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Abstract. Three-dimensional geometric constraint solving is a rapidly de-
veloping �eld, with applications in areas such as kinematics, molecular mod-
eling, surveying, and geometric theorem proving. While two-dimensional
constraint solving has been studied extensively, there remain many open
questions in the arena of three-dimensional problems. In this paper, we con-
tinue the development of our previous work on con�guring a set of points
and planes in three-space so that the con�guration satis�es a given system
of constraints. The constraint system considered consists of six geometric
elements and pairwise constraints between triples of the elements. We �rst
review the basic techniques developed in our earlier work germaine to the
current problem and explain how the problem we consider in this paper oc-
curs. We then demonstrate how to solve the case of a geometric constraint
system with four points and two planes.

1. Introduction

The spatial geometric constraint problem consists of a set of geometric
entities, and a prescription of geometric constraints between the elements.
The goal is to �nd all placements of the geometric entities which satisfy
the given constraints. Two-dimensional constraint solving has been studied
extensively, yet many open questions remain for the spatial problem.
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A problem is well-constrained if it has a �nite number of solutions,
while a problem with an in�nite number of solutions is underconstrained. A
problem is overconstrained if one constraint can be deleted yet the problem
still has a �nite number of solutions. An overconstrained problem may have
a solution when the additional constraints are consistent with previous
constraints, but often overconstrained problems have no solution.

Applications of constraint solving to kinematics include determining
whether a mechanism is over- or underconstrained and its degrees of free-
dom. Further, by arbitrarily �xing underconstrained sketches, instance con-
�gurations of mechanisms can be computed. In the case of complex mecha-
nisms, this may lead to reasonable kinematic simulations. Conversely, some
techniques used in kinematics can also be used in constraint solving.

In this paper, we continue to develop our previous work on con�guring a
set of points and planes in three-space so that a given system of constraints
is satis�ed. The problem considered has six geometric elements and pair-
wise constrains four triples of the elements. After a brief review of basic
techniques and problem context, we demonstrate how to solve the case of
a certain geometric constraint system with four points and two planes.

2. General Solution Technique

Given a set of geometric elements and certain constraints between them,
there are two basic strategies for solving the constraint problem. An in-

stance solver uses the explicit values of the given constraints to deter-
mine the possible geometric con�gurations which satisfy the constraints.
A generic solver determines whether the given geometric elements can be
placed independent of the particular values assigned to the constraints.
That is, the constraints have a symbolic rather than numerical value. The
geometric elements are placed only after a decision has been made about
whether or not the problem is generically well-constrained.

There are a variety of ways to implement each of these two strategies.
Numerical constraint solvers �rst translate the constraints into a system
of algebraic equations. This system is then solved using an iterative tech-
nique such as the Newton-Raphson method. Examples of numerical solvers
include Sketchpad (Sut63) and ThingLab (Bor81). Symbolic constraint
solvers also begin by setting up a system of algebraic equations. However,
general symbolic computations are applied �rst to simplify the system, be-
fore solving it numerically. Methods such as Gr�obner bases (Bos85) or Wu-
Ritt (WT86) techniques can be applied to �nd symbolic expressions for the
solutions. For example, Kondo uses the symbolic computation for adding
and deleting constraints from a given system (Kon92). Logical inference
and term rewriting applies general logical reasoning techniques to the con-



A Spatial Constraint Problem 3

straint solving problem. This approach has been taken by Aldefeld (Ald88)
and Bruderlin (Bru90). For a deeper literature review see (Fud93; DH95).

2.1. GRAPH-BASED CONSTRUCTION SEQUENCES

Our approach to constraint solving is graph-based. Graph-based algorithms
for solving geometric constraint problems have a graph analysis phase and
a construction phase. First, a graph representation of the problem is con-
structed, where the nodes of the graph correspond to geometric entities,
and an edge corresponds to a constraint between entities. A graph analy-
sis determines whether the problem is well-constrained and a construction
sequence. The graph analysis is more discriminating than Gruebler's or
Reuleaux's criteria (Bar93; Phi84). It does not, however, account for de-
generacies such as three planes intersecting in a line rather than a point due
to speci�c constraint values. If the graph is (generically) well-constrained,
this phase also determines a sequence of steps for solving the problem.

The second phase of the graph method takes the construction sequence
determined from the �rst phase and performs the necessary construction
steps to actually place the geometric elements. Since the �rst phase does not
depend on the values of the constraints but only on the number and type
of constraints between the geometric elements, we have a generic method
of constraint solving. The actual values of the constraints only considered
in the second phase when the construction steps are carried out.

