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Constraint-Based Computer-Aided
Design
Computer-aided design (CAD) systems have become parametric, basing shape design on
constraints and design feature operations. We review the development of constraint-based
parametric CAD, explaining some of the foundational issues as well as giving an outlook
on possible future directions of development. �DOI: 10.1115/1.1979508�
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1 Introduction and Historical Development
Computer-aided design �CAD� began in the mid 1970s with

two competing approaches.
The constructive solid geometry �CSG� approach by Requicha

and Voelcker, then at the University of Rochester, conceptualized
a CAD model as an expression �1�. The operations of expressions
were rigid-body motions and regularized Boolean set operations
�union, intersection, and difference�, and whose operands were
instantiated simple primitives. Initially the primitives were block,
cylinder, cone, and sphere, with the subsequent addition of the
torus as primitive. The primitives were parameterized, for ex-
ample the cylinder by diameter and height.

The boundary representation �Brep� approach by Braid, then in
Cambridge, England, conceptualized a CAD model as a quilt of
surface patches �2�. The patches were joined at edges and vertices
and enclosing a solid shape by a two-manifold without boundary.
The patches could be, in the simplest case, polygons. Building
complex shapes could be done by regularized Boolean operations
on two Brep solids, suitably positioned by rigid-body motions.

Both approaches sought to represent solids. Early on, a key
application considered was modeling objects for discrete manu-
facturing, hence, early papers restricted to shapes that were manu-
facturable and excluding solids such as the one shown in Fig. 1.

Other considerations included extending the allowed operations
on solids, such as rounding, chamfering, shelling, and so on.

Some extending operations, such as rounding and filleting, are
easily stipulated and straightforwardly implemented for Brep sol-
ids, but they are not so easy to deal with for CSG solids. Uniform
radius rounding and filleting was considered by Rossignac �3�
who approximated the surfaces that arise in this context by CSG
primitives.

The semantics of representing, manipulating, and reasoning
about solids was also considered early on. Tech memo 28 by
Requicha �4� set forth a rigorous semantics for CSG. Comparable
attempts at providing a rigorous semantics for Breps fell short in
that it would have required exact arithmetic and representational
convention for parametric patches that even to-date are not used.
Nevertheless, the greater flexibility of Breps in accommodating
new operations and ultimately offering greater �practical� flexibil-
ity for shape representation persuaded applications to go with
Breps and live with the semantic shortcomings of that representa-
tion. Inroads into converting between the two representations
were made, in particular by Shapiro and Vossler �5�. They give
rise to profound mathematical issues when converting Brep to
CSG. The opposite conversion, CSG to Brep, was accomplished
early-on and is a solved problem �subject to numerical issues� �6�.
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Summarizing, the two initial approaches to CAD differed in
practical expressiveness and in the ease with which to prove rig-
orously properties of the solids so represented. Applications em-
ployed the approaches to model specific solids, with fixed dimen-
sions, i.e., to create instance models �7�. Although over time Brep
became the dominant representation for CAD models, the CSG
methodology of creating the bulk of the shape by CSG operations
remained a core of the user-interface for many years, even in the
commercial Brep systems.

In principle it is possible using CSG to create parameterized
models. Two tools are available. The PADL language with which
to create CSG models can be embedded into a general purpose
programming language, thus allowing users to write programs to
create CSG models from input parameter values. Moreover, the
primitives are parameterized by specific dimensions, and thus can
be resized if those dimensions are used as design parameters.
However, CAD models remained primarily instance designs until
the 1990s and the arrival of Parametric Technology’s Pro/
Engineer �ProE� CAD system.

ProE started as another Brep system but the innovation was a
sketch-based graphical user interface that allowed constraint and
dimensional annotations to the sketches. Sketches were then au-
tomatically instantiated by solving geometric constraints. Further-
more, the traditional CSG operations �union, intersection, differ-
ence� were replaced by operations such as extrude, revolve,
protrude, and cut, using the sketches to define profiles with which
to carry out these operations. Extrude and revolve are easily rec-
ognized as creating primitive shapes, but protrude and cut are not
immediately seen as CSG operations. However, as Chen showed,
they can be mapped to CSG operations, thereby giving a firm
semantic basis to those operations �8�.

The key innovation of ProE which, by market dynamics, was
forced on the other CAD vendors, has been the passage from an
instance design to a design family. That is, it has become possible
to alter dimensions and constraints of some or all sketches and
operations, with the system automatically creating new, related
shapes accordingly. We can thus conceptualize this editing process
as selecting instances from a parametric family of shapes. This
fact was soon recognized, but a generally accepted semantics of
the term parametric family remains extant. Several proposal have
been made, e.g., Ref. �9�, but vendors differ in the details of the
implemented operational semantics of the term, exacerbating
CAD interoperability.

