
 1

Integrating Modeling, Simulation, and Visualization
Chris Hoffmann, Voicu Popescu, CS & CRI

Sami Kilic, Mete Sozen, CE & CRI
Purdue University

Abstract
We describe the work of an interdisciplinary team of
researchers in geometric computing, computer graphics,
and civil engineering to produce a visualization of the
September 2001 attack on the Pentagon from physical
simulation. The immediate motivation for the project was
to understand the behavior of the building under the
impact. The longer term motivation is to establish a path
for producing high-quality visualizations of large scale
simulations that combine state-of-the-art graphics with
state-of-the-art engineering simulation.

An immediate challenge was to manage the complexity of
the scene to fit within the limits of commercial simulation
software systems and available supercomputing resources
by balancing model complexity and the significance of
detail to the overall event. The second challenge was to
integrate the results of the simulation into a high-quality
visualization. Here, we implemented a custom importer
that simplifies and loads the massive simulation data into
a commercial animation system. The surrounding scene is
modeled using image-based rendering techniques and is
also imported in the animation system where the
visualization is produced.

Since we used commercial packages whose detailed
workings we cannot modify, a key issue was to federate
the simulation and the animation systems. The difficulty
here is to account for the fact that the two systems use
different conceptualizations of geometry and animation.
Reconciling the different views should be done in ways
that achieve scalability. The reusable link we created
between the two systems allows communicating the
results to non-specialists and to the public at large, as well
as facilitating communication in teams with members
having diverse technical backgrounds.

1. INTRODUCTION

1.1 Problem Description
Simulations have become essential tools in many fields of
science and engineering. Scientific simulations are used to
crash-test an automobile before it is built, to study the
interaction between a hip implant and the femur, to
evaluate and renovate medieval bridges, to assess the
effectiveness of electronic circuit packaging by running
circuit-board drop tests, or to build virtual wind tunnels.
In particular, finite-element analysis (FEA) plays a
prominent role in engineering. FEA systems compute a
variety of physical parameters over the time span of the

simulation, such as position, velocity, acceleration, stress,
and pressure. The visual presentation of the results is
either handed off to generic post-processors or else is
studied in specific contexts in the field of scientific
visualization.

Three dimensional computer graphics has advanced
tremendously, driven mostly by the popularity of its
applications in entertainment. Consumer-level priced
personal computers with add-in graphics cards can
produce high-quality images of complex 3D scenes at
interactive rates or can run sophisticated animation
software systems to produce, off-line, video sequences
that very closely approach photorealism. Because of the
applications in computer games, advertising, and
entertainment, animation systems are mainly concerned
with minimizing the production effort and maximizing the
entertainment value of animations. They focus on the
rendering quality, on the expressivity of the animated
characters and are less concerned with closely following
the laws of physics. Put succinctly, if it looks good, it is
good.

Our team had the goal of producing a visualization of the
September 2001 attack on the Pentagon that combines
commercial codes for FEA and for animation. The
obvious solution is to take advantage of the strengths of
both simulation and animation systems. The project had
two distinct parts. During the first part we designed,
tested and then ran at full scale the FEA simulation of the
aircraft impacting the building structure. For this part we
used LS-DYNA [5], a commercial FEA system often used
in crashworthiness assessment simulations. This choice is
appropriate because LS-DYNA can handle geometric and
material nonlinearities as well as fluid–structure
interaction [8]. Another choice could have been MSC-
DYTRAN [6]. Both codes implement explicit time
marching schemes. Implicit time integration schemes
would be inappropriate for impact problems that involve
high-frequency response [7]. In the second phase the
efforts were focused on producing a high-quality
visualization of the massive data resulting from the
simulation. In order to do so we created a scalable link
between the FEA system and a commercial animation
system (3ds max [18]). The link can be directly reused to
create animations with physical fidelity regardless of the
scientific or engineering domain.

Ironically, the data for the aircraft model came from a 3ds
max model that was hand-imported into the FEA analysis.
Based on our experience, we propose several ideas how to
make this link at least semi-automatic, and what tools can

 2

be used to simplify this process, the most time-consuming
part of the simulation and analysis step. This would go a
long way towards closing the loop and accelerating the
overall cycle of modeling → simulation → animation →
model refinement.

