Quadratic blending surfaces

Christoph Hoffmann and John Hopcroft

A blending surface is a surface that smoothly connects two
primary surfaces, Usually such surfaces are intended to
smouoth edges in which the primory surfaces would Intersect
otherwise. Blending surfaces are important to geometric
modefling since virtualfy all sofid objects designed and
manufoctured have them.

The paper investigates the generality of a method for
deriving blending surfaces automatically, given that the
primary surfaces are quadrics. The main result is the follow-
ing theorem. Given two guadric surfaces g=0and h=0in
general position, and given a nondegenerate, quartic space
curve on each surface:

® There exist quartic blending surfaces f = 0 tangent to the
quadrics g and h in the respective space curves if and
only if the curves of tangency lie on a common guadric
k=20

® All such blending surfaces satisfy the equation g-h - ui¢
=0, where i is @ number.

® Ajl such blending surfaces may be derived using the
derivation method described efsewhere in greater detail,

Applications of this theorem are also dfscussed.

Geometry, blending surfaces, modefling

Effective use of solid modelling in the design process requires
good interactive editors and automated design techigues.
At the moment, existing modelling systems are |imited both
in the gecometric shapes they are able to represent, and in
the automatic capabilities with which they support the
design process. Currently even the modelling of an already
existing object such as a crankshaft is a major undertaking.

Presently, much of the design cffort must be devoted to
surfaces whose sole functional role is to smoothly connect
two other surfaces and thus whose actual shape is relatively
unimportant provided that certain mathematical constraints
are salisfied. ldezlly, one would like to concentrale on those
surfaces whose shape is of critical importance to the {unction
of the object being designed, and let the system supply the
less important surfaces. An automated design system can
then remove work from the designer by actually supplying
many of the surfaces.

In most parts and part systems of interest, there already
exists a large class of surfaces which are functionally rela-
tively unimportant, and these surfaces, including rounds,
fFairings, and fillets, are often incompletely specified in blue-
prints. For instance, a fillet is specified by an approximate
curvature and the implicit requirement to be tangent Lo two
intersecting surfaces. It rarely matters whether the cross
sections of the fillet are exactly circular — an approximately
circular filler would serve equally well. These approximately
specified surfaces arc collectively known as blends, and a
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long standing problem has been to add the capability to
solid maodellers to supply these blending surfaces aulomati-
cally, based on intuitive and approximate spccifications.

A blending surface is usually mathematically more com-
plicated than the primary surfaces it must smoothly connect.
But the importance of the blending problem is not only
found in the vish to reliove the designer from more demand-
ing mathematics. Another important reason for automating
the design process in general and blending of surfaces in
particular is the goal of making a (partially) completed
design cditable.

Supposc we have constructed a model of an internal
combustion engine. After the design is compleled, we might
wish to modify the piston diameter. A [arge number of
surfaces need to be altered, as the diameicer is changed,
simply to mainlain the integrity of the physical object. One
would like to relale the parameters of these surfaces so that,
ideally, only one parameter needs to be changed, and all the
other necessary changes are performed automatically. This
goal involves understanding how the object might be edited,
and how this will affect the various surfaces. Simply relating
the parameters will involve a sufficiently large overhead so
thal an automaled system is necded in the construction
stage to correctly establish the relationships between the
parameters.

We have previously provided a method for deriving and
pasitioning blending surfaces, given only the algebraic equa-
tions of the two surfaces whose edge of intersection needs
to be smoothed'+?. This method, referred to as the potential
method, is completely general and works for algebraic
surfaces of arbitrary degree. Moreaver, given that surfaces
of algebraic degree m and # arc to be blended, a blending
surface of degree max(2m, 2n) is obtajned, Thus, two
guadrics can always be blended with a degree 4 surface.
Other serious attempts have been reported recently: Rossig-
nac™* approximates blends from toroidal and cylindrical
pieces. His surfaces approximate a blending surface of con-
stant curvature, sacrificing constant curvature and tangency
to the primary surfaces for lower algebraic degrec. Rock-
wood and Owen® offer a method that derives blends as a
function of the two surfaces and their respective gradicnt
functions, yielding, in the case of quadrics, surfaces of
degree 8 or higher. Middleditch and Sears® have a method
that for quadrics also delivers degree 4 surfaces. Much of
their work concentrates on interfacing their method with
constructive solid geometry, as docs Rossignac’s work.