2 Constraints in CAD
The sketch interface of modern CAD systems allows the user to

put down a rough sketch, usually composed of lines and circular
arcs, and annotate the sketch with dimensions and geometric con-
straints. An example of such a sketch is shown in Fig. 2.

Aside from the dimensional constraints of distance, angle, and

arc radius, geometric constraints of tangency at the arc ends are
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imposed as well as perpendicularity of the segments at the upper
left corner. Sketches with constraints can be automatically instan-
tiated, provided a solution exists. The result is, in this case, a
profile that can be used for a protrusion or a cut. Using sketches,
we can build linearly a sequence of increasingly more detailed
shapes, culminating in the final shape model. Subsequent model
edits can then alter dimensional values, geometric constraints, or,
if necessary, change the entire constraint schema.

2.1 Graph-Based Constraint Solving. CAD applications of
constraint based sketching have inspired a large section of the
literature on geometric constraint solving; see, e.g., Ref. �10�. Of
the various techniques to solve geometric constraints, some of
them quite old, we will concentrate in the following on graph-
based solvers, a dominant solution strategy.

Assume that the sketch is in the Euclidean plane. It then con-
sists of individual sketch elements, points, lines, and circles, and
constraints upon them. The constraints may be dimensional, stipu-
lating specific distances or angles, or they may be geometric,
stipulating tangency, perpendicularity, and so on. Not all con-
straints are explicitly given but may be inferred. Most commonly,
incidences are inferred, but sometimes so are tangency and
whether segments are vertical or horizontal.

Sometimes a distinction is drawn between parametric solvers
and variational solvers. A parametric solver is one that solves
constraint problems in an explicitly defined sequence. At each step
in the sequence, a single geometric element is placed in correct
relationship to the elements already localized. In a variational
solver the problem is not necessarily solved sequentially and there
could be steps in the solution that require placing several geomet-
ric elements simultaneously. Most solvers of two-dimensional
�2D� constraint problems are variational.

Fig. 1 Nonmanifold solid considered not manufacturable

Fig. 2 Input sketch with constraints to be solved; arc tangen-

cies required but not annotated
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2.2 Solver Phases. Constrained sketches are solved in two
phases. In the first phase, the problem is translated into a graph
whose vertices are the geometric elements in the sketch, and
whose edges are the constraints upon them. Figure 3 shows the
graph constructed from the problem in Fig. 2.

A graph algorithm analyzes the problem and formulates a solu-
tion plan from it. The second phase of the solver then computes
actual coordinate values for the geometric elements that satisfy
the constraints. The analysis of the first phase usually does not
account for specific values of dimensional constraints. For ex-
ample, assigning lengths to the three sides of a triangle, phase 1
will not check whether the values satisfy the triangle inequality.
The first phase is thus a generalized degree-of-freedom analysis.

In bottom-up solvers �11�, phase 1 isolates small subproblems
that can be solved separately and determines how to put them
together recursively into larger parts of the sketch, observing the
given constraints. Similarly, in top-down solvers �12�, phase 1
dissects the graph recursively into subgraphs that correspond to
subproblems that can be combined observing the constraints. Both
decomposition directions have their strengths and weaknesses.
Generally speaking, a top-down solver naturally recognizes under-
constrained problems, whereas a bottom-up solver recognizes
overconstrained problems naturally.

If the solver plan calls for solving the subgraph induced by
constraint graph vertices �note that the constraint graph vertex a
represents the line a of the sketch� A, a, and B, phase 2 would be
asked to construct a line segment of a specific length. Likewise,
consider that the three subgraphs G1= �e ,A ,a ,B ,b�, G2
= �b ,C ,c ,D ,d�, and G3= �d ,E ,e� have been solved. Then their
combination would require, in phase 2, assembling three geomet-
ric structures that pair-wise share the elements e, b, and d. This
amounts to finding suitable rigid-body transformations aligning
the shared shape elements and can be solved in a simple manner.

2.3 Well-Constrained Sketches. A geometric constraint
problem can be underconstrained, overconstrained, or well-
constrained �13�. Loosely speaking, an underconstrained problem
has an infinity of solutions and an overconstrained problem has no
solution. The exact definition of these terms involves reformulat-
ing the problem as a set of algebraic equations and characterizing
the dimension of the algebraic set so defined. That is, after formu-
lating all constraints as a system of algebraic equations, and fixing

Fig. 3 Constraint graph of phase 1; unlabeled edges represent
incidences
the position and orientation of the sketch with respect to a global
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coordinate system, a sketch is well-constrained if the system has a
finite number of solutions, and it is underconstrained if there is an
infinity of solutions. Finally, the problem is inconsistently over-
constrained if there are no solutions.

