Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1993

On the Semantics of Generative Geometry Representations

Christoph M. Hoffmann
Purdue University, cnh@cs.purdue.edu

Report Number:
93-010

Hoffmann, Christoph M., "On the Semantics of Generative Geometry Representations" (1993). Department
of Computer Science Technical Reports. Paper 1029.
https://docs.lib.purdue.edu/cstech/1029

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ON THE SEMANTICS OF GENERATIVE
GEOMETRY REPRESENTATIONS

Christoph M. Hoffmann

CSD-TR-93-010
January 1993



On the Semantics of Generative Geometry
Representations*

Christoph M. Hoffmann

Department of Computer Science
Purdue University
West Lalayette, IN 47907

January 1993

Abstract

We argue that geornetry constructs and solid operations currently un-
der development in feature-based CAD systems are without an appropri-
ate semantic {foundation, and that a rigorous semantics poses significant
research problems. In particular, we atgue that a formalization of fea-
ture allackment and other generative constructs cannot be based solely on
conventional boundary representation or on current geometry standards in
view of implications of constraint-based definitions.

1 Introduction

The recent emergence of feature-based CAD systems such as Pro/Engineer from
Parametric Technology and related efforts by other CAD vendors including Uni-
graphics, SDRC, and Matra Datavision constitute first steps towards departing
(rom the CSG paradigm (8] that up to now has provided a conceptual framework
for solid design. That is, instead of building complex shapes from simpler ones
using regularized Boolean set operations, the user constructs in these emerg-
ing systems new shapes from primitives that are not solids. In particular, the
arguments to operations such as cut or protrusion are not shapes that are inde-
pendent of the geometry the operations modify, and are not conceptually para-
metrically defined solids. Furthermore, new solid operations such as shelling
and ribbing can be expressed in terms of CSG, but are not so implemented for
performance considerations.

"Supported in part by ONR Contract N00014-90-J-1599, by NSF Grant CDA 92-23502,
and by NSF Grant ECD 88-03017.



A fundamental complication in the emerging paradigm arises from the pos-
siblity that a design may be expressed using constraints of dimension. positional
interrelation, alignment, and so on. Thus, one could say that in these new SYys-
tems the user does not define the geometry itself, but rather defines rules of how
lo consiruct the geometry by instantiation.

This development in solid design has implications that go beyond designing
slicker user interfaces to package old core geometric modelers. Moreover, the
precise definition of such modeling operations requires a semantics that needs
more than an agreement on standard interpretation and poses foundational
research problems. We attempt to articulate these issues and isolate several
paradigmatic research problems.

2 Illustrations

Current feature-based modeling operations are essentially defired by a particular
implementation. We illustrate the nature of this implementation in the case of
Pro/Engineer, apparently the first system to use the emerging style of “feature-
based™ design. In particular, we illustrate some of the topological implications

of instantiating a constraint-based design over a range of different parameter
values.

2.1 Examples of Cuts

A rather surprising aspect of Pro/Engineer is the lact that while the user de-
fines how to generate the geometry, the generation rules are not formalized.
Rather, the generation is a particular sequence of operations on the boundary
representation. We demonstrate this in the case of cuts.

The cut operation is specified by defining an open profile for the cut, attach-
ing it to existing geometric elements, and specifying a set of attributes for the
cut such as extruded, revolved, swept; through next, through all, blind; and so
on. The operation appears to be a Boolean subtraction in disguise. As illus-
trated in the following example {rom Pro/Engineer, Version 8.0, and shown in
Figures 1-4, this is not necessarily the case. In the example, an extruded cut is
defined by 2 line with attributes that the cut begin on one side of the sketching
plane and end when having cut through the next feature, here the next face in
opposite orientation. The cut is instantiated for several different values of the
dimension variable sdy that positions the height of the cut line with respect to
the base face. From the experiment, we conclude that the following method is
used for implementing cuts:

1. Extrude the drawn line obtaining 2 surface of depth determined by the
next face whose normal points opposite.



2. Intersect the extruded face with the two adjacent faces and the opposite
face.

3. Substitue the trimmed “side” faces, add the new face, and discard from
the Brep all structures locally external to the new face.

