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Boundary representations are usually separated into two
compornents, g topological component and a geometric
component. The conditions necessary to ensure thot the
topologleal component is unambiguous are well understood,
However, in algebraic modelling systems (as opposed to
polyhedral modelling systems), an unambiguous topological
Structure can have noncongruent geometric interpretations
with identical vertex coordinates, face equations and edge
descriptions using the usual representation of edges as the
Intersectlon of adjocent faces. This means thot e naive
conversion of a C5G tree that unamblguously describes a
solld may well lead to amblguous boundary representations
unless additional information Is retained in the boundary
representation. This paper exomines the source of these
ambiguities.

geomelry, boundary representations, ambiguities

Geometric medelling must be based on a flexible, yet
unambiguous scheme for representing cbjects and sets of
objects, Among the schemes used in current modelling
systems is the familiar boundary representation method,
in which the surface of an object is described, e.g. Ansaldi
et af' and Baumgart?. This method has been used exten-
sively in computer graphics, yet it is by no means a simple
task to lay down a complete set of precise criteria permit-
ting formal verification that a given boundary representa-
tion scheme is unambiguous and informationally complete
in the sense of Requicha and Voelcker®.

A number of papers*? have addressed the intrinsic
problems of boundary representations, and the field has
succeeded in giving precise conditions under which boundary
representations of polyhedral objects are correct and
unambiguous. Here one of the major issues has been to
understand the topological properties of surface descrip-
tions®. These topological properties generalize to the
curved surface domain. However, geometric problems arise
that can lead to ambiguities cven when the topology of the
surface has been unambiguously specified. These difficulties
relate to the following phenomena:

® A curved surface may have singularities, Singular points
may be isolated or constitute curves of singularity. For
example, the vertex of a cone is an isolated singular
point, and the self-intersection curves of certain canal
surfaces are curves of singularity, as shown in Figure 1.
® The intersection curve of two faces may be closed,
and no intrinsic direction of the edge can be defined
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Figure 1. Singular points and curves

naturally. For example, consider the two intersecting
spheres of Figure 2. The curve of intersection is a circle
that has no intrinsic direction, even with the convention
of outward facing normals.

® The intersection curve of two curved faces may have
singular points, even though the intersecting surfaces
have no singularity. For example, the orthogonal, axial
intersection of two circular cylinders of equal radius has
two intersecting ellipses as components, and the points of
intersection are singular curve points. See also Figure 3.

[t is demonstrated in this paper that even with a number of
reasonable and intuitive restrictions, annotations, and con-
ventions, a traditional boundary representation may remain
ambiguous, This ambiguity is not due to a lack of topo-
logical information. To the contrary, the topology is
defined unambiguously by the results of Weiler®. Rather,
the source of ambiguity lies in the representation of edges
as the intersection of adjacent faces.

Representing edges as the intersection of the adjacent
faces is perfectly adequate in the polyhedral domain and
does not cause ambiguities. In the curved surface domain,
this is no longer true, Unfortunately, the intersection curves
of curved surfaces are difficult to represent in any other
way since many do not possess a rational parametric form,
For example, the intersection of two circular cylinders is in
general an irreducible degree 4 curve that is not rationally
parameterizable. When representing the curve, a choice

Figure 2. Closed curve without intrinsic direction
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Flgure 3, Intersection curve with two components and two
singular points

must therefore be made between approximating it to a
satisfactory tolerance by a class of rationally parameterizable
curves, or finding a nonrational parameterization. Alterna-
tively, the source of ambiguities should be sought and how
to circumvent it identified.

Curved surfaces and space curves may be closed, and,
furthermore, they may contain singularities. Both situations
are unparalleled in the polyhedral domain and are respons-
ible for the geometric difficulties that must be faced. That
singularities on edges may cause difficulties has been noted
previously®. However, what has not been recognized is that
there are different, noncongruent interpretations of curved
surface boundary representations that are consistent with
an unambiguously defined surface topology. Thus even
global processing of the boundary representation is insuffi-
cient to resolve the ambiguity and additional information
must be incorporated into the model. Hence work such as
that done by Weiler® needs to be complemented with the
authors’ findings.

