
GEOMETRIC CONSTRAINT SOLVING IN <2 AND <3CHRISTOPH M. HOFFMANNDepartment of Computer Sciences, Purdue UniversityWest Lafayette, Indiana 47907-1398, USAandPAMELA J. VERMEERDepartment of Computer Sciences, Washington and Lee UniversityLexington, Virginia 24450, USAABSTRACTGeometric constraint solving has applications in a wide variety of �elds, such asmechanical engineering, chemical molecular conformation, geometric theorem prov-ing, and surveying. The problem consists of a given set of geometric elementsand a description of geometric constraints between the elements. The goal is to�nd all placements of the geometric entities which satisfy the given constraints. Intwo-dimensions, several di�erent approaches have been examined and implemented,while the three-dimensional problem has been much less explored in previous litera-ture. In light of the diverse applicability of the problem, we have three objectives inthis paper. First, we provide a brief overview of the basic approaches to geometricconstraint solving. Second, we review a speci�c solution to constraint solving fortwo-dimensional geometric problems. Finally, we present developing work in extend-ing the solution technique for the two-dimensional problem to geometric constraintsolving for elements in three-space.1. IntroductionGeometric constraint solving is a problem with applications in many arenas,such as mechanical engineering, chemical molecular modeling, and surveying. Ineach of these communities the problem has been approached in a variety of waysand with di�ering levels of success. The problem consists of a given set of geometricelements and a description of geometric constraints between the elements. The goalis to �nd all placements of the geometric entities which satisfy the given constraints.For example, the set of elements might be a set of three lines, with the constraintsthat the �rst two lines must be perpendicular and the third must make a speci�edangle with the �rst line. This particular problem has in�nitely many solutions, andan additional constraint such as the length of one segment between the intersectionsof two pairs of lines would tie down a particular solution.A problem is well-constrained if there are a �nite number of solutions to theproblem, while a problemwith an in�nite number of solutions is underconstrained. Aproblem is overconstrained if one constraint can be deleted yet the constraint system



still has a �nite number of solutions. In the example of the three lines, if the anglethat the third line must make with the second line were given as another constraint,the problem would be overconstrained, since that angle is already determined bythe �rst two angle constraints. An overconstrained problem may have a solutionwhen the additional constraints are consistent with previous constraints, but oftenoverconstrained problems have no solution.One application for geometric constraint solving is in the area of ComputerAided Engineering, particularly in the branch of mechanical engineering design. Amethod for designing an object with the computer should be strongly visual in orderto provide an intuitive interface, but must also provide a way to produce a careful,detailed description. One approach for reaching these two disparate goals is to applygeometric constraint solving to the problem of geometric data input. Through agraphical user interface, the user can sketch a rough outline of the object to beconstructed. By adding constraints such as the length of an edge of the object orthe angle between two edges, a precise description of the object is obtained. Such asystem has been designed and implemented with points, lines, and circular arcs inthe plane as allowable geometric entities, and constraints such as an angle betweenentities, distance from one entity to another, incidence, and tangency (in the case ofcircular arcs)4. The object obtained as the solution to the constraint problem canthen be swept or rotated to obtain a three-dimensional object. Additional featurescan be added by sketching on a two-dimensional plane of the resulting object, andextruding the sketched region, or cutting a slot or hole in that shape through theobject.As an example of this application, consider Figures 1, 2, and 3, which demon-strates the design of a control arm. These �gures were generated using the feature-based modeling system of Chen11, which interfaces with the two-dimensional con-straint solver of Fudos5 for its geometric input. Figure 1 on the left shows a pro�lewhich has been sketched, dimensioned, and solved by the constraint solver. Oncethe user is satis�ed with the pro�le, it is extruded, generating the solid on the rightof the �gure. To add another feature to the model, a plane of the current solidis selected in which to sketch and dimension the new feature. Here, the top facehas been selected as the reference face, and the pro�le of a new feature sketched,dimensioned, and solved, as shown on the left of Figure 2. This new pro�le is thenextruded, yielding the solid shown on the right of the �gure. Several other features,are added in similar fashion, and the �nal control arm is displayed in wire frameand shaded in Figure 3.A second application area for geometric constraint solving is in geometrictheorem proving. Often the assumptions and conclusions of such theorems can beexpressed in terms of constraints between the geometric elements under considera-tion. Solving the constraint system entails that the relationships are possible, henceconstitutes a proof of the theorem. An example of this application can be found inChapter 7 of Ho�mann7.Yet another application of geometric constraint solving is in molecular con-formation in chemistry and biology. This entails positioning atoms, represented by



Figure 1: A two-dimensional constraint problem is solved and extruded to obtain a three-dimensional object. Not shown are the tangency constraints between the line segments and thearcs.
Figure 2: A feature is added using the pro�le sketcher and a further extrusion. An additionalconstraint not shown in the diagram is that the two arcs on the right are concentric.

Figure 3: Final control arm
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αFigure 4: A well-constrained sketch for a generic solverpoints in three-space, so that they satisfy certain distance relationships. Clearly,this involves solving a three-dimensional geometric constraint problem.As these examples of applications demonstrate, there is a wide variety ofuses for geometric constraint solving in two and three dimensions. In light of thediverse applicability of the problem, we have three objectives in this paper. First,we provide a brief overview of the basic approaches to geometric constraint solv-ing. Second, we review a speci�c solution to constraint solving for two-dimensionalgeometric problems. Finally, we present developing work in extending the solu-tion technique for the two-dimensional problem to geometric constraint solving forelements in three-space.2. Basic Approaches to Constraint SolvingBeginning with a set of geometric elements and certain constraints betweenthe elements, there are two basic strategies for solving the problem. The �rst,an instance solver, immediately uses the explicit values of the given constraints todetermine the possible geometric con�gurations which satisfy the constraints. Thesecond, a generic solver, determines whether the given geometric elements can beplaced using the given constraints, independent of the values which are assignedto the constraints. That is, the constraints have a symbolic rather than numericalvalue. The determination of speci�c placement of the geometric elements in ageneric solver takes place only after a decision has been made about whether or notthe problem is generically well-constrained.As an example of the two di�erent approaches, consider the sketch of Fig-ure 4. Here the constraints are given symbolically, rather than with actual values.A generic solver would be able to report that the con�guration is well-constrained,and would be able to determine a method for constructing the possible con�gu-rations without needing the actual values of the constraints. An instance solverrequires that the values of the constraints be given before it makes any solution de-termination. Generic solvers are often more elegant and more e�cient than instancesolvers. They also allow more exibility in the choice of the underlying method ap-plied to determine the actual positions of the geometric elements. However, genericsolvers usually are not able to handle the case of overconstrained but consistent
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Figure 5: A well-constrained sketch may yield fundamentally di�erent solutions.systems, while most instance solvers can �nd the solution. In the example above,a generic solver may be able to determine that there is a solution, yet may not beable to construct it, in the special case that the values of the constraints force thecon�guration to be an (overconstrained) triangle.An underlying principle fundamental to most constraint solvers is the factthat the position of the geometric elements can be expressed as (nonlinear) algebraicequations, with the constraints as parameters in the equations. This means thata well-constrained pro�le may have an exponential number of distinct solutions,dependent on the number of geometric elements. For example, Figure 5 showsthree possible solutions of a well-constrained pro�le that di�er in the interpretationof the function of the arc, the tangency type, and the right angle constraint betweentwo segments. From the user's perspective, only one solution will be correct.Constraint solvers select what they consider the intended solution by deduc-ing certain topological and metric properties from the user's sketch of the pro�le.The deductions are based on a few heuristic rules that succeed under normal cir-cumstances with high probability. These rules are appropriate when the user sketchis, in a technical sense, \close" to the intended solution. This may or may not bethe case, and is often not the case when the dimensional constraints of a pro�le arechanged in value, a common occurrence in redesign.Surprisingly, most solvers have almost no provisions that would allow theuser to select a di�erent solution if the solver's heuristics fail. Developing e�ectiveparadigms for redirecting a solver interactively is an important problem, and isaddressed in papers by Ho�mann and Fudos4;5.In the following sections, we consider four di�erent methods for constraintsolving, with special emphasis on the graph-based method, the approach we take inour solver, and which we describe in greater detail in Section 3.2.1. Numerical Algebraic ComputationNumerical constraint solvers function by �rst translating the constraints intoa system of algebraic equations. This system is then solved using an iterative



