
On User-De�ned Features

Christoph M. Ho�mann

Department of Computer Sciences

Purdue University

Robert Joan-Arinyo

Departament de Llenguatges i Sistemes Inform�atics

Universitat Polit�ecnica de Catalunya

August 20, 1997

Abstract

Feature-based design is becoming one of the fundamental design para-

digms of CAD systems. In this paradigm the basic unit is a feature and

parts are constructed by a sequence of feature attachment operations. The

type and number of possible features involved depend upon product type,

the application reasoning process and the level of abstraction. Therefore

to provide CAD systems with a basic mechanism to de�ne features that �t

the end-user needs seems more appropriate than trying to provide a large

repertoire of features covering every possible application.

A procedural mechanism is proposed for generating and deploying user-

de�ned features in a feature-based design paradigm. The usefulness of

the mechanism relies on two functional capabilities. First the shape and

size of the user de�ned features are instantiated according to parameter

values given by the end-user. Second the end-user positions and orients

the feature in the part being designed by means of geometric gestures on

geometric references.

Keywords: Computer aided design, feature based design, user de�ned

features, parametric design.

1 Introduction

Feature-based CAD systems such as Parametric Technology's Pro/Engineer de-

ploy a design paradigm in which the designer may use a set of prede�ned fea-

tures, such as slots, ribs, and holes, and operations for de�ning sketched features

where geometry is created by sweeping a planar cross section or lofting between

two planar cross sections. These operations are adequate to create complex

shape designs, but they do not necessarily make a good connection between this

1



basic repertoire and application needs for mechanical parts which use complex

shape elements that re
ect sophisticated functional requirements.

Some industry studies have attempted to de�ne a comprehensive set of design

features from mechanical parts. Here, a common experience has been that each

new part gives rise to several new features, in addition to the ones previously

conceptualized. Thus, seeking to devise a universal set of features would lead

to a potentially unmanageable number of features that a CAD system might

be asked to provide. For this reason, research has begun to investigate generic

mechanisms for de�ning features using basic de�nitional mechanisms, provided

by a core feature system, and giving the user the option of building custom

feature libraries that might satisfy speci�c application needs without having to

reimplement the CAD system or the system's interfaces.

While the feature mechanisms provided by commercial systems provide some

of the needed mechanisms, they fall short in part because of the absence of

sophisticated ways to build and use compound features. Feature de�nition lan-

guages such as the ASU test bed, [32], are an attempt to provide a more sophis-

ticated de�nitional environment. The feature work by Bronsvoort et al., [1], is

another such attempt that focuses on the delicate problems of feature validity

and conversion.

Commercial design practice is deeply in
uenced by the parametric constraint-

based paradigm. The paradigm o�ers the possibility of designing variational

classes of parts, that is, part families whose members are derived by changing

a few parameters. The way CAD systems implement the paradigm is based

primarily on a design feature history that can be re-evaluated upon changing

parameters, thereby deriving the class members automatically. Here, the free-

dom to structure the design history any way the designer sees �t has turned

out to be detrimental in many cases [6] because the chosen design history and

consequential feature dependencies have profound implications on the ability to

change the design.

CAD users combat the problem of undisciplined design history by devising

design styles that are intended to minimize the interdependency of design fea-

tures in the design history of a part. User-de�ned compound features have the

potential of simplifying such work-arounds: Instead of urging the CAD user to

adhere to a particular style, user-de�ned features can be compounded to become

larger functionally meaningful design units. The advantage here is that design

changes can be prestructured in the user-de�ned feature, and thus the compound

features can be made to have greater functional independence from each other.

Thus, the labor of bringing the design history into harmony with the functional

requirements of the part family is done up-front once, when de�ning a user-

de�ned feature, instead of repeatedly and indirectly, using a company-speci�c

design style.

In addition to providing mechanisms for compounding feature elements into

2



complex, user-de�ned features, tools are needed to ensure such user-de�ned

features are used as intended. Validation rules should be associated with the

feature de�nition whose successful evaluation assures us that the use of the

feature is correct in a technical sense, thereby providing a measure of assistance

to the designer to manage complexity of the design. For example, if a feature is

to be used as a through hole, subsequent material additions should not convert

it into a blind hole or an internal void because of feature collision.

In this paper, we describe some basic mechanisms for realizing user-de�ned

features that permit compounding shapes, encapsulating attributes and param-

eters, and associating topological validity rules. Following earlier work, we have

chosen to express the compounding mechanisms using a generative paradigm

that derives from our Erep work and is responsive to constraint-based, feature-

based design paradigms commonly in use in commercial practice. As in the ear-

lier work, [15], we advocate neutral mechanisms for implementing user-de�ned

features.

Because this work focuses on generative mechanisms for creating and using

user-de�ned features, it does not address the problems of feature conversion

and multiple feature views that are the subject of other work on feature-based

design. A full exploration of the way in which a generative, history-based design

can be combined with multiple feature views and feature conversions is beyond

the scope of this paper. We hope to address it elsewhere.

2 Previous Work

A thorough review of the very extensive literature on feature-based design is

presented in [27]. Among the di�erent aspects that research in feature based

design technology explores, we are interested in methods and tools that facilitate

the design of parameterized features and parts.

There are numerous papers reporting on languages to represent features,

including [10, 11, 12, 13, 15, 17, 18, 19, 25, 38, 34, 36]. The motivations for

this approach fall roughly into the following categories: Evolving solid mod-

eling, facilitating geometric reasoning, improving manufacturability, enabling

CAD/CAM integration, supporting consistency veri�cation, and unifying solid

modeling tools.

Although the important role that feature libraries can play in CAD/CAM

systems was recognized years ago, [29], not many works have addressed the

problem of de�ning and using feature libraries explicitly. Papers explaining a

rationale in support of the concepts proposed include the following.

Luby et al. present in [21] a system that uses two types of features: macro-

features and co-features. Macro-features are classes of geometric forms such

as boxes, U-channels, L-brackets, and slabs. Co-features are attachments or

details which can be added to macro-features, such as holes, bosses and ribs.

3



The authors state that modules are available that let the designer add, create,

modify and delete both macro- and co-features. How such modules might work,

however, is not explained.

In [30, 31, 32], Shah et al. present the ASU shell. It is a testbed for rapid

prototyping of feature based applications. The library of generic features is

organized in the form of a list of properties. Each feature has a feature type

identi�er, a name, a list of generic, compatible features, and a solid representa-

tion. The solid representation of a form feature is a CSG tree. More recently,

the testbed has evolved towards a multi-layered programming interface; [28].

Roughly speaking, a neutral functional view of geometric modeling services is

implemented. Using object-oriented programming, the functional view is inter-

faced with Parasolid and ACIS. The programming layers are extensible.