The work reported here was done in an ongoing project
aimed at extending the geometric coverage of present day
modelling systems to curved algebraic surfaces of any
degree. 1t is demonstrated that already the basic question of
how to represent an edge becomes an issue in such an
undertaking. The paper is structured as foliows: in the
second section, the usual conventions and properties of
boundary representations are reviewed. The third section
shows why it is necessary to place additional vertices on
certain edges even though from a topological point of view
this is unnecessary as maintained®”. In the fourth section
the ambiguous object is developed by first giving an
unambiguous CSG description clarifying the intended shape.
Then the corresponding boundary representation is given
2nd shown to be ambiguous. Thus, straightforward C5G to
boundary representation conversion algorithms have to
account for the possibility of introducing ambiguities.
Finally, the consequences of these findings are discussed,
as well as how to cope with them.

PRELIMINARIES

In a boundary representation, the surface of an object is
specified given the following information:

® A finite set of vertices, specified by Cartesian coordinates
in Euclidean space.

® A set of edges, where each edge is incident to two
vertices as specified.

® A set of faces, where each face is bounded by (sz2y} a
single cycle of edges.

In addition, edge and face adjacency information is provided.

Typically, an edge is specified by the intersection of two
faces, one on the left, the other on the right of the edge.
Here left and right are defined relative to the edge direction
as seen from the exterior of the object. By convention, the
edge (u, ¥) is considered directed from vertex i to vertex v.
Mareover, the cyclical order of incident edges is specified at
each vertex, say in clockwise order. Additional conventions
are understood, e.g. faces do not self-intersect, two distinct
faces intersect at most in edges, etc.

For finite, polyhedral objects it is simple to define edges
and faces geometrically: a2n edge is uniquely specified as the
line segment connecting two vertices, and the face plane
may be specified by its equation or by three distinct non-
collinear face vertices.

In contrast, representing curved faces and edges is more
difficult, It s assumed that the surface of which the face is
a patch is specified by an implicit algebraic equation. This
equation has been adjusted so that the convention of
outward-pointing normals is obeyed: for each interior face
point p on the surface f, the vector ¥/ (p} locally points to
the outside of the object -- an edge is represented by the
intersection of two adjacent faces. When the adjacent faces
belong to the same surface, an auxiliary surface is used whose
intersection fixes the edge.

We assume that the boundary representation describes a
solid object. This is notusually made precise, but Requicha®
contains ways for stating this requirement rigorously.
However, there is no accepted mathematical definition:
consider the object in Figure 4. Many, but not all, solid
modellers based on boundary representation do not ¢on-
sider this object legitimate because one of the edges is
adjacent to four faces. For example, in Romulus this object
is disallowed®, and so Romulus is not closed under regula-
rized Boolean operations. The reason Romulus forbids this
object seems to be that all object surfaces should be readily
recognized manifolds.

In the modelling system by Paoluzzi et a/'®, the object
of Figure 4 is allowed, but the offensive edge is internally
represented as two different edges that happen to coincide
geometrically yet are topologically distinct. This ensures
that all objects have manifold surfaces, although this would
not be apparent visually. Of the two possible topologies,
shown in exaggeration in Figure 5, the system chooses the
one that leads to a surface triangulation with triangles of

/

Figure 4. Controversial polyhedral object
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Figure 5. Two possible topologies for the coincident edges

nonzero area. Thus, the left topology would be chasen, for
in the right topology every triangulation of the front face
must include a triangle two of whose vertices are the
(coincident) vertices p and p’. This triangle would enclose
geometrically a zero area. Paoluzzi’s modelling system is
closed under regularized Boolean operations, but objects
such as the one shown here necessitate fairly intricate steps
in the implementation.

In the GDP modelling system!!, the object of Figure 4 is
also [egitimate but the edge is represented only once,
although this fact is not clearly stated in the paper. The
object's surface is therefore not a manifold. It is our experi-
ence that the implementation of the modeller becomes
much more straightforward when the manifold restriction is
dropped.