One way to handle the analysis phase of the graph-based method looks
for collections of geometric elements whose members can be placed with
respect to one another based on constraints between them. These collections
are then placed relative to one another, thus forming new, larger collections
of elements, until all constraints have been processed and the locations
of all the elements are known. We propose to use this recursive method
to analyze the constraint graph for the three dimensional problems. This
approach extends the two-dimensional constraint solving method developed
in (BFH+94; Fud93). In the following sections we give a very brief overview
of the method; further details and examples can be found in (DH95).

2.2. GEOMETRIC ENTITIES AND CONSTRAINTS

In the following, we restrict to considering only points and planes in R
3.

A point is represented simply by its coordinate triple (x; y; z). A plane
is represented by its unit normal (nx; ny; nz) and the distance from the
origin to the plane d. This simpli�es matters because each of the geometric
entities has three degrees of freedom, thus allowing a uniform handling of
the constraints and geometries throughout the solution. The constraints
allowed are distance between two points, signed distance between a point
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and a plane, and angle between two planes. When an angle is given between
two planes, it is assumed to be the angle between the sides of each plane
positive with respect to the plane normals.

2.3. GRAPH ANALYSIS

The �rst step of the construction is to form clusters of geometric elements
which are placed in �xed postions with respect to one another. Because
each geometric element has three degrees of freedom, placing a new element
requires that it be constrained by three known elements. Thus to begin a
cluster, a set of three pairwise constrained nodes is necessary. These three
geometric elements are placed into a standard position and the resulting
con�guration is �xed up to a rigid motion in space. Subsequently, a node
is added to the cluster if it is incident to three nodes already in the cluster.

When no further nodes can be added to the cluster, the edges represent-
ing constraints between nodes in the cluster are deleted from the original
graph, as well as all isolated nodes. Cluster formation is then applied recur-
sively to this subgraph. This cluster forming and subsequent graph pruning
is carried out as long as possible. Because a cluster start requires three pair-
wise constrained elements, there may eventually be unused constraints in
the remaining subgraph, yet no new cluster can be started. In this case, any
remaining constraint and its two incident nodes forms a degenerate cluster.

For cluster formation we need to �nd a generic placement for the �rst
three elements which are pairwise constrained within a cluster, and we need
to place a geometric element from three known elements. Because we use
signed distances and angles, well-de�ned generic con�gurations exist. For
the details see (DH95).

2.4. CLUSTER MERGING

Once initial clusters have been formed, clusters which have geometric el-
ements in common can be placed relative to one another. Each cluster is
a rigid body and has in general six degrees of freedom, three rotational
and three translational. Exceptions include degenerate clusters such as a
plane with an incident point. Here, one degree of freedom is lost by sym-
metry. To �x a cluster in space, we must determine how to place the shared
elements of the cluster with respect to the other clusters sharing them.
Three separate geometric entities are needed to �x the cluster. Once these
elements are known, the rigid-body motion to position the cluster can be
determined using the techniques of (RG93). Degenerate clusters share only
two geometric elements and can be positioned from them because of cluster
symmetry.



A Spatial Constraint Problem 5

p

2
p

1
p

5

P
4

P
3

6
p

Figure 1. The constraint graph for Case 1 of four points and two planes in four clusters.

Now, if two clusters A and B share two geometric elements, then the
clusters are overconstrained, because the relative position of the shared
elements is determined independently in both cluster. Therefore, the three
shared elements in the cluster must belong to three separate other clusters.
(For degenerate clusters, the two elements in the cluster are each shared
with a di�erent cluster.)

3. Merging Four Full Clusters

We consider merging four clusters, each with three geometric elements
shared with the other clusters. Six geometric elements must be placed rela-
tive to each other. When the geometric elements are all points, the problem
can be solved as a Stewart platform problem(NWM90). In (DH95) the case
of �ve points and one plane is handled. We now show how to solve the con-
straint system when two of the elements are planes. There are two cases.

3.1. CASE 1

The �rst case we consider is when the two planes are not in the same cluster.
The four clusters for the problem are (p1; p2; P3), (p1; P4; p5), (p2; P4; p6),
and (P3; p5; p6). Note that this arrangement satis�es the criterion that each
element of a given cluster is in exactly one of the other three clusters. The
constraints within each cluster are the distances between the two points in
each cluster, and the (signed) distance from each point to the plane in the
cluster. A graphical representation of these clusters is shown in Figure 1,
with the clusters distinguished by the type of line of the constraint edges.
Each edge in the graph represents a distance constraint. A diagram of the
geometry of this situation is shown in Figure 2. The open circles in P3
represent the points in P3 which satisfy the distance constraints between
P3 and the points p2, p5, and p6, and analogously for the open circles in
P4. The elements of each cluster are connected by the same type of line.