technique such as the Newton-Raphson method. Clearly, numerical methods are anexample of instance solvers. A positive feature of this approach is that it is ableto handle overconstrained but consistent problems which other techniques may notbe able to solve, assuming convergence. Moreover, the solvers are very general.For this reason, many constraint solvers fall back on iterative techniques when thenative method is not su�cient to solve a given con�guration.However, there are some serious drawbacks with the numerical approach.First is the problem that of the potentially exponential number of solutions, iterativemethods can produce only a single solution. Also, the solution to which it convergesdepends strongly on the initial con�guration. Furthermore, because of the multiplesolutions and the large number of parameters, the constraint solving problem isoften ill-conditioned, making convergence di�cult or impossible.2.2. Symbolic Algebraic ComputationOnce again, the constraints are formulated as a system of algebraic equa-tions. However, instead of applying numerical techniques to determine a solution,general symbolic computations are undertaken to �nd the solution to the system ofequations. Methods such as Gr�obner basis3 or Wu-Ritt10 techniques can be appliedto �nd symbolic expressions for the solutions. This approach is an instance solverif numerical coe�cients are used in the system of equations. However, if the systemcan be solved with symbolic coe�cients, a generic solution to the constraint systemis found. The generic solution can be evaluated with speci�c constraint values to�nd the actual physical con�gurations possible for the given constraint problem.One potential problem with this method is that certain equations in the ba-sis may be algebraically dependent on one another when evaluated with speci�cconstraints values. Thus at the generic solver level, the solver may determine thata solution exists, yet it will not be able to �nd any of the speci�c con�gurationssatisfying the constraints. A further handicap of this method is that solving sym-bolic systems of equations can be extremely compute-intensive. For this reason,restrictions are often placed on the types of geometric entities allowed, as well asthe types of constraints between them which may be speci�ed.2.3. Logical Inference and Term RewritingThis approach applies general logical reasoning techniques to the geometricproblem of constraint solving. This approach has been taken by Aldefeld1 andBruderlin2, among others. As an example of this method, consider the systemdescribed by Bruderlin. Geometric entities are restricted to points, lines, vectors,and triangles, and the constraints allowed are distances between points, anglesbetween lines, or two angles of a triangle. These geometries and constraints areincorporated into a set of predicates for the system. A set of allowable congruencerelationships for the geometries used are established, and then rules of Euclideangeometry for ruler and compass constructions are applied. These rules are set up
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dFigure 6: A set of geometric elements with constraints, and the corresponding constraint graph;d denotes a distance constraint.in Prolog, and Prolog rewrite-rules are used to solve the system. The result is aconstruction technique for solving the input constraint system. All possible physicalsolutions can be found using the Prolog backtracking mechanism.While this approach has the potential to be a generic solver, as implementedthe system of Bruderlin is an instance solver, since the predicates and rules use theactual constraint values throughout the deductive process. The major advantageof this method is that it avoids translation of the system into complex algebraicequations. The limitations are that only constructive geometries can be handled,and that the method is not very e�cient for large systems of constraints. Thesedisadvantages are common among this type of solver, and hence they are not oftenapplied in commercial constraint solvers.2.4. Graph-based Construction SequencesGraph-based algorithms for solving geometric constraint problems have twophases, the �rst an analysis phase and the second a construction phase. The graph-based approach begins by �rst constructing a graph representation of the problem.Each node in the graph represents a single geometric element, so that a line segmenta of length d delimited by two points A and B would have three nodes. An edgebetween two geometric entities indicates a constraint between the elements. Thetype of constraint is indicated by a label on the edge. This simple example is shownin Figure 6, where edges which assert incidence are unlabeled in the graph.Once a constraint graph has been obtained from the given geometric entitiesand the constraints, the graph is analyzed to determine whether the problem is well-constrained. If the graph is well-constrained, this phase also determines a sequenceof steps for solving the problem. The second phase of the graph method takes theconstruction sequence determined from the �rst phase and performs the necessaryconstruction steps to actually place the geometric elements. Since the �rst phasedoes not depend on the values of the constraint but only on the number and type ofconstraints between the geometric elements, this is a generic method of constraintsolving. The actual values of the constraints only come into play in the secondphase when the construction steps are carried out.There are a variety of ways to handle the analysis phase of the graph-basedmethod.12;13 One approach is to look for a sequence of construction steps such thatthe next construction step depends only on previously placed elements. Not all