Observe that the implementation is not equivalent to a Boolean subtraction, but
is instead analogous to modilying a Brep when rounding a sequence of edges.
Thus, while a cut could be mapped to a Boolean, doing so would result in a
slower operation because of the aditional work of having to define additional
faces of the solid defining the cut and intersecting them with the other faces
of the first solid. Thus, both the user and the system would be penalized. On
the other hand. the cut operation is not defined in many cases. Some generic
situations are:

l. Unattached Cul: Sketchinga cross section of a profiled cut involves defin-
ing the geometric shape and positioning it relative to the geometry already
defined. By changing some dimensions, the cut may be partially or fully
outside the existing geometry, and is therefor redundant, as in the case of
Figure 4.

2. Incomplete Profile Definition: Consider the cut sketched in Figure 5.
Because the side faces flare out, the profile must be extended as the cut
proceeds across the object. Pro/Engineer generates an unattached cut in
this case. In the example it is easy to imagine laterally extending the line
defining the cut. However, if the profile is a splire, no automatic extension
can be defined.

3. Unclear End-Rule: In the cut defined in Figure 6, the cut should ter-
minate at the next face that locally bounds material. On the left, the
profiled hole ends at the curved face. On the right, the profile has been
moved slightly so that the hole should terminate at the very bottom of
the round cross slot. Here, Pro/Engineer is unable to generate the cut
properly, not recognizing that the curved face should be the termination
{ace.

[t is obvious that these errors can be avoided with a proper conceptualization
of what it means to do solid operations based on surface manipulation. In the
case of incomplete profiles, one could engage the user in a dialogue that defines
a proper extension when no simple strategy would make sense. In the example
of Figure 5, it is obvious that the cut ought to be extended by extending the
line segment.

Next, we discuss how such semantic rules become more complicated in the
presence of geometric constraints, a common device for defining geometric de-
signs.




2.2 Sketching and Constraint Examples

An attractive technique for defining shapes in 3-space is to build them from 2-
dimensional drawings. Examples include extruding or revolving cross sections,
or sweeping contours. In each case, two-dimensional sketches are helpful because
they are immediately comprehended.

One can sketch with precision using constraints such as dimensioning dis-
tances and angles, as well as imposing geometric relationships such as tangency,
concentricity, and so on. There is a rich literature on this subject, mostly con-
cerned with the mechanics of solving constraints; e.g., [1, 2, 9, 3, 14].

Aside from this very important subject of how best to optimize performance
of the constraint solver by restricting, but not overly limiting, the expressive
power of allowed constraints. it appears that the question of interpreting con-
straints in a wide range of situations has not been deeply addressed.

The examples given before of instantiating cuts hint at the problems that
arise in constraint-based geometries. A major problem is how to interpret cor-
rectly the user’s intent in the presence of multiple solutions, and how to devise
ways that allow the user to choose alternative solutions if necessary. We illus-
trate the issue with some examples obtained with Owen’s constraint solver (7],
a solver based on formulating 2 system of nonlinear equations ensuing from the
sketched geometries and specified constraints.

Since geometric constraints routinely involve nonlinear equations, there are
generally more solutions than one. As pointed out in [7], there are simple
configurations where n constraints lead to O(2") distinct solutions. Some of the
solutions are symmetries, but some are, from a geometric perspective, structural
alternatives that may or may not be useful to the application. As a symmetry
example, consider the dimensioning of the triangle shown in Figure 7. There are
four congruent solutions that can be obtained from each other by reflections.

