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Abstract 
We describe the work of an interdisciplinary team of 
researchers in geometric computing, computer graphics, 
and civil engineering to produce a visualization of the 
September 2001 attack on the Pentagon from physical 
simulation. The immediate motivation for the project was 
to understand the behavior of the building under the 
impact. The longer term motivation is to establish a path 
for producing high-quality visualizations of large scale 
simulations that combine state-of-the-art graphics with 
state-of-the-art engineering simulation.   

An immediate challenge was to manage the complexity of 
the scene to fit within the limits of commercial simulation 
software systems and available supercomputing resources 
by balancing model complexity and the significance of 
detail to the overall event. The second challenge was to 
integrate the results of the simulation into a high-quality 
visualization. Here, we implemented a custom importer 
that simplifies and loads the massive simulation data into 
a commercial animation system. The surrounding scene is 
modeled using image-based rendering techniques and is 
also imported in the animation system where the 
visualization is produced. 

Since we used commercial packages whose detailed 
workings we cannot modify, a key issue was to federate 
the simulation and the animation systems.  The difficulty 
here is to account for the fact that the two systems use 
different conceptualizations of geometry and animation.  
Reconciling the different views should be done in ways 
that achieve scalability.  The reusable link we created 
between the two systems allows communicating the 
results to non-specialists and to the public at large, as well 
as facilitating communication in teams with members 
having diverse technical backgrounds. 

1. INTRODUCTION 

1.1 Problem Description 
Simulations have become essential tools in many fields of 
science and engineering. Scientific simulations are used to 
crash-test an automobile before it is built, to study the 
interaction between a hip implant and the femur, to 
evaluate and renovate medieval bridges, to assess the 
effectiveness of electronic circuit packaging by running 
circuit-board drop tests, or to build virtual wind tunnels.  
In particular, finite-element analysis (FEA) plays a 
prominent role in engineering. FEA systems compute a 
variety of physical parameters over the time span of the 

simulation, such as position, velocity, acceleration, stress, 
and pressure. The visual presentation of the results is 
either handed off to generic post-processors or else is 
studied in specific contexts in the field of scientific 
visualization. 

Three dimensional computer graphics has advanced 
tremendously, driven mostly by the popularity of its 
applications in entertainment. Consumer-level priced 
personal computers with add-in graphics cards can 
produce high-quality images of complex 3D scenes at 
interactive rates or can run sophisticated animation 
software systems to produce, off-line, video sequences 
that very closely approach photorealism. Because of the 
applications in computer games, advertising, and 
entertainment, animation systems are mainly concerned 
with minimizing the production effort and maximizing the 
entertainment value of animations. They focus on the 
rendering quality, on the expressivity of the animated 
characters and are less concerned with closely following 
the laws of physics.  Put succinctly, if it looks good, it is 
good. 

Our team had the goal of producing a visualization of the 
September 2001 attack on the Pentagon that combines 
commercial codes for FEA and for animation. The 
obvious solution is to take advantage of the strengths of 
both simulation and animation systems. The project had 
two distinct parts. During the first part we designed, 
tested and then ran at full scale the FEA simulation of the 
aircraft impacting the building structure. For this part we 
used LS-DYNA [5], a commercial FEA system often used 
in crashworthiness assessment simulations. This choice is 
appropriate because LS-DYNA can handle geometric and 
material nonlinearities as well as fluid–structure 
interaction [8]. Another choice could have been MSC-
DYTRAN [6]. Both codes implement explicit time 
marching schemes. Implicit time integration schemes 
would be inappropriate for impact problems that involve 
high-frequency response [7]. In the second phase the 
efforts were focused on producing a high-quality 
visualization of the massive data resulting from the 
simulation. In order to do so we created a scalable link 
between the FEA system and a commercial animation 
system (3ds max [18]). The link can be directly reused to 
create animations with physical fidelity regardless of the 
scientific or engineering domain. 

Ironically, the data for the aircraft model came from a 3ds 
max model that was hand-imported into the FEA analysis.  
Based on our experience, we propose several ideas how to 
make this link at least semi-automatic, and what tools can 
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be used to simplify this process, the most time-consuming 
part of the simulation and analysis step.  This would go a 
long way towards closing the loop and accelerating the 
overall cycle of modeling → simulation → animation → 
model refinement. 

