The Potential Method for
Blending Surfaces and Corners
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Abstract. The potential method for blending implicit algebraic surfaces is summarized,
summarizing and extending work previously reported. The method is capable of deriving blends
for pairs of algebraic surfaces, and is guaranteed to produce blending surfaces of lowest possible

degree for two quadrics in general position.
Two paradigms are given by which to understand the method. The first paradigm views the

blends as surfaces swept out by a family of space curves. The second, more general paradigm
considers the surfaces as a result of deformation of a parameter space effected by substitution.
The method has a general formulation based on projective parameter spaces.

The deformation by substitution paradigm is extended to blend blending surfaces at solid
vertices without a degree penalty, under the assumption that the vertex valence has been
reduced to three. It may also lead to a general solution for blending patches of algebraic surfaces
that meet tangentially. A speciat case of this problem is solved and illustrated.

1. Introduction. Mechanical parts have primary surfaces whose shapes are
functionally important and secondary surfaces whose purpose it is to smoothly connect
the functional, primary surfaces. Usually, the secondary surfaces are only approxi-
mately specified in the engineering drawings of the part, and their exact shape, within
bounds, is ircelevant. Surfaces of this type are called blending surfaces or blends, and
we consider here how to derive them in a simple and systematic manner.

Specifying a blend for a computer based geometric modeling system should be
simple; after all, the surfaces need to conform only approximately to the designer’s
shape requirements. Yet this is not the case. The principal difficulty is in shaping and
positioning these surfaces so as to achieve tangency to the primary surfaces. As a
consequence, blending surfaces have a higher algebraic degree, and are mathematically
more complicated to derive than the primary surfaces they connect. Thus, a long term
goal of our research into the existence and properties of blending surfaces is
automating the derivation of blending surfaces, by computer, from the adjacent
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348 BLENDING SURFACES AND CORNERS

primary surfaces and a few, spatially intuitive parameters such as width and
approximate curvature.

This paper surveys the mathematical aspects of deriving blending surfaces, given
the primary surfaces to which tangency is to be achieved. Throughout, the surfaces are
assumed to be algebraic, and are specified by their implicit equation, i.e., by an
equation ¥ =0, where F is a polynomial in x, y, and z. Specifically, we address the
potential method, introduced in Hoffmann and Hopcroft (1], [2], which has the
advantage of deriving, in a very simple manner, a rather extensive and flexible class of
blending surfaces of low degree. Other work on blending implicit algebraic surfaces is
described in Middleditch and Sears [3] and in Rockwood and Owen {4], and these
approaches are related to the potential method in § 3.

Although the blending problem has been formulated in terms of surfaces, the
techniques can be integrated into a constructive solid geometry (CSG) based modeling
system. Even Rockwood and Owen [4], reporting on work intended for a new version
of the boundary representation based modeling system ROMULUS, was first
experimentaily tested in a CSG based modeler according to A. Rockwood.

Throughout our work, we stress the importance of obtaining blending surfaces of
low degree. This is a practical consideration. Both the size of the surface repre-
sentation, as well as the difficulty encountered by e.g., root finding algorithms, grow
quickly with increasing degree. Fortunately, we not only derive low degree blends, we
can also show rigorously that they are of the lowest degree possible for quadratic
surfaces in general position.

This paper describes work in progress. Consequently, a number of results have a
preliminary character, and topics in need of further investigation are indicated
throughout. We have attempted to portray the material in as intuitive a way as
possible, hoping to make it accessible to a large audience. The Uniqueness Theorem
has a very technical proof that draws on algebraic geometry and the theory of ideals,
and is omitted here. The interested reader is referred to Hoffmann and Hopcroft [2]
for a complete derivation. However, many of the technical aspects are readily
accessible to the nonspecialist, and where this is the case, we did not hesitate to g0 into
full detail.

Sections 2-4 deal with blending two surfaces. Although written for intersecting
surfaces, one can also blend nonintersecting surfaces. In the case of quadrics, the
corollary to the Uniqueness Theorem (§ 4) explains how this can be done. Sections 5-7
deal with blending corners and patched algebraic surfaces, a comparatively less
developed area. Here the main point is that special geometric properties of quadrics
can be lifted to higher degree algebraic surfaces, by a simple intuitive approach.