This definition of terms would be appropriate for phase 2 of the
solver that constructs actual solutions. However, there are ap-
proximate counter parts to the three situations that can be deter-
mined in phase 1 and have been called structurally undercon-
strained, structurally overconstrained, and structurally well-
constrained. The difference is that a structurally well-constrained
problem need not be well-constrained due to particular value con-
figurations of the dimensional constraints or due to unrecognized
interdependencies among the constraints that could arise from ge-
ometry theorems. For precise definitions see Ref. �14�.

A problem may be well-constrained, and yet the solver may be
unable to find a solution. This situation arises when the constraint
pattern is complicated in a technical sense and the solver is unable
to determine a solution �15,16�. This solver competency problem
arises from the fact that the natural complexity of solving geomet-
ric constraints is exponential, thus there cannot be efficient solvers
that find a solution of every well-constrained problem in a reason-
able amount of time. Such difficult problems are simple to find
using classical constructions in geometry that express algebraic
relationships. It is possible to express arithmetic relationships
among lengths using only circular arcs and line segments, and the
resulting problems are often beyond the capabilities of geometric
constraint solvers, even when the relations so expressed are
simple.

2.4 Root Selection. It is well-known, but often not appreci-
ated, that a well-constrained problem has multiple solutions.
Which solution is the one that an applications user intended is
usually settled by deducing heuristically topological properties of
the input sketch and seeking to preserve them. Practically speak-
ing, this strategy is satisfactory for initial problem formulations.
However, when the sketch is edited, it is not at all clear that the
previous set of topological properties is appropriate. As example,
consider the sketch of Fig. 2. A key topological property is that the
center of the arc b lies in the interior of the profile. But reconsider
the problem with different angles, and require that the two angles
are 20 deg instead of 45 and 68 deg, respectively. Now one would
want a solution in which the arc b is centered outside the profile.
See also Fig. 4.

The selection of the intended solution of a constrained sketch is
known as the root-selection problem. In many situations, navigat-
ing the solver from an unintended solution to the intended one is
a user interface problem that is quite difficult. There have been
attempts at devising good user interface dialogues to do this, e.g.,
Ref. �17�, but they require that the user understands how the
solver works, and most users do not.

2.5 Extensions to the Constraints and Shape Elements. 2D
constraint solvers have been extended to handle simple parametric
curves, and/or conic sections; �18–21�. Higher order algebraic
curves have not been considered. So extending the geometric cov-

Fig. 4 Solutions for different constraint values with different
topological properties
erage complicates in most cases only phase 2 of the solver.
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Briefly, these elements introduce algebraic equations that are more
complicated to solve, and solvers often resort to numerical solu-
tions in such situations. This tends to interfere with the root se-
lection problem since in most cases the numerically determined
solution cannot be selected based on topological properties of the
sketch.

More complicated constraints can also be introduced, including
parallel curves �this would lead to higher algebraic degrees for
conics as well� minimum distance constraints between curves, and
algebraic relations among dimensional constraints. In the latter
case it is natural to consider coupling the geometric constraint
problem with an equation system in which variables are desig-
nated as dimensional constraints. Here the first solver phase has to
interleave equation solving and constraint solving in phase 2 so
that, at each point, progress can be made �22�.

Applications would also advocate considering soft constraints
that are prioritized as to importance, or inequalities that should be
respected, or semantic constraints that define the validity of
shapes, such as obtaining a contour that does not self-intersect.
Typically such additional constraints lead to unsolved problems or
to highly complex and potentially inefficient algorithms.

2.6 Spatial Constraint Problems. The simplest three-
dimensional �3D� constraint problems involve only points and
planes. Both points and planes are determined by three coordi-
nates. As they are duals of each other, the algebraic problems they
generate are often highly symmetric. Sequential problems involv-
ing points and planes are simple to formulate and solve. Non-
trivial simultaneous problems include forward solutions to the
Stewart platform and are algebraically much more demanding.
Unlike in the planar case, there appear to be no subclasses of 3D
problems that are both simple to solve and practical in applica-
tions �23�.