1.2 Purpose
We posit that high-quality visualization of scientifically
accurate simulation data has the following important
advantages:

1. Effective communication of the results and
insights to the public at large,

2. Ability to build a case for the merits of a project,
especially for large-scale projects that require
grass-roots support,

3. Better collaboration between members of
interdisciplinary teams.

The images gathered by the Hubble Space Telescope are
an example of the value of high-quality images vis-à-vis
points 1 and 2.

A high-quality visualization of the results of a simulation
requires first that the objects whose interaction is
simulated be rendered using state-of-the-art rendering
techniques. A second requirement is that the simulation
be placed in the context of the immediate surrounding
scene. For this the scene has to be modeled and rendered
along with the simulation results. Such visualization
makes the results and conclusions of the simulation
directly accessible to others than the specialists that
designed the simulation, without sacrificing scientific
accuracy. This will make scientific simulations powerful
tools that will routinely be used in a variety of fields
including national security, emergency management,
forensic science, and media.

A good visualization ultimately leads also to
improvements of the simulation itself. High-quality
images from a simulation quickly reveal any
discrepancies with observed experimental data. We next
give an overview of the process that converted the
heterogeneous data documenting the event into the
desired visualization.

1.3 Overview of the Work
The first step in creating the simulation was to generate
the finite element meshes suitable for FEA. To keep the
scene complexity within manageable limits, only the most
relevant components of the aircraft and of the building
were meshed. Then, the material models were tuned
during test simulations to achieve correct load deflection
behavior. The FEA code was run on the full resolution
meshes to simulate the first 250 milliseconds of the
impact over 50 states.

The visualization part of the project began with modeling
the Pentagon building from architectural blueprints using

a CAD tool. The geometric model of the building and the
surroundings were enhanced with textures projected from
high-resolution satellite and aerial imagery using a
custom tool. The 3ds max aircraft model used for
visualizing the approach was readily available. The 3.5
GB of state data describing the mesh deformations was
simplified, converted and imported into the animation
system through a custom plugin. The imported meshes
were aligned with the surrounding scene and enhanced
with rendering material properties. Finally the integrated
scene was rendered from chosen camera paths. Figure 1
and Figure 2 show the simulation results at the same time
step from near identical views, once using our system and
once the post processor, respectively.

Prior work is discussed next. The remainder of the paper
is organized as follows. Section 3 describes the
simulation; section 4 describes modeling the part of the
scene not involved in the simulation; section 6 covers
importing the simulation data into the animation system.
Results are presented for each section separately.
Discussion and directions for future work conclude the
paper.

2. PRIOR WORK
Baker et al. [1] describe the simulation of a bomb blast
and its impact on a neighboring building. The scenario
investigated matches the 1996 attack on the Khobar
towers. Two computational codes were used. The blast
propagation was computed using CTH [3] at the Army’s
research lab in Vicksburg [10]. Results of the CTH
calculation are used as initial pressure loadings on the
buildings and Dyna3D [4] is then used to model the
structural response of the building to the blast. The results
were visualized in the Dyna3D postprocessor and VTK
(visualization toolkit [11]) using standard visualization
techniques such as slicing and isosurfacing. The
researchers report the difficulty of visualizing the large
data sets; the solutions employed are reducing resolution,
decimation and extraction of regions of interest.
Enhancing the quality of the visualization using
photographs is mentioned as future work.

A considerable body of literature in nuclear engineering is
dedicated to simulating the crash of an aircraft into a
concrete structure. Provisions for aircraft impact on
reinforced concrete structures are incorporated into the
Civil Engineering codes used for the design of nuclear
containment structures. A full-scale test was conducted by
Sugano et al. [2] to measure the impact force exerted by
fighter aircraft (F-4D Phantom) on a reinforced concrete
target slab. The study provided important information on
the deformation and disintegration of the aircraft.
However, this study crashed an aircraft into a reinforced
concrete slab. This study gives experimental evidence that
the airframe and the skin of the aircraft alone are not
likely to cause the major damage on reinforced concrete
targets.