Given the availability of these alternatives, one must ask
what relationship, 1f any, is there between the different
mecthods? Moreover, are there other methods, undiscovered
as yet, that offer better allernalives? These questions pose
difficult mathematical problems which we explore in this
paper for quadric surfaces. |n particular, we prove that
given lwo quadrics, the potential method gives the only
degree 4 surfaces accomplishing the blend. Thus, if two
guadrics are to be blended, and the surfaces obtained by
the potential method are for some reason not suitable, then
surfaces of degree higher than 4 are needed. In particular,
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the class of all degree 4 surfzces tangent to two guadrics in
prescribed curves of tangency is a one dimensional vector
space and has a particularly simple and intuitive structure,
As further implications of the result, we can state posilively
that the blending method of Middleditch and Sears® is an
equivalent formulation of the potential method, and that
those surfaces of Rockwood and Owen® , which simplify to
degree 4 surfaccs, ie the simple blends for cylinders and
spheres, make unnecessary use of the gradient functions.

To carry out the proof requires certain resulis from the
theory of ideals and from algebraic gecometry. Where these
are not proved, we give references to where they may be
found in the litcrature, and attempt throughout to accom-
pany the results with geometric intuitions further clarifying
their nature. We distinguish between a surface S (F) and the
polynamial F (in x, y and z) defining it via the implicit
equation F = 0. This distinction is necessary to avoid con-
fusing geometric argumenis with algebraic ones. Both lines
af reasoning are necded.

The paper is structurcd as follows: the nexl section
reviews the potcential method for blending Lwo intersecting
surfaces, The third section outlines the ideal-theoretic results
nceded from algebraic geometry and explains their geometric
significance. [n particular, we show how requiring tangency
10 a given surface imposcs specific constraints on the surface
equation. The fourth section gives explicit bounds on the
degrec of certain coefficient polynomials needed Lo repre-
sent all surfaces F that intersect, or are 12ngent to, a given
quadric surface G in a specified space curve, The fifth
section, contains the main result that the potential method
delivers the only degree 4 surfaces to smooth the intersec-
tion of two quadrics in general,

As must be cxpected, there are a number of special
situations arising when the curve in which the blending
surface is to be tangent, degenerates in certain ways. These
special cases are discussed in the [inal section, and for them,
other blending methods become possible. Indced, the homo-
topy method" is one such special case.

POTENTIAL METHOD

The potential method® smoothes the intersection of Lwo
algebraic surfaces S (G} and S {#) whosc implicit cquations
are G =0and H = 0. In the simplest version of the method
we pick two constants ¢ and b, and consider the surfaces
specified by G'=G-a=0and H =H - b=10. Thesc
surfaces are similar to S (G} and §{H) but arc cntircly on
their outside or inside, depending on the sign of ¢ and of &.
The inlersections of S {H#') with ${G) and 5(G") with S{#),
define 1wo space curves. We construct a family of blending
surfaces that are tangent to S (G) and S{#) in the respective
Space Curves.

Intuitively, one may think of these blending surfaces as
being obtained by sweeping a space curve in a specific
manner. The two space curves in which tangency is obtained
are specific positions of the sweeping spacc curve, To this
end, we consider the space curve obtained by intersecting
S{G -s) withS(H -1}, and let it sweep through space by
relating the values of s and ¢ through a curve £{s, 1) = 0.
Since the intersections of S (G} with S{H") should be an
instance of the sweeping curve, we require that F(0, &) = 0.
Similarly, we require that f{g, ) = 0. In this manner, a
surface S {F} is defined whost equation is

F=f(G H)=0

In?

