP tree. Doing so has the advantage that the
joint MSP tree need not be explicitly represented. This is appropriate, because
in many cases the joint MSP tree would be much larger than we would need
for the result of the operation.

Having classified all boundary entities, we can now assemble the result B
rep destructively, by merging and pruning the two B-reps, or nondestructively,
by copying the appropriate faces indicated in Table 2.

IV. CONSTRAINED CURVED SURFACE REPRESEN
TATIONS

A.BACKGROUND

The majority of systems computing with curved surfaces represent and ma
nipulate parametric surfaces, i.e., surfaces that are constructed from patches
defined by coordinate functions

x ht(u,v)

Y h,{v.v)

Z h3 (u,v)

where the parameters u and v take values over a finite domain, for example the
unit square [0,1] X [0,1], and the coordinate functions hi(U, v) are polynomials
or ratios of polynomials in 1t and v. Customarily, the coordinate functions are
represented in a special basis, for example the Bernstein-Bezier basis, that ad
mits a correlation between a net of control points in 3-space and the coefficients
of the coordinate functions. This has the advantage of correlating the control
points with the shape of the surface patch in a geometrically intuitive manner,
and it also permits formulating continuity constraints between patches in an
elegant way as conditions on the control points. The literature on this subject
is vast, and we refer the reader to books such as [41,42,43] or to survey articles
such as [44] for an entry into this subject. Parametric surfaces are not closed
under some geometric operations such as offsetting.

Implicit algebraic surfaces provide an alternative to the parametric surface
representation. An implicit algebraic surface is defined by an equation

f(x,y,z) = 0

where f is ,a polynomial in x, y and z. Algebraic surfaces are more gen
eral than parametric surfaces and are, in contrast, dosed under most geomet
ric operations, including offsetting. However, they lack a strong correlation
between coefficient choice and resulting shape, necessitating different design
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paradigms. Nevertheless, implicit surfaces are useful in geometric modeling,
and [2J gives many details of their properties and describes techniques for inter
rogating them. Implicit algebraic surfaces include in principle all parametric
surfaces, but not vice versa. Current techniques for converting from paramet
ric to implicit fonn, and methods for parameterizing implicit algebraic surfaces
that possess a rational parametric form, can be demanding symbolic computar
tions [45J. Simple algorithms are known for monoids, a special class of surfaces
that includes all quadratic surfaces. See [2J for details.

In certain applications, one would like to construct curved surfaces that sat
isfy prescribed constraints. In many cases, these surfaces are readily explained
and informally specified in intuitive geometric terms. For instance, given two
surfaces f and g, consider all points in space that have equal minimum distance
from the given surfaces. Such points form the equal-distance or Voronoi sur
face of f and g. Another example is the rolling-ball blend, a blending surface
between given surfaces f and 9 obtained as follows: Roll a sphere such that it
maintains contact with both f and g, at all times. Considering the volume in
space traversed by the sphere, the rolling ball blend is defined by the surface
of that volume.

The basic property of these and similar other surface definitions is that the
new surface to be defined can be expressed in terms of one or more base sur.
faces and a number of intuitive geometric constraints. Despite this conceptual
simplicity, it is by no means a trivial undertaking to represent such surfaces in
exact mathematical terms, in a manner suitable for computation. Often, nei
ther implicit nor parametric surface representations can be found, and so we
seek an alternative to these two representation schemata. The dimensionality
pamdigm provides a straightforward and mathematically rigorous method for
exactly representing surfaces defined through constraints. The dimensionality
paradigm simplifies representing complicated surfaces, and it permits generic
algorithms for manipulating them. The method is also of interest because it is
an enabling technology for constructing promising curved-solid representations
such as the skeleton discussed later in Section V.

B. THE DIMENSIONALITY PARADIGM

We observe that the definition of complex constrained surfaces often simpli
fies when we consider the surface as the natural projection of a manifold in
higher-dimensional space. The manifold is defined by a system of nonlinear
equations in n variables, where n > 3. The extra dimensions may be point co
ordinates on the base surface(s), distances, or other quantities used to express
the constraints that must be obeyed. The surface we want is then the natural
projection of this manifold into a three-dimensional subspace.

When the base surfaces are algebraic, and this is normally the CMe in
geometric and solid modeling, then the resulting system of equations can be
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processed by a number of symbolic computation algorithms that eliminate
all additional variables and arrive at a single implicit equation for the surface.
Such an approach is normally intractable, for it routinely arrives at elimination
problems that are well beyond what hardware and software can deliver in the
foreseeable future. Worse yet, a number of elimination algorithms require exact
arithmetic, further exacerbating the magnitude of the computation. Therefore,
we will work directly with the system of equations.

We will demonstrate the definitional approach with an example. We have
developed a number of algorithms for surfaces defined using the dimensionality
paradigm. The algorithms are general and do not require knowledge of the
geometric nature of the surfaces. Therefore, they will work unchanged on
offsets, on blends, on equal-distance surfaces, and so on. Some algorithms
are local in nature. That is, given a point on the surface, the algorithms will
explore the surface in the vicinity of the point. Such algorithms can and have
been globalized, by suitably embedding the exploration into a spatial grid that
coordinates the computation. We will sketch the salient features of many of
these algorithms also.

C. AN EXAMPLE DEFINITION

We consider the definition of an equal-distance surface as an example of the
dimensionality paradigm. Assume that we are given two implicit surfaces
f(x, y, z) = 0 and g(x, y, z) = O. Using a declarative style, we can then describe
the equal-distance surface as follows:

(i) Let p = (x, y, z) be a point on the equal-distance surface. Moreover, let
1)1 = (UI, VI, WI) be a point at minimum distance from p on f, and let
P9 = (U2, Vz, W2) be a point at minimum distance from P on the surface
g. Then:

(ii) The point PI satisfies the equation of f, and the point Pg satjsfies the
equation of g.

(Hi) The distance (P,PI) is d and is equal to the distance (Plpg).
(iv) The line P,PI is normal to f at PI'
(v) The line P,Pg is normal to 9 at P9'

Note that Assertion (i) declares the names ofuine variables, the coordinates of
three points, whereas Assertions (ii)-(v) simply state the geometric relation
ships that these points must satisfy.