con�gurations can be handled in this way, however. A di�erent approach looksfor collections of geometric elements whose members can be placed with respect toone another based on constraints between them. These collections are then placedrelative to one another, thus forming new, larger collections of elements, until allconstraints have been processed and the locations of all the elements are known.The approach to constraint solving which we have implemented in two dimen-sions, and which we are developing in three dimensions, is a graph-based techniquewhich uses the recursive analysis phase just sketched. In the next section we providemore details of our two-dimensional constraint solver, as a basis for our discussionof the extension of the method to three-dimensional constraint solving.3. Two-Dimensional Constraint SolvingOur approach to geometric constraint solving is a recursive analysis, graph-based method. This approach is favored for two reasons. First, it allows determina-tion of whether the problem is well-constrained or not in quadratic timein the worstcase. Second, it decouples the constraint solving problem into groups of smaller sys-tems of equations which can be solved independently and then merged, rather thanframing the problem as a single, large algebraic system to be solved.In this section, we provide more in-depth explanation of the method as im-plemented for the two-dimensional problem, upon which our extension to the three-dimensional problem is based, by summarizing recent work of Bouma, Cai, Fudos,Paige and Ho�mann. Complete details about the two-dimensional constraint solverand references to further works can be found in.4;53.1. Geometric Entities ConsideredThe geometric elements considered in the two-dimensional constraint solverare points, lines and circles of �xed radius. A point is represented by two coordinates(px; py). A line is represented by a signed, unit normal and the distance of the linefrom the origin, (nx; ny; d). Equationally, the line can be represented as the set ofpoints (x; y) satisfying nxx+nyy�d = 0 and n2x+n2y = 1. A circle is represented byits center (cx; cy) and its radius cr. For simpli�cation purposes, we require that theradius of a circle be �xed, that is, the radius cannot be varied to satisfy constraints.The constraints between these geometric entities are incidence of two entities,distance between two points, distance between a point and a line, distance betweentwo parallel lines, angle between two lines, tangency between a circle and a line,and concentricity of circles. However, because the circles are restricted to having�xed radius, they can be treated as points by transforming the constraints in whichthey are involved into distance and incidence constraints of their center points only.In fact, all constraints can be transformed into distance and angle constraints only,which greatly simpli�es the placement problem.Since the problem is reduced to placing points and lines, any geometric el-ement is �xed (up to �nitely many positions) by knowing its relationship to two
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23Figure 7: A well-constrained sketch and its constraint graphother previously �xed objects. This fact plays an important role in the analysisphase of the algorithm, which we describe in the next section.3.2. Initial Cluster FormationThe �rst phase of the graph-based method for constraint solving involvesanalysis of the constraint graph. This analysis determines if the problem is gener-ically well-constrained or not, and it determines a sequence of steps for placingthe geometric elements if the problem is well-constrained. The basic idea, as de-scribed above, is to build up collections, or clusters of geometric elements whichcan be placed relative to one another, and then to merge these clusters into largercollections using rigid body transformations.Cluster formation begins by selecting any two nodes of the graph which areconnected by a constraint edge. These two entities can be placed in some genericposition, depending on the type of geometries and the type of constraint betweenthem. These two entities are then considered known. The cluster is then made aslarge as possible by adding to the cluster any node which is connected by a constraintedge to exactly two nodes already in the cluster. There must be at least two knownnodes to which the unknown node is related because each of the geometric elementshas two degrees of freedom. There cannot be more than two, because otherwise theproblem is overconstrained.When no more nodes in the graph can be added to the cluster, the clusteris considered complete. All constraint edges used in forming the cluster are deletedfrom original graph, and a search for a new cluster is carried out in the subgraph.This process continues until there are no more constraints from which to make anyclusters.For example, consider the sketch on the left in Figure 7. Its constraint graphis shown on the right of the �gure, where incidence is shown by unlabeled edges.If we start the �rst cluster with p1 and l1, we can add p2 to the cluster, and thencan go no further, since no other node in the graph is connected to two nodes of
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Figure 8: The constraint graph forms three clusters.the cluster. We delete the three constraint edges used to form this cluster, and lookfor a new cluster, perhaps beginning this time with p2 and l2. To this new clusterwe can add p3, and subsequently l3, since it is connected to l2 and p3. This clusteris now complete. We begin our third cluster with p4 and l3, and add l4, p5, andp1, in that order. All constraint edges have now been used, so cluster formation iscomplete. The constraint graph is shown again in Figure 8, with the three clustersindicated.Note that clusters may have nodes in common; in fact, that property isessential for the next step of the analysis phase. In order for the problem to bewell-constrained, the clusters must be able to be merged together in some way sothat a single structure results. Geometrically, this amounts to using rigid bodytransformations to bring the clusters into correct relationship with respect to oneanother.Three clusters, each of which share exactly one node with each of the othertwo clusters, can be brought into alignment with one another using the sharedelements. In our example, the points p1 and p2 and the line l3 are shared in thisway between the clusters. We can compute the distance from p1 to l3 within clusterV and the distance from p2 to l3 within cluster W . The distance between p1 andp2 is already known, so these three elements can be placed relative to one another,thus merging the three clusters into one larger cluster. If other clusters have twoelements in common with the new cluster, they can be merged into it as well. Whenthe merged cluster can be grown no longer, the clusters are searched for another setof three clusters which can be merged.This process continues until all the clusters have been merged into a singlecluster, or until no more clusters can be merged. If there is a single cluster at theend of the merging stage, the problem is well-constrained. In that case, the stepsfor constructing the con�guration are detailed by the order of the cluster formation.



If multiple clusters are obtained, then the algorithm cannot solve the con-straint problem. In that case, the problem may be well-constrained but requirescoonstruction steps the algorithm cannot perform, or the problem is not well-constrained. A complete theoretical characterization of generically well-constrainedpoint sets with distance constraints exists.14 It leads to a nondeterministic algo-rithm, and no variant is known that achieves e�cient running times. Consequently,e�cient constraint solving algorithms require restricting the class of constraint prob-lems. An important point about the cluster formation process is that it is notunique. Any two nodes with a constraint between them can be chosen to begin acluster, and if more than one node could be added to a cluster at a given step, anyof them can be selected and added. However, for a well-constrained problem, it hasbeen shown that no matter what clusters are formed, the �nal geometric solutionsdetermined by the order of construction from the clusters are congruent6.The cluster formation phase of the solution does not do any actual placementof geometric elements. Rather, its function is to analyze the structure of the rela-tionships between the geometric elements based on the constraints between them.The placement of the elements itself is done in the second phase of the solution. Inthe next section, we describe geometrically how to �nd the position of an unknowngeometric element, given its relationship to two known elements.3.3. Basic Construction StepsThe placement of one geometric element relative to two others is accom-plished by solving small systems of algebraic equations. Because of the restrictionon geometries and constraints, these equations have degree at most two. We usethe following notation throughout the discussion. The Euclidean distance norm ofa vector v = (vx; vy) is denoted k v k= qv2x + v2y . Let p1 and p2 be two points andl1(n1; r1) and l2(n2; r2) be two lines, where ni is the unit normal of li, and ri is thesigned distance from li to the origin. We then can write algebraic equations for thegeometric constraints between two entities in the following manner:� The distance between the two points p1 and p2 is d12:k p1 � p2 k= d12� The signed distance between the point p1 and the line l2 is d12:p1 � n2 = r2 + d12� The signed angle between the two lines l1 and l2 is �12:n2 = (nx cos�12 � ny sin�12; ny cos�12 + nx sin�12)where n1 = (nx; ny)