[f we require that f be tangent to the s = 0 axis in the point
{0, ), and Langent 1o the ¢ = 0 axis in the point (g, 0), then
5{F) will be tangent to S(G) and S(H) in the respective
curves, as proved in Hoffmann and Hopcroft!2,

For example, consider the cylinders G =37 + 22 -§%2 =0
and H = x? + y* - 4% = 0. Here S{G) and S (#) intersect at
arightangle, and 5 {G) has radius 8 while S (#} has radius 4.
We choose a = 36 and &# = 20. Then G - 36 = 0 is the equa-
tion of a cylinder of radius 10, whercas H - 20 =0 is the
equation of a cylinder of radius 6. We pick ar. ellipsc

fis, )= S _:)2 + (r- 5)*

& " 170

that is tangent to the s-axis at {g, 0} and to the f-axis at
(0, b). Now the surface

(6-36)* | (H-20)"

F=F(G, H) =
(e H) 362 2072

1=0

is tangent to S (G) in the curve of intersection of S{G) with
S({H - 20), and to 5{#) in the intersection of S (G - 36)
with S (/). The surface is of degree 4 and suitably clipped,
blends the intersection of the two cylinders S(G) and
S{H). In a similar manner, we may blend any pair of inter-
secting quadrics with a quartic surface,

In HolMmann and Hopecroft' |, we advocate using a degree
2 curve for £(s, £). This is merely a matter of keeping the
degrec of the resulting blending surface low, Higher degree
functions may well be uscd, cither to achicve osculation in
place of mere tangency, or when Lhe degrees of G and H
differ.

In general, cne is not required to use an ellipse as the
base curve of the blend: any (nondegencrate) conic tangent
10 the coordinate axes in (g, 0) and {0, b} may be used.
With the required points of tangency, ane may write f of
degree 2 in terms of g, & and a free parameter A as follows

F=b25% + Dsr+a*1® - 2ab%s - Watt+a*b? =0

in the above example, £(5, ¢) has A = D. Accordingly, there
is a family of blending surfaces given by

F=b%G? + \GH + ¢*H? - 2ab*G - 2ba*H +a*b* =)

For quadric surfaces, £ is evidently of degree 4. The can-
stants 4, & and A have an intuitive meaning. Loosely speak-
ing, the magnitudcs of & and £ control the distance Lhe
curves of tangency have from the intersection curve, and A
controls the curvature distribution across the blend.

In the gencral formulation of the poteatial method the
polynomials G* and ' may be specified by the mare
complicated scheme

G =G-al
H =H-bW

where W is a polynomial, nol simply 1, as we have used
above. In gencral, ther, the blending surface is swept out by
the intersection of the surface families S (G - sW) and

S(H - tW), where s and £ are related by the function #{s, £
=0, as above. Here the blending surface is the result of
substituting the rational functions s = GfW and ¢ = H{W into
f(s,¢) With Fand W of degree 2, we obtain the degree 4
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blending surfaces S () lrom

E_p 6 H
W? W w
With # = 1 we recover the simple method.

There exists an important rclationship between the
curves S{G’, H) and S{G, H'Y when the potential method is
used. Both G' and H#" may be replaced by a single poly-
nomial G that has degree 2 if G, G', H and 4" have degree 2.

Theorem 1

If £, G’ and H' arc specified by the potential method, then
there exists a polynomial G such that S (G, H) =S (G, H)
and S(G, G) =S (G, H').

Proof
Since F is derived from the potential method, we have

G'=6G-al
and
H' =H-bW

Now S(G, H) = §(uG +vH, H) for u # 0. We let
G =bG +aH - abW

Then G = bG" +aH =aH' + bG, from which the result
follows.

As we shall see in the fifth section, in general the con-
verse of Thecrem 1 is true, and these surfaces are the only
degree 4 blending surfaces for intersecting quadrics.

ALGEBRAIC GEOMETRY

We now explore some of the algebraic properties of the
equation F that describes an algebraic surface intersecting
or tangent 1o a given quadric surface in a specified curve.
These properties are derived lrom classical results of
algebraic geometry (see, for example, Fulton”), The surface
equations are considered polynomials over the ground field
C of complex numbers, since most results needed from
algebraic geometry are only valid for algebraically closed
ground fields and the lield R of real numbers is not alge-
braically closed.