In order to obtain an equational representation of the equal-distance sur
face, we translate the Assertions (ii)-(v), using the variable names of (i). We
obtain in sequence:
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f(Ut, VI. wI) 0

g(U2,V2,W2) = 0

(3)

(4)



(x - ud' + (y - vd' + (z - wd' d' (5)
(x - u,)' + (y - v,)' + (z - w,)' d' (6)

[x - Ul,y- VI,Z- wd· {-lvl,lul'O] ~ 0 (7)
[x - Ul,Y- VloZ- WI]' [fWI,O'-!Ul] 0 (8)
[x -1tl,Y- Vt,Z - wd· [D,-Iwp/v,] 0 (9)
[x - U2, Y - tI2,Z - W2] . [-Yv.219u2' OJ 0 (10)
[x - u2,y- V2,Z- W2]. [gW:2l0,-gu2] ~ 0 (11)
[x - U2, Y - V2, Z - W2]' [0, -gw2,9V2] 0 (12)

Subscripting, as in lUI> denotes partial differentiation.
Equations (3-6) are quite dear and express Assertions (ii) and (iii). Equa

tions (7-9) together express Assertion (iv), since the three vectors

[- fUll luI' OJ
[fwl ,0, - fUll
[0,- fUJI ,fvll

are tangent to f and span the tangent space as long as PI is not a singular
point on the surface. Similarly, Eqs. (10-12) together express Assertion (v).

Note that if f is given in parametric form, then Eq. (3) and Eqs. (7-9) have
to be adjusted. This is routine and shows that the methodology is independent
of the representation of the base surfaces. In principle, an implicit equation
could be derived by eliminating the variables {Ut, VI, .•• , W2, d} from the system,
but in almost all cases this computation is not tractable.

The entire system of equations defines a manifold in lQ.dimensional space.3
The projection of that manifold into the (x, y, z)-subspace is the equal-distance
surface. A number of papers discuss other examples of surface definitions using
the dimensionality paradigm, including

• offset surfaces, [46,45];

• constant-radius blends, [46];

• variable-radius blends, [46,47J;

3Note that d.is a variable

35



D. FAITHFUL DEFINITION SYSTEMS

The equation systems formulated by the dimensionality paradigm entail cer
tain additional point sets that are unwanted because they do not reflect the
geometric intent. The origin of these additional solutions is found in possible
interdependence of the individual equations at certain points in space. For
example, if Pi is a singular point, then Eqs. (7-9) vanish. In consequence, the
system also defines a manifold that projects to the equal-distance surface of 9
and the singular point.

Extraneous solutions present in the system can be excluded by introducing
certain additional equations, [50]. These new equations use one or more addi
tional. variables that no longer have a direct geometric meaning, but are used
to express inequalities through equations. This "trick" originates with refuta
tional approaches in automated geometry theorem proving, [51,52]. Note that
all extraneous solutions can be so eliminated. The equations added reflect a
generic method, but must account for the geometry of the original system.

A technical subtlety of this work is to define precisely what is meant by
"extraneous" solution. Following [50], we define the extraneous solutions in
the example of the Voronoi surface, Eqs. (3-12). Let]J = (x, y,z) be a point of
the equal-distance surface, PI = (Ul' VI, WI) a point on j at minimum distance
from p, and Pg = (U2' V2, W2) a point on g also at minimum distance from p.
The points PI and Pg are jootpoints of p on j and g, respectively. Footpoints
and the associated surface point(s) are said to correspond. Then a solution
is extraneous if it corresponds to a footpoint that, in turn, corresponds to
infinitely many solutions. It can be shown that all real extraneous solutions to
Eqs. (3-12) arise as follows, [50]:

1. Footpoints PI or Pg are singular. In this case, we obtain as extraneous
solutions points at equal distance from the singular point and the other
surface. In case both footpoints are singular but not coincident, there is
an additional plane. If both footpoints are singular and coincident, then
every point in R 3 is an extraneous solution.

2. The footpoints coincide, are regular, and the surfaces intersect tangen-
tially. In this case, the common surface normal is extraneous.

Note that we must assume for the proof that f and g are algebraic surfaces,
because Bezout's Theorem is used to show that all other footpoints correspond
to finitely many points of the equal-distance surface.

We explain how to modify the system so as to exclnde all extraneous solu
tions enumerated. Consider the equation

ax -1 = 0

It is solved iff both a and x are not zero. Thus, if x is a quantity occurring
in some system and a is a new variable, then adjoining this equation to the

36



system effectively expresses the constraint

X;"O

Now consider the equation

(ax - l)(ay - 1) = 0

It e;{presses effectively
(x;" 0) V(y;" 0)

We use this idea to exclude all singular footpoints from the definition of the
equal-distance surface by adjoining

(al., - 1)(al" - 1)(alw , -1) = 0

({Jy., - 1)({Jy~ - 1)({Jy"" - 1) 0

where a: and f3 are new variables. The two equations express that not all
partial derivatives of I and of 9 vanish simultaneously at footpoints. Likewise,
adjoining

where
1 1 1

D = lUI lUI IWI
91.12 9112 9Ul2

expresses that the footpoints PI and Pg are distinct, or else that the surface
normals through them do not coincide. In consequence, the system of equations

f(ur. VI, wd 0

9(U2, V2, W2) °
(x - ull' + (y - vll' + (x - wll' = ,p
~-~r+(y-~r+(z-~r ,p

[x-Ulty-vIoZ-Wt]'(-!vl,/ul'O) 0

[x - Ut,y - VI,Z - WI]' [fwIlO,-ful] 0

Ix - u"y- v"z- WI]· [O,-lw"I,,] 0 (13)

[X-U2,y-V2,Z-W2]'[-9vH9u2'O] 0

[X-U2,y-V2,Z-1lJ2]·[gUl2,O,-9u2J 0

[x - U2,y - V2, Z - W2]' [0, -9W1,9112] :;: 0

(al., - 1)(al., - 1)(alw, - 1) 0

({Jy., - l)({Jy~ - l)({Jy"" - 1) 0
(,(" - u,) -1)(,(v, -~) -1)(,(w, - w,) -1)(,D -1) 0
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defines the equal-distance surface of J and g without extraneous solutions.
The same approach has been used in [50] to exclude extraneous solutions from
offsets, constant-radius and variable-radius surface definitions.