1.2 Purpose 
We posit that high-quality visualization of scientifically 
accurate simulation data has the following important 
advantages: 

1. Effective communication of the results and 
insights to the public at large, 

2. Ability to build a case for the merits of a project, 
especially for large-scale projects that require 
grass-roots support, 

3. Better collaboration between members of 
interdisciplinary teams. 

The images gathered by the Hubble Space Telescope are 
an example of the value of high-quality images vis-à-vis 
points 1 and 2. 

A high-quality visualization of the results of a simulation 
requires first that the objects whose interaction is 
simulated be rendered using state-of-the-art rendering 
techniques. A second requirement is that the simulation 
be placed in the context of the immediate surrounding 
scene. For this the scene has to be modeled and rendered 
along with the simulation results. Such visualization 
makes the results and conclusions of the simulation 
directly accessible to others than the specialists that 
designed the simulation, without sacrificing scientific 
accuracy. This will make scientific simulations powerful 
tools that will routinely be used in a variety of fields 
including national security, emergency management, 
forensic science, and media. 

A good visualization ultimately leads also to 
improvements of the simulation itself. High-quality 
images from a simulation quickly reveal any 
discrepancies with observed experimental data. We next 
give an overview of the process that converted the 
heterogeneous data documenting the event into the 
desired visualization. 

1.3 Overview of the Work 
The first step in creating the simulation was to generate 
the finite element meshes suitable for FEA. To keep the 
scene complexity within manageable limits, only the most 
relevant components of the aircraft and of the building 
were meshed. Then, the material models were tuned 
during test simulations to achieve correct load deflection 
behavior. The FEA code was run on the full resolution 
meshes to simulate the first 250 milliseconds of the 
impact over 50 states.  

The visualization part of the project began with modeling 
the Pentagon building from architectural blueprints using 

a CAD tool. The geometric model of the building and the 
surroundings were enhanced with textures projected from 
high-resolution satellite and aerial imagery using a 
custom tool. The 3ds max aircraft model used for 
visualizing the approach was readily available. The 3.5 
GB of state data describing the mesh deformations was 
simplified, converted and imported into the animation 
system through a custom plugin. The imported meshes 
were aligned with the surrounding scene and enhanced 
with rendering material properties. Finally the integrated 
scene was rendered from chosen camera paths. Figure 1 
and Figure 2 show the simulation results at the same time 
step from near identical views, once using our system and 
once the post processor, respectively. 

Prior work is discussed next. The remainder of the paper 
is organized as follows. Section 3 describes the 
simulation; section 4 describes modeling the part of the 
scene not involved in the simulation; section 6 covers 
importing the simulation data into the animation system. 
Results are presented for each section separately. 
Discussion and directions for future work conclude the 
paper. 

2. PRIOR WORK  
Baker et al. [1] describe the simulation of a bomb blast 
and its impact on a neighboring building. The scenario 
investigated matches the 1996 attack on the Khobar 
towers. Two computational codes were used. The blast 
propagation was computed using CTH [3] at the Army’s 
research lab in Vicksburg [10]. Results of the CTH 
calculation are used as initial pressure loadings on the 
buildings and Dyna3D [4] is then used to model the 
structural response of the building to the blast. The results 
were visualized in the Dyna3D postprocessor and VTK 
(visualization toolkit [11]) using standard visualization 
techniques such as slicing and isosurfacing. The 
researchers report the difficulty of visualizing the large 
data sets; the solutions employed are reducing resolution, 
decimation and extraction of regions of interest. 
Enhancing the quality of the visualization using 
photographs is mentioned as future work. 

A considerable body of literature in nuclear engineering is 
dedicated to simulating the crash of an aircraft into a 
concrete structure. Provisions for aircraft impact on 
reinforced concrete structures are incorporated into the 
Civil Engineering codes used for the design of nuclear 
containment structures. A full-scale test was conducted by 
Sugano et al. [2] to measure the impact force exerted by 
fighter aircraft (F-4D Phantom) on a reinforced concrete 
target slab. The study provided important information on 
the deformation and disintegration of the aircraft. 
However, this study crashed an aircraft into a reinforced 
concrete slab. This study gives experimental evidence that 
the airframe and the skin of the aircraft alone are not 
likely to cause the major damage on reinforced concrete 
targets. 
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To contextualize the simulation, we had to model and 
render the surroundings of the Pentagon. Research in 
image-based rendering (IBR) has produced several 
successful approaches for rendering complex large-scale 
natural scenes. The QuicktimeVR [13] system models the 
scene by acquiring a set of overlapping same-center-of-
projection photographs that are stitched together to form 
panoramas. During rendering the desired view is confined 
to the centers of the panoramas. In our case it was 
important to allow for unrestrained camera motion so we 
dismissed the approach.  