For the purposes of this paper, this controversy is
avoided and solid objects whose surfaces are clearly 2
manifold without having to resort to embedding arguments
are used,

A point p is singular on the surface 7 = 0 if the gradient
V£{p} is zero. Intuitively this means that at a singular point
the position of the tangent plane to the surface is not
defined. Likewise, a point p on zn 2lgebraic curve is singular
if the tangent to the curve at p is not defined. Points which
are not singular are said to be regular. On algebraic surfaces,
the singular points cannot fill up more than certain indi-
vidual curves and points*?. Clearly, faces with singular
points are needed in geometric modelling. For example,
the vertex of a cone is a singular point that must be modelled
in many situations, Let us contain the difficulties intro-
duced by singularities as follows: we require that all singular
points of & face be vertices in the boundary description, and
that, moreover, all interior edge points are regular, i.e.
possess a unigue tangent, Hence, the edge {4, v) of Figure 6
is illegitimate because it contains in its interior the singular
curve paints p and p'.

EDGE CYCLES AS AGAINST LEFT AND RIGHT
FACE SPECIFICATIONS

Consider modelling the intersection of two solid spheres
with surfaces 5, and 53, as shown in Figure 7. The result is
a lens shape with an edge §, N S, on which we arbitrarily
place a vertex v as shown. The edge may then be given as
(4, u). Note that ¢closed edges are perfectly legitimate from
the point of view of Euler operations®?.

In a baundary description of this abject, specify that the
face on 5, is to the right of the edge (&, &), and that the

face on 5; is to the left, as seen from the outside of the
solid. Then the edge (¢, v) must be oriented by the vector
drawn at u.

Now the edge S| M 5, does not have an intrinsic direc-
tion, If there were no additional information as part of the
boundary representation, then {¢, ) could have been
oriented by a vector in the opposite direction. In that case,
[eft and right are seen differently, and the same boundary
representation now describes the object shown in Figure 8,
i.e. the union of the two spheres.

This simple example shows that in the curved surface
domain boundary descriptions somehow must specify edge
orientation in addition to describing where in space the
edge is situated. A simple method is to subdivide the edge
by introducing additional vertices, A minimum of three
vertices is required to encode the intended edge direction,
Such a representation is shown in Figure 9 and no longer is
ambiguous. This convention also serves to simplify graph
algerithms that operate on the edge graph, e.g. when
rendering objects. Note, however, that an edge, say (g, v},
must be traversed before it can be decided whether the
initial direction of traversal was the correct one. It is shown
next that this convention does not solve the problem of
unarmbiguously fixing an edge in space, in general,

Figure 6. Requicha’s edge ambiguity
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Figure 7, Intended edge orfentation

Figure 8. Result of Inverting edge orientation

SINGULARITIES

It has been pointed out by Requicha® that singular points
in the interior of an edge cause uncertainty when traversing
the edge. Requicha is referring to nodal singularities, that is,
to points where two different branches of the curve inter-
sect. His example is shown in Figure 6. When traversing the
edge e from v to v, at the singular points p and g’ it cannot
be decided locally, in which direction to continue with the
traversal. Note that this type of singularity arises with very
simple intersecting surfaces, but it can be handled by
requiring that there are no singular points on the interjor of
faces or edges.

1t would be nice if isolating singularities at vertices were
all that were needed. This is not so, and it is now shown
thatin the presence of singular vertices, ambiguous boundary
descriptions exist that satisfy the following restrictions;

® Every edge cycle consists of at [east three edges and
every vertex is incident to at least three edges,

® All interior points of an edge are regular points.

® All interior points of a face are regular points,

Moreover, the topology of the object is shown to be unique
by the results of Weiler® .

Figure 8. Three vertices to specify edge orientation

Figure 10. ((T, NH) -T2} -T3

First, the object is constructed unambiguously using
constructive solid geometry. Thercafter, its boundary
representation is given and it is shown that this representa-
tion has a second interpretation, also defining a different
solid. In the CSG definition, each primitive volume fis
specified by an implicit algebraic equation £ = 0 and is the
closure of the set of all points p for which F{p) < 0. Thus
we deal with regular sets. The construction gives a step-by-
step elaboration of how the resulting shape is structured.

For the construction, the standard set of primitives® is
used, augmented by the cylinder C : y* + 2% - 6yz = 0.
Although this cylinder itself is not a manufacturable object,
a final object can be constructed from 1t that can be manu-
factured without difficulty. The question of whether
surfaces such as € ought to be included in solid modelling
systems is commented on later in this paper.