In this approach to faithful surface definition, the exclusion of all extraneous
solutions also removes finitely many solutions that, by continuity, ought to be
included in the final surface. For example, associated with two coincident
regular footpoints is always the solution p == Pi == Pg, now excluded in case of
coincident normals. If the projection of the system into the (x, y, z)-subspace is
done using variable elimination, then these "missing points" are reintroduced
by closure; [53]. If the system is interrogated by the methods to be explained
next, then the missing points can be reintroduced by compensatory steps in
the algorithms. However, in almost all cases the missing points will not be
noticed because the numerical processing evaluates only a discrete sample of
points, and the missing points are isolated.

E. INTERROGATION OF SURFACES DEFINED WITH THE DI
MENSIONALITY PARADIGM

There is a considerable body of algorithmic infrastructure to deal with surfaces
defined by systems of nonlinear equations. The following algorithms are now
available:

(i) Given two surfaces and an initial point on both, evaluate their inter
section; see [54,2,46]. The algorithm is robust and can evaluate very
high-degree surface intersections without significant precision problems.

(ii) Given a surface and an initial point, evaluate locally the curvatures,
[48], and give a local parametric or local explicit surface approximant of
arbitrary contact order, {55,45].

(iii) Given a surface and an initial point, globally approximate the surface;
[55J.

These algorithms are not confined to algebraic equation systems, and can be
used as long as the nonlinear equations of the system are continuously differ
entiable. They are very efficient.

Less efficient are the known techniques for finding initial points. When
nothing is known about the system, then generic techniques such as {56,57,58,
59,60] can be applied. Usually, however, the geometric intent of the system
is known and leads to good initial estimates for starting points that can be
refined using Newton iteration. Moreover, some of the search techniques from
CAGD are in principle applicable. That is, by raising the dimension of the
ambient space by 1, all equations can be rewritten in Bernstein-Bezier form
after which domain reduction is applied using the convex hull property. To
implement this, one has to exercise care not to obtain an exponential growth
in the number of control points.
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1. LOCAL PARAMETRIC APPROXIMATIONS

We assume given a surface definition using the dimensionality paradigm, in the
form

h(Xt,X2"",Xn ) - 0

!2(Xl,X21""Xn ) 0
(14)

fm(Xt,xZ,""xn ) = 0

and an initial point p = (Ut,uz,. .. ,un ) solving the system. At p, we assume
that every hypersurface Ii is regular and twice continuously differentiable, and
that the Jacobian matrix

(8f;)
Ifxj ..

'"
has rank n - 2. Then the manifold M defined by Eq. (14) is of dimension 2
in the neighborhood of p. Its natural projection into the (Xl, X2, :tal-subspace
will be denoted by 1l"(M). We describe how to compute a local approximant to
the manifold at p, using the approach of [55,45J. SO, we will derive coordinate
functions

such that

and

h,(s,t)

h,(s,t)

On hn(s,t)

p = (h,(O, 0), "" hn(O, 0»

f;(h,(s,t), h,(s,t), "" hn(s,t))., 0

(15)

for i = 1, ... , m. Note that the natural projectIon 1l"(Jvt) of the manifold M
into the (X.,X2,X3)-subspace is then locally approxlmated by

Xl hl(s,t)

X2 h2(s,t)

X3 h3(Slt)

in the vicinity of the projection 1l"(p) or p.
Now the Taylor expansion of the hypersurface Ii at the point p = (Ul' .,', Un)

is given by
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(16)

fi(ul +61 ,U2 + 62, ... ,un + 6n )

fi(ul, ... ,ltn)

+fi1)Ol + + In)on

+[/,<',1)'1 + + j}n,n)'~JJ2

+f,P,2)olo2 + + f,P,n)olOn

+fi(2,3)0203 + + f i(n-l,n)On_l 0n

+higher order terms

Here, f?,k) denotes the partial derivative of Ii by Xj and Xk.

Next, consider the Taylor expansion of the local coordinate functions, hav
ing chosen 3 and t such that p = (h1(0,0), h2(0,0), ''', hn(O, 0)):

hd"t) = hdO,O)

+'/')3 +h(l)t
k k

+[h["'),' +2h[','I,t +h[','I t 'I/2
+ higher order terms

where hk
3

) denotes the partial derivative of hk by s, and so on. By assumption,
there is a neighborhood of p in which

We set

01 ::: h~3) S +h~t)t + [h~3,3) 8 2 + 2h~3,!) st + h~l,t)t21 /2 + .
62 h~3ls + h~l)t + [h~3,3)S2 + 2h~3,tlst + h~l,tlt2]/2 + .

and note that

ol (hk3l )2 S2+2hk3lh~l)st + (hkt»)2t2+...
Ok6j hi3)h~3ls2+ (hi3)hY) + hit )h}3»)st +hit)h}tlt2 +...

Now we substitute these quantities into Eq. (16), obtaining a power series in
s and t. The coefficient of each term sQt b in the power series must be zero. In
consequence, the following systems of equations are implied:

fP)h~3) + l2)h~3) + +f,Jn)h~3) ::: 0

j}'lh\') + j}')h\'J + + j}nlh~) 0
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fi(l)h~"''') + f?)h~",3J + + f/n)h~","J

rp) h (",1) + f~2)h,(3,1) + + fJn) h(",t)
Jl I, , n

fplhiC,I) + fi(2)h~C,t) + ... + f}n)h~c,t)

where i = 1, ... , m. The right hand sides are, respectively,

-Cj

-d;

-ej

(19)

(20)

(21)

c; = fp,II(h\'))' + ... + f;{o,o'(I.).")'

+2I!p"'h\'lh\'1 + ... + JiI,o'h\'Ih!.'1
... + ,.to-I,o)h{" h{'11

J, 71-1 n

di = fi(l.l)h~")h~1} + + fi(n,n)h~")h!:)

+fi(1,2)ht')h~!) + + fi(l,n)h~")1J!)

