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Abstract

We propose a high-level, generative, textual representation for feature-
-based solid modeling, which we call Erep. We argue that such a represen-
tation should be independent of an underlying core solid modeler, and give
some criteria it should satisfy. Such an Erep allows archiving geometric
designs in a form that is both editable and translatable to any solid model-
ing system. Furthermore, the representation serves as a global schema by
which to federate different modeling systems, and is extensible in a natural
way to a representation from which to derive analysis representations and
process plans. By federating with finite-element analysis packages, in par-
ticular, our approach offers closing the design-analysis feedback loop that
previously required a manual link.
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1 Introduction

1.1 Geometry Representations

There is a rich variety of representation schemas for storing and manipulating
geometric shapes and especially, solid models. Over the years, the primary
family of schemas that has emerged as the most common one used in commercial
and in research modeling systems is the boundary representation (Brep) in its
many variants, for representing manifold and nonmanifold solids; e.g., [15]. In a
Brep schema, the surface of a shape is represented as a collection of faces, edges
and vertices, along with data structures that record adjacencies and incidences
of them. The geometry of the faces, and possibly edges, is usually represented
by parametric surfaces and curves, such as NURBS, Bézier patches, and so on;
e.g., [2, 12]. Faces are then areas defined by a standard domain or by trimming
edges. Other face geometries in use are implicit and procedural representations
of the containing surfaces, {15, 22].

This style of representation originally competed with Constructive Solid Ge-
ometry (CSG); [20]. In CSG, solids are represented as algebraic expressions
formed from a family of primitives, using the Boolean operations of (regular-
ized) set union, intersection, and difference, as well as rigid body motions that
specify the relative spatial positions of the operands. The classical set of primi-
tives consisted of blocks, cylinders, spheres, cones, and sometimes tori. Specific
instances of the primitives were instantiated by choosing values for edge length,
radius, etc.

From the point of view of editing shapes, it is probably fair to say that the
CSG representation exists at a higher level of abstraction in that it manipulates
shapes represented in a purely symbolic form — without explicit reference to
how to evaluate, for instance, whether a given point is on the surface of a
primitive. Thus, in principle, one could choose to evaluate the CSG in any one
of a variety of more explicit shape representations, converting it, for instance,
to a Brep whose faces could be NURBS or even faceted. Nonetheless, Breps
have gained wider acceptance whereas the use of CSG modelers has declined.
The factors contributing to this probably include the ability of Breps to use
splines in ways that allow local shape manipulations utilizing the full power and
range of the methods developed by Computer-Aided Geometric Design (CAGD).
Moreover, to-date there are no general algorithms for converting a Brep to an
equivalent CSG representation, [10, 16, 24], and such algorithms would seem to
require implicit algebraic surfaces. ,

Despite the ultimate lack of penetration, CSG has influenced deeply the
way in which most modeling systems conceptualize and present to the user the
various geometric operations and queries they implement. Thus, in a broader
sense, we could say that CSG refers to building geometric shapes from a set of
primitive solid shapes, however they be defined, using the Boolean operations



and rigid body motions. In this sense, the Bath modeler is a CSG modeler, [3],
and CSG refers to high-level shape operations that are used widely.

1.2 Feature-Based Design

Neither Brep nor CSG representations satisfy by themselves the designer’s needs
well. The Brep describes solids at a very low level of abstraction. As a result,
designers are forced to think from the very begining of the design process about
characteristics that are relevant only in the last stages of design. Although CSG
describes a solid at a higher level of abstraction than a Brep, it is still far from
the designer’s vocabulary; in many cases a CSG operation on the model does
not correspond to a functional objective the designer has in mind.

From the designer’s point of view, it seems more appropiate to construct a
model in terms of functional elements, each of them having a particular signif-
icance to the design. This can be achieved by enabling the designer to express
the design in terms of features like slots, holes, bosses, etc. The features may
correspond to functional elements in the final product and can be categorized by
type [30], and can be represented conveniently by a few parameters. Additional
information for automatic process planning, NC programming and inspection
can be either derived algorithmically or added to the features definition. This
approach is known as feature-based design, and has received much attention
during the last decade [21, 19, 27, 28, 31].

With the emergence of feature-based modelers, new concepts for defining
and editing shapes and solids are coming into use. These new operations and
manipulations are not as readily coded by a formal representation schema for
reasons to be explained later. The importance of feature-based concepts is
rooted in the convenience and efficiency of use, of geometric modeling systems,
they make possible. These new advantages will surely result in broader use of
geometric modeling systems in research and industry.

1.3 Editable Representations

Since the use of modeling systems in industry encourages electronically repre-
senting designs in a manner that is conducive to archiving and reuse, and since
the design of new products and parts is often an evolutionary change of exist-
ing designs, it would seem necessary to devise geometric shape representations
that permit more than archiving the completed detailed shape design and then
interfacing that representation with analysis and production tools. Rather, one
would like formal electronic representations that also allow one to modify an
archived design and edit its features, or archive and reuse partial designs.

The subject of this paper is to analyze the nature of such editable geometry
representations and to propose and justify basic criteria for judging their utility.
An example design for an editable shape representation is also sketched, and



the manner in which it interacts with both the user interface and the underlying
core modeling system is presented.

Because a feature-based design interface is conducive to many important
advantages, including efficiency of use, it is tempting to compare the accom-
panying editable shape representation with a program written in a high-level
programming language and the native shape representation of the underlying
core modeling system as an equivalent machine-level program. This comparison
seems especially appropriate in view of the fact that the editable representa-
tion should be parametric or even variational, so that it does not so much store
the geometry itself but rather a set of rules that specify how to construct the
geometry as a function of parameters and constraints. The agent that inter-
prets the editable representation would then be a kind of geometry compiler,
or interpreter, that translates the elements of the editable shape representation
through a suitable sequence of geometric operations carried out by the under-
lying modeler, into a traditional Brep.