The sign of the distance and angle measures are determined from the way inwhich the user inputs the data. For example, a line segment has an orientation inthe direction from the �rst end point to the second. When a point is input and adistance to the line segment assigned as a constraint, the sign is determined fromthe side of the line on which the point is initially placed by the user. Again forangle constraints, the orientations of the two line segments are used to determinewhich region between the segments should be a�ected by the constraint. Havingthis algebraic understanding of the geometry of the constraints allows us to evaluatethe following cases:Case 1 : (p1; p2)) p3The point p3 is to be constructed from two given points p1 and p2, where pihas distance di3 from p3. The coordinates of point p3 must satisfy two quadraticequations arising from the two distance constraints. Geometrically this correspondsto intersecting two circles, one centered at p1 of radius d13, the other centered atp2 with radius d23, as shown in Figure 9. The circles either intersect transversally,resulting in two solutions, tangentially, resulting in one solution, or not at all,resulting in no real solutions. In the �gure, a situation with two solutions is shown,with both possible solutions labeled p3. Notice that we can assume point p1 is atthe origin and that p2 lies on the positive x-axis a distance d12 from p1, since anyother valid con�guration could be obtained as a rigid motion of this con�guration.Case 2 : (p1; l2)) p3The point p3 is to be constructed from the given point p1 and the given linel2, where p3 has distance d13 from p1 and signed distance d23 from l2. Without lossof generality, assume that l2 coincides with the x-axis and that p1 lies distance d12from the origin along the positive y-axis, as shown in Figure 10. Then the point p3must lie on a circle centered at p1 of radius d13 and must lie on a line parallel to l2and distance d23 away from l2. Since the distance between p3 and l2 is signed, thereis exactly one line satisfying these conditions. The intersection of the circle and theline provide the possible locations for p3. As before, there can be two, one, or nosolutions depending on the type of intersection. Algebraically, the coordinates of p3can be found by solving a pair of equations, one of which is linear and one of whichis quadratic.Case 3 : (l1; l2)) p3The point p3 is to be constructed from the given lines l1 and l2, where p3 hassigned distance di3 from li. Assume that l1 coincides with the x-axis and that theangle between l1 and l2 is �12, as shown in Figure 11. Since the distances between p3and the lines are signed, p3 must be the intersection of two lines, one o�set parallelto l1 by d13 and the other o�set parallel to l2 by d23. If we ignore the case of parallellines, there is exactly one solution in this case. Algebraically, this is equivalent tosolving a pair of linear equations in the coordinates of p3.Case 4 : (p1; p2)) l3
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iFigure 12: A graph transformation in this case would limit the solutions to the problem.Case 5 : (p1; l2)) l3These two cases are identical to cases 2 and 3, respectively, since pairwiseconstraints exist between all three entities. We can therefore easily transform thesecases to the previous cases by changing the roles of the geometric entities from �xedto un�xed, and vice versa, as necessary.Case 6 : (l1; l2)) l3In this case, the angle between each pair of lines must be given as con-straints. Since the three lines must de�ne a triangle, the three angles will be eitherconsistent, and determine an in�nite family of triangles, or redundant, and have nosolutions. We consider this case to be overconstrained because the constraints arenot independent.3.4. Graph TransformationsWhat we have presented above are the basic elements of a two-dimensionalconstraint solver. There are many extensions possible, some of which we have al-ready considered, and others which remain to be explored. One extension which hasproved useful is graph transformations which may increase the constraint informa-tion available, thus allowing alternative clusters, possibly with easier constructions.For example, if two angle constraints � and � are given between three lines, a thirdangle constraint of 180����� can be imposed between the pair of lines not involvedtogether in the �rst two constraints.Graph transformations must be applied judiciously, however, as some trans-formations may limit the generality of the solution. Consider the example from5shown in Figure 12. If the incidences shown are required, and in addition point A isconstrained to lie on line a, and point C on line c, the constraint graph is as shownon the right in the �gure. This implies that either a and c are coincident, or Aand C are. However, adding either of these incidence relationships to the constraintgraph would eliminate the other possibility, and therewith some of the solutions tothe original problem.4. Three-Dimensional Constraint SolvingOur basic approach to constraint solving in three-dimensional space is analo-gous to that of constraint solving in two-dimensional space. We begin by construct-