 3

To contextualize the simulation, we had to model and
render the surroundings of the Pentagon. Research in
image-based rendering (IBR) has produced several
successful approaches for rendering complex large-scale
natural scenes. The QuicktimeVR [13] system models the
scene by acquiring a set of overlapping same-center-of-
projection photographs that are stitched together to form
panoramas. During rendering the desired view is confined
to the centers of the panoramas. In our case it was
important to allow for unrestrained camera motion so we
dismissed the approach.

Image-based rendering by warping (IBRW) [14] relies on
images enhanced with per-pixel depth. The depth and
color samples are 3D warped (reprojected) to create novel
views. Airborne LIDAR sensors can provide the depth
data at appropriate resolution and precision. In the case of
our project no depth maps of the Pentagon scene were
available and we could not use IBRW. In light field
rendering the scene is modeled with a database containing
all rays potentially needed during rendering. The method
does not scale well: the number of images that need to be
acquired and the ray database grow to impractical sizes
for large-scale scenes.

An approach frequently used for modeling large urban
scenes combines images with coarse geometry into a
hybrid representation. A representative example is the
Façade system [15] which maps photographs onto
buildings modeled with simple primitive shapes. The
system was used to model and realistically render a
university campus environment. The relatively simple
geometry of the Pentagon building and the availability of
photographs of the area motivated us to choose a hybrid
geometry / images approach as described in section 4.

3. LARGE SCALE SIMULATION
The impact of the aircraft on the Pentagon building was
simulated using LS-Dyna, which is a non-linear finite
element code. LS-Dyna is capable of modeling fluid-
structure interaction by employing a Lagrangian mesh for
solid elements coupled with an Eulerian mesh for fluids.

The motion of the fluid is based on the Navier Stokes
equations used in computational fluid dynamics. The fluid
mass is transferred among Eulerian cells through
advection. The fractional occupancy of each cell is
reported by LS-Dyna as the solution progresses from one
time step to the next. Figure 3 shows the part of the
Eulerian mesh consisting of nonempty cells at the initial
state.

When different parts of the model that approach each
other come into contact, the time step size is scaled down
further in order to capture the non-linear behavior of the
large deformations and material failure more accurately.
The running time of the computation is significantly
influenced by time step reduction upon contact.

In the overall analysis of the problem, the largest amount
of time was spent on mesh generation and model
assembly. For the largest mesh size the studied simulation
took 4 days of running time. The long running time is
explained by having to use a very short time step in order
to correctly capture the large deformations, and to allow
coupling the Eulerian and Lagrangian meshes.

The results of the simulation are validated on two basic
notions. The first one is qualitative and is based on a
visual inspection of the behavior of individual
components of the model. The tail shell buckling of the
aircraft fuselage in the large simulation of the Pentagon
building study shown in Figure 1 is a typical example of
visual inspection. Similarly, the fluid dispersion that
occurs after the wings of the aircraft hit the columns of
the building provides an initial assessment of the
admissibility of the results. The fluid properties used in
the simulation represent typical kerosene jet-fuel
contained in the wing tanks of the aircraft.

The second notion is based on quantitative evaluation of
the response of the components of the model against
benchmark case studies. For the larger simulation of the
Pentagon building with spirally reinforced concrete
columns, a case study was created for investigating the
behavior of a single column impacted by a block of fluid.
The constitutive concrete material model was calibrated
such that the response of the column agreed with the
results available from experimental studies and from
hand-calculation models that are well established.

The standard models of concrete available with LS-
DYNA were not sufficiently accurate for our purpose.
So, we adjusted the non-linear material model for
concrete and selected a suitable erosion criterion.
Without going into detail in this article, we used test cases
of impacting a single concrete pillar with a block of fluid
and we adjusted the model parameters accordingly,
drawing on our experience with concrete behavior [9].

The fluid properties are adjusted to represent water. The
main physical properties of the fluid utilized in the
Eulerian approach are density and viscosity. An equation
of state defines the pressure-volume relationship for the
compressible fluid and its initial thermodynamic
conditions.

The full simulation consisted of approximately 1M nodes
and took 68 hours of run-time on an IBM Regatta system
for a simulation time of 0.25 second. The reinforced
concrete columns in the vicinity of the impact area were
modeled with higher fidelity than the columns far away,
and the Eulerian mesh for the liquid was finer than in
earlier simulation runs we made.