Nielsen et al, [24] report on an experimental design-with-features system for

thin-walled components that enables the user to extend its usefulness by de�ning

feature-form types.

Laakko and M�antyl�a, [17, 18, 19], describe a language to represent features

embedded in Common Lisp. The feature models are organized as a structure

of Lisp frames. Frames model two di�erent types of features: features classes

which are templates that store generic information, and feature instances that

store speci�c information belonging to individual features. Feature classes are

organized by a taxonomy and use inheritance. A feature model is a list of several

feature instances.

In [10], Duan et al. report on a solid modeling tool for a feature-based design

and manufacture system. The authors claim that, in their system, designers are

free to create any kind of feature. Furthermore, users can construct their own

feature libraries dedicated to speci�c applications. Unfortunately, the paper

does not give any details about how these goals are achieved.

De Kraker et al. in [8] and Dohmen et al. in [9] report on the speci�cation

of a feature language developed at Delft University of Technology. Features

are speci�ed using prede�ned types in the object-oriented, imperative program-

ming language LOOKS. Therefore, the feature library is a library of LOOKS

procedures and de�ning a new feature means to write new code for it. In [7],

maintenance of di�erent feature views is discussed. The geometry representa-

tions are supported by an underlying cellular model. Feature views are declared

along with permitted editing methods and validity constraints. Roughly speak-

ing, declaring a view is analogous to de�ning feature classes. Since multiple,

overlapping views are permitted, features must be located by feature identi�-

cation algorithms since editing, through di�erent feature views, may change or

delete a di�erent feature view.

Recently, Middleditch and Reade described in [23] a formal de�nition for

geometric features focusing just in geometric aspects. The authors claim that

their de�nitions can be used as basis of a suite of functions to support feature-

4



based modelling.

In contrast to a programming approach such as [9], we propose in this paper

the use of a data representation for user de�ned features that extends the Erep

approach of [15, 5]. We explain how the data is to be interpreted semantically,

but without committing to speci�c algorithms. In particular, the representation

is not an extension of a CAD system API, or a programming language.

Maintaining neutrality, we approach user-de�ned feature representations

from this perspective because it facilitates de�ning feature data models that

can be used to exchange feature data between di�erent CAD systems. This

approach necessitates paying careful attention to providing an unambiguous se-

mantics of the data representation. The semantics is procedural, and a number

of detail issues, such as how to solve constraint systems that combine spatial

geometric and equational algebraic constraints, have been deferred. We do ex-

plain in some detail, however, the workings of topological attributes that are

used to validate speci�c deployment of user-de�ned features.

3 The Erep Framework

The Erep work, begun with [15], provides a basis for expressing user-de�ned

features. We brie
y review some of the key aspects of the work.

Erep means \editable representation." It is a neutral format for expressing

form features and constraints, and we have implemented it as a CAD system

that has the feel of Pro/Engineer. By neutral we mean that the (textual) repre-

sentation is not committed to a core solid modeling system. The implementation

uses ACIS as engine that provides boundary evaluations of solids. It is driven by

an Erep interpreter that, with help of a constraint solver, implements constraint-

based generative design using a graphical user interface. The communication

between the GUI, the constraint solver, and the Erep interpreter is textual Erep.

The representation of a part design, in Erep, is a generative feature descrip-

tion. Three primary types of features are distinguished: Generated features,

modifying features, and datum features. We describe how these features work.

Brie
y, a generated feature creates geometry from a cross section and a set

of attributes and constraints. The cross section is described using variational

geometric and dimensional constraints. It is placed with respect to the existing

geometry in 3-space by a sketching plane that can be the supporting plane of

a face or a datum plane that is positioned by spatial constraints. Projected

elements of the prior geometry can be used in the constraint schema and serve

as one device to position the cross section in the sketching plane. The cross

section generates solid geometry by sweeping (extrusion, revolution, or general

sweep). This solid geometry is used to modify the prior existing geometry by

making a cut (material subtraction) or a protrusion (material addition). The

extent of the cut or protrusion is governed by attributes that reference the

5



prior geometry. By using \blind" dimensions, normal CSG operations can be

obtained. By using \extent" attributes such as from-to or through-next, more

complicated shape modi�cations become possible.

A modifying feature is a chamfer or a round that locally modi�es a set of

vertices and edges. It is described by identifying the a�ected edges and vertices

and specifying a set of attributes such as the radius of the round.

A datum feature is a construction point, line or plane. Any number of

these features can be placed using sequential spatial constraints. Their primary

purpose is to provide a graphical, intuitive way of orienting and positioning

generated features without di�cult coordinate system computations.

Erep is, to a large part, a generative representation that describes how to

construct the solid shape. This procedural orientation makes it suitable to

express a procedural description of user-de�ned features using the same mecha-

nisms already implemented in the basic Erep system. The simplicity of visually

de�ning Erep designs is a further reason why we adopted the Erep approach to

UDFs.

There are a number of key technical aspects that the Erep approach has

posed and which were addressed in a number of papers. The feature attachment

problem is the problem of devising an unambiguous semantics for attachment

attributes such as cut through to the next face ormake a protrusion from this face

to that face. In ordinary design situations, the unambiguous interpretation of

such attachment attributes is rather straightforward. However, as demonstrated

in [5], a number of issues arise that leave room for debate, such as the relationship

between what the end-user may call a face, for the purpose of attachment, and

how it might be mapped to the faces of the underlying boundary representation.

The subject of variational constraints poses technical issues in implementing

Ereps, and in a number of papers we have explored many aspects of constraint

solving. A particular issue that is under-appreciated is the mathematical fact

that a well-constrained problemmay have multiple solutions, and that there have

to be rules by which a constraint solver selects the solution that is intended by

the user. It remains an open problem how to communicate multiple solutions to

a user, and by which means the user would navigate conveniently among them,

assuming that he or she should not be required to have a deep understanding

of the underlying mathematics.

A third technical problem of substantial technical depth is the persistent

naming problem. Roughly speaking, the procedural description of a design in

Erep describes not only a speci�c part, but an entire class whose members

are obtained by varying dimensions and parameters. Since the Erep feature

descriptions reference elements of the prior geometry, some of which may be

artifacts of feature collision and so do not exist in any form in the description

of the prior features, we need a way to identify the referenced structures, and

this identi�cation has to remain invariant over the class. In [2, 4], these issues

6



were discussed and addressed. Other work on the subject includes [16, 20].

Persistent naming raises the question of what, in semantic terms, is a vari-

ational class. A persistent naming algorithm provides a procedural semantic.

Descriptive, nonprocedural attempts at giving a rigorous semantics include [33].