Although these parallels are very suggestive, they are not quite precise. In
particular, the process of constructing and elaborating an editable representa-
tion depends on an interacting flow of information between the geometry inter-
preter, the graphical user gestures made through the interface itself, and the
underlying geometric core modeler. It is this interaction that interferes with a
strict segregation of the high-level and the low level representations and limits
the analogy with programming in the traditional sense. However, we argue later
that these limits are not overly confining.

The parallel between high-level and low-level programming languages is sug-
gestive of another possibility afforded by our approach. Since the user does not
really care about the representational details of the core modeling system —
as long as the representation serves the purpose the user has in mind — one
should contemplate translating the editable shape representation into an anal-
ysis representation, such as a suitable complex of tetrahedra or other mesh
elements. Geometric research modeling systems exist today that use such an
internal representation [14, 13], and suitably approached, our editable repre-
sentation can be translated into tetrahedral meshes, whereupon they are easily
interfaced with analysis codes. Doing so promises a convenient way of closing the
design-optimization loop which currently requires an explicit translation from a
geometric representation into an analysis representation, followed by the anal-
ysis, and subsequently, by human interpretation of the results to derive what
consequences, if any, the analytical properties of the design have on the design
details. Other possibilities include integrating process planning and federating
different modeling systems. We also discuss these points in some detail.

(W}



2 General Requirements on the Representation

The natural mode of specifying shape is visual. Shape is efficiently perceived
visually and is effectively communicated with a sketch or a more detailed render-
ing, often annotated with dimensions and constraints. Of course, such drawings
can be represented, when completed, in the traditional way using a Brep. How-
ever, the resulting collection of faces, edges and vertices does not reflect the
conceptual structural information implied by the method of construction. For
example, if we create a generalized cylinder by sketching a cross section and
revolving it, the final Brep will represent neither the rotational symmetry we
specified by this construction, nor the axis of rotation in the sketch. Further-
more, the Brep would not represent a dimensioning scheme that we might have
used to finalize the cross section and that could contain important dimensioning
constraints and interdependencies.

Summarizing, the structural geometric information of the features and the
interdependence of their design parameters is irretrievably lost in the Brep and
this loss prevents convenient redesign. In consequence, a higher-level represen-
tation is needed. This representation should satisfy the following requirements:

1. Archivability:
_The representation should be suitable for archival and transmission, and
should be independent of the underlying core modeling system.

2. Fidelity:
The representation should record the sketches and conceptual construction
steps by which the shape has been defined.

3. Constraints:
The representation should support parametric and variational design, as
well as the dimensioning scheme the designer has chosen. Both generic
and specific design must be possible.

We argue the value of these requirements.

2.1 Archivability

A good design is a valuable asset and the potential basis of a family of future
designs. It should be archived in a machine-readable form in a manner that
interfaces conveniently with other electronic tools and programs. For example,
in manufacturing we would submit the electronic design to analysis tools that
assess manufacturability and functional performance. The current situation is,
however, that editable representations exist for some modeling systems, but
they are low-level, modeler-specific data records that cannot be exchanged with
foreign modeling systems. In consequence, the archived design can only be
processed with the modeling system that created it.



In some cases, newer releases of the same modeling system cannot process
stored designs prepared by older system versions, be it because the stored repre-
sentation refers to internal data structures that have become obsolete, or because
changed tolerances in the newer system version no longer support geometric con-
structions whose interpretation succeeded before.! Moreover, the specificity of
the proprietary design representation prohibits translating these representations
by machine to ones understood by other tools performing, e.g., an analysis of
physical properties of the design. In critical applications it is not uncommon
that a design must be manually converted to another data format by a specialist.

2.2 Fidelity

The way a geometric design has been created defines a geometric structure
that is often meaningful beyond the purpose of constructing the shape using
the geometric operations available. For example, the designer may have cho-
sen to create a feature in a certain way in order to facilitate a manufacturing
process to be used for realizing the design. Moreover, the sequence of design
operations, and their very nature, often has implications on the shape of vari-
ant designs that are obtained by changing certain relationships or dimensions.
When editing a design, this structure also provides the basic handles for possi-
ble modifications and editing operations. Therefore, this editable representation
should foremostly reflect the structure the designer has created. If additional
structure can be inferred, it ought to be recorded as well. For instance, we
may have created a cylinder by sweeping a circle (perpendicularly) along a line
segment. In this case, we could infer the rotational symmetry of the shape and
should record its axis which is the path of the circle’s center.

2.3 Constraints

The power of a feature-based design is substantially increased by parametric and
variational designs. In a parametric design, a sequence of constraints is defined
and solved serially. For example, if the constraints concern dimensions dg, the
next constraint on dg41 is an explicit function of the previous constraints, i.e.,

dev1 = fldq, ..., di)

When solving parametric constraints, the constraints are simply evaluated in
sequence.
In variational design, no explicit sequencing of constraints is provided, and

'This observation was made about Pro/Engineer by one of their experts. We have not
systematically explored how wide-spread this problem might be in other commercial modeling
systems.
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Figure 1: Variational constraints must be solved.

a system of simultaneous equations must be solved, i.e.,

fl(dla reey d'n.) =
fa(diy .y dn)

fr(dyyondy) = 0

Without addressing whether an interactive design environment can reasonably
support a full variational constraint mechanism, we note that the editable repre-
sentation has to account for both mechanisms. Consider for instance the trape-
zoid sketched in Figure 1. To determine the true shape, a variational system
must be solved because of the chosen dimensioning scheme. A different dimen-
sioning scheme, for example the one shown in Figure 2, may allow a parametric
solution.