Image-based rendering by warping (IBRW) [14] relies on 
images enhanced with per-pixel depth. The depth and 
color samples are 3D warped (reprojected) to create novel 
views. Airborne LIDAR sensors can provide the depth 
data at appropriate resolution and precision. In the case of 
our project no depth maps of the Pentagon scene were 
available and we could not use IBRW. In light field 
rendering the scene is modeled with a database containing 
all rays potentially needed during rendering. The method 
does not scale well: the number of images that need to be 
acquired and the ray database grow to impractical sizes 
for large-scale scenes. 

An approach frequently used for modeling large urban 
scenes combines images with coarse geometry into a 
hybrid representation. A representative example is the 
Façade system [15] which maps photographs onto 
buildings modeled with simple primitive shapes. The 
system was used to model and realistically render a 
university campus environment. The relatively simple 
geometry of the Pentagon building and the availability of 
photographs of the area motivated us to choose a hybrid 
geometry / images approach as described in section 4. 

3. LARGE SCALE SIMULATION 
The impact of the aircraft on the Pentagon building was 
simulated using LS-Dyna, which is a non-linear finite 
element code. LS-Dyna is capable of modeling fluid-
structure interaction by employing a Lagrangian mesh for 
solid elements coupled with an Eulerian mesh for fluids. 

The motion of the fluid is based on the Navier Stokes 
equations used in computational fluid dynamics. The fluid 
mass is transferred among Eulerian cells through 
advection. The fractional occupancy of each cell is 
reported by LS-Dyna as the solution progresses from one 
time step to the next.  Figure 3 shows the part of the 
Eulerian mesh consisting of nonempty cells at the initial 
state. 

When different parts of the model that approach each 
other come into contact, the time step size is scaled down 
further in order to capture the non-linear behavior of the 
large deformations and material failure more accurately. 
The running time of the computation is significantly 
influenced by time step reduction upon contact. 

In the overall analysis of the problem, the largest amount 
of time was spent on mesh generation and model 
assembly. For the largest mesh size the studied simulation 
took 4 days of running time. The long running time is 
explained by having to use a very short time step in order 
to correctly capture the large deformations, and to allow 
coupling the Eulerian and Lagrangian meshes. 

The results of the simulation are validated on two basic 
notions. The first one is qualitative and is based on a 
visual inspection of the behavior of individual 
components of the model. The tail shell buckling of the 
aircraft fuselage in the large simulation of the Pentagon 
building study shown in Figure 1 is a typical example of 
visual inspection. Similarly, the fluid dispersion that 
occurs after the wings of the aircraft hit the columns of 
the building provides an initial assessment of the 
admissibility of the results. The fluid properties used in 
the simulation represent typical kerosene jet-fuel 
contained in the wing tanks of the aircraft.  

The second notion is based on quantitative evaluation of 
the response of the components of the model against 
benchmark case studies. For the larger simulation of the 
Pentagon building with spirally reinforced concrete 
columns, a case study was created for investigating the 
behavior of a single column impacted by a block of fluid. 
The constitutive concrete material model was calibrated 
such that the response of the column agreed with the 
results available from experimental studies and from 
hand-calculation models that are well established. 

The standard models of concrete available with LS-
DYNA were not sufficiently accurate for our purpose.  
So, we adjusted the non-linear material model for 
concrete and selected a suitable erosion criterion.  
Without going into detail in this article, we used test cases 
of impacting a single concrete pillar with a block of fluid 
and we adjusted the model parameters accordingly, 
drawing on our experience with concrete behavior [9]. 

The fluid properties are adjusted to represent water. The 
main physical properties of the fluid utilized in the 
Eulerian approach are density and viscosity. An equation 
of state defines the pressure-volume relationship for the 
compressible fluid and its initial thermodynamic 
conditions. 

The full simulation consisted of approximately 1M nodes 
and took 68 hours of run-time on an IBM Regatta system 
for a simulation time of 0.25 second. The reinforced 
concrete columns in the vicinity of the impact area were 
modeled with higher fidelity than the columns far away, 
and the Eulerian mesh for the liquid was finer than in 
earlier simulation runs we made.  