4 User-De�ned Features

Standard features are prede�ned by the CAD system. Common examples include

holes, ribs and slots. Those features are supplemented by some mechanisms to

de�ne simple features on-the-
y, such as pro�led extrusions and revolutions,

as well as modifying features such as blends, rounds and chamfers. Standard

features may be all that the CAD system provides. Although su�cient for many

applications in principle, this core vocabulary is not necessarily convenient and

should be supplemented by customized features de�ned by the user. Such a

user-de�ned feature, or UDF, may be speci�c to an application and therefore

complement the core feature vocabulary already provided by the CAD system.

A particular feature is used repeatedly when designing parts. Each use

requires placing the feature in a particular locale and, in many cases, accounting

for di�erent feature dimensions and parameters. This varied use of a feature

should be made as convenient as possible for user-de�ned features. Moreover,

since di�erent applications have di�erent feature needs, it is natural to archive

sets of prede�ned features in a library. The features so archived may be either

standard features or user-de�ned features.

4.1 Requirements

We will distinguish the de�nition of a user-de�ned feature, or UDF, and the use

of a user-de�ned feature. The UDF de�nition is a design process that creates the

feature prototype. A UDF use is the instantiation of a particular UDF prototype

in a concrete design in progress. We impose the following requirements:

1. A UDF can be de�ned using standard features that the CAD system al-

ready provides and/or other, previously de�ned UDFs.

2. The end-user must be able to place and orient the UDF in the part being

designed by means of geometric gestures, using standard insertion proce-

dures. Geometric entities of the design to which the UDF is attached may

be referred to.

3. User-de�ned features must provide de�nitional mechanisms to check the

validity of instantiation and attachment.

4. User-de�ned features must support nongeometric attributes and varia-

tional constraints.

7



The �rst requirement ensures that implementing UDFs requires minimal en-

hancements of the CAD system. A UDF built from one standard feature alone

will be called simple. UDFs that are not simple will be called compound UDFs.

The second requirement ensures that the design process remains visual and

does not change fundamentally.

Features carry information that relates to design considerations other than

the creation of a net shape. A comprehensive formalization of this additional

information remains open. So, we advocate a conservative set of attributes and

evaluation mechanisms that support some of the nongeometric design informa-

tion and functional considerations, and discuss how to inform users when the

use of a UDF is inconsistent with the guidelines that were incorporated into its

de�nition.

Since parametric and variational design is an accepted paradigm, we believe

it is paramount to devise a UDF structure that supports these concepts. There-

fore, we concentrate on a variational notion of user-de�ned features. Other no-

tions might include importing an arbitrary shape as feature, such as the \general

material removal feature" of STEP AP 224. We do not consider such features

here because their use and inclusion does not support parametric design. Sub-

ject to such limitations, they could be added without di�culty to this, more

general, framework.

The functionality of a part is its behavior, [35, 37]. Consider a connecting

rod of a piston engine. The rod's function is to transmit the stroke from the

piston to the crankshaft. Its functionality is given by the maximum force it can

transmit. Functional attributes express functionality and can be captured by

means of constraints that represent interrelationships as well as interdependen-

cies between design data and shape data. The constraints include geometric

constraints as well as engineering constraints expressed by equations and rela-

tionships.

Geometric dimensioning and tolerancing is used to de�ne the limits of ac-

ceptable geometry. Dimensioning speci�es the nominal (ideal) size of geometry.

Tolerancing speci�es the limits within which a nominal dimension is permitted

to vary. Nominal dimensions can be represented by valuated and symbolic di-

mensions. We can attach to each nominal dimension an upper and lower limit.

This way both 'worst case' and statistical tolerance-analysis techniques, [26],

can be applied downstream.

4.2 Shape Creation

We adopt the basic de�nitional mechanism of the Erep work for the purpose of

de�ning three-dimensional volumes: sweep a closed planar cross section pro�le

along a given trajectory according to a well-de�ned extent semantics plus a set

of attributes. Extrusions and revolutions are special cases. Throughout, we

assume closed pro�les.

8



Attributes provide additional information attached to features or elements

of features that capture in part the design intent and engineering signi�cance.

Among the possible attributes we �nd topological, functional and tolerancing

attributes, textual attributes and user-de�ned attributes. Minimal support of

these attributes in a variational design environment requires a persistent naming

schema; [2, 4, 16].

We de�ne a user-de�ned feature informally as a self-contained, parametric,

geometric object consisting of

1. a set of generated features, datum features, and modifying features,

2. a set of imported user-de�ned features,

3. a set of constraints,

4. a set of attributes, and

5. an interface de�nition.

The de�nition of a speci�c UDF prototype begins with the de�ner importing a

previously de�ned UDF or using as �rst feature component a standard feature of

the CAD system. The UDF de�nition continues, as the de�ner sees �t, with the

addition of other UDFs or features as components. Constraints and attributes

are added throughout. Finally, an interface for the UDF is de�ned that governs

the UDF use and attachment process upon instantiation.

In the de�nition of the feature components, as well as in the de�nition of

the interface of the UDF, equations may be used to express relationships that

must be satis�ed. Such equations may be used to determine parameter values

through computation. It is also possible to de�ne inequality relations. They are

used for validity determination only. For instance, inequalities may be used to

de�ne valid ranges of values of parameters and dimensions.

When de�ning the UDF, the de�ner may associate speci�c attributes with

elements of the feature components. We are especially interested in topological

attributes associated with surface elements or volume elements of the UDF. Such

attributes might stipulate that a speci�c face must be part of the boundary of

the part for which the UDF is used. For example, associating with the sides of

a channel the attribute must be boundary ensures that the channel cannot be

used as a step.

Two mechanisms exist for encapsulating a UDF. First, the interface speci�es

which parameters and variables are to be supplied externally upon instantiating

the UDF. The order of instantiation is not �xed as we discuss later. Second,

equations and geometric constraints de�ne how other variables and attributes

are valuated from the interface information, without explicit user action.

Properly encapsulated, a UDF is a meaningful structure that can be treated

as a single unit even though it may have many components. UDFs constitute

a useful mechanism for customizing a CAD system to speci�c application needs

without the need to reimplement parts of the CAD system. As we will show,

UDFs can be implemented simply, yet they o�er great 
exibility.

9



5 Topological Attribute De�nition, Maintenance and

Use

Topological attributes on feature elements are attractive because they can be

supported by many CAD system kernels and are useful for de�ning validity

conditions of features. Speci�cally, the kernel operations of CAD systems will

call on the attribute maintenance mechanism in the following four situations:

1. A face, edge or vertex has been created.

2. A face, edge or vertex has been deleted.

3. A face or edge has been subdivided.

4. Two vertices, edges or faces have been merged.

The following topological attributes can therefore be supported on-line, that is,

the associated actions can be triggered as soon as the corresponding event takes

place in the CAD kernel operation, since they are boundary based.

1. Must be boundary (MBB): The attribute requires that the feature's shape

element becomes part of the boundary, possibly subdivided, and that the

resulting boundary element(s) should not be deleted. If the boundary

element is deleted, then an error is signaled.