... + j.(n-l,n)h(8 j ,,(t)
I n_l'''n

+fP,2)hi!)h~") +... + fll,n)h1t)h~")

... + t.(n-l,n)h(t) h(lIj
J, n-l n

c; = JiI,I'(h\'))' +." + fin,n)(h~I),

+2I!p"'h\'lh\" + ... + Ji"n1h\"h!."
... + j(n-l,n'h{'1 ""I

I 71-1' ....

The partial derivatives of the coordinate functions h;, are computed from these
systems of linear equations, and define an approximate local parameterization
of the manifold given by Eq. (14).

The linear systems of Eqs. (17-21) have rank deficiency 2. Their solutions,
therefore, take the form

at V Ii + ... + Q'n-2 V fn-2 + j3tl + 1't2

where tt and t 2 are two linearly independent tangent directions to the surface
at the point p. These tangent directions are determined by the method chosen
to solve the linear systems.

To choose suitable values for the {3 and l' coefficients, we proceed as follows.
For Eq. (17) and Eq. (18). we let

al = 0:2 = ... = a n _2 = 0

For Eq, (17). we choose (/3."1) = (1,0); and for Eq. (18). we choose (13,"1) =
(0,1). Then the isoparametric curves

(h,(s, 0), .... ho(s, 0)) and
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intersect transversally at p. Moreover, ift} and t2 are orthogonal, then so are
the isopararnetric curves through p. For Eqs. (19-21) we choose {3 = I = D.

We have shown how to construct local linear and quadratic approximants to
the manifold M at p, which also give local approximants to the surface lI"(M)
at lI"(p). Assuming that the Ii are sufficiently differentiable, hjgher-order local
approximants are constructed in the same way.

2. CURVATURE DETERMINATION

As shown in [48], it is possible to determine the curvature of the surface lI'(M)
at p. We recall the following
Lemma 3 Let ni be the normal vector to the hypersurface Ii at the point p,
for 1 .s i ;; m. Let O'j he such that the last n - 3 components of

m

no = La;ni = (a,b,c,D, ... ,D)
;=1

are zero. Then the natural projection of no is normal to lI"(M) at the projection
of p.

The normal curvature of lI'(M) at p will be determined in a direction that
is the natural projection of a tangent v to M at p. The actual computation
requires forming a linear combination of the Hessians Hi of the Ij. It also
requires that the vectors v and no project to vectors of unit length, that is,
the sum of squares of the first three components of each vector must be 1. We
state how to compute the normal curvature.
Theorem 4 Let hj be the normal vector to the hypersurface Ii at the
point p, for 1 .;; i .;; m. Let Clj be such that the last n - 3 components of
no = L~l aiDi = (a,b,c,D, ... ,0) are zero, and such that a2 + b2 + c2 = 1.
Let v = (Vl,V2,' .. ' un) be a tangent vector to Mat p where vi + v~ +vj = 1.
Let Hi be the Hessian of Ii. Then the normal curvature of lI'(M) at p in the
(projected) direction lI'(v) is given by

m

J\, = -vT(LO'iHj)v
i=1

It is well-known that the principle curvatures and their directions can be
recovered from the normal curvatures jn three different directions; e.g., [61].
Thus, the principal curvatures, mean curvature, and Gauss curvature of 1f(M)
can all be determined with help of the theorem.

3. SURFACE INTERSECTION

The derivation of local approximants can be used to construct local approxi
mants to surface intersections as well. As discussed in {54,2], at the point p we
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construct an approximant of the form

(22)

such that
p = (h,(O), ... ,hn(O))

The derivation is exactly as in the surface approximations, except that the
right hand sides are simpler. Once the approximant has been obtained, to
some degree, it is used to derive a new point estimate

which is refined with Newton iteration and becomes the new point at which to
construct a local approximant.

This approach to evaluating surface intersections by marching can be very
effective. In [46J we show the evaluation of intersections with a variable-radius
blend that have an estimated degree in excess of 500. The system defining this
curve consists of equations of low to moderate algebraic degree, which is an
important aspect of the dimensionality paradigm.

4. GLOBAL APPROXIMATIONS

For curves such as surface intersections it is easy to derive a marching scheme
like the one summarized before. In order to obtain a similar scheme for eval
uating surfaces we need a device that orients the exploration in space and
prevents inadvertently exploring the same neighborhood several times. In [55]
this problem has been addressed in the context of the dimensionality paradigm.
The technique competes well with other approaches such as Allgower's simpli
cial continuation method, [57J, or the moving·frame method of Rheinboldt,
[62]. All methods are based on the following idea. Given a manifold M by
the system of Eq. (14) and on it a point p = (Ul' ... , Un), construct a piecewise
approximation of M, beginning at p and extending in all directions.

Rheinboldt's moving-frame method proceeds by triangulating the tangent
space at p, and transferring the triangulation to M with Newton iteration.
Each vertex of the triangulation, after projection to a point q on M, becomes
the center of a new triangulation, of the tangent space at q. The algorithm
locally resolves any overlap, but cannot do so globally.

Allgower's method is based on a triangulation of ambient space and only
evaluates the system of equations. At each vertex of a simplex, Eq. (14) is
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evaluated and from the m-vector of function values a linear approximant is con
structed. Moreover, it is then deduced through which faces the linear approx
imant passes, and based on this information adjacent simplices are considered
in the same way. Note that adjacent simplices can be found efficiently by a
triangulation schema based on an elegant enumeration. In Allgower's method
the ambient n-dimensional space is triangulated. In consequence, the number
of simplices in an elementary volume grows exponentially with the number of
variables. However, the method does not need to assume differentiability of
the /i.

In the case of surface definitions with the dimensionality paradigm, the
surface that is ultimately of interest is the projection 1l"(M). Since this surface
is in a three-dimensional space, it is advantageous to construct an approximant
only for the projection, and Chuang's algorithm [55] does this as follows, using
a grid in :J.space to detect whether a volume of space has already been explored.