A structurally different solution is seen in Figure 8. Here, the two solutions
arise from the choice of where to center the connecting arc with respect to the
lines. Clearly, the left choice is the plausible one in design applications. Let us
adopt the left interpretation, and consider varying the angle. For the critical
value of 90° we obtain the shape shown in Figure 9. The reason is probably
that in the topological description of the configuration no provision has been
made for zero-length ares. We call this a degeneracy error. For the angle of
135° we obtain the shape shown in Figure 10. Here the problem is the fact
that in the description of the constraint problem, the shape semantics has been
identified based on a certain root selection of the constraint equations. This is
a root-identification error.

To summarize, in addition to the problems of specifying and dimensioning
features such that redundancy of the feature (e.g., unattached cut) or incomplete
shape specification of the feature can be tolerated in a predictable, mathemati-
cally well-founded way, the presence of geometric constraints adds the problems



of degeneracy and of root identification.

3 Research Problems

Having demonstrated some of the idiosyncracies found in current implementa-
tions of feature-based geometric design and constraint solving, we now discuss
several basic research problems that arise.

3.1 Formal Geometry Languages

The trend towards generative geometry should be founded on a formal geometric
design description that specifies a family of designs rather than a single design
instance. In analogy to procedures in programming languages, specific instances
of geometric design would be a function of parameter values such as specific
dimensions, or geometric relationships that are prescribed. This approach has
been called parameiric design in the literature; e.g., [9).

In the past, parametric designs have been described by a CSG tree in which
the individual primitives and their spatial interrelationship are defined by a
set of constraint equations whose free variables constitute the design parame-
ters. The advantage of this approach is that it is semantically well-founded. In
consequence, with such an approach there would never be the problem of in-
stantiating ill-defined geometries. The principal draw-back is that it appears to
be anr approach that is unresponsive to the design proceass, viz. the commercial
success of Pro/Engineer, and that full Boolean operations are associated with a
performance penalty.

Current practice seeks to supplant the CSG-based approach with a boundary-
based approach in which the design steps are understood and implemented by
local surface operations. Industry practice is to concentrate on the boundary
representation and to define implicitly the semantics by the ensuing implementa-
tion. Of course, this is not satisfactory. Instead, we feel that the problem should
be refocused on a higher level of abstraction, and that a high-level generative
geometry description should be formulated from which the geometry instances
are computed by a geometry compiler. We have called such representations
Ereps, i.e., editable representations, and have argued in (6] that the benefits of
such an approach include interoperability of geometric modeling systems, the
ability to federate different systems into a problem solving environment, and an
elegant solution to the legacy problem as explained later. It would also allow a
firm conceptualization of the semantics of design operations without having to
resort to an understanding of the particulars of any core modeling system.

A major problem is to comprehensively understand how a constraint-based
feature definition that has been expressed in terms of cross sections and surfaces,
will interact with the semantics of the solid operation it is supposed to specify.



The examples above have illustrated some of the difficulties achieving this, and
there are others. We doubt that the problem can be satisfactorily solved by
extending geometric data standards. To understand why, consider the problem
of defining an angle between two line segments, as shown in Figure 11. In
order to identily the acute angle «. rather than the exterior angle, we need to
include in the geometric description some information about the orientation of
the segments and of the angle. Suppose we have fixed the angle orientation as
counter-clockwise. assuming both segments are oriented away from the angle,
That is, « is obtained by turning the oriented segment B,C counter-clockwise
into the oriented segment B.A. Now assume that the position of A is determined
from a distance constraint of A from the segment (B, (), and that we negate this
distance so that s now must be positioned on the other side of (B,C). Keeping
the angle « fixed, we should obtain the configuration of Figure 12. Dut then
the angle orientation would have to be reversed in the geometry description. In
other words, the topological description is influenced by the dimension values.
Ultimately, there are two ways of recording orientation:

1. By coordinatization of the geometric elements and evaluating the sign of
certain expressions.

2. By specifying the order of points incident to lines and other geometric
elements.

The first technique is the one adopted by all geometry representations in use. It
is not suitable in this context, however, because the elaboration of constraints
can change the coordinatization such that the ordering based on the old coor-
dinatization no longer applies. The second method is untested in applications.
It relates to the investigation of arrangements in classical mathematics [5], and
is likely to profit from current research on oriented matroids; e.g., [13, 12].