2. Blending Two Intersecting Surfaces. We explain 2 method for blending two
intersecting algebraic surfaces, initially developed in Hoffmann and Hopcroft 11,
called the potential method. All polynomials are assumed to be in X, y and z, with real
coefficients, unless stated otherwise. To avoid confusion, we distinguish between the
polynomial F and the surface S(F) whose implicit equation is F=0. In general, the
intersection of two surfaces $(G) and S(H) is a space curve denoted S(G, ), and the
intersection of three surfaces is a set of points denoted $(G, H, K). Note that the point
(1,2, 3) can also be written as the intersection of three planes S(x -1,y -2, z - 3).
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S(G-a, H)

Figure 2.1. The curve ${G — a, H) where the blending surface meets S(H) tangentially.

A surface S(F) partitions space into three sets: all points (a, b, ¢) such that
F(a, b, c) >0, called the outside of S(F); all points such that F(e, b, ¢) <0, called the
inside of S(F); and all points such that F(a, b, ¢) =0, i.e., S(F). Note that in general
the inside of S(F) is equal to the outside of S(—¥F), and vice versa.

2.1. The affine method. Given the surface S(G), we define a family of surfaces,
parameterized by s, via G ~s5=0. For a particular value of s #0, S(G —s) is always
entirely on the inside or the outside of S(G), depending on the sign of 5. For example,
consider a circular cylinder ${(G). Then G may always be chosen such that for positive
s, S(G —s) is a circular cylinder of larger radius. In a like manner the family S(& — ¢)
of surfaces based on the surface S(H) is defined. For our example we pick S(H) as
another cylinder. A maximum radius is fixed by picking a constant a and intersecting
S(G —a) with S(H), as shown in Fig. 2.1. We choose a such that S(G — a) intersects
S(H) in a nondegenerate space curve S{G —a, H). The space curve S(G —a, H) is
associated with the point (g, 0) in s-¢ parameter space. Now reduce the value of s from
a to 0, while simultaneously increasing the value of ¢ from { to some other constant b.
Each intermediate pair (#, v) of s-t values corresponds to a space curve S(G —u, H - v).
If the values for s and r lie on a curve f(s, £)=0, then the corresponding space
curves lie on a surface whose equation is F(x, y, z)=f(G, H) = 0. Figure 2.2 shows the
correspondence of an arc of the curve f to a segment of the surface S(F). Here the
radius of S(G) is 8, and the radius of S{(¥) is 4.

As shown in Hoffmann and Hopcroft [1], if f =0 is tangent to the s-axis at (a, 0)
then S(F) is tangent to S(H) in the curve S(G —a, H). Likewise, tangency of f =0 to
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Figure 2.2. Correspondence of an arc of the parameter curve to a part of the blending
surface.

the t-axis at (0, b) implies tangency of S(F) to S(G) in S(G, H — b). Higher order
continuity of f with the coordinate axes gives higher order continuity of the surfaces.

Essentially, the procedure just described is the simple version of the potential
method and we call it the affine potential method. It is not fully general, as we shall see
below.

Although all subsequent examples concentrate on blending quadrics, the method
applies to blending arbitrary algebraic surfaces. However, for higher degree surfaces
the intrinsic surface geometry is more complicated. For example, S(G —a) may split
into components. While the method is robust and very intuitive for many surfaces, and
especially for all quadrics, much exploration of its general behavior needs to be done.

2.2, Significance of the parameters when blending with a conic. The above
procedure does not depend on the degrees of G, H and f, but as we are interested in
low degree blending surfaces, we choose f of as low a degree as possible, i.e., as a
conic. With the required tangency conditions f can be written as

f(s, £) = b%% + a** + a’b* —- 2ab®s — 2a°bt + 2Ast.
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Figure 2.3. Positional correspondence of the blending surface and the parameter curve.

The corresponding blending surface S(F) is seen to possess degree max (2m, 2n),
assuming that G has degree m and H has degree n. For quadrics, therefore, we obtain
quartic blending surfaces.

In using a conic for blending, the points of tangency may be positioned by
choosing a and b. Note that the signs of @ and & determine in which quadrant the conic
lies. The choice of A determines the actual conic. We now explain how these choices
affect the blend using as an example two circular cylinders whose axes intersect at right
angles.