ing a graph which speci�es the entire constraint system, with the nodes representingthe geometric elements and an edge between two nodes describing a constraint be-tween the two geometric entities. Based on the information encoded in the graph,the geometric elements are grouped into clusters which are placements of a subsetof the elements relative to one another. As we shall see below, forming a clusterin the three-dimensional case requires as a starting con�guration three geometricentities which are mutually constrained. Thus it is possible that not all constraintsand geometric elements are used in the cluster formation stage. These remainingnodes and edges form degenerate clusters. The clusters and degenerate clusters arethen combined using a recursive technique, resulting in a valid placement for all thegeometric elements. As before, there are in general multiple solutions to a givenwell-constrained problem.4.1. Geometric Entities ConsideredIn two-dimensional constraint solving, the geometric entities which were con-sidered were points, lines, and circles of �xed radius. All three of these types ofelements need two constraints to be completely �xed. This property is fundamen-tal to the cluster formation and combination method used in the two-dimensionalcase. The obvious generalization of geometric entities for three-dimensional con-straint solving would be points, lines, planes, and spheres. Note, however, thatpoints, planes, and spheres of �xed radius all require exactly three constraints tobe placed, while lines require four constraints. In order to keep the constructionof clusters as simple as possible, we do not consider lines at this time, and we fur-ther simplify matters by eliminating spheres from our current consideration. Thusthe geometric entities which are allowed are points and planes. A point is repre-sented by its Cartesian coordinates, p : (px; py; pz). A plane P is represented bythe direction cosines of the unit normal and the signed distance from the origin,P : (nx; ny; nz; d), where n2x + n2y + n2z = 1. The constraints allowed are distancebetween two points, distance between a point and a plane, and angle between twoplanes. Note that �xed-radius spheres can be used nevertheless as geometric prim-itives because constraints on them can be translated into equivalent constraints ontheir centers.4.2. Initial Cluster FormationThe �rst step of the construction is to form clusters of geometric elementswhich are placed with respect to one another. Because each geometric element hasthree degrees of freedom, placing a new element requires that it be constrained bythree known elements. Thus to begin a cluster, a set of three pairwise constrainednodes is necessary. These three geometric elements are placed into a standardposition and the resulting con�guration is �xed up to a rigid motion in space.Subsequently, a node is added to the cluster if it is incident to three nodes alreadyin the cluster.
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2Figure 13: A three-dimensional �gure and its constraint graph.When there are no further nodes to be added to the cluster, the edges belong-ing to the cluster, i.e. the constraints between nodes in the cluster, are deleted fromthe original graph. Cluster formation is then applied recursively to this subgraph.That is, the subgraph is searched for three nodes which are pairwise constrainedto start a new cluster, the cluster is grown as far as possible, and then the edgesof the cluster are deleted from the subgraph, resulting in a smaller subgraph. Thisprocess of forming a cluster and subsequently deleting the cluster's edges from theremaining constraint graph is carried out as long as possible. Because the origina-tion of a cluster requires three pairwise constrained elements, there may eventuallybe unused constraints in the remaining subgraph, yet no new cluster can be started.When this point is reached, any remaining constraint and its two incident nodesforms a degenerate cluster.For example, consider the problem of placing the six vertices of the three-dimensional object shown on the left in Figure 13, if the lengths of the edges betweenthe vertices are the constraints. We begin the �rst cluster using nodes r, s, and t.No other node of the graph is incident to three elements of this cluster, so cluster 1is completed. Its edges are labeled 1 in the constraint graph shown on the right inFigure 13, and displayed in dotted line. We then form a second cluster with nodesu, v, and w. Again, this is a complete cluster, labeled 2 in the �gure. Now none ofthe remaining constraints are part of an initial cluster, so they must each producea degenerate cluster, labeled 3, 4, and 5 in the �gure, and displayed in dashed line.Thus cluster formation is completed with two full clusters and three degenerateclusters.In order to build these clusters, we need to be able to place a geometricelement from three known elements. In the next section, we present a case-by-caseanalysis of how these placements are executed. Then, with clusters formed, the �nalcon�guration will be determined by recursively merging the clusters. The issues andtechniques involved in that process are detailed in Section 4.4.Throughout this section, points are denoted pi and planes Pi(ni; ri), or Pi forshort, where ni is the unit normal of Pi, and ri is the signed distance from Pi tothe origin. We assume throughout that distances between points are non-zero. The
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G 2Figure 14: Cluster growth entails a tetrahedral structure in the constraint graph.distance between a point and a plane, however, may be zero, meaning the point lieson the plane.4.3. Basic Construction StepsAs discussed in the previous section, the three degrees of freedom of thepoints and planes under consideration means that the placement of a new pointor plane can be made relative to three already placed points and planes. Thestructure of a region of the constraint graph containing an element which is beingadded to a cluster is tetrahedral, for the original three elements must be pairwiseconstrained, forming the base of the tetrahedron, and the new element must havea constraint edge between itself and each of the �rst three nodes, forming the apexof the tetrahedron. This subgraph structure is shown in Figure 14, where eachgeometric element Gi, i = 1; :::; 4 is either a point or a plane. Because of thesymmetry of the tetrahedron, any three elements can be selected as the base, orknown elements, and the remaining apex then is considered to be the unknownelement. This allows exibility in choosing the easiest method for placing the nextelement and reduces the number of placement problems which must be considered.This interchangability of known and unknown elements may be possible di-rectly only in the early stages of forming a cluster. For example, consider thefollowing construction: The beginning of the cluster is a triangle with elements(G1; G2; G3), to which the an additional vertex is added to form a tetrahedron(G1; G2; G3; G4). Three more elements G5, G6, and G7 are added as three tetrahe-drons whose bases are faces of the original tetrahedron. Then a new element G8could be added to the cluster by having constraints between G8 and each of G5, G6,and G7. However, there need be no direct relationship given between elements G5,G6, and G7, so that a choice of which triple of elements to begin with for addingG8 is not possible. This problem can be overcome by using the information im-plicit in the cluster formed so far to determine the relationships between G5, G6,and G7. For example, if these three elements were points, the pairwise distancesbetween them could be computed from within the cluster. Subsequently, addingG8 could be handled by choosing any three elements of the G5, G6, G7, and G8
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P3Figure 15: There are two generic con�gurations for two points and one plane.as the known elements and placing the remaining element with respect to the cho-sen three. The tetrahedron constructed then must be brought into line with thepreviously constructed component of the cluster via a rigid body transformation.Just as in the procedure of placement of geometric entities in the two-dimensional case, the generic positioning of the initial elements depends on theorientation of the geometric elements determined from the user input. The mea-surement of a signed distance from a plane is made in the direction of the planenormal if the sign is positive, and in the opposite direction if it is negative. Theregion of measure of an angle is determined by the mutual orientation of the twoplanes in the region. By incorporating this orientation information, a generic initialposition is determined from each three element con�guration.For three points p1, p2, and p3 with pairwise distance constraint dij betweenpi and pj, i < j, no choice of generic position is necessary, since only a single genericposition exists. We place p1 at the origin, p2 distance d12 along the positive x-axis,and p3 at either intersection point of the xy-plane and the spheres centered at p1and p2 with radii d13 and d23, respectively. This is essentially the point placementroutine for two-dimensions when two points are known, but because we are in <3,the two solutions of <2 are equivalent up to a rigid body motion.For two points p1 and p2, and a plane P3 with pairwise distance constraint dijbetween entities i and j, i < j, two generic positions exist. The plane can be placedas the xy-plane and p1 at (0; 0; d13). The second point is then placed at (l; 0; d23),where l = qd212 � (d13 � d23)2. The sign of d23 will determine whether p1 and p2 lieon the same side of P3 or on opposite sides.Geometrically, the distance constraint between the plane and the two pointsimplies that the plane must be tangent to the spheres centered at p1 and p2 withradii d13 and d23, respectively. The envelope of all such planes consists of two cones.The normals to the cones are the possible normals to the desired plane. If the pointsare input oriented oppositely with respect to the plane, the generic position is givenby a plane tangent to the cone which crosses between the two spheres. If the pointsare input oriented the same with respect to the plane, the generic position is givenby a plane tangent to the cone exterior to the two spheres. In Figure 15 a projection
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Figure 17: Degenerate cases for placing a point relative to three known points.n3 = (n31; n32; n33). Then n3 must satisfyn33 = cos�13n31n21 + n33n23 = cos�23n231 + n232 + n233 = 1Since n33 and n31 are completely determined by the �rst two equations, there aretwo di�erent values fo n32 from the third equation corresponding to the two di�erentorientations of P3.We now assume that three known elements have been put into the singlepossible generic position, based on their signed constraints. Based on these genericpositions, we can now proceed to place a fourth element with respect to three knownelements.Case 1 : (p1; p2; p3)) p4The point p4 is to be constructed from three given points p1, p2 and p3, wherepk has distance dk4 from p4. The coordinates of point p4 must satisfy three quadraticequations arising from the distance constraints. Geometrically this corresponds tointersecting three spheres. The intersection of two spheres is a circle, and is equalto the intersection of a sphere with a certain plane. If the two spheres have theequations (x� u1)2 + (y � v1)2 + (z � w1)2 = d214(x� u2)2 + (y � v2)2 + (z � w2)2 = d224then this plane is2(u2 � u1)x+ 2(v2 � v1)y + 2(w2 �w1)z + U = d224 � d214where U = u21 + v21 + w21 � u22 � v22 � w22. Thus, we can intersect two planes and asphere instead. There will be two solutions in general.The degenerate situations in this case are shown in Figure 17. On the leftof the �gure is a projection of the case where the three points are collinear. In thiscase two of the spheres determine a circle on which p4 must lie, and the third sphereis either redundant or inconsistent. Thus this case either is overconstrained or hasno solutions. In the �gure is shown a case where there is no solution.