When adding lines to the repertoire of 3D solvers, additional
difficulties ensue �24�. They begin with the representation of lines.
A line in three-space has four degrees of freedom, yet the various
coordinate representations in use usually require six coordinates
and two constraint equations upon them. Among the difficult se-
quential problems we name the problem of finding a line at pre-
scribed distance from four fixed points in space, leading to an
algebraic equation system with up to 12 real solutions �25,26�.
Simultaneous problems introduce a combinatorial explosion in the
number of essential configurations, even without considering the
complex algebraic equation systems entailed by them �27�.

For modeling assemblies, it is clearly appropriate to consider
3D geometric constraint problems. However, since the technology
to solve spatial constraint systems is not very mature applications
are resorting to coupled 2D constraint problems that are varia-
tional in the 2D components and sequential in the spatial arrange-
ment of them. 3D constraint solving and assembly modeling prob-
ably evolve in tandem. At this point it appears that each side is
stuck because of limitations of the other side.

3 Feature-Based Design
The term feature has a lengthy history in CAD and many dif-

ferent definitions have been given. In manufacturing applications,
a compelling definition seeks to relate the term to a particular
view of the product design �28–30�. This leads to separate defini-
tions of design feature, by which is meant an idiosyncratic shape
or operation used to design product shape, machining feature, an
idiosyncratic shape of significance to machining processes used to
manufacture a product, assembly feature, an idiosyncratic shape of
significance to assembling parts, and so on. In the following we
restrict to design feature operations used by CAD systems to de-
fine shape.

Recall that the shape operations in CSG were Boolean opera-
tions. Early on, additional operations were coined, such as round-
ing and filleting, creating draft angles, chamfering, and other such

localized modifications. Sketch-based design operations replaced
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CSG operations primarily with protrusions and cuts, but soon
added global shape operations such as sweeping and shelling. Fi-
nally, common operations such as creating ribs or circular holes
were stereotyped in the user interface to reduce the amount of
parameters the user would be asked to specify. Group operations
defining patterns are also used.

3.1 Semantics of Cut and Protrusion. The operations cut
and protrusion require a current shape model plus a contour to be
used as cross section for the cut or for the protrusion. The cross
section must be positioned with respect to the current shape, done
usually by selecting a reference plane or surface of the current
shape to define the sketching plane. The cut or the protrusion is
then done either blind, or else to an extent that is related to the
current shape. In a blind cut or extrusion, we must specify a length
for extruding cuts or protrusions, or an angle for revolving cuts
and protrusions. These operations have a straightforward meaning
easily expressed by CSG operations.

Alternatively, the extent of the cut or the protrusion can be
defined by attributes that determine it from the current shape.
Thus, a cut through-next considers a cut that removes only one
contiguous amount of material, whereas through-all removes as
much material as can be removed by cutting across the entire
shape model. Analogously, an extrusion to-next adds material that
must be contiguous. Such operations can be mapped algorithmi-
cally to the construction of an operand that then is used, with the
current shape, in a Boolean operation to create the required result
�31�.

Semantically, mapping these operations to CSG gives them a
firm semantic footing from which to judge correctness of an
implementation. However, the attributes through-next and to-next
entail a number of problems that must be clarified to make the
operation precise in all situations, and typically no such complete
specification is given. Therefore, different CAD systems often dif-
fer in what such an operation means. As example, consider Fig. 5.

The operation is initiated by drawing a rectangular contour on a
face of the current shape �left in the figure�. The to-next extrusion
adds a rectangular bridge between the two sides, as shown in the
center. But if the rectangular contour is shifted upwards, part of
the bridge may miss the other side. In this situation is uncertain
whether the bridge should extend to the plane defined by the inner
face of the right side, or to the plane defined by the outer face, or
whether the operation should simply fail.

Note that the example of Fig. 5 allows the user simply to indi-
cate where to end the extrusion. The main point of the example is
that even in the simple polyhedral case there arise semantic un-
certainties. The situation becomes much more complicated for
curved faces where there may not be any clearly recognizable
termination surface.

3.2 Fillets and Rounds. Adding fillets and rounds to edges of
a shape is a common operation. Many papers on the subject have
considered the mathematics of surfaces that are needed to
smoothly connect two �curved� faces, or multiple faces meeting in
a common vertex. The surface constructed achieving the fillet or
round is commonly called blending surface.

The most natural interpretation of the edge rounding or filleting
operation is to consider identifying one or more edges, specifying
the radius of the blending surface and then expect a blending
surface that is from a suitably bent tube of fixed radius. The cross
sections should be approximately circular, in a direction perpen-

Fig. 5 Extrusion to-next with uncertain meaning
dicular to the axis or spine of the tube. More complex surfaces are
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also possible, for example variable-radius blending surfaces where
the radius variation is suitably defined.

