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Abstract

Variable-radius circles are common constructs in planar constraint

solving. We give a complete treatment of variable-radius circles when

such circles must be determined simultaneously with placing two groups

of geometric entities.

Part I sets up the problem statement and considers clusters where the

relative motion is translational. It also reviews past work on the subject.

Part II treats rotational clusters motion.
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1 Introduction

A geometric constraint problem consists of a (�nite) set of geometric elements
and a (�nite) set of constraints between them. The geometric elements are
drawn from a �xed universe such as point, lines, circles and conics in the plane,
or points, lines, planes, cylinders and spheres in 3-space. The constraints are
logical constraints such as incidence, tangency, perpendicularity, etc., or metric
constraints such as distance or angle. The solution of a geometric constraint
problem is a coordinate assignment of the geometric elements such that all
constraints are satis�ed, or a message that such an assignment cannot be found.

We consider planar constraint solving in which a decomposition algorithm
has grouped elements recursively into clusters such that three clusters can be
combined into a larger one. In the problems we consider, one of the clusters is
a variable-radius circle, the other two share a geometric element. The variable-
radius circle has four constraints on it, two with elements of one cluster, and
two with elements of the other cluster. These types of constraint subproblems
arise, for instance, in solvers based on a recursive degree-of-freedom analysis,
such as the solvers in [7, 1, 2, 5, 3, 4].

In the �rst part of this paper, we considered the cases in which the shared
geometric element is a line. This constrained the relative motion of the two
clusters to a translation. In this paper, we consider that the shared element
is a point or a circle of known radius. That is, the relative motion of the two
clusters is now a rotation. The rotational case requires solving more complicated
systems of equations than the translational case.

Prior work on constraint solving and on variable-radius clusters has been
reviewed in Part I. We now give an algebraic solution of the problem of variable-
radius circles that are clusters and are determined by cluster merging with
rotation. When using triangle decomposition, such circles are merged with two
other clusters and have four constraints upon them.

2 Problem Statement and Notation

2.1 Problem Description

We consider two clusters S1 and S2 that share as a common element a point or
a �xed-radius circle. Thus, S2 can move relative to S1 by a rotation about the
shared point or the center of the shared circle. The cluster S1 contains the geo-
metric elements E1 and E2, lines or circles. For uniformity, we consider points
to be circles of zero-radius. The cluster S2 contains the geometric elements E3

and E4. There is also a variable-radius circle and each of the four elements Ek,
k = 1:::4, constrains that circle, by distance, incidence, or tangency. Note that
all those constraints can be reformulated equivalently as incidence/tangency
constraints.
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2.2 Notation

We use homogeneous coordinates (x; y; z) for points in 2-space; we have z = 1
for �nite points. Lines have the (homogeneous) coordinates [a; b; c] in the line
equation ax+ by + cz = 0, where (x; y; z) is a point on the line. For �nite lines
we assume that a2 + b2 = 1. In the plane, points and lines are dual of each
other: If we �x [a; b; c], the equation ax + by + cz = 0 represents all points on
the line; if we �x (x; y; z), then the equation represents all lines through the
point.

We will use mappings from plane geometric objects to geometric objects
in 3-space in order to simplify solving the nonlinear equations that arise in
the constraint schema. In 3-space, planes have the coordinates [A;B;C;D] and
points (X;Y; Z;W ), withW the homogenizing coordinate. The duality of points
and planes in 3-space is established by the equation AX+BY +CZ+DW = 0.

When concentrating on aÆne (�nite) points, we will write (x; y)E for points
in the aÆne plane and (X;Y; Z)E for points in aÆne 3-space. Furthermore, we
write [x; y]E and [X;Y; Z]E to represent vectors in aÆne 2- and 3-space. Recall
that (X;Y; Z;W ) = (X=W; Y=W;Z=W )E when W 6= 0.

We consider oriented geometric elements. This allows us to simplify the
algebraic equations and lower the degree of the resulting systems. For example,
two circles may have up to four tangents, but two oriented circles have only
up to two oriented tangents, because we require that they are tangent with
a consistent orientation. We do not lose solutions as long as we consider all
relevant orientation combinations. The approach goes back to [6].