In addition to parametric and variational algebraic constraints, there are
geometric constraints that express spatial interrelationship symbolically. For
example, lines may be parallel or perpendicular, circles concentric, two geometric
entities may be incident, and so on. Such constraints need to be recorded
verbatim as their translation into equivalent algebraic form may lose information
that is important in editing the design.

An important class of constraints can be used to place features with respect
to each other in space in a manner that eliminates explicitly relating intrinsic
coordinate systems to each other. Of course, there is no reason to eliminate
explicit coordinate transformations from the editable representation. But the
constraint-based concept is important in the user interface and can also represent
structure needed in some editing operations. By the requirement of fidelity, this
form of geometric constraint ought to be supported by the representation.
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Figure 2: Parametric constraints can be solved.

2.4 Definition

We call a representation supporting the minimal requirements of archivability,
fidelity, and constraints an Editable representation (Erep). We discuss in the
following the general structure of Ereps and clarify our ideas with a specific
example presented in the appendices. We will design a textual Erep, and insist
on a strongly symbolic, textual form. However, we do not intend the Erep to be a
programming language for design, and would not ask the designer to write Erep
text. Doing so would be a mistake because of the loss of the visual element that
is so important in shape specification. Rather, the Erep is accumulated under
program control as the designer interacts with the graphical user interface (UT),
and is edited under program control in response to shape changes or elaborations
initatiated graphically from the UL

The need for and potential benefits of so raising the level of abstraction
in geometric design have been articulated before; e.g., [8, 9]. However, there
seems to be no clear recognition that this higher level of abstraction ought to
be supported by a formal representation, and that this representation should be
independent of the subsystems to which it is ultimately translated.

3 Architecture of the Modeling System

Bacause of the strong interaction between the user interface, the Erep, and the
core modeling system, we describe first a general architecture for a feature-based
modeling system employing Ereps. Traditionally, the Ul is a presentation of the
functionalities and capabilities of the underlying core modeler. It is better, how-
ever, to target the user interface to a broad family of applications so as to achieve
stability under technological advances in the underlying modeler. Typically, an
application area has developed an established vocabulary in which it expresses



design, and only the emergence of new processes such as layered material de-
position may affect this vocabulary profoundly. In contrast, the capabilities
and functionalities of core modeling systems change rapidly as continuing re-
search develops new algorithms and techniques, both in regards to topology and
geometry.

The overall architecture of a feature-based modeler is shown in Figure 3. The

USER INTERFACE
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|t
SOLVER

y f A
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GENERATOR
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Figure 3: Architecture of the Modeling System

primary function of the geometry translator is to construct the detailed, specific
geometry representation when needed. Note that the user interface must access

10



functions of the core system in order to present the user with the necessary
views of the progressing shape design. Therefore, the information flow between
the Ul and the core modeling system must be standardized in order to achieve
independence from the particulars of the core modeler. Since the core modeling
system should not be expected to understand the style of interaction the user
interface defines, we must translate the geometric features the user has identified
by graphical selection, from the core representation, where they are determined,
to the feature-based representation of the higher level that the designer works
with. This is accomplished by means of a mapping that associates high-level
features with low-level face groupings. This representation map is maintained
by the geometry translator.

The representation map varies with the core modeler’s representation. If the
core modeler uses a Brep, the mapping is typically one that associates groups of
faces in the Brep with certain points or lines of the Erep, or even with regions
in sketching planes. If the core modeler uses an analysis representation, the
mapping would additionally associate tetrahedra with logical feature volumes
known in the Erep.

In the diagram, datums are handled by a separate translation. Typically, the
datum modeling support is done by a surface modeler, whereas the geometry
modeling support is done by a solids modeler.

The system capabilities are substantially leveraged when federating different
modeling systems, each supporting different groups of functions of the Ul Fed-
erating different, separately developed systems requires a uniform global view of
the user interface, and the Erep is ideally suited to provide such a global view.
The separate information path for datums is a simple example of federating a
surface and a solids modeler. But much more is possible. As shown in Figure 4,
support for engineering analysis and for process planning can be incorporated
by federating it in the same way. This allows in particular resolving geome-
try detail differently in the analysis and the geometry model. In section 6, we
discuss these ideas in more detail.

4 Language Concepts

A detailed design of an example Erep is given in Appendix A. In this section
we restrict the discussion to the rationale behind several language concepts.

It is important to recall that the Erep must completely and unambiguously
specify the geometry without unduely referencing any particular method of im-
plementing the geometry in this or that core modeling system. At the same
time, the Erep is not constructed by the designer. Instead, it is accumulated as
the result of graphical modeling and editing operations that the user executes
in the user-interface. Since some of the gestures require visualization which,
in turn, must be provided based on the explicit geometry representation of the
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core modeler, the information flow between the UI, the geometry translator,
and the modeling system must be standardized, and an independent naming
scheme introduced at the Erep level, so that every “picked” geometry item can
be recorded textually without reference to the graphics transforms and core data
structures from which it was identified. This is accomplished by introducing an
internal naming scheme that names faces, edges and vertices of the features. In
particular, this leads to the concept of logical and physical face. For instance,
the cylindrical surface of an extruded circle is a single logical face, independent
of the diameter of the circle, but may well be mapped to several physical faces
constructed by the core modeler in the Brep.

The Erep can be structured into several linguistic groupings. Broadly speak-
ing, there is a geometric part that deals with the structured creation of geometric
shapes, a referential part that deals with coordinate systems and their interre-
lationship, and a constraint part that concerns the expression of explicit and
implicit constraints and dimensions. The various language elements interact.