The object has quartic faces that are toroidal. First, the
object of Figure 10 is built by subtracting tori 72 and 7,
from the halved torus 7, N H, where / is the half space
¥ =0. The corresponding C5G expression is ((T; NH) - T3)
- T3. The tori dimensions are shown in Figure 10. Next,
take the cylinder C whose cross cut is the Cartesian Leaf,
The cylinder is shown in Figure 11. The positive surface
side, that is, the side pointing to the outside of C has been
shaded, and the gradients are directed as drawn. Conse-
quently, the intersection {({(7; NH)}-T;}-T3) N s the
object shown in Figure 12. A boundary description of this
object is now given. This boundary description could be the
result of a conversion algorithm translating CSG trees to
boundary representations, akin to the one described in
Requicha and Voelcker'?, or the description could have been
constructed directly frem Figure 12 by an unwary designer.

Figure 11, Cylinder v? +2° - 6yz=0




In the descriptian, it is assumed that the edges are oriented
as specified by the vertex pair written. So, edgee, isoriented
from vertex vy to vertex vs. The apposite direction is indi-
cated by negating the edge symbol, e.g.—e, denotesthe edge
e, in opposite direction.

Vertices:

: (_6}0:0}
Va: (_4J0!0)

: ("21010)
Vg: (210)0)
Vs: (4:0:0)
Ve 1 (GJOJO)

Face equations:

a: (X +) P+ -4+ 32 -x? -y - 4)+256=0

bre(x?+y? +22 12 - 1B(2 - x?- )% -1)-81=0

¢: —gxz 2yt 422 - 12 -50(2 ~x* -2 - 1)-625=0
diy*+22 -6yz=0

e:y®+2-6yz=0

Edges with left and right adjacent face:

€y (Vl; VS) (GJ d)
€z (VBp V‘l) (b, d)
e3: (vz, v1}) {c, d)

€41 (Vﬁr V4) (el G’)
[ (V‘IJ Vﬁ) (e: b)
e5: (VS: Vﬁ) (E, C)
e7: {v1, vs) (c, a)
€g: (V‘Z; vs) {5, C)
€g! (Va: V4] (GJ' b)

Edge cycles clockwise about each face:

a: (_ €1, €y €4, - 89)
b: (- €3, &g, €5, — 23)
c: (- e3, es, €, - €7)
: (31; €2, 83)
e:{-ey - €5 - €5)

o

Incident edges clockwise about each vertex:

vi:{e1, - &3 97)
Va: (83: - &3, 85)
4 (92: - €y, e?)
va: es, - eg, - eq)
vs: (g6, — &5, — es)
Ve: (ea, - &9, - €5)

Note that every interpretation of this description has the
same, fixed ropology™*.

Since the vertices are singular points on the intersection
curves of the surfaces, it is possible to interpret the edge
positions differently by following a different branch of the
intersection curve of C with the torus. The complete inter-
section curve of the torus 7, with C is shown in Figure 13.
Four directions may be followed at each vertex, but only
two of them are consistent with the convention of outward
pointing normals and the topology of the boundary descrip-
tion. For global topological consistency, the direction
choices must agree at all vertices, so there can be only two
correct interpretations of the above boundary description,
The second interpretation is shown in Figure 14. [t is easy
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Figure 12. ({T, NH}-T,)-Ta}NC

to verify its consistency with the topology of the boundary
description above. Not only are the two Interpretations
in different position, they are also not congruent. Due to
the asymmetry of the two surface branches for the faces
d and e, the two interpretations have different volume.

Recall that the construction of the object involves the
self-intersecting surface C. Other surfaces could have been
chasen, but self-intersection seems to be necessary for
obtaining global ambiguity. The next section discusses
whether such surfaces should be excluded from modellers,
or if instead, adequate edge data structures that resolve
such ambiguities should be developed.

CONCLUSIONS

1t makes sense to extend CSG type modellers by using as
primitive shapes the point sets defined by {{x, y, z} |
flx, ¥, z} < 0}, where £ = 0 is the implicit equation of
an irreducible algebraic surface, ie. f is an irreducible
polynomial. For quadric surfaces this has already been

Figure 13, Intersection curve (C, T,)
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Figure 14. Second interpretation of the boundary descrip-
tion

proposed ™5 Manufacturability can be a criterion for the
final objects modelled, but should not be imposed as a
limitation on intermediate modelling steps.