If a is positive, then S(G —s) is on the outside of S(G). Accordingly, the surface
S(F) is on the outside of S(G). If a is negative, however, S(F) must lie on the inside of
S(G). Similarly, S(F) must lie on the outside or the inside of S(H{) depending on
whether b is positive or negative. The quadrant positions of f, and the corresponding
blending surface positions are illustrated in Fig. 2.3.

Moving (a, 0) further away from the origin moves the curve of tangency
S(G — a, H) further away from the intersection curve S(G, H) of the surfaces being
blended. Similarly, the curves S{(G, H) and S(G, H — b) are further apart when the
magnitude of b is enlarged. There is no simple relationship between the magnitude of,
say, a and the (mean) Euclidean distance of S(G —a, H) to S(G, H). In the case of
quadrics, Middleditch and Sears [3] give a method for the affine potential method.
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S(A S(F}
Figure 2.4. Failure to blend due to improper choice of a and b.

For certain (s, ¢)-values the space curve S(G — s, H — ) may degenerate to a point
or vanish in real three-space. Accordingly, S(F) may miss one of the surfaces or be
disconnected in real three-space, although the latter phenomenon does not happen for
intersecting quadrics. For example, consider the two cylinders G = x* +y*>— 8*=0 and
H=y%+z*—4*=0. We choose a=357 and b= —34, and blend with A=0. The
resulting surface is shown in Fig. 2.4, where the gap between the blending surface and
S(G) is approximately 0.5. The problem here is that S(H — &) does not have real
points, and so does not intersect S(G) in a space curve. In the case of blending
quadrics it is easy to avoid this situation, but little is known about it in the case of
blending higher order surfaces.

The type of conic chosen for f is determined by A. The important values and the
resulting curve shapes are summarized below and illustrated in Fig. 2.5:

= —m, a pair of lines, s =0 and ¢ =0,
—o0 < A < —ab, hyperbola,

= —ab, parabola,
—ab < A<ab, ellipse; a circle if a=56 and A =0,
A=ab, the line bs + at — ab, counted double.

Figures 2.6, 2.7 and 2.8 (see color insert) show the shape of the resulting blends for
G=y*+2z*—9and H=x*+y*~1 with a=7 and b =3. In Fig. 2.6, A is 20, just a
little under the critical value of ab at which the surface would degenerate into the
(ellipsoid) S(bG +aH —ab). In Fig. 2.7, A is 0 and in Fig. 2.8, A is —750 and
thus its magnitude is large compared to ab. The blending surface visibly begins to
approximate the other degeneracy, namely the union of the two cylinders. We see that
A controls the distribution of curvature of the cross-sections of the blend.

Only a portion of the surface S(F) is used in blending; the portion of S(F) that
corresponds to the arc of f =0 lying on the inside of the line bs +at —ab =0. This is
the part of S(F) that lies on the inside of the surface S{(bG + aH — ab), an ellipsoid in
our example. In the illustrations all blending surfaces have been clipped accordingly.

2.3. Parameter space. We have conceptualized the blending surface as swept
out by curves of intersection of two families of surfaces, controlled by a curve in
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Figure 2.5. Family of quadric parameter curves for controlling the curvature of the
blending surface.

two-dimensional parameter space. A different conceptualization is possible by con-
sidering a three-dimensional parameter space. The curve f is now replaced by a conic
cylinder. Note that this cylinder is a blending surface for the planes S(s) and S{t), as
shown in Fig. 2.9.

The Cartesian coordinate system of this parameter space is based on the three
principal planes, S(r), S(s), and S{¢), that intersect pairwise in the three coordinate
axes. Every line parallel to the plane S(r) is the intersection of the planes S(s — u) and

Figure 2.9. Three-dimensional parameter space configuration for blending two surfaces.
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§(t — v). Suppose we replace the planes S(s) and S(¢) with the curved surfaces S(G)
and S(H), where G and H are polynomials in x, y, and z. We view these surfaces as
two of three principal surfaces defining a curved coordinate system of xyz-space,
without regard to whether in this system there is a one-to-one correspondence between
coordinate values and points in Euclidean space. Then to the line S(s —u, t —v)
corresponds in general the space curve S(G —u, H—v). Moreover, if the line
S(s —u, t —v) lies on the cylinder S(f(s, )) in parameter space, then the curve
S(G —u, H — v) lies on the surface S(f(G, H)) in xyz-space.