The global process of shape creation is divided into individual feature cre-
ation and modification steps. Features have dependencies on prior features,
that is, on other, previously created features, that are referenced. Such a refer-
ence can be geometric, for features that modify prior features such as a blend
or a cut, or the reference can be positional, when aligning elements of the new
feature with elements of prior features, or when referencing elements of prior
features for the purpose of defining dimensions or constraints. These depen-
dencies are logically an acyclic graph: Each graph node is a feature, and the
features directly depending on it descend from it by a directed arc. This type
of dependency is referred to hereafter as explicit feature dependency. Explicit
feature dependency is a dependency on the generative Erep level in that it does
not change with most editing operations.

In addition to explicit feature dependency, features interfere with each other
geometrically in the instantiated model. For example, a cut may extend across
several protrusions. This has been called feature collision by some authors;
e.g., [27]. Such dependencies are recorded on the Erep translation level as
they may change even when explicit feature dependencies do not. Logically,
featue collision is recorded by an undirected graph, called the feature interference
graph, whose nodes are the features. There is an edge between two nodes if the
corresponding features interfere. Note that the graph is edited implicitly when
altering the design.

4.1 Geometric Language Constructs

The purpose of the geometric constructs is to express basic shape operations.
These include basic shape elements for sketching, such as lines, conic sections,
and splines. Furthermore, basic solid shapes are created from 2-dimensional
geometry using extrusion, revolution, and sweeping. These basic shapes are

13



combined as features using protrusions, cuts, and restrictions; i.e., regularized
union, difference, and intersections. Shapes are modified by chamfering, blend-
ing, and positionally editing reference points and curves. There can be other
shape operations, including the creation of ribs and shells, as well as feature
changes due to editing dimensions or constraints.

Features can also be grouped, patterned, and mirrored. In a patterned repli-
cation, some parameters or dimensions could be varied. Mirroring operations
require precise rules for the interpretation of mirrored attributes, and for per-
mitted editing operations, if any.

The geometric constructs have modalities that affect exactly how to interpret
the operation. For instance, when creating a profiled cut, one may specify either
a specific depth, or else that the cut should lie between two selected surfaces. In
Figure 5, a hole extends between two specified surfaces that have been selected
visually. When one of the surfaces is moved, the hole changes accordingly. When

to face

from face

" Figure 5: A hole positioned between two referenced surface areas.

one or both surfaces are deleted, reasonable rules and user-interactions have to
be employed to reattach the orphaned feature. Those rules for reattaching or
deleting orphaned features are part of the user-interface design. We do not
propose any here, and only stress the need to have them.

4.1.1 Feature Construction

Three types of features are distinguished: generated features, datum features,
and modifying features. Generated features create geometry from sketches and
modalities interpreting the sketches. Datum features are used to establish a
geometric reference scheme that does not rely on numerical coordinate transfor-
mations. Minimally, we have datum planes, lines and points. Datum surfaces
and curves can also be included. Modifying features are operations that change

14



prior features. Examples include chamfers and rounds, shell operations, and so
on. Dimensioning and constraints become part of the Erep description of each
feature.

4.1.2 2-D Geometries

Two-dimensional sketches are constructed for the purpose of creating a three-
dimensional feature, such as an extrusion or a sweep, or as separately stored
sketches for future use in one or more designs. Topologically, the elements of
the sketch must not intersect except at explicitly constructed points. Thus, the
quadrilateral in Figure 6 is allowed only if the intersection p is made explicit by
intersecting and subdividing the two line segments (a, ¢) and (b, d).

d C

Figure 6: Sketched elements intersect only at explicitily constructed points.

2-D geometries are built from drawn primitives that include line segments,
circular arcs, conic sections, and splines. In each case, there are reference points
that are explicit, such as the endpoints of lines and arcs, or implicit. such as the
centers of circle arcs.

It is possible to specify splines by control points. However, it might be
more natural to specify the spline type symbolically and constrain the spline
to interpolate a set of reference points. Just as partial differential equations
systems allow the user to specify which solver should be used, there could be
a set of construction algorithms from which the designer can specify which
interpolation method should be applied to derive the spline.

The geometric primitives can be modified and refined using operations in-
cluding intersection and filleting. In the case of filleting there is again a choice
as to the method to be applied.

In addition to concrete geometric structures built in this way, datum points
and lines can be specified. A datum line could be used as axis of symmetry for
a mirroring operation, or as an aid in constructing a specific shape, or as axis
of rotation when constructing a revolved feature from the drawing.

15



Dimensioning (both linear and angular) and geometric constraints such as
perpendicularity, tangency or higher continuity are added so as to fully specify
the sketch and compute its actual shape.

4.2 Referential Constructs

When creating a feature, say by sketching a cross section and extruding it, it is
necessary to specify a sketching plane. The sketching plane serves two purposes
at the same time: It provides the interface to the sketching operations and,
when properly oriented and positioned, relates the new feature to the already
existing features. Such planes are often datum planes.

Elements of prior features include (logical) edges and vertices, as well as
silhouettes subject to some restrictions. All prior features are projected ortho-
graphically onto the sketching plane and can be used for alignment and other
geometric constraints, as well as for dimensioning. Existing dimensions may
also be referenced.

In addition to datum planes and the projection of prior features, other refer-
ential structures can be created such as datum axes and points, as well as datum
surfaces and curves. The datum creation parallels the ordinary geometry cre-
ation, except that we are building surfaces and curves instead of solid geometry.
It can be implemented as a parallel data structure in the core modeler.

We consider two types of datums: feature datums and local datums. A
feature datum is a feature by itself and is explicitly created as a feature of a
part. It can be referred to in any other new feature that is added to the part.
Local datums are created as part of the process of defining another feature.
Datums of this type can be referred to only inside the feature in which they
were created. The distinction between the two types is made in support of
hiding information: Feature datums are always displayed, whereas local datums
would be displayed only when creating or editing the feature of which they are
part. Feature datums and local datums both are created and positioned using
geometric and dimensional constraints.