1. At p, construct a local approximant to M as described before.

2. Determine how the projected approximant. (hl (5, t), h2(5, t), h3(5, l)), in
tersects the faces of the cube, as a function of 5 and t.

3. From the intersection curves, determine the coordinates (51, ll) of a point
on the approximant that lies in an adjacent cube.

4. Refine the estimated point with Newton iteration.

There is a tradeoff between the degree of the approximant, the mesh size of the
grid, and the difficulty of determining face intersections and adjacent points
in Steps 2 and 3. With increasing degree of the approximant a coarser mesh
can be tolerated, so that fewer approximant calculations are needed. However,
determining the intersection with the faces of the current cube becomes more
difficult. The advantage of this method is the fact that the dimension of the
meshed space does not depend on the number of variables used to define M.
Yet, by determining the (s,t) curves, each estimate (5},td can be pulled back
into the n-space in which M is given.

We illustrate the method for linear approximants. Assume that we are at
a point p = (1£1,1£2, ••• , Un) on M that projects to 'IT(p) in a cube, and we have
constructed the linear approximant

L: Xl

x
"

'Ul+VI5+W1 t

1£2 + v25 + W2t

L intersects the faces of the cube containing 'IT(p), say as shown in Figure 22.
Each intersection is easily determined: If the face plane is XI = a, then the
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Figure 22: Linear Approximant in a Space Element and Local Frame

line in (s,t)-space corresponding to the intersection with L is simply

Intersections with the planes y = band z = c are found analogously. Thus, the
intersections define a polygon in (a,t)-space that corresponds to the area of L
contained in the cube, as shown in Figure 23. Possibly with help of additional
lines corresponding to the intersection of L with tIte faces of adjacent cubes, we
can find good estimates (St, t l ) for new points in neighboring cells, as illustrated
in Figure 24.

Note that the linear approximants found at each point do not have CO
continuity. Assumlng that the mesh is sufficiently fine, a simple solution is
to triangulate the points found on 1T(M). Since we have good adjacency in
formation from the construction, no ambiguities have to be resolved. Other
possibHlties include determining the principal curvatures and directions at each
point on 1r(M). Thereupon, interpolation algorithms such as [63] could be used
to provide a surface approximant that has C 1 continuity.

t

:z;=a

z=c

y = b

:z;=a+h

,

Figure 23: Corresponding Face Intersection Lines in (8, t ).Space
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Figure 24: Finding a Point (Sl, tt) in Adjacent Cubes

v. THE SKELETON

The interior skeleton of a three-dimensional solid is the locus of the centers
of all inscribed maximal spheres. A sphere is maximal if there is no other
inscribed sphere that contains it completely. Other names for the skeleton
include medial-axis transform and symmetric-axis transform.

Computer vision has proposed the skeleton as a shape representation; e.g.,
[64,65J. Applications of the skeleton in pattern recognition are discussed; e.g.,
in [64,66]. In the context ofgeometric modeling applications, it has been argued
that the skeleton in 2D is useful for generating finite-element meshes [67,68,
69J, because it allows identifying areas in which the 2D domain is constricted
or extended, and so provides the basis for quantifying shape parameters of
relevance to the mesh density.

If we know for each skeleton point its distance from the boundary, then the
skeleton is an informationally-complete representation in the sense of Requicha
[iDJ. We discuss this representation now, and then consider some of the appli
cations that might be facilitated by it. For the sake of a clear presentation, we
begin with a discussion of the skeleton of two-dimensional objects. We then
point out how to generalize the techniques to three-dimensional solids.

There is an interesting connection between skeletons and certain concepts
from classical geometry and from the theory of differential equations, with
consequences on how to compute the skeleton, [71]. We will discuss these
connections as well.

A. THE SKELETON REPRESENTATION

Consider a bounded solid T, in R 2 or R3 , with compact boundary aT. For
every point p, we define its distance from the boundary of T as the minimum
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Figure 25: Interior Skeletons of a Simple Domain

Euclidean distance d(p,q) where q is on aT. For every P, there is always at
least one point q on the boundary of T such that d(p, q) is minimum, and such
a point q will be called a Joot point of p on T. Then the interior skeleton of
T consists of all points p that are interior points of T and have more than
one footpoint on aT, as well as the limits of point sequences in this set. That
is, the skeleton is the relative closure of the set of all interior points that do
not have unique footpoints. An example in two dimensions is shown in Figure
25. Similarly, the exterior skeleton of T is the closure of all points p that are
exterior to T and have more than one footpoint.

We associate with each skeleton point its distance from aT, as an additional
coordinate. For two-dimensional solids, therefore, the skeleton point (1t,V) at
distance r from fJT will be associated with (u,v,r) in 3-space. The skeleton
thus becomes a three-dimensional object, as shown in Figure 26. We recover
the boundary fJT from this skeleton representation as follows. Associate with
the point (u,v,r) of the skeleton the circle (x - u)2 +(y- v? _ r2 = o. Then
aT is the envelope of all such circles. We will see later that the envelope points
of the circle can be determined without constructing the envelope.

/ ,,'/········································r .

/ \
Figure 26: The Skeleton as 3D Object
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Figure 27: Self-Intersections of Positive Skeleton Translates

Likewise, the skeleton point (tt, v, w) at distance T, of the three-dimensional
solid T is represented by the point (u,v,w,r) in 4-space, thus considering the
skeleton a four-dimensional structure. Then IJT is the envelope of the spheres
(x - v)' + (y - v)' + (z - w)' - r' = O.

Since the r-coordinate gives the distance from the boundary, we expect
that a translation of the skeleton in the r-direction represents an interior or
exterior offset of T. More precisely, with d a signed translation distance, let
the d-translate of the skeleton S consist of the points

{(v,v,w,r +d) I(v, v,w,r) E S, r +d <: OJ

Then a negative d-translate represents the interior d-offset of T, whereas, in
the case of positive d-translates, self-intersections are possible when T is not
convex. See a.lso Figure 27.