Just as the surface S(f) is tangent to S(s) and S{¢) in parameter space, so S(F) is
tangent to S(G) and S(H) in xyz-space. Specifically, since S(f) is tangent to S(s) in the
curve S(s, t — b), so S(F) is tangent to S(G) in S(G, H — b). Likewise, §{F) is tangent
to S(H) in $(G —a, H) since S(f) is tangent to S(¢) in S(s — q, ). In parameter space,
only the portion on the inside of the plane S(bs 4+ at —ab) is of interest as blend.
Similarly, in xyz-space, only the portion inside S(bG + aH — ab) is of interest.

We have just described an equivalent blending procedure in which, by substitution
of G for s and H for ¢, the rst coordinate system is replaced by a curved coordinate
system with two of its principal surfaces being S(G) and S(H). We can think of this
process as a warping of space in which the blend S(f) is deformed into the
corresponding blend S(F). Note that this notion of deformation cannot be thought of
- as a continuous process as in, e.g., topelogy, since S(f) and S(F) may have different
genera. Nevertheless, the paradigm is useful when blending corners of solids, and may
lead to a successful procedure for blending patches of implicit algebraic surfaces. In
particular, it can be thought of as reducing the blending of algebraic surfaces to
blending planes. From now on we shall drop the sweep paradigm in favor of the
substitution paradigm.

2.4. The projective method. The affine formulation of the potential method
given above is not fully general. Consider blending a circular cylinder $(G) with a
sphere S(H), say G=x>+2z?—4 and H =x?+y*+ (z—3)>— 1. No matter how a is
chosen, the curve of tangency S(G —a, H) lies on S(G —a), a concentric cylinder.
Therefore, the oblique blend shown in Fig. 2.10 (see color insert) cannot be derived by
the affine method. It is, however, a quartic surface obtained from f by substitution,
using the projective potential method.

In the projective potential method, the intersecting families of surfaces are defined
as G—sW=0 and H—tW =0, where W is a polynomial that may be chosen
arbitrarily, but must not be the zero polynomial. Again, for degree consideration, we
will choose W to have at most degree 2 when blending quadrics. The difference
between the two methods is merely that in the affine method W is chosen as 1.

The blend of Fig. 2.10 is obtained by substituting G/W for s and H/W for ¢ in

f(r, s, £) = b%% + a’® + a®b® — 2ab?% — 2a°bt + 2Ast,

where a=b =1, A=1 and W=x*+ 2% +2y/3 — 22 + 8/9. Note that the procedure is
equivalent to substituting G for s, H for ¢, and W for w in the homogeneous form

fr, s, 4, w) =b%%+ a’ + a’6’w? — 2ab*sw — 2a%btw + 2Ast.
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Certain projective blending surfaces derived in this way are the projective transform
(see, e.g., Snyder and Sisam {7]) of affine blending surfaces for different surfaces G and
H. Every blending surface derived from f using W = U?, where U is some linear form,
is the projective transform of another blending surface derived with the affine potential
method.

3. A Uniqueness Theorem. We have outlined a method for deriving blending
surfaces which for quadric surfaces obtains degree 4 blending surfaces. It is natural to
ask how general this method is, and how it relates to other blending methods proposed
in the literature, e.g., Middleditch and Sears [3], Rockwood and Owen [4] and
Rossignac and Requicha [5]. The Uniqueness Theorem provides a comprehensive, but
not complete, answer to this question. We develop the theorem informally, since an
exact formulation requires a fair number of concepts from algebraic geometry. The
interested reader is referred to Hoffmann and Hopcroft [2] for complete details and the
proof of the theorem.

UniQuENEss THEOREM. Given two quadrics, S(G) and S(H), mark on each a
space curve by intersecting S(G)} with an auxiliary quadric surface S(H'), and by
intersecting S(H) with a second auxiliary quadric surface S(G'). All degree 4 surfaces
S(F) that are tangent to S(G) in the curve S(G, H'), and are tangent to S(H) in the
curve S(H, G') may be derived from f using the (projective)} potential method.

In the case of the affine potential method the auxiliary surfaces are given by
G'=G—a and H' =H-0b. In §4, we replace these two auxiliary surfaces with a
single, common one.