4. MESH GENERATION 
For the simulation we generated a mesh by a set of 
custom programs.  This choice reflected the difficulty 
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obtaining meshing tools that can generate hexahedral 
meshes for complex geometries.  The program tools were 
specific to the type of object generated, that is, separate 
tools generated individual column meshes, meshes for the 
wings, meshes for the aircraft body, and so on.  This 
choice made meshing time-consuming.  However, it was 
clear to us from the outset that the mesh densities should 
be parametrically adjustable, and we wanted full control 
over how to do that.   

With full control over the mesh, we were able to 
experiment with different types of meshes and different 
densities of the mesh.  For instance, instead of eroding 
shell elements with a maximum strain imposed, one can 
replicate the nodes and assign a lower strain failure limit 
to coincident nodes.  With this alternative, individual shell 
elements would simply separate rather than entire shell 
elements eroding, so that the mass of the system remains 
constant. 

The mesh of the aircraft was obtained from a 3ds max 
model (Figure 5).  The body was simplified to an ovoid 
cylinder fitted to two swept cones.  The wings were 
composed from four hexahedral sections.  The floor of the 
main cabin was added in as were stringers and ribs.  The 
geometry was derived from a small set of hard points 
whose coordinates were read from the 3ds max model. 

Typically, finite element meshes simplify the geometric 
model by eliminating small details.  This can be justified 
by the insignificant contribution those details make to the 
overall structural behavior and integrity.  In this spirit, the 
round of the leading wing edges was eliminated. 

5. SURROUNDING SCENE 
Modeling the surrounding scene has forensic relevance 
since it enables a virtual reenactment of the events. The 
reenactment is important for corroborating and validating 
various eye-witness accounts, and for interpreting the 
low-resolution, slow-shutter video footage of the events 
recorded by the surveillance cameras. Modeling the 
surrounding scene also places the simulation results in 
context to make it easily understood by someone who was 
not closely involved with the investigation. The 
physically accurate, visually realistic animations we so 
produced document the tragic events. 

As described earlier, we modeled the surrounding scene 
using a hybrid geometry / image-based approach. From 
the architectural blueprints we produced a CAD model of 
the building. The damage in the collapsed area was 
modeled by hand to match available photographs. The 
region surrounding the Pentagon was modeled as a large 
plane. The geometric models were enhanced with color 
using high-resolution satellite [16] and aerial imagery 
[12]. 

The coloring of the geometric primitives (triangles) using 
the photographs is done by projective texture mapping 

[17], which is equivalent conceptually to transforming the 
camera into a projector. The rays emanating from the 
camera deposit the pixel colors on the surface of the 
model to automatically create individual texture maps 
which are then used during rendering. First one has to 
establish the position and orientation of the camera with 
which each of the reference photographs was acquired. 
Camera matching is illustrated in Figure 6. In a second 
step texture maps that uniformly sample each triangle are 
created from the reference photograph. Note that the 
reference photograph cannot be used directly as a texture 
by projecting the vertices back in the camera view. The 
perspective distortion of the reference photograph has to 
be eliminated first. 

In our case camera matching was complicated by not 
having the camera at hand for intrinsic parameter 
calibration. In addition to the six extrinsic parameters of 
the camera pose we also calibrated for the camera’s focal 
length. We searched for the seven parameters using the 
downhill simplex method and a manually established 
initial guess. On a 3000 x 2000 pixel image, with 10 
correspondences, the matching error was on average 3.5 
pixels. 

Once the view is known, building the individual texture 
maps is done according to the following main steps. 

• Find triangles visible in the photograph 
• For each visible triangle 

o allocate texture 
o set each visible texel by projecting in 

reference photograph 

The visible triangles are collected by rendering in an item 
buffer that stores ids and depth. The texture resolution is 
determined using the photograph area of the particular 
triangle. The texture is defined in model space, so the 
texels uniformly sample the triangle which removes the 
perspective projection of the reference photograph. The 
visible texels are determined using the item buffer. 
Partially visible triangles and invisible triangles are 
textured from other photographs. 