The other degenerate situation, shown in projection on the right in Figure 17,occurs when two of the spheres are tangent. In this case again the third sphere iseither redundant or inconsistent. Shown is the case where it is redundant. Note thatboth degenerate cases can occur simultaneously as well, that is, the three points arecollinear and two spheres, or possibly all three, are tangent to each other.Case 2 : (p1; p2; P3)) p4The point p4 is to be constructed from two given points p1 and p2, and fromthe given plane P3, at respective distances dk4 from entity k. The coordinates ofpoint p4 must satisfy one linear and two quadratic equations which geometricallycorresponds to intersecting two spheres and a plane. Note that the plane is thelocus of points at signed distance d34 from P3. As before we intersect instead twoplanes and a sphere, obtaining two solutions in general.There is only one degenerate case: If the two spheres meet tangentially, thenas in Case 1 above, the problem is either overconstrained with a single solution, orthere is no solution because the constraints are inconsistent.Case 3 : (p1; P2; P3)) p4The point p4 is to be constructed from a given point p1, and from two givenplanes P2 and P3, at respective distances dk4 from entity k. The coordinates ofpoint p4 must satisfy one quadratic and two linear equations, corresponding tointersecting a sphere and two planes. Because the distances between points andplanes are signed, there are two solutions in general. A special case arises if thesphere meets both planes tangentially, as then there must be only a single solution.This case is degenerate when the two planes are parallel or coincident. IfP2 and P3 are parallel, then p1 is only constrained to lie on a plane also parallel tothe original two planes. Assuming that the original three entities are consistentlyconstrained, so that such a plane exists, the distance constraints between p4 andthe original three entities are either redundant or inconsistent. For if the distancesto P2 and P3 are consistent, then they determine a plane on which p4 must lie, andthe intersection of this plane with the sphere centered at p1 of radius d14 determinesan entire circle on which p4 may lie. This occurs because of the redundancy in thedistance constraints between P2 and p4 and between P3 and p4. If P2 and P4 arecoincident, again the constraints between p4 and the three given entities determineeither a circle of points for p4 or no points at all.Case 4 : (P1; P2; P3)) p4The point p4 is to be constructed from three given planes P1, P2 and P3,where Pk has distance dk from p4. The coordinates of point p4 must satisfy threelinear equations corresponding to the intersection of three planes. There will beone solution in general, because of the orientation of the planes. As in the previouscase, degeneracies occur when two or more of the planes are parallel or coincident.Unlike before, however, in this case there are no consistent overconstrained solutionspossible.



Case 5 : (p1; p2; p3)) P4Case 6 : (p1; p2; P3)) P4Case 7 : (p1; P2; P3)) P4These three cases can be converted to cases 2, 3, and 4, respectively, byswapping roles of known vs. unknown between appropriate elements, as discussedearlier. As pointed out in that discussion, this role swapping may require a rigidbody motion to bring the new elements in line with previously placed elements ofthe cluster.Case 8 : (P1; P2; P3)) P4This case is always an underdetermined situation. Here, the angles from twoplanes determine the direction of the sought plane (two possible solutions). Thethird angle constraint is redundant or inconsistent. For consistent constraints, theplane has an additional degree of freedom that remains undetermined.4.4. Cluster MergingOnce initial clusters have been formed as described above, clusters whichshare geometric elements can be placed relative to one another. The goal in clustermerging is to combine clusters in such a way as to form a rigid body, unique upto rotation and translation in space. In the two-dimensional setting, the generalmerging rule is to combine any three clusters each of which shares a geometric ele-ment with the other two. In the three-dimensional case, the necessary relationshipsbetween clusters is considerably more complicated.A cluster has in general six degrees of freedom, three rotational and threetranslational. Exceptions include degenerate clusters such as a plane with an in-cident point, which has only �ve degrees of freedom, since one degree of freedomis lost by symmetry. To �x a cluster in space, we must determine how to placecertain elements in the cluster with respect to other known clusters based on ele-ments shared between the cluster being placed and the known clusters. However,it is not su�cient to place the cluster based on only one or two elements in thecluster. Fixing a plane alone in the cluster leaves two translational and one rota-tional degree of freedom, while �xing a point alone leaves three rotational degrees offreedom. Furthermore, �xing any combination of two points or planes in a clusteris also insu�cient to �x the cluster itself. Fixing two distinct points or a point anda plane leave one rotational degree of freedom, while �xing two planes in generalposition leaves one translational degree of freedom. Therefore, three separate geo-metric entities in the cluster must be placed with respect to other known clustersin order to �x the cluster itself. In the case of degenerate clusters, the two geomet-ric elements of the cluster must be shared with another cluster in order to �x thecluster. Note that degenerate clusters can only be �xed up to symmetry, becausethey only contain two elements.



Now, if two clusters A and B share two geometric elements between them,then the clusters are overconstrained, because the relative position of the sharedelements is determined independently in each cluster. Therefore, the three elementsin the cluster to be �xed must belong to three separate known clusters. For degen-erate clusters, this entails that the two elements in the cluster are each shared witha di�erent cluster.If we restrict our discussion to points and distances between them, visual-ization of the required combinations of clusters and degenerate clusters needed toobtain a rigid body is greatly simpli�ed. In this consideration of cluster merging,we begin with a speci�ed number of full clusters. Our goal is to determine the min-imum number of additional degenerate clusters needed to make the con�gurationstable, up to rigid motions. We ensure the stability by requiring that the outcome�gures are polyhedra with triangular faces. We will begin with no full clusters,and work up to a situation which requires no degenerate clusters. For simplicity ofthe discussion, we consider full clusters as three points with mutual distance con-straints between the points, and degenerate clusters as two points with a distanceconstraint between them. This is su�cient since placement of only three elementsof a full cluster is necessary to place the complete cluster.Case 1 : 0 full clustersSix degenerate clusters are necessary to �x the geometry of the points andful�ll the requirements that the two elements of any one degenerate cluster areshared with two di�erent clusters. These degenerate clusters share four points be-tween them, in a tetrahedral formation. Explicitly, the clusters can be given by(p1; p2), (p2; p3), (p3; p1), (p1; p4), (p2; p4), and (p3; p4). If the constraints betweenthese points were all given explicitly, this combination of degenerate clusters wouldhave been formed into a cluster in the earlier phase of cluster formation. However,since constraints can be added to the constraint graph through graph transforma-tions, some of these may have been implicit constraints not present in the graphduring initial cluster formation, preventing formation of a full cluster then.Case 2 : 1 full clusterThree degenerate clusters are required to �x a single full cluster. Again,there will be four points involved, and a tetrahedron the result. If the full cluster is(p1; p2; p3), the degenerate clusters are (p1; p4), (p2; p4), and (p3; p4). As in the pre-vious case, if the constraints in the degenerate cluster were all given explicitly, thenthis combination would not occur since the four points would have been combinedinto the same cluster in initial cluster formation.