4. MESH GENERATION
For the simulation we generated a mesh by a set of
custom programs. This choice reflected the difficulty

 4

obtaining meshing tools that can generate hexahedral
meshes for complex geometries. The program tools were
specific to the type of object generated, that is, separate
tools generated individual column meshes, meshes for the
wings, meshes for the aircraft body, and so on. This
choice made meshing time-consuming. However, it was
clear to us from the outset that the mesh densities should
be parametrically adjustable, and we wanted full control
over how to do that.

With full control over the mesh, we were able to
experiment with different types of meshes and different
densities of the mesh. For instance, instead of eroding
shell elements with a maximum strain imposed, one can
replicate the nodes and assign a lower strain failure limit
to coincident nodes. With this alternative, individual shell
elements would simply separate rather than entire shell
elements eroding, so that the mass of the system remains
constant.

The mesh of the aircraft was obtained from a 3ds max
model (Figure 5). The body was simplified to an ovoid
cylinder fitted to two swept cones. The wings were
composed from four hexahedral sections. The floor of the
main cabin was added in as were stringers and ribs. The
geometry was derived from a small set of hard points
whose coordinates were read from the 3ds max model.

Typically, finite element meshes simplify the geometric
model by eliminating small details. This can be justified
by the insignificant contribution those details make to the
overall structural behavior and integrity. In this spirit, the
round of the leading wing edges was eliminated.

5. SURROUNDING SCENE
Modeling the surrounding scene has forensic relevance
since it enables a virtual reenactment of the events. The
reenactment is important for corroborating and validating
various eye-witness accounts, and for interpreting the
low-resolution, slow-shutter video footage of the events
recorded by the surveillance cameras. Modeling the
surrounding scene also places the simulation results in
context to make it easily understood by someone who was
not closely involved with the investigation. The
physically accurate, visually realistic animations we so
produced document the tragic events.

As described earlier, we modeled the surrounding scene
using a hybrid geometry / image-based approach. From
the architectural blueprints we produced a CAD model of
the building. The damage in the collapsed area was
modeled by hand to match available photographs. The
region surrounding the Pentagon was modeled as a large
plane. The geometric models were enhanced with color
using high-resolution satellite [16] and aerial imagery
[12].

The coloring of the geometric primitives (triangles) using
the photographs is done by projective texture mapping

[17], which is equivalent conceptually to transforming the
camera into a projector. The rays emanating from the
camera deposit the pixel colors on the surface of the
model to automatically create individual texture maps
which are then used during rendering. First one has to
establish the position and orientation of the camera with
which each of the reference photographs was acquired.
Camera matching is illustrated in Figure 6. In a second
step texture maps that uniformly sample each triangle are
created from the reference photograph. Note that the
reference photograph cannot be used directly as a texture
by projecting the vertices back in the camera view. The
perspective distortion of the reference photograph has to
be eliminated first.

In our case camera matching was complicated by not
having the camera at hand for intrinsic parameter
calibration. In addition to the six extrinsic parameters of
the camera pose we also calibrated for the camera’s focal
length. We searched for the seven parameters using the
downhill simplex method and a manually established
initial guess. On a 3000 x 2000 pixel image, with 10
correspondences, the matching error was on average 3.5
pixels.

Once the view is known, building the individual texture
maps is done according to the following main steps.

• Find triangles visible in the photograph
• For each visible triangle

o allocate texture
o set each visible texel by projecting in

reference photograph

The visible triangles are collected by rendering in an item
buffer that stores ids and depth. The texture resolution is
determined using the photograph area of the particular
triangle. The texture is defined in model space, so the
texels uniformly sample the triangle which removes the
perspective projection of the reference photograph. The
visible texels are determined using the item buffer.
Partially visible triangles and invisible triangles are
textured from other photographs.