2. Must not be boundary (MNB): The attribute requires that the feature's

shape element should not become part of the boundary, in any part. If

a (subdivided part of) the shape element becomes boundary, then the

attachment operation fails.

3. Conditional if on boundary (CIB): The attribute requires that the associ-

ated shape element should become part of the boundary, possibly subdi-

vided. If not, the feature attachment is canceled.

Maintenance of these attributes requires rules for split and merges. By default,

the split elements inherit the attributes of the parent shape element. By de-

fault, merging two shape elements with di�erent boundary-based topological

attributes is an error. The default rules for merging can be overridden with

explicit, user-provided rules.

There are two volume-based topological attributes. Since they are volume-

based, they either are attached to the feature volume itself, or else they are

associated with volumes for which construction geometry provides additional

boundaries.

1. Must be void (MBV): The attributed volume must have an empty inter-

section with the solid interior, after feature attachment, and throughout

the lifetime of the feature.

10



MNB

MBB

Figure 1: Blind hole feature de�nition. See the narrative for details.

2. Must be material (MBM): The attributed volume must be contained in

the solid interior, after feature attachment, and throughout the lifetime of

the feature.

For example, consider a feature de�nition in which a hole is de�ned whose in-

terior has the attribute MBV. Around the hole an annular volume has been

de�ned and attributed MBM. Intuitively, the MBM volume stipulates a mini-

mum material condition for the hole. However, the outer boundary of the MBM

volume would introduce interior faces and edges into the resulting solid model.

We do not advocate creating a completely general nonmanifold solid model

and to maintain validity of all attributes on-line, as is done for example by

[7]. The interior volumes so introduced would become subdivided by overlap-

ping volumes associated with other features nearby, and for complex parts we

anticipate a combinatorial explosion of interior cells, raising many scaling and

performance issues. Instead, we limit nonmanifold structures to surface subdi-

visions, for example, to maintain face regions that must not be subdivided.

Volumes carrying attributes and interior nonmanifold faces and edges are

maintained separately for each feature. They are not incorporated into the solid

model of the part. This implies that the validity of these topological constraints

must be veri�ed o�-line by intersecting the separate structures with the solid

model, when requested to do so by the user. Since the volumes are maintained

separately, no rules for splits and merges are needed. The conceptual separation

into on-line and o�-line attribute veri�cation balances e�ciency requirements for

large-scale design with the support of valid feature use.

A realistic use of features so attributed requires topological rules for match-

ing boundary regions and establishing feature volumes at attachment time, so

that sculptured solid boundaries can be accounted for. We explain with an

example.

11



NS

YS YS

NS

Figure 2: Merge rule for overlapping between YS and NS faces

Example. We want to de�ne a blind hole with a minimum material condition

that must be respected. After this hole feature has been placed, subsequent

design operations must not invalidate the feature. Figure 1, left, is a �rst attempt

at a de�nition. The inner (void) volume has the attribute MBV, the cup-

shaped outer volume the attribute MBM. The two curves indicate boundary

intersections with the prior geometry when attaching the feature. The problem

here is to establish how the MBM volume is allowed to be clipped while still

having a valid feature use. How closely might the intersection curves approach

the bottom of the hole before the hole's function is compromised?

Figure 1, middle, solves the problem by subdividing the cylindrical faces

by the dashed curves. The dashed curves establish a boundary below which

the attached feature must not intersect the boundary. The corresponding lower

areas of the MBM volume boundary have the attributes MBB on the inside

surface and MNB on the outside surface. Any boundary intersection below the

dashed curves compromises the feature use.

The inner cylindrical faces becomes part of the solid boundary, and its MBB

attribute can therefore be maintained on-line. The outer cylindrical face would

create an interior subdivision of the volume, after the feature has been attached.

To maintain it on-line risks a fragmentation of the part volume into numerous

cells. The de�nition of Figure 1, right, addresses the issue as follows. First,

the MBM volume is reduced to the minimum extent permitted. De�ned as

a separate volume for the feature, it is maintained as a separate geometric

structure. When asked to verify the feature's topological attributes, this volume

is re-intersected with the part. If it is not subdivided by the intersection, then

the MBM attribute is satis�ed, otherwise it has been compromised. 2

For the boundary-based attributes MBB, MNB, and CIB we have allowed

subdivision of the faces or edges so attributed. We may want to preserve a face

or an edge in its entirety, and can do so with the attributes may be subdivided

(YS) and may not be subdivided (NS). For instance, the bottom face of the blind

hole would have the attributes MBB and NS, so that no further subdivision is

allowed. The YS and NS attributes have the following default maintenance rules:

A NS face or edge may not be split. When merging NS and YS, an internal

boundary of the face is maintained that preserves the NS attribute. Overlaps

become NS, as shown in Figure 2.

12



6 Implementation

We assume that the CAD system provides generated features, datum features,

and modifying features as explained in Section 3. All these features will be

referred to as standard features.

Many CAD systems allow open pro�les for the generation of cuts and pro-

trusions. Conceptually, we can think of a semantics for open pro�les as follows:

The open pro�le is swept, as a closed pro�le would be, resulting in a surface

sheet. The sheet is joined with the existing solid boundary, resulting in the

creation of a nonmanifold boundary with new intersection edges and vertices.

By a boundary traversal, the combined surface structure is then trimmed to the

intended solid boundary.

This conceptually easy process raises many questions. For example, what if

the surface sheet does not meet or intersect the solid boundary in some places?

Is it always clear on which side of the surface sheet we should add material

or subtract it? What if the surface sheet and the solid boundary to which it

attaches does not always completely enclose a volume? To endow the process of

solid geometry creation from open pro�les with a rigorous foundation is beyond

the scope of this paper. Therefore, we assume closed pro�les throughout.

6.1 User-De�ned Features De�nition

We split the de�nition of a UDF into two subprocesses. First, the geometry

is de�ned. Then, component attributes and equational constraints between

variables are de�ned.

6.1.1 Geometry De�nition

UDFs de�nitions are built by de�ning every component in sequence. The �rst

component so de�ned is called the primary component. The primary component

makes no references to elements of any other component. If the UDF de�nition

does not utilize a previously de�ned UDF, then the primary component must be

a standard feature provided by the CAD system, for instance a datum feature.

The primary component may also be a previously de�ned UDF. Subsequent

components are de�ned and placed with respect to the prior components.1

Since a feature is either simple or composed of component features, UDFs

have a natural hierarchical structure. This structure can be expressed logically

as an acyclic directed graph where each graph node is a component and the

edges are direct dependencies between them, oriented from the component that

1As remarked before, one could allow a general solid as primary feature. This solid would

then be \dead geometry," that could be changed only by additional feature components, not

by changing parameters or constraints on it.