The oriented circle, or cycle, in 2D with center (x; y)E and radius r can be
represented as the 3D point (x; y; z)E = (x; y; r; 1). The sign of r signi�es the
orientation of the cycle: If r > 0, the cycle is oriented counter-clockwise; if
r < 0, the cycle is oriented clockwise; if r = 0, the cycle represents a 2D point
and is considered to have both orientations simultaneously.

The oriented line, or ray, is de�ned as the line [a; b; c] with an orientation.
That is, the rays [a; b; c] and [�a;�b;�c] have the same underlying line but
have opposite orientations. The orientation of a ray is derived from the normal
vector [a; b]E by turning the vector clockwise by 90Æ, into the vector [b;�a], so
obtaining the direction vector of the ray.

The distance of a point to a ray is measured as a positive quantity if the
point is to the left of ray seen in the ray's direction. The radius of a cycle is
positive if the cycle oriented counter-clockwise. The angle 6 (Li; Lj) between
the two rays Li and Lj is measured from the direction of Li clockwise to the
direction of Lj .

We focus only on three elements in each of the two clusters, namely the
shared element and the two elements on which the constraints on the variable
circle are placed. We denote the elements of �rst cluster with E0; E1; E2, and
those of the second cluster with E0; E3; E4. Ultimately, the form of the algebraic
equations that must be solved to merge the three clusters and determine the
coordinates of the variable-radius circle depends on the type of the element E0

and on the type of the other four elements. Therefor, we classify the various
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instance of the constraint schema with E0(E1E2; E3E4).

We write Ci if the ith element is a cycle, and Li if the ith element is a

ray. If the ith element is a point, we write Ci because we can consider the
point a cycle with zero radius. T (E; d) denotes the translation of element E
along the x-axis by a distance d, and R(E; �) denotes the rotation of element E
counter-clockwise about the origin by the angle �.

Recall that the oriented cycle can be mapped to a point in 3-space. The cy-
clographic map of the cycle (x0; y0; z0; 1) is the cone whose apex is (x0; y0; z0; 1),
whose axis is parallel to the Z-axis, and whose angle is equal to �=4; [6]. We call
this a normal cone and denote it as C((x0; y0; z0; 1)). The cyclographic map of
a ray [a; b; c] is a plane denoted by C([a; b; c]).

2.3 Parameterized Plane Computations

We solve the rotational cluster problems by considering how the intersections
of rotating cyclographic maps depend on the rotation angle �. Recall the circle
parameterization, where t = tan(�=2):

x(t) = (1� t2)=(1 + t2)
y(t) = 2t=(1 + t2)

We obtain the following:

Theorem 1 The cyclographic map for the ray [a; b; d] rotated about the origin

by � has the form

[a(1� t2)� b(2t); a(2t) + b(1� t2); c(1 + t2); d(1 + t2)]

where t = tan(�=2), �� < � < �, and c = �pa2 + b2. When � = �, the

cyclographic map becomes [�a;�b; c; d].
Theorem 2 Let C1 = (x1; y1; z1; 1) and C3 = (x3; y3; z3; 1) be two normal

cones. The intersection plane of C(C1) and C(R(C3; �)) has the form

[a(1� t2)� b(2t) + e(1 + t2); a(2t) + b(1� t2) + f(1 + t2); c(1 + t2); d(1 + t2)]

where t = tan(�=2), �� < � < �, a = x3; b = y3; e = �x1; f = �y1; c = z1 � z3,
and d = (x21 + y21 � z21 � x23 � y23 + z23)=2. When � = �, the cyclographic map

becomes [�a+ e;�b+ f; c; d].

Theorem 3 Consider three planes with constant coeÆcients except for t:

8>>>>><
>>>>>:

�1 = [a2; b2; c2; �d2]
�2 = [a3(1� t2)� b3(2t) + e3(1 + t2); a3(2t) + b3(1� t2) + f3(1 + t2);

c3(1 + t2); �d3(1 + t2)]

�3 = [a4(1� t2)� b4(2t) + e4(1 + t2); a4(2t) + b4(1� t2) + f4(1 + t2);
c4(1 + t2); �d4(1 + t2)]