The Uniqueness Theorem has a number of hypotheses that must be satisfied.
Expressed in intuitive terms, these are:

(1) The curves S(G, H), S(G, H') and S(H, G') are not the union of algebraic
curves of lower degree and are all distinct;

(2) S(F) is not the union of algebraic surfaces of lower degree;

(3) the quadratic terms in & and H do not possess a common factor.

A thorough discussion of these hypotheses can be found in Hoffmann and Hopcroft [2].

In Middleditch and Sears [3] a blending method has been proposed that blends
two quadrics with a degree 4 surface. Because of the Uniqueness Theorem, we know
that the method is no more powerful than the potential method. In fact, it is a
formulation of the affine potential method.

In Rockwood and Owen [4} a blending method has been proposed which derives
blending surfaces as a function of G, H, and their gradient functions. For arbitrary
quadrics, blending surfaces of degree 8 are obtained, but when blending cylinders and
spheres term cancellation takes place and surfaces of degree 4 are obtained. Because of
the above theorem, those degree 4 surfaces could equally well have been derived with
the potential methed, i.e., the gradient functions are not used in an essential way for
those surfaces.

Suppose a blending method is sought that is to deliver degree 4 surfaces of
constant curvature for blending quadrics. Because the surfaces obtained by the
potential method do not possess constant curvature, the theorem states that this
project must fail. Higher algebraic degrees are needed. Note, however, that such




356 BLENDING SURFACES AND CORNERS

surfaces can be approximated in various ways, i.e., Rossignac and Requicha [5] and
Rockwood and Owen [4]. :

In Middleditch and Sears [3] a blend is shown for two axially intersecting circular
cylinders of equal radius. The blending surface shows a bulge. By the sweep paradigm
of the affine potential method, the bulge seems unavoidable. Here it is not possible to
draw conclusions from the theorem: The curve of intersection of the cylinders is
reducible to two ellipses, a violation of hypothesis (1) above. Indeed, in Warren [8] a
degree 4 blend without a bulge is given for precisely this case, consisting of the
reducible surface S(F) that is the union of two one-sheeted hyperboloids. The surface
may also be derived with the projective potential method.

4. The Projective Potential Method for Quadrics. In the projective form of the
potential method, the constants a and b no longer have the direct interpretation given
to them in § 2.2. A different approach to controlling the blending surface is needed and
is provided by the following corollary that is a consequence of the proof of the
Uniqueness Theorem:

CoroLLARY. Given two quadrics S(G) and S(H). There is a degree 4 blending
surface S(F) tangent to both S(G) and S(H) if and only if the respective curves of
tangency lic on a common quadric S(G). Moreover, every such surface is derivable
from the potential method.

What is this surface S(G)? Recall that the curves of tangency of S(f) to S(s) and
§(t) are S(s —a, t) and S(s, t — b), in parameter space. The plane through these two
lines is given by bs + at — ab = 0. Hence the surface G is just S$(bG +aH — ab}) in the
affine formulation, and S(bG +aH —abW) in the projective formulation of the
method. In § 2.2 this surface was used for clipping the unwanted parts of the blending
surface.

As it were, the constants a and b may be replaced by 1, as W assumes their role.
The projective quadric into which to substitute is then given by

fr,s, 6, wY=(s —w)*+ (¢t — w)® ~ w? + 24st.

Given the quadrics S(G) and S(H) to be blended, we pick a quadric surface S(G) such
that it intersects S{(G) and S(#) in the desired curves of tangency. We determine W
from G=G+ H — W and so obtain, by substitution into f above, the one-parameter
family of blending surfaces given by

F=uGH + G?

where p=2A-—2. Here A retains its previous interpretation as the parameter
controlling the curvature distribution.

While this procedure is satisfactory mathematically, it does pose difficulties for
automating the choice of biends, because the determination of G is not simple. More
work is needed to give this method the practicality that its flexibility deserves.

5. Comner Blending. Edges between two faces of an object end at vertices. If
one or more of the incident edges have to be smoothed by blends, then one must
terminate a blend or smoothly combine several blends meeting at the vertex. Both
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problems have received attention in the literature, but much work remains to be done.
Middleditch and Sears [3] and Rossignac and Requicha [5] can provide an entry into
this problem.