4.3 Constraints and Dimension Constructs

Constraints can be algebraic or geometric. An algebraic constraint relates vari-
ables that have numerical values, such as linear and angular dimensions. It
can be equational or relational. Such a constraint is parametric if it has the
form = = f(y) where z is a variable and y is a set of variables not including z.
The expression f is formed from the arithmetic operations and a selected set of
functions.

A set of parametric constraints is parametric iff the variables can be ordered

16



such that the resulting set can be written sequentially in the form

21 = fily1)
2 = fay2)
Tn = fn(Y'n.)
where every y; does not contain any of the variables z;,z;41, ..., Zn.

A variational (equational) constraint has the form f(y) = 0. It is well known
that a set of variational equational constraints can be rewritten in parametric
form under the assumption that the expressions f; are formed only using the
operations +, — and X; [5, 6, 15, 32]. These techniques have been developed
in symbolic computation. In some cases these algorithms also apply to more
general expressions. Since the symbolic computation that derives equivalent
parametric constraints would be a preprocessing step, demands on their effi-
ciency could be relaxed.

A geometric constraint relates two geometric elements and specifies, for ex-
ample, that two lines are parallel, coincident, or perpendicular, that two circles
are concentric, that a number of points are collinear or coplanar, and so on;
e.g., [4]. In most cases, geometric constraints can be expressed equivalently by
algebraic constraints, and geometric theorem proving has developed systematic
tools to do so; e.g., [6]. The resulting constraints are almost always variational.

Because of fidelity, the geometric constraint formulation should be recorded
as given, even when the constraint solver requires only algebraic constraints.
Thus, between the Erep record of constraints and the constraint solver there
could be an interface that translates constraints into the native representation
of the solver. In this case, care has to be taken that the solver is able to give
error messages for constraints that cannot be solved in terms that the user
understands.

4.4 Editing Issues

A completed design or a design in progress can be edited by changing any fea-
ture with respect to its modality, shape, or its dimensioning and constraint
scheme. This poses problems for reinterpreting dependent features. For exam-
ple, consider a block with a cylindrical cut shown in Figure 7. Assume we have
dimensioned the block and the cut as shown. Clearly, there is little problem
editing the dimensions. Moreover, many changes to the shape of block can be
done without affecting the rules for placing the cut.

Now suppose that the edge from which the axis of the cut has been dimen-
sioned with d1 and to which it is parallel is deleted. Depending on how it is
deleted, the placement of the cut becomes uncertain. If the edge is rounded,
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Figure 7: Editing a block with a cut.

we may assume by default that the unrounded edge is to be used because the
round was introduced later. But if the block was created by extruding a rect-
angular cross section and we edit this cross section changing it into a triangle
by eliminating the vertex that became, in the extrusion, the edge referenced by
the cut, then no simple rule can be formulated. In such situations a dialogue
with the user must establish what to do with the dependent feature.

5 Implementation Issues

The implementation of an Erep-based system poses some problems that devi-
ate from ordinary Brep-based implementations because of the need to mediate
between different levels of abstraction. This mediation, furthermore, needs to
be done in a manner that does not commit to a particular underlying modeling
system, for we want to retain the freedom of exchanging core modeling systems
when technological advances make this advisable. When exchanging the core, we
want to preserve our investment in archived designs as well as in the other sys-
tem components and subsystems. To accomplish this requires standardizing the
information flow between the various subsystems and maintaining association
tables that establish inverse maps between, for example, Brep data structures
and corresponding Erep entities. Since the initial information flow is always

18



from the UI to the core modeler, this is not really an inverse problem. Rather,
it is like maintaining symbol tables in programming language translation for the
purpose of supporting symbolic debuggers.

As an example consider how to support a graphical pick operation to identify
geometric entities, say for generating a feature. It is clear that the result of a
pick must be recorded in the Erep in a way that permits automatic regeneration
of the geometry and editing it. This is done by naming every entity that can
be picked and using this name. But the pick depends on a view and cursor
position that are incidental. We could support the pick operation directly from
the Erep, but this would require duplicating the work performed by the core
modeler, and so it should be supported instead by a sequence of operations that
involve computations at the core modeler level, i.e., operations on the Brep.
But now we must be careful not to jeopardize the independence from the core
modeler. We do it as follows:

1. Compute the line of sight through the mouse position clicked. This line is
constructed from the viewing transform and the screen/mouse handler.

2. Intersect this line with the instantiated model in the core modeler, and
sort the intersected entities by depth.

3. Highlight each entity in turn, asking the user to confirm or reject the
choice.

4. Translate the selected physical entity to the corresponding logical entity
and record it by name in the Erep.

The problem is step (4) which requires maintaining an association map between
a physical Brep entity and the corresponding logical Erep entity. Note that
an Erep entity could correspond to several Brep entities. and the types of the
Brep entity and the corresponding Erep entity may well differ. Since the Brep
is constructed from the Erep, it is clear that such a map can be constructed
straightforwardly. Other operations requiring the cooperation of several subsys-
tems, possibly at different levels of abstraction, are implemented analogously.
The auxiliary data structures needed to build the necessary associations are
then fairly obvious.