The possibllity that the boundaries of positive translates may contain self
intersections suggests that the interior skeleton does not contain sufficient in
formation to generate offsets in a simple way. In fact, exterior offsets will
require the exterior skeleton as well. Briefly, a positive translate of the interior
skeleton is combined with a negative translate of the exterior skeleton, by the
same di6tance. Then the exterior skeleton points that are clipped by the rule
r + d ~ 0 identify self-intersections.

B. CYCLOGRAPHIC MAPS AND IMAGES

The concept of cydographic maps is due to Milller [72J, and has uses in de
scriptive geometry. Cyclographic maps provide a different conceptualization
for the skeleton, and we explore this now in detail.
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Figure 28: Cyclographic Map of All Cycles Tangent to C in a Point

We consider oriented circles in the (x, y)-plane, calling them cycles so as
to stress that they are oriented. The plane is considered in (x,y,z)-space. A
counter-clockwise orientation is positive, as seen from points with positive z
coordinates, and a negative orientation is clockwise. If a cycle has the center
('IL, v) and radius r, we associate with it the point ('It, v, r) in 3-space, where T is
signed according to the cycle orientation. This association defines a bijection

between points in 3·space and cycles in the (x,y)-plane. Note that the points
in the plane correspond to cycles of zero radius.

Let C be an oriented curve in the plane. We investigate which cycles are
tangent to C, requiring that the cycles and the curve are consistently oriented,
as shown in Figure 28. Let p be any point on C. Then all cycles tangent to
C at p have their centers on the normal to C and are at distance equal to the
cycle radius. Hence, the points in 3-space to which those cycles correspond
are on a line that is inclined to the (x, y)-plane by 45" and orthographically
projects onto the normal of C at p. The set of all oriented circles tangent to
the curve C therefore corresponds to a ruled surface in 3-space all of whose
generators intersect C, project onto the normals of C, and have slope 1 against
the (x, y)-plane. This surface is the cyclographic map of C.

In general, since all generators of the cyclographic map have equal slope,
the ruled surface is developable [72J. In particular, if C is a line, then the
cyclographic map is an inclined plane, and if C is a circle, then the cyclographic
map is a right circular cone with a right angle at the vertex.

Now consider the reverse process, of investigating the cycle geometry that
corresponds to a given curve in space. Intuitively, the family of cycles corre
sponding to the points in space will have an envelope, although the envelope
could be imaginary. We call this envelope the cyclographic image of the space
curve.

In the simplest case, the space curve is a line e, and each point on this line
maps to a cycle. If eis parallel to the (x,y)-plane, then the cycles have equal
radius and their common envelope is a pair of parallel lines in the (x, y)-plane.
If eis inclined, with a slope less than 45", then the cycles are enveloped by a
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Figure 29: Cyclographic Image of a Line in Space

pair of intersecting lines. The intersection is the point at which l intersects
the (x, y)-plane. If the line l is at an angle of 45°, then the envelope is a single
line perpendicular to the projection of l onto the (x, y)·plane. For greater
inclination angles, the cycles have no real envelope. See also Figure 29.

If we choose a space curve C other than a line, then to each point p of C
the corresponding cycle contributes two points to the cyelographic image which
are real and distinct if the tangent at p has slope less than 45°, coincident if
the slope is 45°, and conjugate complex otherwise. Moreover, the orthogonal
projection of the space curve C onto the (x, y).plane bisects the envelope curve,
and so C is the skeleton of the cyclographic image. Furthermore, it can be
proved that the tangent to C at p, and the tangents to the cyclographic image
of C, at the points contributed to the envelope by the cycle corresponding to
p, are concurrent, as shown in Figure 30. Note that this fact implies a direct
construction of the footpoints on the boundary from each skeleton point.

There are a number of interesting relationships between the space curve C
and its cydographic image that are discussed in [72). For example, the tangents
to C form the cydographic map of the cyclographic image. Furthermore, the
edge of regression of the cyclographic map projects onto the evolute of the
cyclographic image.

Consider the cydographic map of the boundary aT of a 2D solid T. We will
trim this map as follows: For every point q = (u, v) in the (x, y).plane, consider
the normal of the plane through q. This line intersects the cyclographic map in
a number of points. If a is interior of T, then we choose among the intersection

Figure 30: Cyclographic Image of a Space Curve
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Figure 31: The Distance Function S Defined by the Cydographic Map

points the one that lies above the (x,y)-plane and has the smallest z coordinate.
If q is exterior to T, then we choose the intersection point below the (x,y)
plane with the largest z·coordinate. In either case, we have associated a point
that lies on that line of the cyclographic map that goes through the nearest
foot point of q on aT. With this convention, we have defined a single-valued
function S whose domain is the (x, y)-plane and whose range is a subset of
the cyclographic map of aT. Note that S is zero only on the boundary of T.
We will see later that this function is characterized by the Hamilton.Jacobi
equation. Note that S defines the minimum Euclidean distance of every point
of the (x,y)-plane to the uoundary of aT. Clearly its singular curves are the
skeleton of T. See Figure 31 for an example.

Since the S function is the Euclidean distance function, we observe that
it represents aU interior and exterior offsets as follows: In order to obtain the
boundary of the interior d-offset ofT, intersect S with the plane z:::; d. The
boundary of the exterior d-offset is given similarly by the intersection of S with
the plane z :::; -d. See also Figure 31.

This construction of the offsets interprets why the interior offset can be ob
tained as the positive d-translate of the interior skeleton. The interior skeleton
characterizes S in the interior of T, but does not reflect the exterior struc
ture of S completely. Thus, the exterior skeleton must be translated to obtain
exterior offsets without self-intersection.

It has been pointed out in [73J that a solid can be blended by a succession of
interior and exterior offsets, by the rounding radius. The exterior offset of the
interior offset obtains all rounds, and the interior offset of the exterior offset
obtains all fillets. It is clear, however, that the translation of the (x, y)-plane
first by d and then by -d recovers the original boundary fJI'. It follows that
the trimmed cyclographic map of an offset is not equal to the translation of the
cyclographic map of aT. In the construction of interior offsets as negative d
translates of the skeleton, this fact finds its counterpart in the clipping effected
by the condition T + d ~ O.
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In analogy to the two·dimensional case, we can define cyclographic maps
that establish a correspondence between oriented spheres in 3-space, and the
points of a four-dimensional space. The map of a solid boundary aT is now
a curved space that is ruled, and the ruling consists of lines, through every
point of [)T, that are inclined against (x,y,z)-space by 45° in the containing
4-space. Furthermore, the lines project onto the normals in (x,y,z)-space of
the boundary of T. From differential geometry we know that the normals in
3-space envelope the focal surfaces of aT, [74J, and the various constructions
and properties outlined above for the two-dimensional case generalize virtually
unchanged to the three-dimensional case [75]. In particular, the skeleton of
three-dimensional domains is the singular set of the trimmed cyclographic map.