The description already makes it clear that the mathematical
specification of the surface requires many parameters and conven-
tions that are rarely spelled out unambiguously. Customarily,
constant-radius blending surfaces are obtained by approximating
the envelope of a rolling ball of constant radius that moves along
the edge touching both adjacent surfaces. The definition of
constant-radius blends as an envelope of a rolling ball of constant
radius is precise, but it runs into some local and global problems
that are not readily resolved. The local problems include how to
end the vertex or edge blend. In the case of edge blends, the
problem may require filling gaps �for concave edges� or extending
surfaces for edges ending at nonconvex vertices.

The global problems of blending are less often discussed �32�.
They include interactions of different blending surfaces. Consider
Fig. 6. A circular hole is close to a circular peg. We wish to fillet
the base of the peg and round the top edge of the hole. The dashed
curves indicate where the fillet and round would end on the top
face of the block given a suitable radius for the blend. Clearly,
both blends can be constructed individually, but they cannot co-
exist as specified since this would create a gap in the area where
the dashed curves overlap.

In the example of Fig. 6, the gap must be closed. How this is
done exactly depends on whether the blends are inserted simulta-
neously, possibly arguing for a symmetric solution, or serially,
possibly arguing that the later blend adapt shape to the already
existing one.

A different example is shown in Fig. 7, reconstructed from Ref.
�32�. Here the issue is how to combine two interacting blends at a
vertex. The situation is complicated by the fact that two of the
surfaces become tangential at the vertex. These examples show
clearly that a complete semantics of blending solid shapes, as
opposed to blending two or more surface patches in isolation,
remains an open problem fraught with difficulties that arise from
the interactions due to the global geometry of the solid.

3.3 Persistent Naming. A CAD shape model is constructed
step-by-step using design features and constraints, as discussed
before. Editing the model consists of selecting a design feature
and deleting it, or changing its parameters �including potentially

Fig. 6 Overlapping blends that would create gaps in the solid
surface

Fig. 7 Different joins of a fillet and round at a vertex; see Ref.

†32‡
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the cross section�. When committing the edit, the system then
updates the shape and re-executes the subsequent feature opera-
tions automatically. Consider some of the complications this
entails.

In the construction of a blend one identifies visually one or
more edges of the current shape and then selects and valuates
attributes describing the blending surface to be constructed. Since
an edge so identified is present only on the current shape instance,
the operation of editing the shape may have to reinterpret the user
selection on a different shape that arises from modifying one of
the earlier design features. That is, we have to find the edge on the
changed shape. This requires a description of the selected edge
that is independent of the current shape instance. A similar state-
ment can be made about selected vertices and faces. The identifi-
cation problem has been called the persistent naming problem
�33�.

Persistent naming is exacerbated by the fact that some selected
items arise from the interaction of different design features which,
in some shape instances, do not interact at all. That is, the selected
edge may be absent after an editing operation and reappear again
after another editing operation, or it may be cut into several seg-
ments. Other complications include faces that are merged or split
by an editing operation. We therefore speak of a parametric family
of designs, each design constructed from a sequence of design
features that may differ in some of the attributes or parameters. A
particular algorithm for persistent naming, e.g., Refs. �34–36�, is a
procedural semantics of the term parametric family.

Many examples can be given that show that to-date persistent
naming schemes by vendors and researchers can behave counter-
intuitive. For example, the sequence dependence of feature opera-
tions may lead to unexpected results; e.g., Refs. �37,9�. An ex-
ample is shown in Fig. 8.

The design begins with a block into which a hole is cut. An
extrusion is later added by drawing a profile on the top face and
extruding it vertically. Next, the edit operation repositions the
hole. Since this feature is made prior to the extrusion, the hole
now cuts the top face into two parts, resulting in the extrusion
sketch partially extending into what now is the hole interior. The
top extrusion is now added as shown, a logical outcome of the edit
but hardly a reasonable one.

In Ref. �9�, Shapiro and Vossler start a foundational investiga-
tion of what constitutes a parametric family of solids, an attempt
to find standards by which to judge persistent naming algorithms.
They point out that, based on a boundary representation, two sol-
ids could be part of the same family if a correspondence is estab-
lished between the two Breps. For CSG solids, the same question
yields instead that the two solids should have trees that corre-
spond. Clearly, the two notions only overlap, neither properly con-
tained in the other. Thus, the familiar instance representations of
solids give no clear guidance.