The building and ground plane model consisting of 25 K 
triangles was sprayed with a 3000 x 2000 pixels 
photograph. The resulting texture mapped model 
produced realistic visualizations of the Pentagon scene. 
Figure 7 shows an image rendered from a considerably 
different view than the view of the reference photograph, 
which is shown in Figure 6. The total disk size of the 
texture files is 160 MB. The difference when comparing 
to the 24 MB of the reference photograph is due to the 
texels outside of the triangle, to the texels corresponding 
to the hidden part of the triangle, to the thin triangles that 
have a texture larger than their area and to our simple 
merging of individual texture images that vertically 
collates 10 images to reduce the number of files. For now 
we rendered the scene offline so the large total texture 
size was not a concern. For real time rendering, the 
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texture size has to be reduced. A simple greedy algorithm 
for packing the textures involving shifts and rotations is 
likely to yield good results. The rotation can be 
propagated upstream to the spraying to avoid the 
additional resampling. 

6. INTEGRATION 
The simulation results files are directly imported in 3ds 
max via a custom plugin Figure 8. The 954 K nodes of the 
FEM define 355 K hexahedral (solid) elements used to 
model the column core and the fluff, 438 K hexahedral 
elements for the liquid elements, 15 K quadrilateral 
(shell) elements used to define the fuselage and floor of 
the aircraft, and 61 K segment (beam) elements used to 
define the ribs and stringers of the aircraft and the rebars 
of the columns. The importer subdivides the simulation 
scene into objects according to materials to facilitate 
assigning rendering materials. 

6.1 Solid objects 
Ignoring the liquid for now, the 12, 2 and 1 triangles per 
solid, shell and beam elements respectively imply about 
4.3 M triangles for the solid materials in the simulation 
scene. This number is reduced by eliminating internal 
faces, which are irrelevant during rendering. An internal 
face is a face shared by two hexahedral elements. Because 
elements erode, faces that are initially internal can 
become visible at the fracture area. For this an object is 
subdivided according to the simulation states; subobject k 
groups all the elements that erode at state k. Discarding 
the internal faces of each subobject is done in linear time 
using hashing. This reduces the number of triangles to 1.3 
M, which is easily handled by the animation system. 

However, importing the mesh deformation into the 
animation system proved to be a serious bottleneck. The 
mesh deformations are saved by the FEA code as node 
positions at every state. The animation system supports 
per vertex animation by controllers that move a vertex on 
a linear trajectory.  Since the node movement is not linear 
in general, one could create a controller for each of the 50 
positions of each of the remaining 700 K nodes to 
interpolate linearly between consecutive node positions.  
But doing so takes days of computing time and the 
resulting scene file is unusable. The practical limit on the 
number of controllers is about 1M. We reduce the number 
of animation controllers in two ways. First, the importer 
does not animate nodes with a total movement (sum of 
state to state movement) below a user-chosen threshold 
(typical value 1 cm). Second, the trajectories of each node 
are simplified independently by eliminating (i.e. not 
creating) controllers for the nearly linear parts. After 
simplification, 1.8 M controllers remained. So, we 
distributed the simulation scene over three files, each 
covering one third of the simulation. Materials and 
cameras can of course easily be shared among several 
files. Importing the solid objects takes 2 hours total, out of 

which 1 hour is needed for the third part of the simulation. 
Once the solid objects are loaded, the animator assigns 
them standard 3ds max materials.   

6.2 Liquid objects 
The liquid data saved at every state contains the position 
of the nodes of the Eulerian mesh and the fractional 
occupancy values at that state. The liquid could be 
directly rendered from the occupancy data using volume 
rendering techniques. We chose to build a surface 
boundary representation first in order to take advantage of 
the rendering capabilities of the animation system. For 
every state the importer selects the Eulerian mesh 
elements that have a liquid occupancy above a certain 
threshold (typical value 25%).  The internal faces are 
eliminated similarly to the solid object case. Once the 
liquid is imported, the animator uses 3ds max tools 
including mesh modifiers and complex ray-traceable 
materials to produce compelling visualizations of the 
liquid. In Figure 9 refraction, surface reflections, 
attenuation and variable opacity provide realism. 
Rendering at VGA resolution takes approximately 5 
minutes. 

As in the case of the solid objects, animating the liquid is 
challenging. There are two fundamental approaches: to 
consider the liquid a complex object that moves and 
deforms over the simulation time or to frequently 
recompute the liquid object from the occupancy data, 
possibly at every animation frame.  