When extending modellers in this way, reducible surfaces
ought to be excluded since their equation f {x, y, z) =0 can
be written asg {x, y, z) A {x, y, 2} = 0. Here g and 4 are two
other polynomials, and so f is the union of two simpler
surfaces. In addition, one may require that every modelled
object, obtained from these primitives by the usual regula-
rized Boolean operations, be finite, aithough this need not
be the case for the primitives themselves.

If the modeller is based on boundary representation, we
allow similarly faces that are suitable patches of (irreducible}
algebraic surfaces and edges that are algebraic curves on
themn. Assuming, rather conservatively, that any singularity
should be confined to vertices, the demonstrated ambiguity
becomes 2 matter of concern for modellers based on
boundary representation, but it also needs to be considered
for conversion aigorithms from CSG to boundary represen-
tation. A purely CSG-based modeller does not seem to have
these difficulties.

The question, then, must be whether there are natural
restrictions that eliminate ambiguities of the kind we have
demonstrated, short of avoiding boundary representation
altogether. These restrictions might be one of the following:

¢ Allow no singularities at all.

® Exclude surfaces that are self-intersecting along a curve.

® Find a suitable representation that fixes edges unam-
biguously.

Clearly disallowing all singularities is unreasonable, for
singularities such as the vertex of a2 cone are needed. But
should we exclude surfaces that self-intersect along a curve?
As long as the resulting face does not contain a segment of
the self-intersection curve, we believe that such surfaces
should not be excluded, as the class includes some very
attractive surfaces: for example, the Steiner patch'® has
many desirable properties for solid modelling and is self-
intersecting along three lines. The Steiner patch has the
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following advantages: it is a quartic surface, so the implicit
form has moderate degree, It can be parameterized and the
parametric representation has degree 2. Finally, it is easy to
convert the parametric into the implicit form and vice versa.
So patches of the Steiner surface are especially easy to
work with.

Hence, the third alternative should be explored and edge
representations should be investigated with more care. Such
an investigation divides into two parts: how do we represent
the underlying algebraic curve, and how do we identify a
proper segment constituting the edge.

An algebraic space curve is represented in general as the
complete intersection of two or more algebraic surfaces. |n
the case of solid modelling, two surfaces suffice, say £ =0
and g = 0, so the curve, of which the edge is a segment, can
be represented by the pair (£ g). Note, however, that the
pair (£ uf + vg) represents the same curve as {f, g}, with
u and v constants, v ¥ 0. S0 we may select among the
difference surfaces uf + vg one which simplifies modelling
algorithms, For quadric f and g the most convenient choice
is a ruled quadric, Given f and g, such surfaces always exist
in the set uf + vg and can be found efficiently!®, For higher
degree surfaces, the choice is not cbvious and requires
further investigation.

Now consider a singular point p of the curve (£, g). At
such a point, there are one or more distinct branches of the
curve, In general, it is not possible to isolate one of the
branches by a better choice of g or by using additional
surfaces to intersect with, If singular points are confined to
vertices, then the edge segment is homeomorphic to z line,
and a possible unambiguous identification of the segment is
praovided by specifying an interior point for ezch edge. This
is the methed suggested by Requicha®. The major draw-
back is its inconvenience for rendering algorithms, for the
scheme requires walking the edge, beginning with the
interior point, 50 as to locate the correct branch and
direction at ezch vertex. Instead, it is suggested that the edge
should be annotated with directional information at each
vertex,

In the simplest case, the desired branch is identified by
the tangent director vector at each vertex. This method
suffices for all nodal singularities, that is, for singularities at
which locally the curve consists of a number of continucus
branches that intersect transversally. The singularities of
Figures 3, 6 and 10 are all of this type, and the method
suffices for most situations the authors have encountered.

V&

<Y

Figure 15. Cuspidal singularity u® -v* =0

computer-aided design
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Figure 16. Tacnode v* - u® -v* =0

More difficult singularities are cusps, at which the
branch is discontinuous (see Figure 15) and tacnodes at
which branches intersects tangentially {(see Figure 16).
Intuitively, such singularities require information about
higher order derivatives best provided by birational trans
formations for resolving the curve structure at the singu-
|zrity’?. These transformations can be found algorithmically,
but the procedure is complex and cannot be portrayed
simply. Note that the singularities shown in Figures 15 and
16 arise for surfaces at fairly low degree: the cusp of figure
15 is the curve of intersection of y* - x¥ + z = 0 with the
plane z = 0. The tacnode of Figure 16 Is the intersection of
the parabolic cylinder z - ¥ = 0 with the surface z - x* -
»* =0, approximately a figure of revolution of the quartic
parabola z - y* = 0. In each case, the intersecting surfaces
have no singularities at all.