Consider the problem of combining three joining blends at a vertex. In principle, a
solution to this problem can be adapted to an arbitrary number of meeting blends,
after reducing the vertex valence to three with the help of an auxiliary surface snubbing
the vertex. Suppose we combine three blends as follows: first, blend two of them with a
new blending surface; then, blend this new blending surface with the remaining third
blend. The difficulty with this approach is that in each step the surface degree is
doubled. Hence, if the three edge blends are degree 4 each, the two additional surfaces
have degree 8 and 16, respectively. We seek alternatives which do not drive up the
degree of the combining blending surfaces.

The general approach taken to obtain low-degree corner blends first solves the
problem in parameter space with planes as primary surfaces and quadrics as their
blending surfaces. Then this solution is lifted to the vertex of the solid at hand, by
substitution. In this manner, any corner of three quadrics will be blended entirely by
degree 4 surfaces. Of course, the method is not limited to quadrics as primary surfaces.

Recall the interpretation of quadrant position of the parametric base curve, as
shown in Fig. 2.3. The blending surface is on the outside of S(G) when a >0, and on
the inside of $(G) when @ < 0. Similarly, it is on the outside of S(H) when b >0, and
on its inside when b < 0. In blending a three edge corner, we first examine on which
side of the adjacent faces the edge blending surfaces are. Two generic cases arise:

(1) For every face of the vertex, the two adjacent edge blending surfaces are
always on the same side, i.e., always on the outside or always on the inside.

(2) There is one face whose two adjacent edge blends are on the same side, and
two faces such that the adjacent edge blends are on opposite sides of the same face.
No other cases are possible at vertices with three edges.

Throughout this section, we use only the affine potential method. Additional work
is required to extend the techniques given here to the general potential method.

5.1. Adjacent blends always on the same face side. Assume that the corner is
formed by the surfaces S(G), S(H), and S(K). The generic situation is shown in Fig.
5.1. In parameter space, the three faces meeting at the vertex are modeled by the three
principal coordinate planes, $(r), S(s) and $(¢), and the vertex is represented by the
origin. In the Fig. 5.1 we have assumed that the edge blends are on the outside of
every face. If this is not so, i.¢., if the edge blends adjacent to the face S{G) are on the
inside of S(G), we simply substitute —G for r. This is equivalent to reformulating Fig.
5.1 in the second octant.

As an example, we blend the edges parametrically with circular cylinders, and
combine them at the vertex with a sphere. The respective equations are the following:

Bl: (r —1)*+(s—1¥-1=0,
B2: s—1P+(¢—1P-1=0,
B3: (t— 1+ (r—12-1=0,
Bd: r—1)’+(—-1)*+(¢-1P*-1=0.
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r=0

Figure 5.1. Parameter space configuration for vertex blending when adjacent blends are all
on the same surface side.

Clipping the unwanted parts is accomplished for each prototype blend by retaining
those parts that are on the inside of the following planes:

Cl: r+5—1=0 and 1-¢=0,
C2:5+t—1=0 and 1—-r=0,
Cl:t4+r—1=0 and 1—s5=0,
C4: r—1=0 and s-1=0 and ¢—1=0.

In order to blend three intersecting cylinders, given by G=x*+y*-1, H=
y2+22—1, and K=2z*+x*—1, we substitute G, H, and K for r, 5, and ¢
respectively, and obtain

B1: (G—1)*+(H—-1)®~1=0,
B2 (H-1+(K—-1*-1=0,
B3: (K—-1)*+(G—-1)*~1=0,
B4: (G-1P+(H -1 +(K-1)*—1=0.
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Figure 5.4. Parameters for controlling tangency position when blending vertices of valence
three.

These surfaces need to be clipped. This is accomplished just as in parameter space, by
retaining those parts which are on the inside of the following surfaces, given by:

Cl: G+H—-1=0 and 1-K=0,
C2: H+K~1=0 and 1-G=0,
C3: K+G—-1=0 and 1-H=0,
C4: G—1=0 and H—-1=0 and K~1=0.

The resulting object is shown in Fig. 5.2 (see color insert). Here, the blends B1’
through B3’ are shown in light blue, and the blend B4’ is shown in purple. All surfaces
meet C'-continuously. Since three quadrics in general intersect in eight points, the
surface B4’ has eight real components, as seen in Fig. 5.3 (see color insert). An
interesting aspect of the method is that if the edge blends B1-B3 do not intersect after
substitution, then the surface B4’ is either clipped away entirely or becomes imaginary.