The first approach is in the spirit of animation systems 
where the same geometric entity suffers a series of 
transformations over the animation time span. The state of 
the geometric entity is known at the simulation states; it 
can be computed by thresholding or isosurfacing the 
occupancy data. In order to define a morph that produces 
the animation frames in between the states, 
correspondences need to be established. This is 
challenging since the liquid can change considerably from 
one state to another; it implies that there are different 
numbers of vertices, different local topologies (drops, 
liquid chunks separating and reuniting). We have 
attempted to implement this approach using the Eulerian 
mesh as a link between states. Because the occupancy 
values vary considerably from one frame to another, 
many small liquid objects are generated. This leads to a 
large number of position controllers. 

The approach of defining the liquid with independent 
objects corresponding to snapshots along the simulation 
timeline has proven to be more practical. Visibility 
controllers automatically generated by the plugin define 
the appropriate life span for each object. To smooth the 
transition the objects are faded in and out at a negligible 
cost of 4 controllers per liquid object. Currently the liquid 
is modeled with one object per state. The 50 liquid objects 
total 1.5 M triangles. By interpolating the occupancy data 



 6

one could generate one snapshot for every animation step. 
When playing back the 50 states over 30 seconds at 30 
Hz, 900 liquid objects need to be generated, which 
exceeds a practical geometry budget. We are investigating 
generating the liquid objects during rendering. 

7. DISCUSSION AND FUTURE WORK 
The most massive impacting element was the fuel.  The 
fuselage of the aircraft has little strength under axial 
impact, as confirmed by the simulation and validated by 
actual experiments [2]. The simulation clearly shows that 
the structural damage occurs only when the fuel mass hits. 
The simulation can be extended to cover a longer period 
of time, with denser states, involving higher resolution 
meshes; other possible extensions are modeling the 
building and aircraft in more detail and including the 
effects of the explosion, of the high temperatures and of 
the combustion. 

We have implemented a set of tools for integrating the 
simulation results with the surrounding scene in a 
commercial animation package. All tools can directly be 
reused for producing other visualizations. The plugin 
importer and 3ds max are now commonly used by the 
civil engineering researchers of our team. Initially the use 
was restricted to producing illustrations of their work; 
they are now using it to inspect the result of simulations. 
Scientific simulation researchers and commercial-
simulation-systems developers have shown great interest 
in the quality of the visualizations and we have initiated 
several collaborations. Except for the liquid raytracing, 
the integrated scene could be explored interactively. The 
VRML format for example does support triangle meshes 
with per vertex animation and can be rendered with 
hardware support by many browser plugin or stand-alone 
3D viewers. 

The link created between simulation and animation has to 
be further developed. The current bottleneck is the 
animation of the deforming meshes. Paradoxically the 
animation system performs better if the animation is 
specified by geometry replication. We will continue to 
investigate this problem. The importer could be extended 
to create dust, smoke and fire automatically. For example 
when a concrete element erodes, it should be turned in 
fine debris or dust animated according to the momentum 
that the element had before eroding. This simulation 
driven reproduction of low visibility conditions will be 
valuable in virtual training. Another direction for future 
work is extending our current system to include classic 
visualization techniques. Well studied algorithms can be 
employed and we do not foresee any major difficulty. 

Good visualizations facilitate the comparison of the 
simulation results to observed or recorded real data. 
Providing tools to assist and then fully automate the 
comparison is one of our longer term goals. Computer 
vision techniques are a possibility. They would be greatly 

facilitated if the experiment scene or actual event scene is 
captured by depth maps in addition to the traditional 
photographs. In our case, recording the shape of the 
columns affected by the impact would have been both 
easy and very beneficial. 

Based on our experience with mesh generation we have 
begun to devise an interactive script language by which to 
specify hexahedral meshes.  The language can partially 
automate the meshing of complex geometries and 
supports this task with operations on meshes.  Scalability 
is achieved by using a file operations when necessary.  
Conceptually, therefore, the FEA model is created 
directly from the meshing operations.  We believe that 
this concept can be extended to a more automated mesh 
approach that, at the same time, closes the loop between 
meshing and model acquisition/inspection in 3ds max.  
Namely, we envision a set of plug-ins that allows a user to 
select a component geometric structure in 3ds max, or 
designate a part of a model by drawing on it, and then 
generates the corresponding script for this structure.  The 
resulting mesh can then be re-imported into 3ds max.  