Then the coordinates of the intersection point, (�1; �2; �3; �), of these

planes, are expressions of degree 2 in t.
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Proof
By Cramer's rule, we �nd the intersection point (�1; �2; �3; �) = (1 +

t2)(Æ1; Æ2; Æ3; Æ) where

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Æ1 =

������
d2 b2 c2
d3 �b3 + f3 c3
d4 �b4 + f4 c4

������ t
2 +

������
d2 0 c2
d3 a3 c3
d4 a4 c4

������ (2t) +
������
d2 b2 c2
d3 b3 + f3 c3
d4 b4 + f4 c4

������
Æ2 =

������
a2 d2 c2

�a3 + e3 d3 c3
�a4 + e4 d4 c4

������ t
2 +

������
0 d2 c2
�b3 d3 c3
�b4 d4 c4

������ (2t) +
������

a2 d2 c2
a3 + e3 d3 c3
a4 + e4 d4 c4

������
Æ3 =

������
a2 b2 d2

�a3 + e3 �b3 + f3 d3
�a4 + e4 �b4 + f4 d4

������ t
2

+

2
4
������

a2 b2 0
�b3 a3 d3
�b4 a4 d4

������+ d2

����� e3 a3
e4 a4

�����
���� b3 f3
b4 f4

����
�35 (2t)

+

������
a2 b2 d2

a3 + e3 b3 + f3 d3
a4 + e4 b4 + f4 d4

������
Æ =

������
a2 b2 c2

�a3 + e3 �b3 + f3 c3
�a4 + e4 �b4 + f4 c4

������ t
2

+

2
4
������

a2 b2 0
�b3 a3 c3
�b4 a4 c4

������+ c2

����� e3 a3
e4 a4

�����
���� b3 f3
b4 f4

����
�35 (2t)

+

������
a2 b2 c2

a3 + e3 b3 + f3 c3
a4 + e4 b4 + f4 c4

������
Since (�1;�2;�3;�) are homogeneous coordinates and 1 + t2 6= 0, the inter-
section point coordinates are equivalently (Æ1; Æ2; Æ3; Æ). Each coordinate is a
quadratic expression in t.

3 The Solving Strategy for 2d Constraint Prob-

lems

As in Part I, we explain each constraint problem in turn, in increasing order of
complexity. We assume that the relevant elements in the two clusters are the
shared element and the two elements on which the constraints on the variable-
radius circle are given. Let E0; E1; E2 be those elements of �rst cluster and
E0; E3; E4 those elements of the second cluster.

We denote the constraint problems as E0(E1E2; E3E4). In the following, E0

is a point. We assume a coordinate system in which E0 is at the origin. The
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cluster S1 is assumed �xed, cluster S2 can rotate about the origin.

3.1 The Rotational Clusters

There are 6 major cases for the rotational clusters problems. They are, in order
of increasing complexity, the C(LL;LL), C(CL;LL), C(CL;CL),C(CC;LL),
C(CC;CL), and C(CC;CC) problems. The shared element C is a point (or
the center of a shared circle).

3.1.1 The C(LL,LL) Problem

Consider four rays L1; L2 in the �rst cluster and L3, L4 in the second cluster.
We want to rotate the second cluster, so that there exists a variable-radius cycle
that is tangent to the four rays.

The cyclographic maps of the four rays are planes C(Li) = [ai; bi; ci;�di], i =
1; ::; 4. We will �nd the intersection point of three planes C(L2), C(R(L3; �)),
C(R(L4; �)) and then put this point onto the plane C(L1). By Theorem 1, the
third and the fourth plane have the equation

R(C(Li); �) = [ai(1�t2)�bi(2t); ai(2t)+bi(1�t2); ci(1+t2); �di(1+t2)]; i = 3; 4;