3.2 Topological Degeneracy and Root Identification

In the example of Figure 9 we showed that in certain situations a topological
element, here the circular arc, vanishes. In the example of Figure 4, 2 topological
element should be ignored outright as irrelevant. It seems that the literature has
not addressed this problem of topological degeneracy. The problem is connected
to the problem of identifying which of several possible solutions of a system of
constraint equations is the intended one (cf. Figure 7) in that, in a continuous
deformation of a parameter value from the old to the new value, the geometry
described passes through one or more topological degeneracy. It is important to
investigate and understand how to isolate 2nd handle topological degeneracies in
an effective, and possibly interactive manner. In view of the possibly exponential
number of potential solutions this analysis needs to research how to isolate which
variables would participate in the root change, and whether they car be arranged




in a dependency structure in which the change of one variable entails an implied
change of some others.!

Such work would also make a contribution towards the important issue of
identi{lying under- and overconstrained geometries and suggesting to the user
certain changes that would remedy the situation.

3.3 Characterization Theorems

We have stated that solving geometric constraints is a problem that, from the
applications point of view, requires restricting the expressive power of the con-
straint system. The restrictions lound in the literature are often ad-hoc, with
no theoretical characterization of scope, and hence do not admit a strict seman-
tics. Some characterizable restrictions have been proposed. such as limiting to
ruler-and-compass constructible configurations. This has the advantage that the
constraints can be solved using only linear algebra and computing square roots,
[4]- In practice. such a system may not realize the full expressive power of the
restricted class because of efficiency considerations. Note also that some very
simple dimensioning schemes cannot be solved with ruler and compass alone,
such as the one shown in Figure 13.

Given an efficient approach to constraint solving, research that characterizes
the expressive power of the solver would be invaluable to certify the completeness
of any implementation and would be a basis for giving a precise semantics.

3.4 Legacy Considerations

A geometric modeling system is a considerable investment of time and effort, and
it is no surprise that the preservation of existing core modelers is a high priority
of commercial vendors as well as many research groups. In [6] we argued that
devising a semantically well-defined Erep is an elegant way to preserve the core
modeler while adapting to targeted applications and potential changes in user-
requirements. Despite the performance penalty mentioned before, compiling
generative geometries to core modelers that have a CSG architecture is therefore
a serious consideration. However, doing so naively would entail some very serious
research problems.

Consider, for example, the shape drawn in Figure 14, and assume that it
is the cross section of a solid of extrusion. A clever geometry compiler might
decide to consider this shape the union of a block and a disk. Doing so has the
advantage that a valid cross section is obtained under 2ll valuations of dy, and,
in particular, with d; = 10, which obtaines a square. However, the more natural
interpretation is the one shown in Figure 15, in which a corner of the square

It js interesting to note that ruler-based constructions, some of the simplest geometric
construoctions possible, must necessarily have an associated system of algebraic equations that
has 27 real solutions {4].



is rounded. This more natural interpretation is. however, inconsistent with the
CSG semantics.

We may adopt a two-stage translation step in which the cross section is
reinterpreted based on the topology of the boundary and is then mapped to
a new CSG expression. This entails clearly the very difficuit subproblem of
Brep to CSG conversion, which is only partially solved at this time; [10, 11].
Another approach would be to generate primitives from instantiated geometries
with a boundary-based semantics. The research issues associated with doing
so have been discussed before, and concern primarily finding a rigorous and
reasonable semantics of generative geometry representations. i.e., understanding
the implications of orienting geometric configurations without reliance upon a-
priori coordinatization.