Suppose that the distance between any two geometric elements gi and
gj , where g is a point or a plane, is given by dij. If we assume the distances
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Figure 2. Four points and two planes with distance constraints only.
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Figure 3. Constructing the plane P4.

between a point and the plane are signed, then we can modify the problem
so that the point p1 lies in the plane P3. If we can �nd a con�guration where
p1 lies in P3 and the respective distances between each of the three points
p2, p5, and p6 and P3 are reduced by the given distance from p1 to P3, the
actual con�guration which satis�es the given constraints can be found by
o�setting P3 in the found con�guration by d13.

We place p1 at the origin, make P3 the xy-plane, and place p2 at
(l1; 0; d23), where l

2
1 + d223 = d212. The distance constraints between p1 and

P4 and between p2 and P4 force P4 to be tangent both to the sphere S14
centered at p1 with radius d14 and to the sphere S24 centered at p2 with
radius d24. If the two distances have the same sign, P4 must be tangent to
the cone containing and tangent to both spheres as shown in Figure 3. If
the signs are opposite, the two spheres are contained in and tangent to a
di�erent cone, and the spheres are in opposite half-cones of the cone.

Note that the direction of the normal to P4, N4 = (nx; ny; nz) must be
on a circle within the sphere S14. The projection to the cross-section of this
circle is shown in dotted line in Figure 3. To obtain a unit normal, we begin
with a circle of radius cos  in the xz-plane, with center (� sin; 0; 0), where
 is the apical angle of the cone. This circle is then rotated by � about the
y-axis, where � is the angle between the line p1p2 and the x-axis. The result
of these operations is

N4 : (cos  sin � sinu� sin cos �; cos  cos u; cos  cos � sinu+ sin sin �)
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This means that the plane P4 can be written in terms of the variable u as
P4 : N4 � (x; y; z) = d14.

Now, p5 lies in a plane parallel to P3 and also on a sphere of radius d15
centered at p1. Thus it must lie on the circle C5 given by

C5 : (r5 cos v; r5 sin v; d35)

Similarly p6 lies in a plane parallel to P3 and also on a sphere of radius d26
centered at p2. Since the distance from p1 to the projection of p2 into P3 is
l1 (from the earlier positioning of p2), p6 must lie on the circle C6 given by

C6 : (l1 + r6 cosw; r6 sinw; d36)

The parameters l1, cos �, sin �, cos , sin, r5, and r6 are all dependent
only on the distances given between elements of the clusters. Speci�cally,
we have the following relationships:

l1 =
q
d212 � d223 l2 =

q
d212 � (d24 � d14)2

cos � = l1=d12 cos  = l2=d12
sin � = d23=d12 sin = (d24 � d14)=d12

r5 =
q
d215 � d235 r6 =

q
d226 � (d36 � d23)2

(1)

We now can use the remaining distance constraints to set up three
equations in the unknowns u, v, and w which when solved will give the
con�gurations. The remaining constraints are the distance between p5 and
P4, the distance between p6 and P4, and the distance between p5 and p6.
These constraints are translated into the following trigonometric equations:

N4 � p5 + d45 = d12 (2)

N4 � p6 + d46 = d12 (3)

(r5 cos v � r6 cosw � l1)
2 + (r5 sin v � r6 sinw)

2 +

(d35 � d36)
2 = d256 (4)

Making the standard substitutions cos u =
1�q2

4

1+q2
4

sinu = 2 q4
1+q2

4

, cos v =

1�q2
5

1+q2
5

sin v = 2 q5
1+q2

5

, cosw =
1�q2

6

1+q2
6

, and sinw = 2 q6
1+q2

6

, we obtain three equa-

tions with the following structure:

(A1 q
2
5 +A2 q5 +A3) q

2
4 + (A4 q

2
5 +A6) q4 + (A7 q

2
5 +A8 q5 +A9) = 0 (5)

(B1 q
2
6 +B2 q6 +B3) q

2
4 + (B4 q

2
6 +B6) q4 + (B7 q

2
6 +B8 q6 +B9) = 0 (6)

(D1 q
2
5 +D3) q

2
6 +D5 q5 q6 + (D7 q

2
5 +D9) = 0 (7)

Here the coeÆcients Ai, Bj , and Dk are functions only of the constants l1,
cos �, sin �, cos , sin, r5, d35, d36, d45, d46, and d56. This is exactly the
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same structure as the system of equations which arose in the case of �ve
points and one plane, and its solution is detailed in (DH95). Note that the
system has 16 solutions, in complex projective space.

3.2. CASE 2

The second case occurs when the two planes are both in one of the clus-
ters, and another cluster has only points. Speci�cally, the clusters now are
(p1; p2; P3), (p1; p4; p5), (p2; p4; P6), and (P3; p5; P6). The constraints are
distances between any point-point or point-plane pairs within each cluster,
and an angle constraint �36 between the two planes in the fourth cluster.