where t = tan( �
2
). By Theorem 3 with e3 = e4 = f3 = f4 = 0, we compute the

intersection point (Æ1; Æ2; Æ3; Æ4), where

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

Æ1 =

0
@
������
d2 b2 c2
d3 �b3 c3
d4 �b4 c4

������ t
2 +

������
d2 0 c2
d3 a3 c3
d4 a4 c4

������ (2t) +
������
d2 b2 c2
d3 b3 c3
d4 b4 c4

������
1
A

Æ2 =

0
@
������

a2 d2 c2
�a3 d3 c3
�a4 d4 c4

������ t
2 +

������
0 d2 c2
�b3 d3 c3
�b4 d4 c4

������ (2t) +
������
a2 d2 c2
a3 d3 c3
a4 d4 c4

������
1
A

Æ3 =

0
@
������

a2 b2 d2
�a3 �b3 d3
�a4 �b4 d4

������ t
2 +

������
a2 b2 0
�b3 a3 d3
�b4 a4 d4

������ (2t) +
������
a2 b2 d2
a3 b3 d3
a4 b4 d4

������
1
A

Æ =

0
@
������

a2 b2 c2
�a3 �b3 c3
�a4 �b4 c4

������ t
2 +

������
a2 b2 0
�b3 a3 c3
�b4 a4 c4

������ (2t) +
������
a2 b2 c2
a3 b3 c3
a4 b4 c4

������
1
A

To put the intersection point (Æ1; Æ2; Æ3; Æ) onto the plane C(L1) we require
[a1; b1; c1; �d1] �(Æ1; Æ2; Æ3; Æ) = 0. Therefore, we have the quadratic equation
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At2 +Bt+ C = 0, where

A =

��������

a1 b1 c1 d1
a2 b2 c2 d2
�a3 �b3 c3 d3
�a4 �b4 c4 d4

��������

B =

��������

a1 b1 0 0
0 0 c2 d2
�b3 a3 c3 d3
�b4 a4 c4 d4

��������
+

��������

0 0 c1 d1
a2 b2 0 0
�b3 a3 c3 d3
�b4 a4 c4 d4

��������

C =

��������

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

��������
After solving the equation we �nd the rotation angle from � = 2 tan�1(t), and

determine the center and radius of the circle as (Æ1=Æ; Æ2=Æ)E and Æ3=Æ.

Degeneracies: When A = B = C = 0, there is a solution for every value
of t. This degeneracy arises, for example, when L1,L2,L3 and L4 are four sides
of a square centered at the origin, and their directions are oriented counter-
clockwise. When A = B = 0 and C 6= 0, then there is no solution among
�1 < t <1 or � < � < � for this con�guration.

Orientation: Recall that the orientation of lines induces an orientation on the
planes C(Lk), and that we can pair solutions when all orientations are reversed.
Thus, there are 23 signi�cant orientations to be chosen, yielding a total of eight
solutions in the generic case.

Special Case (t = 1; � = �): When A = 0 and B 6= 0, there is only one
solution. In that case, it is possible that � is also a solution of this problem,
and we check this separately.

Special Case (t exists and Æ = 0): In this case the three planes C(L2);
C(R(L3; �)); C(R(L4; �)), are in degenerate position. The degenerate case is
treated in the next section.

Example 1 Consider the problem of �gure 1. The �rst cluster contains the ray

L1 underlying a segment of length 85 at an angle of 45Æ with the x-axis, and the

ray L2 at angle 85Æ with L1, through the segment end point. The second cluster

contains the ray L3 supporting a segment of length 75, at angle 45Æ with the

x-axis, and the ray L4 at an angle of 100Æ with the L3. Find a circle at distance

15 from each of these four rays.

We transform the example problem to �nding a circle tangent to the four
rays. Concentric with the result, and with a radius smaller by 15, will be the
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circle of the untransformed problem. The two clusters have the following initial
con�guration:

8>>><
>>>:

L1 = [ 1p
2
;� 1p

2
;�1; 0]

L2 = [cos(50); sin(50);�1; 85p
2
(cos(50) + sin(50))]

L3 = [� 1p
2
;� 1p

2
;�1; 0]

L4 = [� cos(35); sin(35);�1; 75p
2
(sin(50)� cos(50))]

We get two solutions, namely �2:93Æ and 90Æ: Figure 1 shows the solution for
rotation by �2:93Æ degree. The center and the radius are (�1:47;�57:54)E and
39.65. The other solution rotates the second cluster by 90Æ degree, which makes
the rays L1 and L3 coincident. In this case we �nd a circle whose center and
radius are (62:46;�54:75)E and 82.88 respectively.

~

3.1.2 The C(CE,EE) Problem

We can combine the �ve cases C(CL,LL), C(CL,CL), C(CC,LL), C(CC,CL) and
C(CC,CC), naming them C(C1E2; E3E4). The three planes of the C(LL,LL)
problem are replaced with three planes that arise as follows. If E2 is a ray, then
�1 is the cyclographic map of the ray. If E2 is a cycle, then �1 is the plane
containing the intersection of C(C1) and C(E2). To abbreviate:

If E2 = L2 then �2 = C(L2) else �2 = P (C1; C2).