A substantial aspect of the system is the constraint solver. There are a
number of research constraint solvers, as well as commercial constraint solvers.
The basic issues are how they negotiate speed, scope, and recoverability. Typ-
ically, the constraint solver requires translating some of the Erep constraint
statements into a uniform, internal representation. To recover from under- or
overconstrained situations, it is again necessary to build, when translating the
constraints, an association table, so that failing constraints can be presented to
the user in the terms he has used to express them. This applies to both the
explicit constraints the user has expressed, as well as to the inferred constraints
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that the UI deduced from the sketch. For example, we can adopt inference rules
such as “if two lines have been sketched as approximate perpendiculars, then
they are in fact perpendicular.” In some cases, applying such rules automati-
cally could be wrong, and the user should be given a mechanism for selectively
rejecting such implied constraints. Moreover, when editing a design, some in-
ferred constraints may have to be removed. The Erep supports this requirement
by recording all constraints, whether they have been inferred or were given ex-
plicitly.

6 Analysis and Process Planning Representations

While geometric modeling capabilities in CAD systems have improved consid-
erably, comparatively less attention has been paid in the past to integrating
engineering analysis, process planning, and other important aspects of the prod-
uct modelling process. In recent years, several research efforts have focused on
integrating geometric design, manufacturing information, and design method-
ologies; [1, 11, 26, 29]. Such work makes progress towards a product modeling
science.

Because the relevant engineering information for the product modeling pro-
cess varies with the different aspects it encompasses, the representation used
must also vary to properly meet the requirements of each aspect. These dif-
ferent representations can be derived from a common model — provided that
the particular engineering data for each model is either already contained in the
common model or else is derivable from it algorithmically.

We discuss how a number of issues can be addressed using the Erep approach
in order to derive different representations for engineering analysis and process
planning.

6.1 Analysis Representations

An engineering analysis of a geometric design requires additional information.
This additional information has been called analysis attribute data [26] and is all
the information beyond the geometric domain definition needed to fully define
the physical problem to be solved [17, 25]. Analysis attribute data includes ma-
terial properties, loads, boundary conditions, initial conditions, mesh gradation
information, rules for idealizing the geometry, etc; [26, 29].

Analysis attributes specification is a geometry-based task, and the structure
that supports analysis data will be strongly tied to the geometry representation.
However, it is desirable to keep attribute specification as independent as pos-
sible from the details of the geometry representation, [26]. Hence, to associate
attributes with a feature or a logical part of a feature in the Erep representation
is a good and convenient choice, and would be superior to an association with
the low-level Brep of traditional core modeling systems.
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It seems natural to restrict the association of analysis attributes to existing
entities in the geometric model only. However, attributes are not always defined
in a one-to-one relation with geometric entities; e.g., [23]. Hence, it must be
possible to associate an attribute either with several geometric entities or with
only a part of a geometric modeling entity. In the latter case, the geometry rep-
resentation needed to perform the analysis may be different from the geometric
model designed. So, it is necessary to provide the capability to generate a ge-
ometry representation that is best-suited to carrying out the analysis without
altering the original design. In the Erep approach, there is no need for edge or
face breaks common in Breps; [25]. Instead, datums can be defined with which
attributes are associated and then the association can be properly handled by
the analysis translator.

The analysis of most engineering parts and assemblies ignores a number of
geometric details of the geometric model. In a geometry-based integrated ap-
proach like the one sketched here, a feature in the Erep representation could
be tagged by the user as either essential or inessential for analysis porposes.
Furthermore, the Erep feature representation could support a set of rules defin-
ing under what conditions the feature should be removed in the analysis. Such
conditions would depend on either predefined values or on values that are de-
termined as part of an adaptive analysis process [25].

When dealing with complex structures, and in order to produce more com-
putationally efficient models, an analysis makes use of reduced element types.
These are elements whose dimensionality is less than that of the model. Repre-
senting these elements in the geometric model requires nonmanifold topologies.
While this might be difficult to antomate based on a Brep, it would be simple
in the Erep, in contrast: It suffices to associate with a feature its simplification
rules. For instance, a hole with a diameter-to-length ratio less than a certain
value can be reduced to its axis. Extrusions or sweeps representing beams or
plates are similarly simplified.

Mechanical design optimization iterates a cycle cousisting of a design step,
followed by one or more analysis steps. The result of the analysis steps are
then used to alter the design, improving functional characteristics of the part or
assembly that is designed. This optimization loop is implemented traditionally
as follows: Interface the Brep geometry representation with a mesh generation
program deriving an analysis representation that becomes the input to the anal-
ysis steps along with the analysis attribute data. But the output of the analysis
is not really in a form that could be used to alter the geometry automatically,
chiefly because the association of elements with the geometry is at best on the
Brep-level that does not support feature-based editing. By deriving the anal-
ysis representation from the Erep instead, the association between feature and
elements is direct. Thus it becomes possible to process the analysis results to
recommend feature modifications and additions. For example, if an area of high
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stress is along a concave edge that borders two features, we could deduce au-
tomatically that the addition of a fillet feature is advisable. Moreover, if the
stress area is across a thin-wall protrusion we could deduce that the thickness
of the walls ought to be increased. These deductions can be made algorithmic,
because the Erep association delivers high-level geometry information.

6.2 Process Planning Representations

A process planning system is a procedure that converts the design information
into process documentation; [7]. The goal of process planning is to choose a set
of manufacturing operations from a predefined repertoire and define on them a
sequence that meets the design objectives at minimal cost; [19]. To accomplish
this task, a process planning system analyzes the product design, transforming
design features into manufacturing features.

Much research has been done to derive features needed for machining parts
from the Brep; e.g., [1, 7, 19]. This work seeks to apply sophisticated geometric
reasoning to derive, from the lower-level geometry representation such as the
Brep, groupings of geometric elements that constitute a feature. This task is
complicated by feature interference that may obliterate tell-tale geometric enti-
ties. By raising the level of abstraction in the product design model, however,
feature extraction and transformation becomes much simpler. We now sketch
some ways in which an Erep can be used in process planning.