4 Summary

We have illustrated that the trend towards generative geometric design with fea-
tures poses a number of research problems whose proper solution involves foun-
dational work. The full treatment of these issues requires developing coordinate-
free geometry representations, and to identify, when using these representations,
al] topological degeneracies that affect which of several possible solutions of the
given constraints is the proper one. Furthermore, one needs to address the prob-
lems of diagnosing and correcting under- and overconstrained configurations,
especially in view of the fact that the native representation of the constraint
solver does not necessarily correspond directly to the way in which the user has
formulated these constraints.

References

(1] B. Bruderlin. Symbolic computer geometry for computer-aided geometric
design. In NSF Conf. Advances in Design and Manuf. Sys., Tempe, AZ,
1990.

[2] B. Buchberger, G. Collins, and B. Kutzler. Algebraic methods for geometric
reasoning. Annual Reviews in Computer Science, 3:85~120, 1988.

[3] T. L. De Fazio and et al. A prototype of feature-based design for assembly.
Technical Report CSDL-P-2917, The Charles Stark Draper Laboratory,
Inc., Cambridge, MA, 1990.

[4] D. Hilbert. Grundlagen der Geometrie. B. G. Teubner, Stuttgart, 1956,

(5] D. Hilbert and 5. Cohn-Vossen. Geometry and the Imagination. Chelsea
Publications, 1983.



(6]

7]

(8]

[9]

[10)

(11)

(12]

[13]
(14]

C. M. Hoffmarr and R. Juan. Erep, a editable, high-level representation
for geometric design and analysis. Technical Report CER-92-24, Comp.
Sci., Purdue Univ., 1992.

J. Owen. Algebraic solution for geometry from dimensional constraints. In
ACM Symp. Found. of Solid Modeling, pages 397-407, Austin, Tex, 1991,

A. Requicha. Mathematical models of rigid solids. Technical Report Memo
28, University of Rochester, Production Automation Project, 1977.

J.R. Rossignac, P. Borrel, and L.R. Nackman. Interactive design with
sequences of parameterized transformations. Technical Report RC 13740,
IBM Research Division, T.J. Watson Research Center, Yorktown Heights,
New York, 1988.

V. Shapiro and D. Vossler. Construction and optimization of CSG repre-
sentations. Computer-Aided Design, 23:4-20, 1991.

V. Shapire and D. Vossler. Efficient representations of two-dimensional
solids. Transactions of ASME, Journal of Mechanical Design, 113:292-305,
1991.

B. Sturmfels. Computational algebraic geometry of projective configura-
tions. J, of Symbolic Computation, 11:595-618, 1991.

N. White. Combinatorial Geometries. Cambridge University Press, 1987.

Wu Wen-Tsiin. Basic principles of mechanical theorem proving in geome-
tries. J. of Systems Sciences and Mathematical Sciences, 4:207-235, 1986.



BN
<1
<

Figure 1: Object and Cut Definition

ZZ
\

|

NEERVA

Jzuy

AT

Figure 2: Step Created with sdg = 320

10




|~

sl

—

200.00

Figure 3: Block Created with sdp = 200

1

wd

"

---""‘-4

=

L

]

=

Figure 4: Error Generated with sdp = 400







350.

500.00

Figure 7: Triangle Dimensioning Schema with Symmetric Solutions

45.0

450

Figure 8: Two Solutions of Angle Constraint

90.0

Figure 9: Critical Angle of 90°

13

oo



\135.0

Figure 10: Angle of 135°

A
g C

Figure 11: Angle Between Two Segments
B T C
A

Figure 12: Angle Between Two Segments

Figure 13: A Dimensioning Scheme not Sclvable Using Ruler and Compass

14



109 .00
160,00

= 200.00

Figure 14: Example Cross Section with CSG Interpretation

x

100.00

£00.00 —=

Figure 15: Natural interpretation with dy = 10, inconsistent with CSG seman-
tics.

15




	On the Semantics of Generative Geometry Representations
	Report Number:
	

	tmp.1307986960.pdf.sZdWL