13



makes the reference to the component in which the referenced element is de�ned.

The primary component is at the root of the graph.

As explained before, there are two basic ways by which the extent of geom-

etry creation is determined: blind extent and delimited extent. Both methods

can be used when de�ning a UDF.

6.1.2 Attribute De�nition

We may associate attributes with feature elements. Such attributes may be

topological attributes, functional and tolerancing attributes, textual attributes

and user-de�ned attributes.

In his thesis [3], Charlesworth uses topological attributes to modulate Boolean

operations, in an e�ort to de�ne a symmetric version of feature attachment. A

di�erent approach to validate feature semantics is reported by Mandorlini et al

in [22]. Here, features are standard blind holes, slots, etc. and each type of

feature has standard topological constraints associated with the geometric ele-

ments that de�ne its boundary. After performing a feature attachment, speci�c

rules are triggered to check whether topological constraints still hold. We use

topological attributes also to support validity determination when attaching a

feature, as explained before.

6.1.3 De�nition of Constraints

Other aspects of design intent and functionality can be captured using con-

straints that are de�ned as mathematical equations between variables the design

depends on. Variables can represent geometric dimensions as well as technolog-

ical parameters and engineering variables. Constraints are de�ned as textual

information. The UDF designer is responsible for correctly de�ning the con-

straints that apply.

Note that equational constraints exist in combination with geometric con-

straints. To support such constraints in the CAD system, constraint solvers

must be available that decompose the equations and coordinate them with the

geometric constraint solving processes. In particular, this integration can be

accomplished in a variational sense such that the distinction becomes blurred

between which parameters and dimension values are to be supplied explicitly

and which ones are to be inferred. This generality can be re
ected in the inter-

face de�nition and allows, when properly executed, much 
exibility in the order

of attaching a UDF.

6.2 Encapsulation

Encapsulation requires a well-de�ned functionality and a complete and well-

de�ned interface. Functionality is expressed by the geometry, attributes and

14



equations. The feature de�ner is responsible for the proper de�nition. In this

task, he is assisted by information hiding through encapsulation. Moreover,

encapsulation keeps representational details hidden from the end-user.

The interface of a UDF provides the feature view by which the user generates

UDF instances as needed. The interface consists of a name that identi�es the

feature uniquely, and a set of symbolic parameters.

The parameters in the interface of a UDF feature are variables and datums

tags. When instantiated, variables take scalar values, for example real numbers.

Datums tags, on the other hand, will refer to geometric elements of the part the

UDF is being attached to, after instantiation. They refer to either points, axes,

planes or faces. For simplicity, in what follows we shall refer both to variable

values and to datum links as values.

There are two di�erent categories of parameters: Independent parameters

and dependent parameters. Independent parameters are those whose value must

always be provided externally. Dependent parameters are those that are con-

strained by other entities in the user-de�ned feature. Their actual value is either

provided externally or else derived from the equations and constraints that are

solved during the attachment process, depending on the concrete sequence of

attachment operations carried out. When appropriately supported by an in-

tegrated constraint solver, the distinction between those parameter types need

not be made explicitly and is inferred from the particular manner in which the

attachment process proceeds.

An important issue for encapsulation is how to include features into the

UDF that are already de�ned. There are two basic ways to do this: The �rst

way to include another UDF is by keeping symbolic links to the the feature

and the elements referenced in it. We call such components dynamic. Dynamic

components o�er 
exibility because the external feature that will be linked as

component at instantiation time is the one that is actually present in the library,

at that time. The second way to include another UDF is to generate a local

instantiation of the external feature de�nition. Such static components incur

less overhead in the feature library management and facilitate validity checking.

6.3 Inheritance

UDFs are built from standard features of the CAD system and/or from other

UDFs. As components of the new UDF, they carry with them their own at-

tributes. This provides a natural inheritance for components in the is-a sense.

Without additional mechanisms, this inheritance style is too rigid. We pro-

vide therefore for selective inheritance. Consider a UDF component in which

some of the attributes are changed. This is e�ected when importing the compo-

nent, by modifying those attributes. We require in this case that the UDF be a

static component. For example, a blind extrusion extent might be so converted

to a from-to delimited extrusion extent.

15



It is also possible to impose additional constraints and attributes on the

UDF that is imported as component. This method of selectively re�ning the

UDF component is especially appropriate for dynamic feature components.

We could add a scope mechanism to structure inheritance hierarchically.

Such mechanisms would be easy to add, but may not be needed. Multiple

inheritance does not come up in our design of UDFs since previously de�ned

UDFs always become UDF components.

6.4 Feature Attachment

Feature attachment is the process by which the user includes a new feature

in the part under design. This process must be intuitive and convenient. We

consider feature attachment as a two-step process: attachment de�nition and

attachment evaluation.

For the attachment de�nition, the UDF to be attached is selected by its

name. Then, the user provides interactively the minimal and su�cient infor-

mation needed to de�ne the actual size, position, orientation and extent of the

UDF instance. This information is passed to the UDF through the parameters

of the interface.

After retrieving the UDF from the library, the system displays a feature

template generated with default values. The user carries out the attachment

de�nition by giving values for variables and links for datums. The latter can be

done visually. Once all required information has been supplied, feature attach-

ment evaluation proceeds automatically. We require that the order in which the

UDF components are evaluated and placed respect the precedence ordering of

the component graph (Section 6.1.1).

Depending on the interface de�nition, complex dependencies on parameters

and constraints may be created. In simpler situations, every parameter valuation

or datum pair mating is propagated in order to determine which other dependent

parameters become known according to the equations and constraints in the

de�nition of the UDF. The process of mating geometric elements and assigning

values to dependent variables goes on until the attachment is fully de�ned.

Since no speci�c attachment sequence is enforced, users may de�ne values for

variables and designate mating pairs at their convenience in any order. The only

restriction is that independent datums must be linked through explicit mating

operations and that, at some point, values for independent variables must be

given explicitly. In the attachment evaluation, the actual geometry is computed

according to the values given in the attachment de�nition. It is carried out by

the system.

16



6.5 Validity

UDFs validation can be separated into two steps: First, when the feature is

de�ned, there should be a preliminary de�nition validation. Then, when the

UDF is attached to a part or to another feature, there must be a validation for

the attachment operation.

6.5.1 De�nition Validation

Once a UDF has been de�ned and before it is stored in the features library, a

process to check de�nition validity should be available. Because of the potential

shape variability, however, such checks do not exempt the system from checking

the validity of the instantiation. Moreover, speci�c constraints such as some

topological attributes depend on the interaction of the instantiation of the UDF

with the part in which it is used.

Some validation checks are trivial, including syntactic correctness of con-

straints, coherence of parameter range de�nitions, and so on. More di�cult is

to verify that the UDF will instantiate and is properly constrained. Here we

restrict to evaluating the UDF with the default values provided by the de�ner.