Case 3 : 2 full clustersWhen we consider the case of two full clusters, there are two subcases to behandled, based on whether the full clusters share an element or not.Subcase 3.1 : Shared elementIf the two clusters share an element, their initial con�guration is as seen onthe left in Figure 18. If two degenerate clusters are added by adding constraintsbetween pairs of elements in the two clusters, the �gure is still not rigid. A thirddegenerate cluster must be added between the two clusters to make the con�gurationimmobile. The necessary degenerate clusters are shown in the diagram on the rightof Figure 18. The �rst two additional constraints are shown in dashed line, and thethird in dotted line. The con�guration is a double tetrahedronSubcase 3.2 : No shared elementIf the two clusters do not share an element, then six degenerate clusters areneeded to connect the two cluster. This is the case shown in Figure 13, but withonly three degenerate clusters. However, these three constraints are insu�cient to�x the points with respect to each other. A constraint running diagonally acrosseach of the four-sided faces is needed to make the con�guration rigid. For example,constraints between (t; u), (t; v), and (s; u) would make the con�guration stable.Structurally, this con�guration is an octahedron.Case 4 : 3 full clustersThere are a variety of combinations possible when none of the clusters sharesan element or when two cluster share an element but neither of these two sharesan element with the third. These are most easily stabilized by adding enoughdegenerate constraints to make a triangulated �gure. The three cases we considerin more detail are when the three clusters share elements between each other. Thiscan happen in three di�erent ways, which we call the triangle, chain, and starconnections. These three connections are shown in Figure 19, with the clustersshaded.Subcase 4.1 : Triangle
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67Figure 19: Triangle, chain, and star connections between three full clustersThe triangle initial con�guration has six distinct vertices, and can be stabi-lized by adding three degenerate clusters. Constraints are added pairwise betweenp3, p4, and p6. This makes an octahedral �gure.Subcase 4.2 : StarThe star in Figure 19 will be stable if the following six degenerate clustersexist: (p3; p4), (p5; p6), (p2; p7), (p2; p4), (p4; p6), and (p2; p6). The con�guration canthen be built by �rst placing one of the original clusters, say cluster (p1; p6; p7).Then point p2 can be placed using information from the full cluster (p1; p2; p3) andthe two degenerate clusters (p2; p7) and (p2; p6). Point p4 can be placed in a similarfashion. The remaining points p3 and p5 can now be �xed using the relationshipsbetween them and the �ve �xed points. The resulting �gure is a decahedron.Subcase 4.3 : ChainThe chain con�guration can be stabilized by repeated application of Case3.1 above, requiring six degenerate clusters and resulting in a decahedron. In thiscase, the three clusters are not inter-related in the way that the triangle and thestar are, where each cluster shares an element with both of the other two clusters.Because of the sequential nature of the connection between the clusters, it is notobvious that there is a collection of degenerate clusters which would stabilize thechain without having Case 3.1 as a component of a sequential solution.Case 5 : 4 full clustersWith four full clusters, it is possible to have elements shared between theclusters so that no degenerate clusters are necessary. This is the case if three clustermeet in the triangular con�guration, and the fourth cluster shares one vertex witheach of the �rst three. This is similar to the solution of the case 4.1, except thata full cluster exists to join the �rst three clusters together, instead of degenerateclusters.Table 1 summarizes these results, with the subcases for the cases of two andthree full clusters denoted by subscripts.
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Figure 20: The constraint graph for six points in four clusters.4.5. ExamplesAs an example of three-dimensional constraint solving, we consider the casein Table 1 above of four clusters each with exactly three elements. Each elementin a given cluster is shared with exactly one of the other three clusters, thus thereare six geometric elements to be placed. Note that a solution to this problem alsoentails a solution to Problems 22 and 31 of the table. The �rst example discusses asolution from robotics for the case when all six geometric elements are points. Thesecond example demonstrates a solution for the placement when �ve elements arepoints and the sixth is a plane.Example 1: Six points in four clustersThe four clusters for the problem of six points as the geometric entitiesare (p1; p2; p3), (p1; p4; p5), (p2; p4; p6), and (p3; p5; p6). Note that this arrangementsatis�es the criterion that each element of a given cluster is in exactly one of theother three clusters. The constraints are the distances between each pair of pointsin a cluster. A graphical representation of these clusters is shown in Figure 20, withthe clusters distinguished by the type of line of the constraint edges. Each edge inTable 1: Degenerate and complete cluster combinations necessary for merging of clustersComplete Degenerate Con�guration0 6 Tetrahedron1 3 Tetrahedron21 3 Double Tetrahedron22 6 Octahedron31 3 Octahedron32 6 Decahedron4 0 Octahedron



the graph represents a distance constraint.Physically, the problem is that of positioning the vertices of an octahedron,given the lengths of the edges of the octahedron. This problem has been extensivelyexplored in robotics as a special case of the Stewart platform problem. A Stewartplatform has two platforms, not necessarily planar, connected by six legs of variablelength. The problem consists of �nding the coordinates of vertices of the upperplatform relative to the lower platform based solely on the lengths of the legs. Ifthe two platforms are triangles, as shown in Figure 21, the solution to the Stewartplatform problem is a solution to the six point constraint problem, since the lengthsof the platforms' edges are also given. The four original clusters are the lower plateand the three triangles with a single vertex on the lower platform and an edge onthe upper platform.A solution to this problem is given by Nanua, et. al.8, where it is shown thatthere are at most 16 possible con�gurations, including complex solutions.Example 2: Five points and one plane in four clustersThe four clusters have the same topological structure as in the previousexample, except that in this case one of the points is replaced with a plane, e.g.(p1; p2; P3), (p1; p4; p5), (p2; p4; p6), and (P3; p5; p6). Since there is only one plane, theonly constraints are again distances between each pair of elements in a cluster. Adiagram of this situation is shown in Figure 22. The open circles in P3 representthe points in P3 which satisfy the distance constraints between P3 and the pointsp2, p5, and p6. Again, the elements of each cluster are connected by the same typeof line.Suppose that the distance between any two geometric elements gi and gj,where g is a point or a plane, is given by dij. If we assume the distances betweena point and the plane are signed, then we can modify the problem so that thepoint p1 lies in the plane P3. If we can �nd a con�guration where p1 lies in P3and the respective distances between each of the three points p2, p5, and p6 andP3 are reduced by the given distance from p1 to P3, d13 , the actual con�gurationwhich satis�es the given constraints can be found by o�setting P3 in the foundcon�guration by d13.
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We �rst position p1 at the origin, make P3 coincide with the xy-plane, andplace p2 so that it lies at (l1; 0; d23), where l21 + d223 = d212. The distance constraintsbetween p1 and p4 and between p2 and p4 force p4 to lie on a circle C4 whose center ison p1p2. The circle lies in a plane whose normal is in the direction of p1p2. Supposefor a moment that p2 also lies in P3. Because the lengths of the edges of the trianglep1p2p4 are all given, the center p̂4 = (h1; 0; 0) of C4 can be easily computed, as canthe radius r4. The circle C4 can then be written (h1; r4 cosu; r4 sinu). However,since p2 actually may not lie in the plane, this circle must be rotated about they-axis by �, the angle p1p2 makes with P3. Thus the circle C4 on which p4 must lieis given byC4 : (cos � h1 + sin � r4 sinu; r4 cos u; � sin � h1 + cos � r4 sin u)Now, p5 lies in a plane parallel to P3 and also on a sphere of radius d15 centered atp1. Thus it must lie on the circle C5 given byC5 : (r5 cos v; r5 sin v; d35)Similarly p6 lies in a plane parallel to P3 and also on a sphere of radius d26 centeredat p2. Since the distance from p1 to the projection of p2 into P3 is l1 (from theearlier positioning of p2), p6 must lie on the circle C6 given byC6 : (l1 + r6 cosw; r6 sinw; d36)The parameters h1, r4, l1, cos �, sin �, r5, and r6 are all dependent only on thedistances given between elements of the clusters. Speci�cally, we have the following:h1 = d224 � d214 � d2122d12r4 = qd214 � h21l1 = qd212 � d223
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cos � = l1d12sin � = d23d12r5 = qd215 � d235r6 = qd226 � (d36 � d23)2We must now �nd all possible positions of the triangle p4p5p6 such that thevertices lie on C4, C5, and C6, respectively. That is, we need to �nd values of u, v,and w which satisfy the three equations(ch1 + sr4 sinu� r5 cos v)2 + (r4 cos u� r5 sin v)2 +(�sh1 + cr4 sinu� d35)2 = d245 (1)(ch1 + sr4 sinu� l1 � r6 cosw)2 + (r4 cosu� r6 sinw)2 +(�sh1 + cr4 sinu� d36)2 = d246 (2)(r5 cos v � r6 cosw � l1)2 + (r5 sin v � r6 sinw)2 +(d35 � d36)2 = d256 (3)where c = cos � and s = sin �. To solve these three equations, we follow the techniqueused in8, in which three equations similar to these are solved to determine solutionsfor the six point problem.Making the standard substitutions cosu = 1�q241+q24 sinu = 2 q41+q24 , cos v = 1�q251+q25sin v = 2 q51+q25 , cosw = 1�q261+q26 , and sinw = 2 q61+q26 , we obtain three equations with thefollowing structure:(A1 q25 +A2 q5 +A3) q24 + (A4 q25 +A6) q4 + (A7 q25 +A8 q5 +A9) = 0 (4)(B1 q26 +B2 q6 +B3) q24 + (B4 q26 +B6) q4 + (B7 q26 +B8 q6 +B9) = 0 (5)(D1 q25 +D3) q26 +D5 q5 q6 + (D7 q25 +D9) = 0 (6)Here the coe�cients Ai, Bj, and Dk are functions only of the constants c, s, l1, h1,d35, d36, d45, d46, d56, r4, and r5.We can eliminate q4 from the �rst two equations using Bezout's method9.This yields an equation of the formE1 q46 + E2 q36 + E3 q26 + E4 q6 + E5 = 0where each Ei is polynomial of degree four in q5. The coe�cients of these polyno-mials again are functions only of the constants of the problem. If we now rewriteEq. (6) as G1q26 +G2q6 +G3 = 0