As before, we assume that p1 lies in P3, and we begin by positioning
p1 as the origin, P3 as the xy-plane, and p2 as the point (l1; 0; d23), where
l21 + d223 = d212. Based on the distance constraints between the point p4 and
the points p1 and p2, we can determine the circle C4 on which p4 must lie,
which is the intersection of the sphere S14 centered at p1 with radius d14
and the sphere S24 centered at p2 with radius d24. Assume that the center
of this circle is l4 units from p1 along the line p1p2, and that the radius of
the intersection circle is r4. Then the intersection circle can be found by
rotating the circle of radius r4 centered at (l4; 0; 0) about the y-axis by �
degrees, where � is the angle between the line p1p2 and the x-axis. This
results in the following equation for C4:

C4 : (l4 cos � + r4 sin � sinu; r4 cosu; �l4 sin � + r4 cos � sinu)

The values of cos � and sin � are computed as in Equations 1, and the values
of l4 and r4 are

l4 =
d2
24
�d2

14
�d2

12

2d12
r4 =

q
d214 � l24

The circle of possible points for p5 is identical to the previous case:

C5 : (r5 cos v; r5 sin v; d35)

The plane P6 is completely determined by its normal and its distance
from the origin. Note, however, that d16 is not one of the known constraints.
Thus we refer to this distance as the variable l16. Now the normal of P6
can be computed as a function of the angle between P6 and P3, and some
parameter w as

N6 : (cos�36 cosw; cos�16 sinw; sin�16)

Since we do know the distance from p2 to P6, and p2 is �xed, we can express
l16 in terms of this constraint as

l16 = p2 �N6 + d26
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The three equations which express the remaining constraints are

(l4 cos � + r4 sin � sinu� r5 cos v)
2 + (r4 cos u� r5 sinv)

2 +

(�l4 sin � + r4 cos � sinu� d35)
2 = d245

C4 �N6 + d46 = l16

C5 �N6 + d56 = l16

When standard rational substitutions are made for the trigonometric func-
tions, the resulting three equations have form identical to Equations 5, 6,
and 7.

3.3. NUMERICAL EXAMPLE

To verify the above process, we consider a numerical example with one
predetermined solution The initial con�guration is

p1 = (0; 0; 0) p2 = (3; 0; 4) P3 = xy�plane
P4 = N : (3=5; 4=5; 0); d : 5 p5 = (2; 2; 2) p6 = (6; 1; 1)

This means the input to the problem is four clusters with the following
distance constraints:

Cluster 1 Cluster 2 Cluster 3 Cluster 4

d13 = 0 d14 = 5 d24 = �16=5 d56 = 3
p
2

d23 = 4 d15 = 2
p
3 d46 = �3=5 d35 = 2

d12 = 5 d45 = �11=5 d26 =
p
19 d36 = 1

Note the signed distances between P3 and P4, and the points with dis-
tance constraints with respect to the two planes. From these distances the
parameters of the three equations are computed:

l1 = 3; l2 = 4=5
p
34; cos � = 3=5; cos  = 4

p
34=25;

sin � = 4=5; sin  = 9=25; r5 = 2
p
2; r6 =

p
10

Substituting these values into Eqs. (5), (6), and (7) and following the so-
lution procedure detailed in (DH95), we found six solutions for q25, two of
which were positive. The corresponding values of q5, cos v, sinv, cos u, sinu,
cosw, and sinw are shown in Table 3.3, rounded to six digits. Evaluating
Eqs. (2), (3), and (4) at these points yielded the following results for the
normal N4 of P4 and for the points p5 and p6 on the circles C5, and C6,
respectively, rounded again to six digits:

Solution 1 Solution 2

N4 = ( -.937703,.237830, -.253277) N4 = ( -.937703, -0.237830, -.253277)
p5 = (2.67722, 0.9124, 2.0) p5 = (2.67722, -0.9124, 2.0)
p6 = (3.63658, -3.09754, 1.0) p6 = (3.63658, 3.09754, 1.0)

Solution 3 Solution 4

N4 = (-0.6,-0.8, 0.0) N4 = (-0.6, 0.8, 0.0)
p5 = (2.0, 2.0, 2.0) p5 = (2.0, -2.0, 2.0)
p6 = (6.0, 1.0, 1.0) p6 = (6.0, -1.0, 1.0)
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TABLE 1. Real solutions to the numerical example

q5 cos v sin v cosu sinu cosw sinw

0.165721 0.946541 0.322582 .254922 -.966962 .201306 -.979528

-0.165721 0.946541 -0.322582 -.254922 -.966962 .201306 .979528

0.414214 0.707107 0.707107 -.857493 -.514496 .948683 .316228

-0.414214 0.707107 -0.707107 .857493 -.514496 .948683 -.316228

Solution 3 is the predetermined solution, which corroborates the cor-
rectness of the solution procedure.
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