What flexibility does this method offer? With the affine potential method, the
width of the three blends is controlled by six constants a, and b,, but three are now
dependent, so there remain exactly three independent constants, a, b, and c. Figure
5.4 shows the lines of tangency positioned in parameter space as a function of @, b, and
¢. Moreover, there 1s only one free parameter A controlling the curvature distribution




360 BLENDING SURFACES AND CORNERS

of all three edge blends simultaneously. The generic formulas are

B1l: b%r* + 2abArs + a’*s* — 2b%ar — 2a%bs + a®h* =0,

B2: ¢*r?+ 2acArt + a** — 2c%ar — 2a%ct + a*c* =0,

B3: ¢%?+ 2bcAst + b2 — 2c%bs — 2b%ct + b%c* =),

B4: a®b*c*(r*/a’ + s3/b%+ 2/t +2(1 + A1 —r/a —s/b — t/c))
+ 2Aabc(rsc + rbt + ast) =0

and the clipping planes are given by

Cl: br+as—ab=0 and c—t=0,
C2: crt+at—ac=0 and b-—-5=0,
Ci es+bt—bc=0 and a—r=0,
C4d: r—a=0 and s—H=0 and t—c=0.

To blend a corner with a surface having the same degree as the edge blending surfaces,
the shaping parameters must be coordinated in this way. More work is required to
study if the projective potential method offers greater flexibility and permits, for
example, to control edge blend curvature independently.

5.2. [Edge blends on opposite sides. The other case to consider is a vertex, two
of whose faces have their adjacent edge blending surfaces on opposite sides. Again, we
may have to substitute negated face equations depending on the position of the edge
blends. This will be necessary in the example below.

The generic situation is shown in Fig. 5.5. Again, the vertex is the origin. Note
that S(r) and S(s) have the adjacent blending surfaces on opposite sides. In parameter
space, we take two of the edge blends, B1 and B2, as circular cylinders of equal radius.
Since they are axially intersecting cylinders of equal radius, there is a hyperboloid of
one sheet tangent to both which may be used to join Bl and B2. In the figure the
hyperboloid is shown as B4, With a cylinder radius 1, we may take a hyperboloid
whose major axes are m=V3, n=1 and 1. Here m and n may be chosen differently,
but must satisfy m”— n® =2, so that the hyperboloid remains tangent to the cylinders.
Finally, B3 is a hyperbolic cylinder matching the hyperboloid’s cross-section in the
plane ¢t = 1. The exact equations are

Bl: (r— 12+ (t— 172 —1=0,

B2 (s—1P+(t—12—1=0,

B3: r+ 1)’ +(s+1)>—1—drs =0,

B4: 3(t— 1~ (r—1)* - (s —1)*+4(r—1)(s—1) - 3=0.

The planes in which the hyperboloid is tangent to B1 and B2 are s —2r +1=0 and
r—2s+1=0, and are used for clipping. The respective clipping equations, adjusted
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Figure 5.5. Parameter space configuration for vertex blending when not all adjacent blends
are on the same surface side.

such that the wanted portion is on the surface inside, are given by
Cl:r+:t—1=0 and s-2r+1=0,
C2:5+t—1=0 and r—2s+1=0,
C3: —r—5—1=0 and 1—¢=0 and r+s=40,
C4: 2r—5s—1=0 and 2s—r—1=0 and ¢t—-1=0

Here the third constraint on B3 is needed to remove the second branch of the
hyperbolic cylinder. As previously, we substitute for r, s and ¢ the surfaces intersecting
in the vertex, observing on which side of the face the adjacent edge blends lie.

Consider blending the cylinder configuration shown in Fig. 5.6. Here $(G) and
S(H) are two intersecting cylinders with radius V2, and S$(K) is the cylinder of radius
1, removed from the other two cylinders. Note that we blend the outside of S(X) to the
inside of both S{G) and S(H), whereas the outside of S(G) is blended to the outside of
S(H). Consequeantly, we substituted —G for r, —H for 5, and K for ¢. The result is
shown in Fig. 5.7 (see color insert). Note that all surfaces meet C'-continuously.