we can again apply Bezout's method, obtaining the single equation0 = �E24G31G3 � E1G42E5 �E23G21G23 �E22G1G33 � E21G43 �G41E25 + E2G1G23E3G2+2E2G21G23E4 �E2G1G3E4G22 � 3E2G21E5G2G3 + E2G1E5G32 � E1G22G23E3 +E1G2G33E2 � 3E1G2G23E4G1 + E1G32G3E4 + 4E1G22G1E5G3 + 2E3G1G33E1 +E3G21G2E4G3 � E3G21E5G22 + 2E3G31G3E5 � 2E1G23G21E5 + E4G31E5G2Some of the terms in this equation are of degree 16 in q5, since each Ei isdegree four and G1 and G3 are degree two. Thus this polynomial has 16 roots.Furthermore, when the polynomial is expanded in terms of the dij, the odd-powerterms vanish, so that a polynomial in q25 of degree eight results. The positive roots ofthis polynomial yield the potential solutions to the problem, since we are interestedonly in con�gurations in real space. The values of q5 can then be back-substitutedinto the formulas for cos v and sin v, and the positions of point p5 can be founddirectly from these values.For each set of values fcos v; sinvg, the corresponding values of of cos u, sinu,cosw, and sinw must be computed. Substitution of cos v and sin v into Eq. (1) andEq. (3) yields two equations, which can be written in the formLi cos�i +Mi sin�i +Ni = 0where �1 = u and �2 = w. These can be solved ascos�i = �LiNi + �Mi(L2i +M2i �N2i )1=2L2i +M2isin�i = �MiNi � �Li(L2i +M2i �N2i )1=2L2i +M2iwhere � = �1. Of the four possible combinations of solutions, only one will satisfythe remaining equation, Equation (2). These values can then be substituted intothe equations of the circles C4 and C6 to determine the corresponding points p4 andp6.A Numerical ExampleTo verify the above process, we consider a numerical example with one pre-determined solution1 The initial con�guration isp1 = (0; 0; 0)p2 = (3; 0; 4)P3 = xy�planep4 = (3; 4; 0)p5 = (2; 2; 2)p6 = (6; 1; 1)1This example, as well as the general solution above, was computed using Maple.



This means the input to the problem is four clusters with the following distanceconstraints:Cluster 1 Cluster 2 Cluster 3 Cluster 4d(p1; P3) = 0 d(p1; p4) = 5 d(p2; p4) = 4p2 d(p5; p6) = 3p2d(p2; P3) = 4 d(p1; p5) = 2p3 d(p4; p6) = p19 d(P3; p5) = 2d(p1; p2) = 5 d(p4; p5) = 3 d(p2; p6) = p19 d(P3; p6) = 1From these distances the parameters of the three equations are computed:h1 = 95r4 = 45p34cos � = 35sin � = 45l1 = 3r5 = 2p2r6 = p10With these values, Eqs. (1), (2), and (3) become�27=25 + (16p34 sin u)=25� 2p2 cos v�2 + �(4p34 cosu)=5 � 2p2 sin v�2 +��36=25 + (12p34 sin u)=25� d35�2 = d245��48=25 + (16p34 sinu)=25 �p10 cosw�2 + �(4p34 cos u)=5�p10 sinw�2 +��36=25 + (12p34 sin u)=25 � d36�2 = d246�2p2 cos v �p10 cosw � 3�2 + �2p2 sin v �p10 sinw�2 +(d35 � d36)2 = d256Following the solution procedure detailed above, we found six solutions forq25, two of which were positive. The corresponding values of q5, cos v, sin v, cosu,sinu, cosw, and sinw are shown in Table , rounded to six digits. The equations forthe circles C4, C5, and C6 were evaluated at these four solutions, with the followingresults:



Table 2: Real solutions to the numerical exampleq5 cos v sin v cos u sinu cosw sinw0.266489 0.867385 0.497638 -0.0735262 0.997293 -0.631411 -0.775448-0.266489 0.867385 -0.497638 0.0735262 0.997293 -0.631411 0.7754480.414214 0.707107 0.707107 0.857493 0.514496 0.948683 0.316228-0.414214 0.707107 -0.707107 -0.857493 0.514496 0.948683 -0.316228Solution 1 p4 = (4:801708264;�0:3429823033; 1:351281198)p5 = (2:453334509; 1:407533228; 2:0)p6 = (1:003302954;�2:452182886; 1:0)Solution 2 p4 = (4:801708264; 0:3429823033; 1:351281198)p5 = (2:453334509;�1:407533228; 2:0)p6 = (1:003302954; 2:452182886; 1:0)Solution 3 p4 = (3:000000039; 3:999999971; 0:000000029)p5 = (2:000000071; 1:999999927; 2:0)p6 = (6:000000050; 0:9999998449; 1:0)Solution 4 p4 = (3:000000039;�3:999999971; 0:000000029)p5 = (2:000000071;�1:999999927; 2:0)p6 = (6:000000050;�0:9999998449; 1:0)Solution 3 is the predetermined solution, which corroborates the correctnessof the solution procedure. Note that Solution 1 and Solution 2 are mirror-imagesof each other through the yz-plane, as are Solution 3 and Solution 4.5. AcknowledgementsSupport for this work has been provided by the O�ce of Naval ResearchContract N00014-90-J-1599, by the National Science Foundation under Grant ECD92-23502, by the AT&T Foundation, and by the G.E. Foundation.5. References
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