Let S (G} be a nandegenerate quadric surface, ie it does
not consist of 1wo planes and so corresponds to the irreduc-
ible degree 2 polynomial G in C|x, y, z]. Let S{G, H} be
the space curve on the surface 5{G) defined as the complete
intersection of 5(G) with another quadric surface §(#), in
turn specified by the degree 2 polynomial 4. Under certain
circumstances, the intersection curve S (G, H) splits into a
number of components. This introduces complications that
must be dealt with as special cases,

Definition

An ideal / is a subset of palynomials in C[x, v, z] closed

under addition and closed under multiplication with every

polynomial in C[x, y, z]. That is, for A and Bin/,A + B is

in/,and for4 inC[x, y, z] and B in/, ABisin /.
Consider the ideal (G, H) generated by polynomials G

and H. The ideal is the set of all polynomials of the form

unliima T] nrimhbar & iy fananet 1084

AG + 8H, where A and 8 are arbitrary polyncmials in

Clx, y, z]. Intuitively, the ideal {G, #) contains only poly-
nomials defining algebraic surfaces that contain the inter-
sectien curve S{G, H), since G and H vanish simultancously
at every point on che curve. G and H will 2lso vanish at
other poinis, bul not simultaneously,

[n general, the ideal (G, H) will not contain ali poly-
nomials F that vanish on the intersection curve S{G, H).
The relationship between the set of all such polynomials
and the ideal {G, A) is explained in the following theorem.

Theorem 2 (Hilbert Nullstellensatz)

[f 5{F) contzins 5{G, H), then F* is in (G, H), for some
integer 2.

[ntuitively, the space curve S{G, H) does not reflect the
algebraic multiplicity of the intersection. For example, the
plane x2 = 0 intersects the planc ¥ = 0 in a line, yet the

plane x = 0 which contains this line is not in the ideal (x®,y).

This is one of the reasons why F may have to be raised to a
power greater than 1 in the Nullstellensalz.

When the ideal (G, #) contains al! polynomials vanishing
on ihe interseclion curve, then the exponent of F is always
1. This happens when the intersection of G and H is an
irreducible space curve. Both the geometric notion of irredu-
cibility as well as its algebraic equivalent will now be
explained.

Definition

An algebraic set S{/) is the set of all points satisfying A =0
for all polynomials A in an ideal /. The algebraic set is
reducible if it is the union of two different algebraic sets,
otherwise it is irreducible.

Definition

An ideal /C Cl[x, v, z} is prime if, for all polynomials A and

BinClx, v, z], AB in ! implics that either A or 8 isin /.
Note that if (G, H} is 2 prime ideal, then (G, /) contains

all polynomials F such that 5{F} contains 5(G, #). The

concept of prime ideals and of irreducible algebraic sets are

linked as follows (for example, see p 15 of Fulton”).

Theorem 3

If J is a prime ideal then S{/) is irreducible, Conversely, if
S(f) is irreducible, then there is a prime ideal / such that
S(/}=S{/YandF C .

Now let F specify an algebraic surface that intersccts a
given surface S(G) in the curve S{G, H), specified as the
complete intersection of S{G) with S(&}. The preliminary,
algebraic characterization of F is given by the following
standard result.

Theorem 4

I (G, H) is a prime ideal and S{F) any algebraic surface
containing S(G, H), then F = AG + BH.

When 5{F) not only intersects S{G) in the irreducible
curve S5{G, H) but is also tangent to the surface, then more
can be said about the coefficient polynomial 8.

Theorem 5

Let {G, /) be a prime ideal with 5{G) and S{#} intersecting
transversally in S(G, H). IFS(F) is tangent to S{G) in the
curve S(G, H), then F can be written as F = AG + BH?,
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Proof

Requiring that £ be tangent to G along the curve ${G, H)
implies

F=AG+8H (1)
FXGY - G*F¥ =0 mod (G, H) 2)
FXG7 - G*FZ =0 mod (G, H) (3)

Differentiating equation (1) with respect ta x, y and 2 and
substituting for 7%, 7 and £Z in equation {2) and equation
(3} viclds

BH*GY - G*H”) =0 mod (G, H)
B{H*G? - G*H*) = 0 mod (G, H)

Thus either & or both #*G* - G*HY and #¥G* ~ G*H*

are in (G, H). However, the latter would imply that G and
H were tangent along S(G, H) contrary to the hypothesis.
Thercfore & must be in (G, #} and hence F cap be written
A'G+B'H*,

We conclude this section by explaining when the inter-
section of two quadrics is an irreducible curve and when
their defining polynomials form a prime ideal.