There are two process planning approaches: the variant approach and the
generative approach. The variant approach sets up a process plan as a modifi-
cation of a plan previously defined for a design that is, in some sense, similar to
the design under consideration. The generative approach generates a plan from
scratch considering the part features and making no prior assumptions; [1, 19].

A generative process planner carries out several tasks. For example, consider
the system presented in [1] which performs the following six tasks: feature re-
finement, process selection, tool selection, process sequencing, fixture planning,
and numerically controlled cutter path generation.

With each type of feature there is associated a limited set of possible manu-
facturing methods; [1, 19, 30]. The advantage that the Erep approach offers in
this case is the fact that it is already a feature-based representation. In order
to make these advantages more explicit, we relate the Erep approach to some
of the process planning tasks mentioned before.

Some tasks may use geometric reasoning, for example generating approach
and feed directions in feature refinement. This requires that the feature rep-
resentation be cross-linked to an auxiliar boundary representation; [1]. Using
Ereps, a cross-link is provided by the geometry translator without additional
work, and the generative attributes of the feature, extruded, revolved, etc., assist
in determining approach and feed directions.

Determining both process sequences and the processes themselves would
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depend on the feature relationships. Among all possible feature relationships,
feature nesting and feature intersection appear to be most important to process
planning [1]. The feature collision graph maintained by the Erep translation,
and the explicit feature dependency graph of the Erep, give directly both the
intersecting features and the nested features. Sometimes, the process or the
process sequence or both depend on the tolerances imposed by the designer [19,
18]. But an Erep can be naturally extended to associate tolerance information
with the features through the dimensioning and constraints definition scheme.

The variational approach benefits from the fact that the Erep approach
encourages archiving and editing previous designs. A new design that has been
derived from an old design by editing is likely to require a process plan similar
to that of the old design. Thus, if the design editor archives not only the design
but also the design history and associated process plans, it would be simple
to retrieve process plans associated with the prior designs and modify them as
needed.
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A Erep Example Language Specification

We give a syntactic definition of an example Erep. The example has been kept
simple and is not meant to be a comprehensive design. Rather, this Erep shows
how the geometry can be specified without a commitment to an underlying
core modeler to whose functionalities and representations the Erep translation
would map. The Erep is easily extended. In particular, the additions sketched
in Section 6 are easily formalized and incorporated.

A.1 Assemblies

An assembly is a collection of parts that have been assembled, one at a time,
according to a set of matching rules. A set of matching rules specifies the
constraints that locate a part relative to the parts already assembled.

<assembly> ASSEMBLY <name> <stamp>
<global_info>
<parts_list>

END_ASSEMBLY

GLOBAL
UNITS <unit>

<global_info> ::

<parts_list> PARTS <part>

| <parts_list> ; <part> <matching_rules>
<stamp> = integer
<unit> =mm | cm | m | in | ft

The constraints are analogous to the datum-placing constraints described later.
Conceptually, they mate or align surfaces, curves and points, until the relative
position of the part, with respect to the partial assembly, has been completely
specified.

<matching_rules> ::= <rule>
| <matching_rules> ; <rule>

<rule> ::= <mating> | <aligning>
<mating> ::= MATE <geo_pair>
| MATE OFFSET <exp> <geo_pair>

| ALIGN <geo_pair>
| ALIGN OFFSET <exp> <geo_pair>
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<geo_pair> ::= <point> <point>
| <axis> <axis>
| <surface> <surface>

To ALIGN two surfaces means to have them coincide in the same orientation.
To MATE them means to have them coincide in opposite orientation. In analogy,
curves are aligned or mated depending on whether their orientation agrees or
is opposite. The number and type of rules used to position each part in the
assembly should be both necessary and sufficient.

A.2 Parts and Features

A part consists of several features that are datum, generated, or modifying fea-
tures. Since a modifying feature alters prior features, it cannot be a first feature.

<{part> ::= PART <name> <stamp>
<global_info>
<features_list>
END_PART

<features_list> ::= <d_feature>
| <g_feature>
| <features_list> <feature>

<feature> ::= <d_feature> | <g_feature> | <m_feature>

A <d_feature> is a datum feature. Datums are points, lines, planes, or
coordinate systems. The manner in which they are specified will be explained
below.

<g_feature> ::= <e_feature>
| <r_feature>
| <s_feature>

Generated features (<g_feature>) are constructed from two-dimensional
sections using one of several operations that depend on chosen attributes. Logi-
cally, we have restricted generated features to sweeps, where extruded (<e_feature>)
and tevolved features (<r_feature>) are special cases of the general sweep op-
eration (<s_feature>).

<m_feature> ::= <c_feature>

| <o_feature>
| <«f_feature>
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Modifying features (<m_feature>) operate on three-dimensional geometry
and change edges and vertices by chamfering (<c_feature>), rounding (<o_feature>),
or filleting (<f_feature>). Other modifying features could be defined such as
drafting faces.

A.3 Datums

There are two types of datums, the feature datum and the local datum. A feature
datum is a feature, whereas a local datum is part of another feature, such as a
generated feature. The feature datum is specified as

<d_feature> ::= FEATURE <name> <stamp>
<feat_depends> ;
<datum_type> <orient_modification> ;
<constraint list>
END_FEATURE

<orient_modification> ::= <empty> | ORIENT_OPPOSITE

<feat_depends> <empty>

| <feat_depends> , <name>

and the local datum is specified as

<1_datum>

1]

DATUM <datum_id> <datum_type> <orient_modification> ;
<constraint list>
END_DATUM

<datum_type> ::= DATUM_POINT | DATUM_AXIS | DATUM_PLANE | DATUM_CS

The two types are equivalent, but giving them a separate syntactic form supports
information hiding in the user interface.