C. THE HAMILTON-JACOBI EQUATION

As we discussed before, the function S is a subset of the cyclographic map,
which, in turn, is ruled with each generator inclined 45° against the (x, y)-plane,
or against the (x, y, z)-space in the case of 3-dimensional solids T. Denoting
the distance variable with t for the moment, we can express the geometry of
the ruling by the equation

S2=S2+S2, x ,

for two-dimensional solids, and by

for three-dimensional solids. Since we can locally express t as an explicit func
tion of the other variables, the equations become

S'+S'=1x ,

and
S2+S2+S2_1

:r: y z -

respectively, but this is just the well-known Hamilton-Jacobi equation. The
function S, therefore, satisfies this differential equation with the boundary
condition

5==0 on aT

With proper sign conventions, it is clear that the Hamilton-Jacobi equation
defines the cyclographic map S, and, because of the distance interpretation of
l, S defines the Euclidean minimum distance from aT of any point in (x,y)
and (x, y, z}space. This fact has been noted beforej [76].

We have identified the skeleton as the locus of points at which the cy
dographic map is derivative discontinuous. In terms of the Hamilton-Jacobi
equation, this set of points is called a shock wave; e.g., [77]. Thus, if we have
a PDE solver for integrating the Hamilton-Jacobi equation that locates the
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shocks in the solution, it follows that such a solver also finds the skeleton of T.
Integration inward from &T evaluates the interior skeleton, whereas integration
outward from the boundary evaluates the exterior skeleton.

At the time of writing, we have only limited experience with this approach
towards computing the skeleton. In particular, we have implemented the
scheme described in [78J. Early experiments seem to indicate that the solver
is more general than necessary. More specialized solvers should be faster and
more accurate. We are experimenting with alternatives that integrate the equa~

tion as an initial-value problem, augmented by a correcting step that refines
the solution based on the dimensionality paradigm.

D. GEOMETRIC APPROACHES TO COMPUTING THE SKELE
TON

Early approaches to compute the skeleton in two dimensions have evaluated
an approximate distance from the boundary, by one or two passes over a dis
cretization of T. Examples include [66,79].

Computational geometers have investigated the skeleton of polygonal do
mains. The algorithm by Preparata [8.0) evaluates first the branching points
of the skeleton. Considering certain triples of edges, the associated branch
point is the intersection of the bisectors of the edge pairs. Careful sequencing
of triples yields an O(n2

) algorithm for convex polygons. The sequencing can
be conceptualized as constructing the interior offsets that contain a branch
ing point. Then a branch point signals that certain edges of the boundary no
longer contribute to the offset. An algorithm by Lee [81J constructs the skeleton
using a divide-and· conquer approach, and achieves O(nlog(n)). Preparata's
algorithm was extended by Patrikalakis and Giirsoy to domains bounded by
line segments and circular arcs, [68J. As in the polygonal algorithm, branch
points are determined but are now the intersection of conics.

Using some conceptual elements of Preparata's and the Patrikalakis-Giirsoy
approach, [82J gives an algorithm for constructing the skeleton of CSG solids
in 3-space. The algorithm computes nearest approach points between pairs of
elements of the boundary, but not between triples, for that would entail alge
braic computations that are of unattractive complexity. The closest approach
points found are sorted by their distance from the boundary. In this phase
a proximity computation also rejects those closest approach points that are
nearer to a third boundary element.

Beginning at the closest approach points, the skeleton is evaluated, by
increasing distance from the boundary. At each moment throughout the com
putation, the skeleton is known up to a current distance. Closest approach
points at a greater distance are not processed until their respective distance
has been reached. Each face, edge, and vertex of the skeleton is formulated as
a. suitable set of nonlinear equations, using the dimensionality paradigm, and is
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evaluated with help of the approximation algorithm described in Section IV.G.
In particular, the grid used to orient the exploration of faces and edges also
signals that different skeleton faces are about to intersect.

Intersection of two faces of the skeleton are easily formulated and evaluated.
Each face involves two boundary elements from which its points are equidistant.
Their intersection is thus obtained by seeking all points equidistant from all
boundary elements involved in the definition of the intersecting faces, and only
requires combining the equation systems that describe the faces. A proximity
computation determines how to trim faces in the vicinity of an edge or a vertex.

The algorithm does not attempt to exploit special geometric configurations
of boundary elements. As discussed in [49J, many such configurations exist and
result in skeleton faces that have a special geometry that could be utilized in
the construction of the face.

Bowyer et al. [83] describes an approximate skeleton algorithm for three
dimensional solids constructed from algebraic half spaces of arbitrary degree.
The algorithm begins by superimposing a grid whose elements are classified
as one of inside, outside, or boundary. Boundary elements intersect the solid
boundary, inside elements are in the solid interior, and outside elements are
exterior to the solid. Next, for all nonboundary elements, a distance computa
tion determines the approximate minimum distance from the boundary. Those
elements that are closest to more than one boundary element constitute the
approximate skeleton. A number of heuristics are employed that narrow down
the search for closest boundary elements. That is, for each boundary element,
the cone of normals to the contained boundary area is determined, since inte.
rior elements that do not fall into this cone cannot be nearest to this boundary
element. The algorithm has been implemented and incorporated into the Bath
solids modeler by David Lavender. Note that the approach generalizes to solids
of any dimension.