In parameter space, we may replace the circular cylinders B1 and B2 with elliptic
ones, but their intersection must remain a pair of intersecting conics, so that the corner
remains a quadric. The width of the third edge blend is controlled by the eccentricities
of the corner hyperboloid. This case is more awkward than the previous case since the
major axes of the hyperboloid do not lie parallel to the principal coordinate axes. As
before, general formulas can be worked out.
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S{H)

Figure 5.6. Object requiring the parameter configuration of Fig. 5.3.

6. Patched Algebraic Surfaces. The surface of an object consists, in general, of
patches of algebraic surfaces. When two patches intersect transversally at an edge, then
the blending methods outlined above apply. But suppose the two surfaces S(G) and
S(H) meet tangentially in an edge and both intersect a common third surface S(X)
transversally in another edge that we wish to smooth, as shown in Fig. 6.1.

We may blend S(G) with S(K) and separately S(H) with S(K). Even though the
curves of tangency may be correctly lined up, it is very likely that the two blending
surfaces do not meet along the seam, as shown in Fig. 6.2. Again, it is our wish to
provide solutions that do not raise the degree of the blending surfaces unnecessarily.
For instance, the situation depicted in Fig. 6.2 may be solved with one blending surface
of degree 4, the other of degree 8, but such a solution seems unsatisfactory unless we
can prove that there are no lower degree surfaces with the necessary properties.

While the general problem remains unsolved, there is a situation in which degree 4
surfaces automatically match: Assume that $(G) and S{H) intersect tangentially in an
edge e, and that both intersect a surface S(K). If there is a plane # such that the edge e
is the complete intersection of S(G) with £ and also the complete intersection of S(H)
with #, then the curves of intersection of the blending surfaces S(f(G, K)) and
S(f(H, K)) with that plane are equal.

The situation is illustrated by Fig. 6.3 (see color insert). Here the green ellipsoid,
given by G =x%/25+y*/9 +2z%/16 — 1, intersects tangentially the yellow hyperboloid,
given by H = —x?/25 + y*/9 + 2%/16 — 1. Both surfaces, in turn, transversally intersect
a cylinder given by K =x*+ y*— 1 and shown in red. Both transversal intersections are
blended with the same parametric cylinder f(r, s, £) = (s — 4)>+ 4(t — 1)>—4=0. The
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Figure 6.1. Patches of algebraic surfaces.

Figure 6.2. Blend discontinuity for patches of algebraic surfaces.
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resulting (light blue) blending surface S(f(G, K)) matches the (purple) blend
S(f(H, K)) C'-continuously.

7. Dimensionality of Parameter Space. In our approach to low degree blending
surface derivation, we have derived the actual blends from simple blends to planar
surfaces in three-dimensional parameter space. Essentially we have advocated reducing
the problem of blending algebraic surfaces to the problem of blending planar surfaces.
This works quite well, since the deformation effected by substitution for the principal
coordinate surfaces usually is not too drastic. That is, the surfaces G ~5 =0 are usually
very similar in shape to the surface S(G).

In all cases considered here, the parameter space has at most three dimensions.
This seems artificial, and we believe that the investigation of parameter space
configurations of higher dimensionality can lead to better ways to blend complex
corners than reducing vertex valence to three. It may also help to localize the shape
control of edge blends at a vertex.

Blending algebraic patches is a more difficult matter. The major problem is that
when two patches S(G) and S(H) are C'-continuous along an edge, there is no
guarantee that the surface families G —s =0 and H — ¢ =0 are related in a deep way.
It is possible that an approach working in higher-dimensional parameter space can
provide results, or that the projective method yields the necessary tools.

Sederberg [6] works with implicit surfaces that possess rational parameterizations.
This approach is interesting since it aims at a spatially intuitive procedure for deriving
and placing free form surfaces. In fact, some of our blending surfaces are known to
possess rational parameterization. For instance, the Steiner surface advocated by
Sederberg is also a blending surface. Consider, for example, the Steiner surface
x%y? + y’z% + z°x* — 2xyz = 0. Since its eguation may be written as

& +y* = 1)(2%) + (xy — 2)* =0,

it is a blending surface where the quadrics blended are the cylinder x* + y*— 1 =0 and
the double plane z2=0. The common quadric defining the curve of intersection is
xy —z =0, a hyperbolic paraboloid. The exact relationship between the class of all
quartics having a rational parametenization on the one hand, and the degree 4 blending
surfaces for two quadrics on the other, is not understood at this time.
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