A third approach to finding two instance solids “related” is to
consider a cell decomposition of two instances, by half spaces that
are induced by the respective boundaries. Note that some solids
require additional half spaces so that the solid can be described as
the disjoint union of certain cells of a spatial subdivision �5�. In
Ref. �38�, Raghothama and Shapiro postulate that the mapping of
the cell complexes should be a continuous map that preserves
some orientation criterion of each cell, and map cells consistent

Fig. 8 History dependence can lead to unintuitive edits
with the mapping of the adjacent cells. This framework is derived
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from the very reasonable postulate that a small change of param-
eter values should entail a small change in the solid�s boundary
topology. The framework allows many of the desirable editing
operations and rejects many of the undesirable ones. But the con-
ditions do not fit exactly.

4 Outlook
Today, CAD is intimately linked with applications in discrete

manufacturing. It is often heard from applications experts that
CAD systems are very good at creating geometry, but not very
good at creating designs. As we have seen, creating geometry with
ease is not necessarily synonymous with creating and editing ge-
ometry in a manner that is both rigorous and intuitive. Thus the
remark from applications is rooted in a different situation, of in-
tegrating CAD models with conceptual design and with analyses
and manufacturing processes.

Since the beginnings of using CAD in manufacturing, in the
1970s and 1980s, much has changed. In the early days, research
emphasis was clearly on geometry creation and early pioneers
were keen on putting this process on sound footing �39�. The
appetite of practice for sophisticated shape creation operations, as
well as the switch to boundary representations as dominant under-
lying data structure, soon outstripped the semantic. Indeed, further
semantic complications arise from the well-known problem of ro-
bustness in geometric computations and proposals how to over-
come them in a practical way are sparse to-date �40,41�.

Today, it is inconceivable that large product systems, such as
airplanes, cars, and ships, would be designed without the use of
CAD systems that create the detailed geometry. CAD is thus a
bonafide part of the product design and manufacturing process.
However, as soon as electronic representations of shape have be-
come available, the applications sought to integrate them with
other sectors of design and manufacture. In particular, the finite
element analyses that are associated with evaluating product per-
formance and manufacturing processes need geometric models,
albeit in different representations and from different vantage
points. Thus, one speaks of views of the model, where each view
emphasizes a different conceptualization of the shape model; e.g.,
Refs. �42,43�. Translating between different views ought to be
automated but is not at this point. It requires a deeper understand-
ing of shape than we have at this time and which has been amply
illustrated in this paper. It would seem, then, that the applications�
comments, about creating designs, relate in particular to this dif-
ficulty of switching between views and editing, with ease, a
shape—no matter which view is used.

CAD interoperability is another subject of intense interest to
end users. Despite market consolidation that led to the demise of
several CAD systems, there are lower-tier suppliers who need to
service different primes with different CAD systems, thus placing
an extra burden on the suppliers. We have argued in the past that
the approach of constraint-based, feature-based design ameliorates
the CAD model exchange �44�, but two obstacles can be identi-
fied. The first obstacle is the competitive stance of CAD vendors
who want to lock in customers with proprietary CAD models and
operations on them. The second obstacle is the absence of exact
mathematical semantics of the operations which largely preclude
exchanging design histories and recreating congruent geometry
models in other systems. As we have explained, this second ob-
stacle relates to mathematical difficulties that are not yet over-
come. Nevertheless, there have been serious efforts to accomplish
CAD system interoperability precisely in this way, by executing
the design history and reinterpreting the parameters of the opera-
tions that created the shape �45�.

Acknowledgments
Work supported in part by NSF Grants Nos. DMS-013098,

DCNS-0216131, DHER-0227828, DSC-0325227, DCMS-

0443148, and by an IBM Faculty Scholar award.

Transactions of the ASME

ms of Use: http://www.asme.org/about-asme/terms-of-use



Downloaded From
References
�1� Voelcker, H., and Requicha, A., 1977, “Geometrical Modeling of Mechanical

Parts and Processes,” IEEE Computer, 12, pp. 48–57.
�2� Braid, I., 1975, “The Synthesis of Solids Bounded by Many Faces,” Commun.