Price et al. [84] gives an algorithm for determining the branching points of
the skeleton of arbitrary planar domains. First, it is observed that a Delau
nay triangulation can be used to approximate the skeleton as follows: Select a
large number of points from the domain boundary, and construct their Delau
nay triangulation.4 If the points are sufficiently dense, the triangulation will
respect the domain boundary. Moreover, since in a Delaunay triangulation
the circumscribed circle of every triangle contains no other triangle vertices in
the interior, the skeleton is approximated by the centers of the circumscribing
circles.

Price et al. consider how to select a small number of boundary points such
that the resulting Delaunay triangulation respects the domain boundary and
such that the centers of the circumscribed circles contain all branch points
of the skeleton. Several heuristics are described that make the compatibility

4See, e.g., [85] for an algorithm to conslrud Delaunay lriangulalions.
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test more efficient. In particular, by classifying the types of triangles, it is
shown that many triangles need not be tested if certain critical ones respect
the boundary. Exact branch points are found later using Newton iteration.
The algorithm has been implemented. Note that the approach is relatively in
sensitive to the types of curves bounding the domain. The ideas and heuristics
should generalize to the three-dimensional case. The method is used as basis
of a finite·element mesh generation algorithm [67].

E. FINITE-ELEMENT MESH GENERATION

In contrast to grid generation methods like the one we discussed earlier in
Section III.D, finite-element mesh generation discretizes a domain using an
irregular mesh of simple shapes, often triangles or tetrahedra. Automating
finite-element mesh generation is of interest because the meshing requires much
effort and considerable manual labor at present. The suitability of the mesh
depends on both the geometry of the domain as well as on the nature of the
physical problem and its solution. It is therefore important that the mesh not
only satisfy geometric criteria, but also that it can be refined iteratively in
response to the analysis results.

Systematic finite-element mesh generation has been based on three funda
mental approaches:

1. Impose a spatial subdivision, say using octrees. Subdivide the interior
cells in a standard way into elements, and do special processing near the
boundary; see, e.g., [86].

2. Sample the domain boundary computing a set of points. Construct a De
launay triangulation of those points, and refine it such that the elements
respect the boundary; see, e.g., [87,88].

3. Partition the domain by its skeleton and some additional edges or faces
into simple sub domains. Triangulate the sub domains in a way that is
compatible at the boundaries between them; e.g., [67,68,69].

It is argued in [69] that Approach (1) does not address the essence of the
geometric problem and merely postpones it to those spatial cells that intersect
the boundary. However, when suitably subdivided, the octree cells containing
parts of the boundary have a relatively simple structure.

Approach (2) is attractive in 2D where favorable aspect ratios of the trian
gles can be guaranteed. However, no similar guarantees exist in the 3D case,
as pointed out in [67].

We will sketch first the algorithm of [69], for generating meshes of polygo
nal domains. The algorithm uses Approach (3), and recognizes automatically
where the domain is constricted. In those areas it is usually the case that the
mesh needs to be finer than elsewhere.
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Figure 32: Meshing Algorithm of Srinivasan et aI. [69].
Approximate Skeleton and Initial Partitioning. Right:
Short Edge Processing.

Left: Domain with
Result of Long and

In the first stage, the algorithm determines the skeleton of the polygonal
domain, and augments it with the shortest paths from certain skeleton points
to the boundary. More precisely, at every point of the skeleton where the
associated boundary entities change, the shortest paths to the boundary are
added. Moreover, the parabolic arcs of the skeleton are replaced with one
or two chords according to whether the angle subtended is smaller or greater
than 90°. If the arc is replaced with two chords, then the shortest paths from
the common chord vertex to the boundary are also added. Figure 32 shows a
domain with its skeleton and the result of the first stage on the left. Note that
the first stage constructs a domain partition into convex subdomains.

In the second stage, the initial partition is changed by eliminating regions
that are very narrow (slivers), and by subdividing extended regions bounded by
relatively long skeleton edges. Note that these types of region are quantitatively
defined in terms of the types and relative lengths of bounding edges [69]. Figure
32 shows the result of this stage on the right.

Next, the partition of the second stage is meshed. Depending on the local
geometry and the type of finite-element analysis, some edges bounding subdo
mains may be subdivided by additional nodes. The resulting mesh optionally
may be subjected to Laplace smoothing or other heuristics, producing a final
result such as shown in Figure 33.

Armstrong et al. [67] describe a different algorithm for generating meshes of
planar domains. The approach is also based on the skeleton, but quadrilateral
elements are generated rather than triangular ones. The skeleton is determined
by the algorithm of [84). After the skeleton has been determined, the induced
partition of the domain is refined as follows. A concave boundary corner is
subdivided by an additional line 50 as to obtain angles close to 90°, except
when the corner is close to 180°. Skeleton edges that lie between complex
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Figure 33: Mesh obtained by Srinivasan et al. after Smoothing.

branch points are also subdivided·in an effort to obtain four-sided regions in
the partition. The regions are then meshed with quadrilateral elements. See
also Figure 34.

F. ON GEOMETRIC TOLERANCING

In many applications, a solid designed for manufacture need not have the
exact shape defined by the geometric model. Rather, shapes are allowed to
vary within certain tolerances. Expressing these tolerances can be extremely
complex, because they may depend on the function of the solid part, and its
interrelationship to other parts. Geometric tolerancing studies the subproblem
of how to express the geometric variation allowed; e.g'

l
[89].

In the simplest case, one could view the surface of the solid design as a
nominal shape, and accept all solids with a shape whose surface is within a
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Figure 34: Mesh Obtained by Armstrong et al. [67]
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Figure 35: Tolerance Zone of a Nom1nal Shape

zone of constant thickness surrounding the surface of the nominal shape. See
Figure 35 for a two-dimensional example. This appealingly simply idea entails
some difficulties in traditional solid representations in that the measurement
of distance from a curved boundary is not necessarily a simple computation.

By using a skeleton representation, however, such a distance computation
simplifies dramatically. For, since dilations and contractions of shapes corre
spond to translates of the skeleton in the distance dimension (Section V.A),
the point-boundary distance can be measured by comparing corresponding
skeleton points in their last coordinate. Also, the function S discussed before
gives a precise distance measurement, so that evaluating this function on the
boundary of the variational shape at once reveals by how much the surfaces
deviate.
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