While this check does not guarantee that the UDF will instantiate correctly for

other values chosen by the user, it will preclude a variety of possible errors in

the de�nition.

6.5.2 Attachment Validation

After a UDF has been attached to a part, some tests should ascertain validity.

Routine checks include the veri�cation of dimensional, equality, and inequality

constraints; the absence of self-intersection of pro�les; and so on.

The veri�cation of the topological attributes is an important check that

establishes the semantic validity of the feature use. For example, assume that

we want to guarantee that a channel should not become a step inadvertently. If

the lateral position of the channel on a face is given by a distance parameter from

an edge, the value of the parameter might be used to reason that the channel

bounds material on both sides. However, this is not su�cient to guarantee

validity. Using a must be boundary attribute for both channel walls is a more

reliable validation test.

It is desirable to revalidate a feature use as the design progresses. For exam-

ple, we may install a channel on a block properly, but may then invalidate this

feature with a subsequent pro�led cut that compromises one of the channel walls.

Thus, we should re-evaluate some of the feature constraints. Re-evaluation can

be the consequence of editing a feature, or of adding or deleting another feature.

For e�ciency, re-evaluation should be triggered or bypassed by tracking feature

collision, for example using bounding boxes and maintaining dynamic box trees;

17



e.g., [14] Chapter 3.

7 Erep Representation

We exploit the extensibility of the Erep language de�ned in [15] because it

already provides naturally many of the mechanisms needed to support UDFs

such as persistent naming and variational constraint solving.

A UDF Erep has two parts: A header and a body. The header encompasses

all the information that de�nes the UDF feature interface and the equations and

relationships that variables in the feature design must ful�ll. The body contains

the list of component features from which the UDF feature is built.

In general, attributes can be represented in textual form, properly grouped

under syntactic headers and descriptors. Since we are especially interested in

topological attributes we discuss how they can be included in the Erep.

Topological attributes that must be attached to boundary elements in the

feature can be associated with the topological element in the cross section pro�le

that will generate them. This form of attribute attachment can be handled

appropriately by minor changes to the persistent naming schema used by the

Erep system. Topological attributes that must be attached to volume elements

require naming volumetric elements. We attach the attributes to loops of the

cross section pro�le that generate volume.

As described in Section 6.1.1, a UDF has a natural hierarchical structure

de�ned by the fact that each feature component is built with respect to already

existing feature components. The hierarchy is rooted in the primary feature

component.

Once actual values have been given for the set of parameters that de�ne

the shape and position of the UDF instance, the evaluation of the Erep rep-

resentation can be performed by evaluating �rst the primary feature and then

evaluating each feature component according to the hierarchy in the UDF.

8 Case Study

We illustrate some of the proposed ideas with the following UDF design example.

Consider a connecting rod in an internal combustion engine. An important

function assigned to the connecting rod is to help lubricate a number of the

engine parts. For example, the rod should force oil to the piston pin bushings.

To perform this function, connecting rods have several drilled lubricant passages

as illustrated in Figure 3.2

2This design is from a diesel engine design studied by the ARPA MADE program some

years ago.

18



Figure 3: Connecting rod.

The set of lubricating passages in a connecting rod has a well de�ned func-

tionality. If a particular lubricating system is assumed, the number of passages,

the type of each passage as well as the topological relationships between the

passages will be �xed. To realize an instance of such a lubricating system, one

would only have to de�ne the geometric dimensions of each component passage

and place the passages with respect to the rod. Clearly, such a set of lubricating

passages �ts the idea of UDFs.

We begin with an explanation of how to de�ne the UDF prototype. Then

we will show how the end-user can instantiate and attach the UDF prototype

in a particular connecting rod design.

8.1 De�nition of the User-De�ned Feature

The set of lubricating passages of the rod in Figure 3 can be represented ab-

stractly by the diagram in Figure 4. The set consists of four cylindrical passages

with coplanar axes. The passage labeled l1 is the one to be drilled into the con-

necting rod shaft.

First, we design the passage labeled l1. We begin by de�ning the datum

planes shown in Figure 5. They are a natural choice for features with an extruded

extent semantics and should probably be prede�ned by the system. Datum

planes DP2 and DP3 will be used as references to de�ne the passage. DP2 is

de�ned as a plane normal to DP1, through the y-axis, and DP3 is de�ned as

a plane normal to DP1 through the z-axis. Datum plane DP4 will delimit the

passage extent and is de�ned as an o�set of DP1 at a distance l1.

Once the datum frame has been set up, we sketch the passage pro�le on

the sketching plane DP1 and properly annotate the sketch with geometric con-

19



l1

l2

e1
e2

l4
l3

β

R

h
Η

α γ

Figure 4: Lubrication passages system drilled in a connecting rod with constraint

schema.

straints. See Figure 6. Then, we de�ne the passage extent by assigning the from

face explicit semantics to the sketching plane and the to face explicit semantics

to datum plane DP4. Since the sketching plane now is involved in an extent

that is not blind, a datum plane DP100, a copy of the sketching plane, is created

by the system to support the from face. This allows us to place the sketching

plane independently from the from and to extent planes. Figure 7 shows the

resulting partially de�ned UDF.

DP
1

DP
4

l1

3
DP

DP
2

Figure 5: Datums for a generic passage.

20



DP

DP4

2

r1

DP1

Figure 6: Pro�le and constraints for the �rst passage.

Now we de�ne another basic component in the UDF, the passage labeled

l2. This is illustrated in Figure 8. As before, we embed the de�nition into the

frame of the four datum planes shown in Figure 5. To properly place this frame

we can use spatial variational constraints, or else de�ne auxiliary datums with

parametric spatial constraints. We de�ne datum plane DP6 as o�set of DP1

at distance �R. Now we can de�ne the datum axis DA1 as the intersection

of plane DP6 and DP3. To attach the framework for the second passage, we

require datum plane DP7 to go through DA1 at angle 90 � � with DP3, and

DP8 to go through DA1 at an angle of 90 with DP7. Then DP9 is a parallel

o�set of DP7 at distance R+ e1.

The pro�le of the new passage is de�ned on the sketching plane DP8. Fig-

ure 9 shows the �rst passage projected onto the sketching plane, the pro�le

de�ned, and the geometric constraints. To complete the geometry we de�ne the

extent of the attached passage. We assign the from face explicit semantics to

4
DP

1
DP , DP100

3
DP

DP
2

Figure 7: User de�ned generic passage.

21



6
DP

7
DP

α90 -
R + e1

8
DP

9
DP

DP
1

3
DP

DP
4

DP
2

DA1

R

Figure 8: Datums for the second passage.

datum plane DP8. As before, since the sketching plane now is involved in an

extent that is not blind, a copy of the sketching plane, not shown in Figure 9, is

created by the system to support the from face. The to face is assigned to the

cylinder of the �rst passage. Figure 10 shows the resulting UDF. We continue

in this manner until all feature components have been placed. Figure 11 shows

the �nal UDF.