8. ACKNOWLEDGEMENTS 
We would like to thank Scott Meador for his help with 
3ds max and Jim Bottum and Gary Bertoline for 
providing access to supercomputing facilities here and 
elsewhere in the US. William Whitson helped with the 
supercomputer runs; Hendry Lim and Mihai Mudure 
implemented texture spraying; Mary Moyars-Johnson and 
Emil Venere publicized this work; Amit Chourasia 
modeled the Pentagon building; Jason Doty produced the 
first video illustration of our project and Raj Arangarasan 
helped with an earlier implementation. This work was 
supported by ITaP, Computer Science Purdue, NSF, ARO 
and DARPA. 

References 
[1] M. Pauline Baker, Dave Bock, Randy Heiland. 

Visualization of Damaged Structures. NCSA, 
University of Illinois. URL: 
http://archive.ncsa.uiuc.edu/Vis/Publications/damage.
html 

[2] T. Sugano et al. Full-scale aircraft impact test for 
evaluation of impact force, Nuclear Engineering and 
Design, Vol. 140, 373-385, 1993. 

[3] J. M. McGlaun, S. L. Thompson and M. G. Elrick 
1990. “CTH: A three dimensional shock wave 
physics code”, Int. J. Impact Engng., Vol. 10, 351 – 
360. 

[4] J. O. Hallquist and D. J. Benson, Dyna3D User’s 
Manual (Nonlinear Dynamic Analysis of Structures 
in Three Dimensions), Report #UCID-19592-
revision-3, Lawrence Livermore National 
Laboratory, Livermore, California, pp. 168, 1987. 



 7

[5] LS-DYNA, Livermore Software Technology 
Corporation, Livermore, California, URL: 
http://www.lstc.com/ 

[6] MSC-DYTRAN, McNeal-Schwendler Corp., URL: 
http://www.mscsoftware.com/ 

[7] K. J. Bathe, Finite element procedures, Prentice Hall, 
pp 1037, second edition, 1995. 

[8] M. Souli, ALE and fluid-structure interaction 
capabilities in LS-DYNA, 6th International LS-
DYNA users conference: Simulation 2000, Michigan, 
pp 15-37, 2000. 

[9] S. A. Kilic and M. A. Sozen, Evaluation of effect of 
August 17, 1999, Marmara earthquake on two tall 
reinforced concrete chimneys. American Concrete 
Institute, Structural Journal, Volume 100, No. 3, pp 
357-364, May-June 2003. 

[10] http://www.hpcmo.hpc.mil/Htdocs/UGC/UGC98/pap
ers/3b_chal/ 

[11] http://public.kitware.com/VTK/ 

[12] “Pentagon Building Performance Report”, American 
Society of Civil Engineers (ASCE), 2003, 88 pages. 

[13] S. Chen. QuicktimeVR- an image-base approach to 
virtual environment navigation. In Proc. SIGG. '95, 
pages 29-38. 

[14] L. McMillan and G. Bishop. Plenoptic modeling: An 
image-based rendering system. In Proc. SIGGRAPH 
'95, pages 39-46, 1995. 

[15] Paul E. Debevec, Camillo J. Taylor, and Jitendra 
Malik. Modeling and Rendering Architecture from 
Photographs. In Proc. of SIGGRAPH '96. 

[16] SpaceImaging, URL: 
http://www.spaceimaging.com/gallery/9-
11/default.htm 

[17] M. Segal, C. Korobkin, R. van Sidenfelt, J. Foran, 
and P. Haeberli, Fast Shadows and Lighting Effects 
Using Texture Mapping. Computer Graphics, 26(2), 
249-252 (1992). 

[18] Discreet, URL: 
http://www.discreet.com/products/3dsmax/ 



 8

 

Figure 1 Visualization of the simulation produced with our system 

 

Figure 2 Similar view produced with the post processor 
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Figure 3 Eulerian mesh that defines the liquid fuel in the wing and central tanks: overall view (top) and detail (down) 
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Figure 4 Finite element mesh of concrete column consisting of confined concrete core (pink), rebars (brown), outer concrete fluff (light 
blue) and anchor (red).  Erosion of elements and column destruction caused by impacting block of water. 
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Figure 5 Airplane model (top) and constructed finite element mesh (bottom). 



 12

 

 

 

Figure 6 Reference photograph (top), pose used to start the camera matching search (middle) and solution found (bottom). 
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Figure 7 Novel view rendered from the texture-sprayed model. 
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Figure 8 Wire frame visualization of the simulation results 
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Figure 9 Liquid / column impact visualization. 