A large segment of the community restricts itself to
parametric surfaces of specific types, e.g. bicubic patches,
rational B-splines, etc.’®. These surfaces are a proper subset
of all algebraic surfaces; for example, bicubic patches lie on
surfaces of degree at most 18. Does moedelling with such
surface patches avoid problems arising from singularities?
The answer here very much depends on the types of model-
ling operations supported., If only free-form design is done,
then the patches all are fitted to each other explicitly by
the user. [n that case, each patch has a fixed rectangular or
triangular domain and edges between patches are unambigu-
ous, When two such objects are intersected, however, then
this nice surface structure can no longer be preserved. In
that case, the curves in which two patches intersect are the
image of planar algebraic curves that show how the domains
intersect. These curves contain in general singular points
and require special techniques for analysis'®. Whether
global ambiguities can arise in consequence is not known,
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Software file

Application of structural
optimization using finite

elements

P Ward, D Patel, A Wakeling and R Weeks

This paper describes the theoretical busis of SDRC's redesign
package, Optisen. The use of the program s illustrated
using three realistic applications. First, the design of a
plastic seat tub for strength requirements. Second, the
design of en excavelor arm for stiffness and strength
requirements. Third, the modification of g hellcopter for
dyramic respornse.

computer-alfded deslgn, finite elernent analysis, structural optimiza-
tion

NOTATION

*

— denotes optimum (e.g. Z¥)
— refers to the design variable (e.g. Z;)
— refers to the constraint equation (e.g. g;)
— denotes membrane value {e.g. o,,)
— denotes bending value (e.g. o)
(z) — constraint equation asa function of desigh variables
— matrix of constraint gradients
— incremental step in design space
(z) — diagonal matrix of second derivatives of i with
respect to each design variable
— structure stiffness matrix
— Lagrangean function
— mass matrix
— deformed shape in a static analysis
— load vector in a static analysis
— radian frequency
— Lagrange multiplier
— agtual stress
YW — vector of first derivatives of W with respect to each
design variable

QFLEATTECR IO SZIT

Z;  — design variable, typically thickness of shells
] — unit matrix

W — structure mass

V¥ — weighted forced response of structure

o — allowable stress

Until recently, structural optimization has not made a
significant impact on the wider analysis community. Several

5DRC CAE International, York House, Stevenage Road, Hitchin,
Herts, UK
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reasons may be advanced, the most prorminent in the
mechanical engineering field being the requirement for shell
bending elements. In addition, the capability has generally
been made available as ad Asoc packages loosely connected
to an analysis program. SDRC’s Optisen offers integrated
analysis and redesign with interactive graphics capabilities
for both the specification of the design problem and the
interpretation of results.

STRUCTURAL OPTIMIZATION

Te Hllustrate the application of structural optimization, it is
necessary to define the commonly used terminology.

The process of optimization implies producing the best
design for a structure under prescribed loading conditions,
The relative merit of alternative designs is generally evaluated
with reference to five factors. First, satisfactory perform-
ance; the designer may specify upper and lower limits on
displacements, generally referred to as stiffness constraints.
[n addition, limits may be specified on allowable stresses
referred to as strength constraints.

Second, structural mass: of the possible designs satisfying
the performance requirements that with minimum mass is
defined to be the best. In optimization terminology, mass
becomes the objective function.

Third, analysis variables: those structural parameters
which are fixed at the outset. Various fields of optimization
consider certain parameters fixed, In this paper, material
properties and outline geometry are considered fixed. In
addition, there may be any number of finite elements
within the model of the structure assigned to be analysis
elements (i.e. not allowed to change}.

Fourth, design variables: those parameters defining a
structural system which are allowed to vary. For example,
in a finite element model comprised of shell elements the
design variable zllowed to vary s the thickness of the
element. As groups of finite elements tend to correspond to
part of a physical component desired to have uniform
thickness, the element thicknesses are tied to one free
variable for that group. This approach is referred to as
design variable linking.

Finally, gauge constraints: in addition to constraints on
structural performance upper and lower bounds may be
specified on the design variables. The lower gauge constraint
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