Using the same notation, we consider the other planes:

If E3 = L3 then �3 = C(R(L3; �)) else �3 = P (C1; R(C3; �)).
If E4 = L3 then �4 = C(R(L2; �)) else �4 = P (C1; R(C4; �)).

With this construction, we know the plane �2 is �xed, of the form [a2; b2; c2;�d2].
Furthermore, from Theorem 1 and Theorem 2, the planes �i, where i = 3; 4,
have the form

�i = [ai(1�t2)�bi(2t)+ei(1+t2); ai(2t)+bi(1�t2)+fi(1+t2); ci(1+t2); di(1+t2)]
From Theorem 3, we know that the coordinates of the intersection point (Æ1; Æ2; Æ3; Æ)
are quadratic in t. After we substitute the intersection point into the equation
of the �rst cone, we have the degree 4 equation

(Æ1 � x1Æ)
2 + (Æ2 � y1Æ)

2 � (Æ3 � z1Æ)
2 = 0

from which we determine the rotation angle.
It is advantageous to \lift" the plane in which we solve the problem in the Z-

direction by a distance equal to the (signed) radius of the cycle C1. This has the
e�ect of reducing C1 to a point and simplifying the cone equation C(C1). The
solution can then be dropped down, to the original problem plane, by shifting
the lines, re-inating the cycle, and increasing or diminishing the variable radius
cycle. The details are routine.
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Degeneracies:
In the degenerate case, three planes may meet in a common line or have

no �nite intersection. The symbolic intersection (Æ1; Æ2; Æ3; Æ) yields no �nite
intersection or no common intersection at all when Æ = 0 and at least one of the
Æi 6= 0; i = 1; ::; 3. The planes intersect in a common line or coincide when Æ1 =
Æ2 = Æ3 = Æ = 0. From the fact that [a; b; c; �d] and [ra; rb; rc; �rd]; r 6= 0,
represent the same plane, we can check that whether three planes coincide.

When the planes meet in a common line, the three planes are linearly de-
pendent. So, we can select two of them to de�ne the line, and parameterize
the line as (x(s); y(s); z(s); w). Substitute the parametric equation into the
implicit equation of the cone:

(x(s)� x1w)
2 + (y(s)� y1w)

2 � (z(s)� z1w)
2 = 0

The solve the equation for variable s. If s is a real number, then we �ne the
intersection points of a line and a cone at two points. Otherwise, the line and
cone do not intersect. If the equation vanishes, the line is on the cone, and there
is an in�nity of solutions.

We give two examples in this section, for the C(CL,CL) and the C(CC,CC)
problem.

Example 2 Consider the problem of �gure 2. The �rst cluster contains the

cycle C1 and a tangent ray L2 that is coincident with the x-axis. The second

cluster contains the cycle C3 and a tangent ray L4 that is coincident with the y-
axis. We �nd a tangent circle of C1 and C4 at distances 18 and 17, respectively,

from the rays L2 and L4.

We translate the rays L2 and L4 by 18 and 17, respectively, obtaining the
rays L02 and L04. This transforms the problem into �nding a circle tangent to
C1; L

0
2
; C3 and L0

4
, allowing a suitable rotation of the second cluster about the

origin by an angle �. We have the initial con�guration for the two clusters:8>><
>>:

C1 = (�65;�10; 10; 1)
L02 = [0; 1;�1; 18]
C3 = (�10;�70; 10; 1)
L0
4

= [1; 0;�1; 17]
There are four solutions for �, namely �73:19Æ; 21:48Æ; 90Æ; 90Æ: For � = �73:19,
we �nd the cycle centered at (�67:43;�10:48)E with radius 7.52; this cy-
cle is inside C1 and R(C3; �). For � = 21:48, we �nd the cycle centered at
(�48:95;�73:44)E with radius -55.44; this cycle is the solution shown in Fig-
ure 2. For � = 90Æ, the lines L2 and L4 are both coincident with the y-axis; this
is a degenerate case that has no solution. ~
Example 3 Consider the problem of �gure 3. The �rst cluster contains the

cycles C1 and C2 at distance 5 from the x-axis with radii 7 and 5, respectively.