1L is well known (see, for example, Salmon and Fiedler®),
that all space curves of degrec 1 arc lines, and afl of degree
2 are planar conics, By Bezout’s theorem, the complete
intersection of two quadrics in projective space is a curve of
degree 4. The type of curve that arises as the complete inter-
section of two quadrics is one of the following {sce, for
example, Snyder and Sisam® ):

® zn irreducible, nonplanar curve of degree 4

® asingle line plus an irreducible, nonplanar curve of
degree 3 that passes through infinity

® 3 pair of conics

® a pair of lines and a conic

#® four lines

So, if the quadrics arc defined by the forms G and H, the
ideal (G, H) is prime for the first of the abave listed cases,
and is not otherwise, This leads to the following theorem.

Theorem 6

Let G and H be two homogencous polynomials of degree 2.
Then the ideal (G, H) is prime if and only if no plane con-
tains morc than 4 points of the intersection S{G, H), ie if
and only if S{G, H) does not have a planar component.

In the affine case, we must cansider whether some of the
components are at infinity. For example, the two hyperbolic
cylinders xy + w2 =0and yz + w? = 0 have an interscction
contained in the pair of planes wi{z - y}, but the plane w =0
is al infinily. Since we wish to determine the algebraic form
of all surfaces S{F) containing a spacc curve given as the
complete intersection of S{G) with S{H}, it makes sense to
require that the curve be specified in the simplest way. This
means that in the above example, we should replace one of
the quadrics, say yz + 1 = 0, with the planc z - y = 0. Note
that the ideal {yx + 1,z - ¥} is prime, as the intersection
curve, a hyperbola, is irreducibic of degree 2.

Theorem 7

Let G and A be of degree 2. IFS (G) and S{#) are tangent to
each other, then {G, #) is not a prime idcal.

WA

Proof

The curve of tangency S{G, #) is the limit of two scparate
curves infinitesimally apart and therefore has algebraic
multiplicity 2. Hence 5(G, H) is reducible, ie {G, H) is not
prime.

DEGREE BOUNDS

If the surface S{F) is tangent to the surface S{G) in the space
curve S(G, ), then it contains the space curve. Hence, if
(G, H) is a prime ideal, then F is of the form F = AG + BH.
Given the degrees of F, G and A, it is by no means straight-
forward to specify the minimum degrec the polynomials A
and 8 must have. In this section we develop such bounds for
the case when G and # have degree 2, assuming that (G, /)
is a prime ideal. For the remainder of the paper we use the
notation 4 4 to denote the homogeneous polynomial consist-
ing of all degree & terms of 2 polynomial A. |t may be remem-
bered that homogeneous polynomials are zlso called forms in
the literature.

The minimum degree of A and 8 depends on whether
the polynomial G, consisting of all degree 2 terms of G has
a factor in common with the polynomial H,, consisting of
all degree 2 terms of A, If these two polynomials are co-
prime, then A and 8 need not have a degree higher than
deg(F) - 2. If G5 and H, have a common factor but
(G, H} is prime, then the degrees of A and B may be as high
as the degree of F,

Let G and A be degree 2 polynomials specifying the
quadric surfaces ${G) and S{#}, respectively. We assume
that neither S{&) nor S{//} degenerate into planes, so that
both G and A are irreducible polynomials. Moreover, we
assume that S{G} and S(#) intersect in a nonempty irreduc-
ible space curve 5(G, H), ar, equivalently, that the ideal
(G, H) generated by G and #H is a prime ideal. Let £ = AG +
BH be a polynomial defining the surface S(~).

Lemma 1

[f F = AG + BH has degree m, and the degree 2 terms G of
G and H, of H form two polynomials without a common
factor, then both A and 8 may be assumed to have degree,
at most, m - 2, In particular,  cannot have degree 1 or 0,
unless it is the zero polynomial.

Proof
Write G =G, + G and H = H, + A. By assumption, G, and
H, are relatively prime. Lel # be the higher of the degrees
of A and of B. If # > m - 2, we will construct polynomials
A" and B' of degree n - 1 such that F=A'G + B'H. Then
the Lemma follows by induction.