The building and ground plane model consisting of 25 K
triangles was sprayed with a 3000 x 2000 pixels
photograph. The resulting texture mapped model
produced realistic visualizations of the Pentagon scene.
Figure 7 shows an image rendered from a considerably
different view than the view of the reference photograph,
which is shown in Figure 6. The total disk size of the
texture files is 160 MB. The difference when comparing
to the 24 MB of the reference photograph is due to the
texels outside of the triangle, to the texels corresponding
to the hidden part of the triangle, to the thin triangles that
have a texture larger than their area and to our simple
merging of individual texture images that vertically
collates 10 images to reduce the number of files. For now
we rendered the scene offline so the large total texture
size was not a concern. For real time rendering, the

 5

texture size has to be reduced. A simple greedy algorithm
for packing the textures involving shifts and rotations is
likely to yield good results. The rotation can be
propagated upstream to the spraying to avoid the
additional resampling.

6. INTEGRATION
The simulation results files are directly imported in 3ds
max via a custom plugin Figure 8. The 954 K nodes of the
FEM define 355 K hexahedral (solid) elements used to
model the column core and the fluff, 438 K hexahedral
elements for the liquid elements, 15 K quadrilateral
(shell) elements used to define the fuselage and floor of
the aircraft, and 61 K segment (beam) elements used to
define the ribs and stringers of the aircraft and the rebars
of the columns. The importer subdivides the simulation
scene into objects according to materials to facilitate
assigning rendering materials.

6.1 Solid objects
Ignoring the liquid for now, the 12, 2 and 1 triangles per
solid, shell and beam elements respectively imply about
4.3 M triangles for the solid materials in the simulation
scene. This number is reduced by eliminating internal
faces, which are irrelevant during rendering. An internal
face is a face shared by two hexahedral elements. Because
elements erode, faces that are initially internal can
become visible at the fracture area. For this an object is
subdivided according to the simulation states; subobject k
groups all the elements that erode at state k. Discarding
the internal faces of each subobject is done in linear time
using hashing. This reduces the number of triangles to 1.3
M, which is easily handled by the animation system.

However, importing the mesh deformation into the
animation system proved to be a serious bottleneck. The
mesh deformations are saved by the FEA code as node
positions at every state. The animation system supports
per vertex animation by controllers that move a vertex on
a linear trajectory. Since the node movement is not linear
in general, one could create a controller for each of the 50
positions of each of the remaining 700 K nodes to
interpolate linearly between consecutive node positions.
But doing so takes days of computing time and the
resulting scene file is unusable. The practical limit on the
number of controllers is about 1M. We reduce the number
of animation controllers in two ways. First, the importer
does not animate nodes with a total movement (sum of
state to state movement) below a user-chosen threshold
(typical value 1 cm). Second, the trajectories of each node
are simplified independently by eliminating (i.e. not
creating) controllers for the nearly linear parts. After
simplification, 1.8 M controllers remained. So, we
distributed the simulation scene over three files, each
covering one third of the simulation. Materials and
cameras can of course easily be shared among several
files. Importing the solid objects takes 2 hours total, out of

which 1 hour is needed for the third part of the simulation.
Once the solid objects are loaded, the animator assigns
them standard 3ds max materials.

6.2 Liquid objects
The liquid data saved at every state contains the position
of the nodes of the Eulerian mesh and the fractional
occupancy values at that state. The liquid could be
directly rendered from the occupancy data using volume
rendering techniques. We chose to build a surface
boundary representation first in order to take advantage of
the rendering capabilities of the animation system. For
every state the importer selects the Eulerian mesh
elements that have a liquid occupancy above a certain
threshold (typical value 25%). The internal faces are
eliminated similarly to the solid object case. Once the
liquid is imported, the animator uses 3ds max tools
including mesh modifiers and complex ray-traceable
materials to produce compelling visualizations of the
liquid. In Figure 9 refraction, surface reflections,
attenuation and variable opacity provide realism.
Rendering at VGA resolution takes approximately 5
minutes.

As in the case of the solid objects, animating the liquid is
challenging. There are two fundamental approaches: to
consider the liquid a complex object that moves and
deforms over the simulation time or to frequently
recompute the liquid object from the occupancy data,
possibly at every animation frame.