The second cluster contains the cycles C3 and C4 with distance 5 to the y-axis,
and with radii 7 and 5, respectively. We �nd a cycle that has distance 5 from

the four circles, as shown in the �gure.
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We translate the above problem by �nding a circle tangent to these four
cycles, allowing rotation of the second cluster by �. The initial con�guration for
the two clusters is: 8>><

>>:

C1 = (�23;�12; 7; 1)
C2 = (�65; 10; 5; 1)
C3 = (�12;�23; 7; 1)
C4 = (10;�75; 5; 1)

There are four solutions for the rotation angle �, namely�34:89Æ;�34:89Æ; 62:21Æ,
and 90Æ. For � = �34:89Æ, the cycles C1 and R(C3; �) are coincident, so we
have a degenerate case where (Æ = Æ1 = Æ2 = Æ3 = 0). Because the two cy-
cles coincide, this problem becomes the Apollonius problem. Here, we �nd
the line generated by two planes �1 = P (C1; C2) and �2 = (C1; R(C4; �)),
and intersect this line with C(C1). There are two intersection points, namely
(�43:53;�28:49; 33:33)E and (�46:20;�29:30;�21:94)E, representing two cy-
cles: The one with a negative radius contains all four cycles, and the one with
positive radius contains none of the cycles. For � = 62:21, we �nd the circle
centered at (�70;�282:98)E with radius -268.00. This cycle is tangent to the
four cycles, so that reducing the radius by 5 yields the solution; see �gure 3. For
� = 90Æ, we have another degenerate case with Æ = Æ1 = 0 and Æ2 = �Æ3 6= 0.
In this case, �1 = [�21; 1; 1; 919];�2 = [1; 0; 0; 0]; and �3 = [ 75

2
; 1; 1; 1269]. The

three planes have no (�nite) intersection. So, there is no solution when the
rotation angle is 90 degree.

4 Conclusions

Our solution strategy for solving variable-radius circle clusters has the following
pattern.

1. Fix cluster S1 and place the coordinate system so that the axis of the
normal cone C0, shared by cluster S2, passes through the origin.

2. Construct the cyclographic maps of all elements, accounting for the ro-
tation of cluster S2. Where possible, replace the cone/cone intersection
with a cone/plane intersection, thus lowering the algebraic degree.

3. Derive a univariate polynomial whose solution determines the position of
S2 and the variable-radius circle of the third cluster.

We �x the cluster that has the more complicated elements. Constraints on circles
(and nonzero distance constraints on points) are algebraically more complicated
than distance constraints on lines. Hence, the cluster with more circle elements
constraining the variable-radius circle is designated as S1.

By working with planes that contain the intersection of two cones, we were
consistently able to achieve the following solution method:

1. Construct three planes and their common intersection.
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Eqn1 �1 �2 �3 Degree
C(LL,LL) Eqn(L1) C(L2) C(L3) C(L4) 2
C(CL,LL) Eqn(C1) C(L2) C(L3) C(L4) 4
C(CL,CL) Eqn(C1) C(L2) P (C1; R(C3; �)) C(R(L4; �)) 4
C(CC,LL) Eqn(C1) P (C1; C2) C(R(L3; �)) C(R(L4; �)) 4
C(CC,CL) Eqn(C1) P (C1; C2) P (C1; R(C3; �)) C(R(L4; �)) 4
C(CC,CC) Eqn(C1) P (C1; C2) P (C1; R(C3; �)) P (C3; R(C4; �)) 4

Table 1: Plane construction table

2. Substitute the intersection into one of the cone equations, or, in the case
C(LL,LL), into the plane equation, deriving a univariate polynomial in a
variable t = tan( �

2
) that yields the required angles of rotation.

3. Solve the polynomial.

Depending on the planes that must be constructed, the polynomial in d has de-
gree up to 4. The number of solutions must be multiplied with 8, the number of
essentially distinct orientations of lines and cycles, leading to up to 32 solutions
in the worst case. The plane constructions and the degree of the polynomial
are summarized in Table 1. Note that no equation has degree higher than 4, an
accomplishment due to working with rotating planes instead of rotating cones.

There are several ways in which the problem can become degenerate. It is
possible that the three planes intersect in a common line or even coincide. In
the common line case, there is the possibility of obtaining an in�nite number
of solutions, i.e., of dealing with an underconstrained instance. This case is
approached by deriving the parametric line equation and substituting it into
the cone or plane equation representing the cyclographic map of element 1 in
S1. If the parameter vanishes, no intersection is also a possibility.
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