Now we can de�ne equations between the variables in the new compound

feature. For example,

r1 = 0:25 � t

9
DP

DP
2

DP8

r2

Figure 9: Pro�le and constraints that de�ne the cross section of the attached

passage.

22



6
DP

7
DP

α90 -
R + e1

8
DP

9
DP

3
DP

DP
4

DP
2

DA1

DP
1

R

Figure 10: User-de�ned feature after attaching a second passage.

r2 = r1

r3 = r1

Where t is the rod shaft thickness. We also can de�ne some relationships, such

as

H=3 < h

2H=3 > h

Figure 11: User-de�ned feature.

23



dp3

a

dp

b dp

dp

O

2

1

4

Figure 12: Connecting rod under design to which a lubricant passage system

must be attached.

or others involving variables that represent geometries in the lubricating system

or technological knowledge. Here, H and h are as in Figure 4.

Datum planes DP1, DP2, and DP3 could be taken to be independent param-

eters in the attachment process, but since the user has a choice which parameters

to valuate and which datums to link, we leave it to the constraint solver to de-

termine dependencies during attachment.

Finally we assign topological attributes to boundary elements or to the fea-

ture volumes. An example of boundary attribute is declaring that the lateral,

cylindrical faces of the holes must always contribute to the boundary of the part.

An example of volume attribute is to de�ne that the holes must be always void,

that is, no other construction can add material to the void region generated by

the holes in the part. As discussed in Section 5, this may involve a subdivision

of the cylinders.

8.2 Attachment

Assume that the connecting rod being designed is as shown in Figure 12 and

that we want to attach to it the lubrication passage system de�ned before as a

UDF. Moreover, we assume that we attach �rst the passage to be drilled in the

rod shaft.

We start the attachment by de�ning in the connecting rod the positions

of the basic datum planes dp1, dp2 (this is the drawing plane) and dp3. See

Figure 12. We de�ne dp2 as o�set from the side face a of the rod at a distance

equal to half of the shaft's thickness. Datum plane dp3 is an o�set from the

24



O

α

da1

3

dp

dp

dp

dp

7

6

1

5

dp

Figure 13: Attachment process.

side face b of the rod at a distance equal half of the rod shaft width. dp1 is a

plane perpendicular to both dp2 and dp3 through the center O of the rod big

end. Now we de�ne datum plane dp4 is an o�set from dp1 at a distance equal

to the rod big end internal radius R.

The lubricant passage to be drilled in the rod shaft is attached simply by

mating dp1, dp2, dp3, and dp4 on the part with DP6, DP2, DP3 and DP1 in the

UDF.

Since the rod thickness is already �xed, the UDF parameter r1, and therefore

the cross section pro�le, is de�ned. The passage extent can be �xed by assigning

the from and to semantics to the inside faces of the rod's crankshaft end and

piston end, respectively. Here, the datum planes DP100 and DP4 in the UDF

point to these faces. Note that this is not a mating process, since the terminating

faces are not planar. This is why we distinguish between the planes DP1 and

DP100 in the UDF prototype.

Figure 13 illustrates how to position the second passage with respect to the

�rst one. We �rst de�ne datum axis da1 as the line common to dp1 and dp3.

Then dp5 is a datum plane through da1 at an angle � with dp3. Next, we de�ne

dp6 perpendicular to dp5 through da1, and dp7 as o�set of dp6 at distance R+e1.

See also Figure 4. Mating the sketching plane DP8 with dp5 and DP9 with dp7
in the part �xes the position of the second passage. Alternatively, we may want

to placeDP8 andDP9 based on explicit constraints to the part. For example, we

could make DP8 coplanar with the assembling faces of the rod at the crankshaft

side, thereby not valuating � directly. The valuation of the parameters r2 and

25



r3 is automatic from the constraint equations and completely determines the

cross section. The passage extent can be �xed, for example, by assigning the

through next explicit semantics to the to face in the UDF de�nition.

The attachment process proceeds until every component in the UDF has

been attached to the part under design.

9 Summary

We have presented a propcedural mechanism for generating and deploying user-

de�ned features in a feature-based design paradigm. The mechanism presented

addresses customization needs in a simple, e�ective way. The usefulness of the

mechanism relies on three basic capabilities: Use of standard tools provided by

the CAD system, parameterization of UDFs, and graphical interaction.

Using standard mechanisms already available in the CAD system, the de-

signer does not have to aqcuire new skills. Second, parameterization and con-

straints, we obtain a convenient way to instantiate user-de�ned features ac-

cording to speci�c design requirements. Third, positioning and orientating the

UDF in the part being designed by means of geometric gestures on geometric

references embeds UDF attachment seamlessly into the part design process.

The Erep language provides a strong foundation for expressing user-de�ned

features. It provides already many of the mechanisms needed to support user-

de�ned features such as parameters, attributes, geometric and technological

constraints, persistent naming, and variational constraint solving. Moreover,

Erep is a textual, neutral representation, that is not committed to a core solid

modeling system, and thus focuses on the required information content without

the distractions of speci�c implementation details of the core modeling system.

Acknowledgements

This work was developed while R. Joan-Arinyo was on leave in the Depart-

ment of Computer Sciences, Purdue University, partially supported by a CIRIT

fellowship of the Government of Catalonia under grant 1996-BEAI-400110.

Ho�mann has been supported in part by ONR Contract N00014-96-1-0635

and by NSF grants CDA 92-23502 and CCR 95-05745.

References

[1] W.F. Bronsvoort, R. Bidarra, M. Dohmen, W. van Holland, and K.J.

de Kraker. Feature modeling for concurrent engineering. In I. Horvart

and T. Varady, editors, International Symposium on Tools and Methods

26



for Concurrent Engineering'96, pages 46{55. Technical University of Bu-

dapest, 29-31 May 1996. Budapest, Hungary.

[2] V. Capoyleas, X. Chen, and C.M. Ho�mann. Generic naming in generative,

constraint-based design. Computer Aided Design, 28(1):17{26, 1996.

[3] William W. Charlesworth. Set operations under topological constraints.

PhD thesis, Dept. of Mech. Engr., Purdue University, 1996.

[4] X. Chen and C.M. Ho�mann. On editability of feature-based design. Com-

puter Aided Design, 27(12):905{914, 1995.

[5] X. Chen and C.M. Ho�mann. Towards feature attachment. Computer

Aided Design, 27(9):695{702, 1995.

[6] D. H. Brown Associates, Port Chester, NY. SDRC's VGX Technology,

1997.