ACM, 18, pp. 209–216.
�3� Rossignac, J., 1985, “Blending and Offseting Solid Models,” Ph.D. thesis,

University of Rochester, Department of ME.
�4� Requicha, A., 1977, “Mathematical Models of Rigid Solids,” Technical Report

PAP Tech Memo 28, University of Rochester.
�5� Shapiro, V., and Vossler, D., 1993, “Separation for Boundary to CSG Conver-

sion,” ACM Trans. Graphics, 12, pp. 35–55.
�6� Requicha, A., and Voelcker, H., 1985, “Boolean Operations in Solid Modeling:

Boundary Evaluation and Merging Algorithms,” Proc. IEEE, 73, pp. 30–44.
�7� Hoffmann, C. M., 1989, “Geometric and Solid Modeling,” Morgan Kaufmann,

San Mateo, CA.
�8� Chen, X., 1995, “Representation, Evaluation and Editing of Feature-Based and

Constraint-Based Design,” Ph.D. thesis, Purdue University, Department of CS.
�9� Shapiro, V., and Vossler, D., 1995, “What is a Parametric Family of Solids?,”

in Proc 3rd ACM Symp on Solid Modeling.
�10� Hoffmann, C. M., and Joan-Arinyo, R., 2002, “Parametric Modeling,” in

Handbook of CAGD, edited by G. Farin, J. Hoschek, M.-S. Kim, Elsevier,
New York.

�11� Bouma, W., Fudos, I., Hoffmann, C. M., Cai, J., and Paige, R., 1995, “A
Geometric Constraint Solver,” Comput.-Aided Des., 27, pp. 487–501.

�12� Owen, J., 1991, “Algebraic Solution for Geometry from Dimensional Con-
straints,” ACM Symp. Found. of Solid Modeling, Austin, TX, pp. 397–407.

�13� Fudos, I., 1995, “Constraint Solving for Computer-Aided Design,” Ph.D. the-
sis, Purdue University, Dept. of CS.

�14� Fudos, I., and Hoffmann, C. M., 1996, “Correctness Proof of a Geometric
Constraint Solver,” Int. J. Comput. Geom. Appl., 6, pp. 405–420.

�15� Hoffmann, C. M., Lomonosov, A., and Sitharam, M., 2001, “Decompostion
Plans for Geometric Constraint Systems, Part I: Performance Measurements
for CAD,” J. Symb. Comput., 31, pp. 367–408.

�16� Hoffmann, C. M., Lomonosov, A., and Sitharam, M., 2001, “Decompostion
Plans for Geometric Constraint Problems, Part II: New Algorithms,” J. Symb.
Comput., 31, pp. 409–427.

�17� Sitharam, M., 2004, “Combinatorial Approaches to Geometric Constraint
Solving: Problems, Progress and Directions,” in Computer aided design and
manufacturing, edited by D. Dutta, R. Janardan, and M. Smid, AMS/DIMACS
Volume.

�18� Hoffmann, C. M., and Peters, J., 1995, “Tschirnhaus Cubics Analyzed for a
Constraint Solver,” in Mathematical Methods in Computer Aided Geometric
Design, edited by M. Dahlen, T. Lyche, and L. Schumaker, Vanderbilt Press,
Nashville, TN.

�19� Fudos, I., and Hoffmann, C. M., 1996, “Constraint-Based Parametric Conics
for CAD,” Comput.-Aided Des., 28, pp. 91–100.

�20� Hoffmann, C. M., and Chiang, C.-S., 2002, “Variable-Radius Circles of Clus-
ter Merging in Geometric Constraints. Part I: Translational Clusters,”
Comput.-Aided Des., 34, pp. 787–797.

�21� Hoffmann, C. M., and Chiang, C.-S., 2002, “Variable-Radius Circles of Clus-
ter Merging in Geometric Constraints. Part II: Rotational Clusters,” Comput.-
Aided Des., 34, pp. 799–805.

�22� Hoffmann, C. M., and Joan-Arinyo, R., 1997, “Symbolic Constraints in Con-
structive Geometric Constraint Solving,” J. Symb. Comput., 23, pp. 287–300.

�23� Hoffmann, C. M., and Vermeer, P., 1994, “Geometric Constraint Solving in R2

and R3,” in Computing in Euclidean Geometry, 2nd edition, edited by D. Z. Du
and F. Hwang, World Scientific, Singapore.

�24� Durand, C., 1998, “Symbolic and Numerical Techniques for Constraint Solv-
ing,” Ph.D. thesis, Computer Science, Purdue University.
Journal of Computing and Information Science in Enginee

: https://computingengineering.asmedigitalcollection.asme.org on 06/28/2019 Ter
�25� Hoffmann, C. M., and Yuan, B., 2000, “There are 12 Common Tangents to
Four Spheres,” http://www.cs.purdue.edu/homes/cmh/distribution/
SphereTangents.htm.

�26� Macdonald, I., Pach, J., and Theobald, T., 2001, “Common Tangents to Four
Unit Balls,” Discrete Comput. Geom., 26, pp. 1–17.