The first approach is in the spirit of animation systems
where the same geometric entity suffers a series of
transformations over the animation time span. The state of
the geometric entity is known at the simulation states; it
can be computed by thresholding or isosurfacing the
occupancy data. In order to define a morph that produces
the animation frames in between the states,
correspondences need to be established. This is
challenging since the liquid can change considerably from
one state to another; it implies that there are different
numbers of vertices, different local topologies (drops,
liquid chunks separating and reuniting). We have
attempted to implement this approach using the Eulerian
mesh as a link between states. Because the occupancy
values vary considerably from one frame to another,
many small liquid objects are generated. This leads to a
large number of position controllers.

The approach of defining the liquid with independent
objects corresponding to snapshots along the simulation
timeline has proven to be more practical. Visibility
controllers automatically generated by the plugin define
the appropriate life span for each object. To smooth the
transition the objects are faded in and out at a negligible
cost of 4 controllers per liquid object. Currently the liquid
is modeled with one object per state. The 50 liquid objects
total 1.5 M triangles. By interpolating the occupancy data

 6

one could generate one snapshot for every animation step.
When playing back the 50 states over 30 seconds at 30
Hz, 900 liquid objects need to be generated, which
exceeds a practical geometry budget. We are investigating
generating the liquid objects during rendering.

7. DISCUSSION AND FUTURE WORK
The most massive impacting element was the fuel. The
fuselage of the aircraft has little strength under axial
impact, as confirmed by the simulation and validated by
actual experiments [2]. The simulation clearly shows that
the structural damage occurs only when the fuel mass hits.
The simulation can be extended to cover a longer period
of time, with denser states, involving higher resolution
meshes; other possible extensions are modeling the
building and aircraft in more detail and including the
effects of the explosion, of the high temperatures and of
the combustion.

We have implemented a set of tools for integrating the
simulation results with the surrounding scene in a
commercial animation package. All tools can directly be
reused for producing other visualizations. The plugin
importer and 3ds max are now commonly used by the
civil engineering researchers of our team. Initially the use
was restricted to producing illustrations of their work;
they are now using it to inspect the result of simulations.
Scientific simulation researchers and commercial-
simulation-systems developers have shown great interest
in the quality of the visualizations and we have initiated
several collaborations. Except for the liquid raytracing,
the integrated scene could be explored interactively. The
VRML format for example does support triangle meshes
with per vertex animation and can be rendered with
hardware support by many browser plugin or stand-alone
3D viewers.

The link created between simulation and animation has to
be further developed. The current bottleneck is the
animation of the deforming meshes. Paradoxically the
animation system performs better if the animation is
specified by geometry replication. We will continue to
investigate this problem. The importer could be extended
to create dust, smoke and fire automatically. For example
when a concrete element erodes, it should be turned in
fine debris or dust animated according to the momentum
that the element had before eroding. This simulation
driven reproduction of low visibility conditions will be
valuable in virtual training. Another direction for future
work is extending our current system to include classic
visualization techniques. Well studied algorithms can be
employed and we do not foresee any major difficulty.

Good visualizations facilitate the comparison of the
simulation results to observed or recorded real data.
Providing tools to assist and then fully automate the
comparison is one of our longer term goals. Computer
vision techniques are a possibility. They would be greatly

facilitated if the experiment scene or actual event scene is
captured by depth maps in addition to the traditional
photographs. In our case, recording the shape of the
columns affected by the impact would have been both
easy and very beneficial.

Based on our experience with mesh generation we have
begun to devise an interactive script language by which to
specify hexahedral meshes. The language can partially
automate the meshing of complex geometries and
supports this task with operations on meshes. Scalability
is achieved by using a file operations when necessary.
Conceptually, therefore, the FEA model is created
directly from the meshing operations. We believe that
this concept can be extended to a more automated mesh
approach that, at the same time, closes the loop between
meshing and model acquisition/inspection in 3ds max.
Namely, we envision a set of plug-ins that allows a user to
select a component geometric structure in 3ds max, or
designate a part of a model by drawing on it, and then
generates the corresponding script for this structure. The
resulting mesh can then be re-imported into 3ds max.