[7] J. de Kraker, M. Dohmen, and W. Bronsvoort. Maintaining multiple views

in feature modeling. In Proc 4th ACM Symposium on Solid Modeling and

Applications, pages 123{130, Atlanta, GA, May 14-16 1997.

[8] K.J. de Kraker, M. Dohmen, and W.F. Bronsvoort. Feature validation and

conversion. In D. Roller and P. Brunet, editors, CAD Tools for Products.

Springer Verlag, Berlin, 1996.

[9] M. Dohmen, K.J. de Kraker, and W.F. Bronsvoort. Feature validation in

a multiple-view modeling system. In 16th ASME International Computers

in Engineering Conference. ASME, 19-22 August 1996.

[10] W. Duan, , J. Zhou, and K. Lai. FSMT: a feature solid-modelling tool for

feature-based design and manufacture. Computer Aided Design, 25(1):29{

38, 1993.

[11] A. Ghandi and A. Myklebust. A natural language approach to feature based

modeling. In Advances in Design Automation, volume 1 of Computer Aided

and Computational Design, pages 69{77. ASME, 1989.

[12] D.C. Gossard, R.P. Zu�ante, and H. Sakurai. Representing dimensions,

tolerances, and features in MCAE systems. IEEE Computer Graphics and

Applications, pages 51{59, March 1988.

[13] P.H. Gu, H.A. ElMaraghy, and L. Hamid. FDDL: A feature based design

description language. In H.A. ElMaraghy, W.P. Seering, and D.G. Ull-

man, editors, Design Theory and Methodology DTM89, Design Technical

Conferences Proceedings, pages 53{63, New York, 1989. ASME.

27



[14] C. M. Ho�mann. Geometric and Solid Modeling. Morgan Kaufmann, San

Mateo, Cal., 1989.

[15] C.M. Ho�mann and R. Juan. Erep { An editable high-level representation

for geometric design and analysis. In P. Wilson, M. Wozny, and M. Pratt,

editors, Geometric Modeling for Product Realization, pages 129{164. North

Holland, 1993.

[16] J. Kripac. Topoogical ID System. A mechanism for persistently naming

topological entities in history-based parametric solid models. PhD thesis,

Czech Technical University, 1993.

[17] T. Laakko and M. M�antyl�a. Feature modelling by incremental feature

recognition. Computer Aided Design, 25(8):479{492, 1992.

[18] T. Laakko and M. M�antyl�a. A feature de�nition language for bridging solids

and features. In G. Allen J. Rossignac, J. Turner, editor, Second Sympo-

sium on Solid Modeling and Applications, pages 333{341. ACM Press, 1993.

Montreal, Canada.

[19] T. Laakko and M. M�antyl�a. Incremental constraint modelling in a feature

modelling system. Computer Graphics Forum, 15(3):367{376, 1996.

[20] R. Lequette. Considerations on topological naming. In M. Pratt, R. Sriram,

and M. Wozny, editors, Product Modeling for Computer Integrated Design

and Manufacture, pages 394{406. Chapman and Row, 1997.

[21] S.C. Luby, J.R. Dixon, and M.K. Simmons. Creating and using a featrures

data base. Computers in Mechanical Engineering, pages 25{33, November

1986.

[22] F. Mandorlini, U. Cugini, H.E. Otto, and F. Kimura. Modeling with self

validation features. In C. Ho�mann and W. Bronsvoort, editors, Proc 4th

ACM Symposium on Solid Modeling and Applications, pages 88{96, At-

lanta, GA, May 14-16 1997.

[23] A. Middledicth and C. Reade. A kernel for geometric features. In C. Ho�-

mann and W. Bronsvoort, editors, Proc 4th ACM Symposium on Solid

Modeling and Applications, pages 131{140, Atlanta, GA, May 14-16 1997.

[24] E.H. Nielsen, J.R. Dixon, and G.E. Zinsmeister. Capturing and using

designer intent in a design-with-features system. In Design Theory and

Methodology { DTM'91, volume 31, pages 95{102. ASME, 1991.

[25] H.-M. Rho and D. Sheen. A part feature description model for process

planning of rotational parts. In Advances in Design Automation, volume 1

of Computer Aided and Computational Design, pages 87{91. ASME, 1989.

28



[26] U. Roy, C.R. Liu, and T.C. Woo. Review of dimensioning and toleranc-

ing: representation and processing. Computer Aided design, 23(7):466{483,

September 1991.

[27] O.W. Salomons, F.J.A.M. van Houten, and H.J.J. Kals. Review of research

in feature based design. Journal of Manufacturing Systems, 12(2):113{132,

1993.

[28] J. Shah, H. Dedhia, V. Pherwani, and S. Solkhan. Dynamic interfacing of

applications to geometric modeling services via modeler neutral protocol.

1996.

[29] J.J. Shah. Feature transformations between application-speci�c feature

spaces. Computer-Aided Engineering Journal, 5(6):247{255, 1988.

[30] J.J. Shah and M.T. Rogers. Expert form feature modelling shell. Computer

Aided Design, 20(5):515{524, 1988.

[31] J.J. Shah and M.T. Rogers. Feature based modelling shell: Design and

implementation. In Proc. ASME Conf. Computers in Engineering, Vol 1,

pages 255{261, San Francisco, 1988.

[32] J.J. Shah and M.T. Rogers. A testbed for rapid prototyping of feature based

applications. In J.J. Shah, M. M�antyl�a, and D.S. Nau, editors, Advances

in Feature Based Manufacturing, Manufacturing Research and Technology,

20, chapter 18, pages 423{453. Elsevier Science B.V., 1994.

[33] V. Shapiro. Necessary conditions for boundary representation variance. In

Proc. 13th Symp. on Computational Geometry, pages 77{86, 1997.

[34] L. Solano and P. Brunet. Constructive constraint-based model for para-

metric CAD systmes. Computer Aided Design, 26(8):614{621, 1994.

[35] L.E. Taylor and M.R. Henderson. The roles of features and abstraction

in mechanical design. In Desigh Theory and Methodology { DTM'94, vol-

ume 68, pages 131{140. ASME, 1994.

[36] J. Tikerpuu and D.G. Ullman. General feature-based frame representation

for describing mechanical engineering design developed from empirical data.

In Proc. ASME Conf. Computers in Engineering, Vol 1, pages 245{253, San

Francisco, 1988.

[37] D.G. Ullman. The evolution of function and behavior during mechanical

design. In Desigh Theory and Methodology { DTM'93, volume 53, pages

91{103. ASME, 1993.

29



[38] M. von Rimscha. Feature modelling and assembly modelling - a uni�ed ap-

proach. In F.-L. Krause and H. Jansen, editors, Advanced Geometric Mod-

eling for Engineering Applications, pages 203{213. Elsevier Science Puib-

lishers B.V., 1990.

30