�27� Gao, X.-S., Hoffmann, C. M., and Yang, W.-Q., 2002, “Solving Spatial Basic
Geometric Constraint Configurations with Locus Intersection,” in Proc. 7th
ACM Symp. on Solid Modeling and Applications, ACM Press, New York.

�28� Shah, J., Hsiao, D., and Leonard, J., 1992, “A Systematic Approach for
Design-Manufacturing Feature Mapping,” in Geometric Modeling for Product
Realization, edited by P. Wilson, M. Wozny, and M. Pratt, North Holland,
Amsterdam.

�29� Dedhia, H., Pherwani, V., and Shah, J., 1997, “Dynamic Interfacing of Appli-
cations to Geometric Modelers via Neutral Protocol,” Comput.-Aided Des.,
29, pp. 811–824.

�30� Shah, J., 2001, “Designing with Parametric Cad: Classification and Compari-
son of Construction Techniques,” in Geometric Modeling: Theoretical and
Computational Basis Towards Advanced CAD Applications, edited by F.
Kimura, Kluwer, Dordrecht, pp. 53–68.

�31� Chen, X., and Hoffmann, C. M., 1995, “Towards Feature Attachment,”
Comput.-Aided Des., 27, pp. 695–702.

�32� Braid, I., 1997, “Non-Local Blending of Boundary Models,” Comput.-Aided
Des., 29, pp. 89–100.

�33� Chen, X., and Hoffmann, C. M., 1995, “On Editability of Feature-Based De-
sign,” Comput.-Aided Des., 27, pp. 905–914.

�34� Kripac, J., 1993, “Topological ID System—A Mechanism for Persistently
Naming Topological Entities in History-Based Parametric Solid Models,”
Ph.D. thesis, Czech Technical University, Prague.

�35� Capoyleas, V., Chen, X., and Hoffmann, C. M., 1996, “Generic Naming in
Generative, Constraint-Based Design,” Comput.-Aided Des., 28, pp. 17–26.

�36� Raghotama, S., and Shapiro, V., 1998, “Boundary Representation Deformation
in Parametric Solid Modeling,” ACM Trans. Graphics, 17, pp. 259–286.

�37� Hoffmann, C. M., 1993, “On the Semantics of Generative Geometry Repre-
sentations,” in Proc. 19th ASME Design Automation Conference, Vol. 2, pp.
411–420.

�38� Raghotama, S., and Shapiro, V., 2000, “Consistent Updates in Dual Represen-
tation Systems,” Comput.-Aided Des., 32, pp. 463–477.

�39� Requicha, A., and Voelcker, H., 1982, “Solid Modeling—A Historical Sum-
mary and Contemporary Assessment,” IEEE Comput. Graphics Appl., 2, pp.
9–24.

�40� Hoffmann, C. M., 2001, “Robustness in Geometric Computation,” J. Comput.
Inf. Sci. Eng., 1, pp. 143–156.

�41� Hoffmann, C. M., and Stewart, N., 2005, “Accuracy and Semantics in Shape-
Interrogation Applications,” Geometric Models, Vol. 67.

�42� Bronsvoort, W. F., and Jansen, F. W., 1994, “Multi-View Feature Modelling for
Design and Assembly,” in Advances in Feature Based Manufacturing, Manu-
facturing Research and Technology, 20, edited by J. J. Shah, M. Mäntylä, and
D. S. Nau, Elsevier Science B. V., New York, Ch. 14, pp. 315–330.

�43� de Kraker, J., Dohmen, M., and Bronsvoort, W. F., 1997, “Maintaining Mul-
tiple Views in Feature Modeling,” in 4th Symposium on Solid Modeling and
Applications, edited by C. M. Hoffmann and W. F. Bronsvoort, Atlanta, GA,
pp. 123–130.

�44� Hoffmann, C. M., and Juan, R., 1992, “Erep, an Editable, High-Level Repre-
sentation for Geometric Design and Analysis,” in Geometric Modeling for
Product Realization, edited by P. Wilson, M. Wozny, and M. Pratt, North
Holland, Amsterdam, pp. 123–130.

�45� Spitz, S., and Rappoport, A., 2004, “Integrated Feature-Based and Geometric
CAD Data Exchange,” Proc. ACM Symp. Solid Modelingand Applic., edited
by G. Elber, N. Patrikalakis, and P. Brunet, pp. 183–190.
ring SEPTEMBER 2005, Vol. 5 / 187

ms of Use: http://www.asme.org/about-asme/terms-of-use