Write A =A,, + A and B = B, + B, where A, cansists of
all degree 7 terms in A, and 8, consists of all degree 77 Lerms
in 8. Assuming 7 2> m - 2, we have

F=AG+BH+A,G +B,H
and

ApGy +8BpH, =0
Since G, 2nd H3 have no common factors, 7 5 1 is impos-
sible and, for # 2> 1, it follows that A, = Cp3H;3 and B, =

- Cp_2G,, where Cp_; is a form of degree 7 - 2, Substitut-
ing these identities for A, and 8,,, we obtain, after adding
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_2GH-C, .G H, that
=AG+BH+Cy 1G(Hy +H) - C,_1H(G, +G)
which is equivalent to
S(A-CpH)G+(B+C, .GH=A'G+8'H

Note that A’ and B' are of degree at most 77 - 1.

We give an example demonstrating that the coprimality
of Gy and H, must be assirmed, Consider the hyperbolic
paraboloid G = xz + - = 0 and the hyperholic cylinder
H=yz+1=0,The ideal {G, #) contains the polynomial
F=yG - xH = ¥ — x, which defines another hyperbolic
cylinder. It is easy Lo see that there are no conslants ¢ and v
such that #G + vH =3 - x = F. Hence the bound of
deg {F) -2 on the coefficient polynomials 4 and 8 cannot
be satisfied.

We have explored degree bounds on the coefficient poly-
nomials A and 8 for prime ideals not satisfying the hypo-
theses of Lemma 1. These bounds are summarized in the
following thearem, which we do not prove here, since we
assume subsequently that the prime ideals considered
satisfy the hypotheses of the Lemma.

Theorem 8

Let S{G) and S{H} be irreducible quadrics, and assume that
(G,H) is a prime ideal. Let F = AG + BH have degree m. If
G, and H are coprime, then the degrees of A and 8 may
be bounded by m - 2. IT G, and H, have a common lactor
Z, then Z has degree 1. Moreover, if Z does not divide

YG, - XH, then the degrees of 4 and 8 may be bounded
by m - 1. If Z does divide YG, - XH,, then G =uX? +

vXY + v+ Go and H = uXY +1Y? ~ul + Hy, where v # 1,

and X, ¥ and ¥ are linearly independent forms of depree 1.
In this case, the degrees of A and 8 cannot be bounded by
m-1.

We apply the theorem 1o surfaces S(F) of degree 4 thal
are required Lo be tangent 1o a given quadric in a prescribed
curve. Referring 10 Thearems 5 and 7, we have a corollary.

Corollary 1

Let S{G) and S{H) be irreducible quadrics, and assume that
(G, H) is a prime ideal and thal G, and H, arc coprime.

If S(F) is 2 degree 4 surface tangent to S(G} in the curve
5(G, H), then F = AG + bH? where A is of degree 2 and b
is a consiant.

TANGENCY TO TWO SURFACES

Let G and A be nondegenerate quadrics. On each of the
surfaces S{G} and S(#), define an irreducible degree 4
curve by the complete intersection with the additional
quadrics /' and G’, respectively. In this section we show
1hat the family of all degree 4 blending surfaces that are
langent to ${G) in the curve S(G, #') and 10 S{H) in the
curve S(G', H) is precisely the family of surfaces canstructed
by the potential melthod, Throughou! the section we assume
thar:

© The surface S{F} is tangent 1o S(G} in ${G, #') and
tangent to S{H} in S(G', 4}, and these curves do not
coincide with the intersection of S{G) with S(H). -

® The polynamials G, H and £ are irreducible, ie the
respective surfaces are nondegenerate.
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® The ideals {G, H), (G, H') and (G’, H) are prime.

® The quadratic terms of G and H4° are coprime, likewise
the quadratic terms of G’ and A, and the quadratic terms
of Gand H,

Thesce assumplions are justified in the [ast section,

We first show thal if the surface S${F) that is 1angent o
5(G) at S(G, ') and 1angent to H a1 S(G", H) is 10 be of
degree 4, then there must be a linear relationship among
G, G H and H'.