8. ACKNOWLEDGEMENTS
We would like to thank Scott Meador for his help with
3ds max and Jim Bottum and Gary Bertoline for
providing access to supercomputing facilities here and
elsewhere in the US. William Whitson helped with the
supercomputer runs; Hendry Lim and Mihai Mudure
implemented texture spraying; Mary Moyars-Johnson and
Emil Venere publicized this work; Amit Chourasia
modeled the Pentagon building; Jason Doty produced the
first video illustration of our project and Raj Arangarasan
helped with an earlier implementation. This work was
supported by ITaP, Computer Science Purdue, NSF, ARO
and DARPA.

References
[1] M. Pauline Baker, Dave Bock, Randy Heiland.

Visualization of Damaged Structures. NCSA,
University of Illinois. URL:
http://archive.ncsa.uiuc.edu/Vis/Publications/damage.
html

[2] T. Sugano et al. Full-scale aircraft impact test for
evaluation of impact force, Nuclear Engineering and
Design, Vol. 140, 373-385, 1993.

[3] J. M. McGlaun, S. L. Thompson and M. G. Elrick
1990. “CTH: A three dimensional shock wave
physics code”, Int. J. Impact Engng., Vol. 10, 351 –
360.

[4] J. O. Hallquist and D. J. Benson, Dyna3D User’s
Manual (Nonlinear Dynamic Analysis of Structures
in Three Dimensions), Report #UCID-19592-
revision-3, Lawrence Livermore National
Laboratory, Livermore, California, pp. 168, 1987.

 7

[5] LS-DYNA, Livermore Software Technology
Corporation, Livermore, California, URL:
http://www.lstc.com/

[6] MSC-DYTRAN, McNeal-Schwendler Corp., URL:
http://www.mscsoftware.com/

[7] K. J. Bathe, Finite element procedures, Prentice Hall,
pp 1037, second edition, 1995.

[8] M. Souli, ALE and fluid-structure interaction
capabilities in LS-DYNA, 6th International LS-
DYNA users conference: Simulation 2000, Michigan,
pp 15-37, 2000.

[9] S. A. Kilic and M. A. Sozen, Evaluation of effect of
August 17, 1999, Marmara earthquake on two tall
reinforced concrete chimneys. American Concrete
Institute, Structural Journal, Volume 100, No. 3, pp
357-364, May-June 2003.

[10] http://www.hpcmo.hpc.mil/Htdocs/UGC/UGC98/pap
ers/3b_chal/

[11] http://public.kitware.com/VTK/

[12] “Pentagon Building Performance Report”, American
Society of Civil Engineers (ASCE), 2003, 88 pages.

[13] S. Chen. QuicktimeVR- an image-base approach to
virtual environment navigation. In Proc. SIGG. '95,
pages 29-38.

[14] L. McMillan and G. Bishop. Plenoptic modeling: An
image-based rendering system. In Proc. SIGGRAPH
'95, pages 39-46, 1995.

[15] Paul E. Debevec, Camillo J. Taylor, and Jitendra
Malik. Modeling and Rendering Architecture from
Photographs. In Proc. of SIGGRAPH '96.

[16] SpaceImaging, URL:
http://www.spaceimaging.com/gallery/9-
11/default.htm

[17] M. Segal, C. Korobkin, R. van Sidenfelt, J. Foran,
and P. Haeberli, Fast Shadows and Lighting Effects
Using Texture Mapping. Computer Graphics, 26(2),
249-252 (1992).

[18] Discreet, URL:
http://www.discreet.com/products/3dsmax/

 8

Figure 1 Visualization of the simulation produced with our system

Figure 2 Similar view produced with the post processor

 9

Figure 3 Eulerian mesh that defines the liquid fuel in the wing and central tanks: overall view (top) and detail (down)

 10

Figure 4 Finite element mesh of concrete column consisting of confined concrete core (pink), rebars (brown), outer concrete fluff (light
blue) and anchor (red). Erosion of elements and column destruction caused by impacting block of water.

 11

Figure 5 Airplane model (top) and constructed finite element mesh (bottom).

 12

Figure 6 Reference photograph (top), pose used to start the camera matching search (middle) and solution found (bottom).

 13

Figure 7 Novel view rendered from the texture-sprayed model.

 14

Figure 8 Wire frame visualization of the simulation results

 15

Figure 9 Liquid / column impact visualization.