Lemma 2
Under the assumiptions at the beginning of the section
H =w G +w,G + w3 H

Proof

Since Fisof degree 4 and S(F) is 1angent 1o 5{G) in (G, H"),
we may write by Corollary i

F=F,=UG+uH"

where the ¢ is a constant and U has degree 2. Since £ is
Langent to ${H} in S(G", H} we may write

F=F,=VH+1G"
Again, v is a constant and V¥ has degree 2. |f # = 0, then F =
GU, and hence S{F) is degenerale. By a symmetrical argu-
ment v # 0, Thus

Fi - Fy ZuH" - 06" =0 mod (G, H)

Since we work with the ground field of comple.\ numbers,

wo = (vfu)' ' # 0 exists, and so wH'? - vG'? factors. Since
[G H) is prime, at least one of the factors is in {G, H).
Hence, with w = wy ar w, = - wy we have

H —w G =wyG +wiH
from which the Lemma follows.

Lemma 3

Under the assumptions made at the beginning of this
section, if G = A", then F = GH + uH'*  and F may be
derived from the potential method.

Proof
We have

Fi-F=UG+uH? -VH -G =(u-v)G? =
=0mad (G, H)
Now (G, H} is prime and G’ cannrot be in the ideal since
S(G’, #) and S{G, H) are irreducible curves that do not
coincide by hypothesis. Hence v - v is in (G, #) and so,
by Lemma 1, & - v = 0. Note that & # 0 by the proof of
Lemma 2. Substituting H' for G’ and v for v we have
FIL-F=GU-HV=0
Since & # H, we have H = U, Substituting for U in F| =

UG + uH'™ we oblain
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F=F =GH+uH"?

which has the required lorm.
We now derive this class of surlaces [rom the potential
meihod. Let

12

u r
W= E + fj + — H
a b ab

Substituting for A’ in the equation for & we thus oblain
F=GH+a*b*W* +5*G* +o*H? - 2ab°GW -

- 20 BHW + 2abGH

Let Fls,r) = b5 + 0202 + 02 6% - 2ab®s - 20*br + (2ab +1)st.

Then with

G dr H

= an _— -

T w W
we have

-

F
fls, 0= 15

Henrce £ may be derived by the potential method.
We now obtain the main resull.

Theorem 9

Assume the hypolheses stated at the beginning of this
section. Then every degree 4 blending surface 5{F) lor a
pair of intersecting quadrics may be derived by the potential
method.

Proof

Recall Lemma 2, since S(G, H') = S(G, H' - w, G} and
S{G' H)=S(w,G" + waH, H), we may replace /' with
H=H'-w;G and G’ with G = w,G' +w3H, hence
G=H, S(G, H)=5(G, H') and 5(G, H) =5I(G', H). The
theorem now follows from Lemma 3.

DISCUSSION

Most of the hypatheses of Theorem 9 are natural and do
not limit the applicability of the resull:

® Since the curves of 1angency lic on a quadric, Bezout's
Theorem implics that they have the same degree as £
Since £ has degree 4, these curves can be specified as the
intersection ol lwo quadrics®'® . Moreover, if onc of the
curves of tangency coincides with S{G, A}, then the
resulting surface S{F) functionally does nol serve as a
useful biend,

# |1 5(G) and S{# ) are reducible guadrics, then a salid
modeller will treat them as planes, not as pairs of planes.
Hence assuming that G or H factor implies that a
different problem is being studied, not the blending of
two quadrics.

& Two nondegenerate quadrics in general position intersect
in an irreducible curve. This justifies assuming the
primality of the ideal (G, H).

INA

Most of the remaining assumptions should be undersioced as
saying that quadrics in special refation 10 each eother admit
a grealer flexibility in blending, ie give rise to special cascs.
These cases need Lo be explored further, as they include
situalions used in blending corners of selids. The assump-
tions we madc excluding them required that the three idcals
(G, H), (G, #) and {G, H') be prime, and that £ be irreduc-
ible. Some of these assumptions may not be independent.
For instance, if £ is reducible and the two factors have
degree 2 cach, then the curves of 1angency ta 5{G) and
S(#) are reducible {¢f Theorem 7). Thesc special cases need
further exploration.

There is onc restriction that we only understand for ils
technical use. This is the fourth assumption listed in the
preceding section, bounding the minimum degree of the
cocfficient polynomials A and 8 in F = AG + BH. Whenever
this restriction is violated, every surface of the form
S{uG + vH), with # and v consiants, is a ruled quadric. We
do not know the deeper geometric significance of this case,
nor why it leads 10 complications in the structure of the
ideal {G, H).
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