We consider linear datum types, namely points, axes and planes, as well as
coordinate systems which are a group of three oriented datum axes that are
pairwise orthogonal and have been named z, y and z. They are defined with
geometric constraints that are expressed as follows.

<constraint_list> ::= <geo_constraint>
| <constraint_list> ; <geo_constraint>

<{geo_constraint> <const_verb> <const_type> <name>

<conét_verb> ::= ON
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| PARALLEL | OFFSET <exp>

| NORMAL | ANGLE <exp>
<const_type> 1= <empty>

| EDGE | FACE

| CSAX | CSA_Y | CSA_Z

| CSP_X | CSP_.Y | CSP_Z

Datum constraints are composed by placing the datum geometrically with re-
spect to another geometric entity. For example, when defining a point by the
intersection of a 1ine and a plane, this is expressed as ON plane; ON line.

Semantically, the constraints must make sense and fully define the geometric
placement without redundancy. The verb ON specifies incidence, of a point with
another point, axis, plane or surface. The verbs PARALLEL and OFFSET specify
a constraint of orientation in space, with OFFSET adding a distance constraint.
The verbs NORMAL and ANGLE also specify orientation constraints. When a datum
point is constrained by OFFSET only a distance constraint is expressed. For
example, with a prescribed offset from a reference point, a datum point would
be constrained to lie anywhere on a sphere centered at the reference point with
radius equal to the offset distance. Other geometric constraints could be added,
such as tangency or curvature continuity.

No constraint type is required when the <name> refers to a datum point,
axis or plane. Coordinate-system-based constraints have been separated by the
axis names and whether the axis or its associated zero plane is referred to. So,
CSA_X refers to the z coordinate axis, whereas CSP_X refers to the plane z = 0.
For instance, a point constrained by ON CSA.X csys1 must lie on the z-axis
of the coordinate system csys1, but the constraint OFFSET 55.3 CSP.X csysl1
requires the point to lie on the plane z = 55.3 in the coordinate system csysl1.

Axes and planes have an orientation that is implied by the way in which
they have been constrained. The orientation rules are explained in Appendix
B. This default orientation can be explicitly reversed by ORIENT_OPPOSITE.

A.4 Generated Features

In the example language, generated features are sweeps. For linear and revolving
sweeps, special syntactic forms have been chosen in view of their simplicity and
frequent use. Al other sweeps are considered to be general, as explained later.

A.4.1 Extruded Features

An extruded shape is a sweep of a plane cross section along a line segment. An
extruded feature is either a protrusion that adds material, or else a cut that
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removes material. If the extrusion trajectory is NORMAL, the extrusion proceeds
in the vertical direction to the cross section plane. Otherwise the cross section
is extruded along a datum axis.

<e_feature> ::= FEATURE <name> <stamp> EXTRUDED;
’ <feat_depends> ;
<volumetric_type> ;
{ <1_datum> }
<e_trajectory> ;
<e_extent> ;
<cross_section> ;
<pattern>
END_FEATURE

<volumetric_type> ::= PROTRUSION <orientation>
| CUT <orientation>

<e_trajectory> ::= TRAJECTORY NORMAL
| TRAJECTORY <datum_axis>

<e_extent> ::= EXTENT <e_from_spec> <e_to_spec>
<e_from_spec> ::= FROM offset | FROM ALL

| FROM face |  FROM <datum_plane>
<e_to_spec> ::= T0 offset | TO ALL

| TO face | TO <datum_plane>

The extent of the sweep is determined by specifying both ends. With re-
spect to the orientation of the cross section plane, the sweep proceeds from the
<e_from_spec> to the <e_to_spec> in the direction of the plane normal. In case
the cross section plane is a reference to an already existing geometric item, an
orientation specification of the cross section states whether this normal or its
opposite is to be used.

An offset states that the beginning or end of the extrusion is at a plane
parallel to the cross section plane at distance offset. Positive offsets are in the
direction of the normal, negative offsets are in the opposite direction. A zero
offset specifies the cross section plane itself.

A sweep can also be bounded by a face or a datum plane. The face could
be curved and the datum plane need not be parallel to the cross section plane.
In those cases, the sides of the swept shape extend to the intersection with the
bounding face or the datum plane.
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ALL means that the sweep extends a variable distance. When ALL is the
<e_from_spec>, the beginning of the sweep lies an arbitrary distance in the
opposite direction of the normal, and as a <e_to._spec> it lies an arbitrary
distance in the normal direction of the cross section plane. In case of a cut,
ALL implicitly specifies the farthest intersected surface that faces away from the
sweep, and in the case of a protrusion the farthest intersected surface that faces
in the opposite direction.

The details of the cross section and pattern specification are explained later.

A.4.2 Revolved Features

<r_feature> ::= FEATURE <name> <stamp> REVOLVED;

<feat_depends> ;
<volumetric_type> ;
{ <1_datum> }
<r_trajectory> ;
<r_extent> ;
<cross_section> ;
<pattern>

END_FEATURE

<r_trajectory> ::= TRAJECTORY
AXIS <datum_axis>
END_TRAJECTORY

<r_extent> ::= EXTENT <r_from_spec> <r_to_spec>
| EXTENT FULL

<r_from_spec> ::= FROM angle
| FROM face | FROM <datum_plane>

<r_to_spec> ::= TO angle
| TO face | TO <datum_plane>

Revolved features are similar to extruded features in that they sweep along a
standard trajectory, bounded by extent specifications closely analogous to those
of extrusions. The standard trajectory is a revolution around an axis, in the
direction of a right-hand rule with the thumb pointing in the axis direction.
The angle zero is the right halfplane of the cross section plane, as seen from
the positive side, and illustrated in Figure 8. The orientation specification of
the cross section may change that.
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Figure 8: Revolving angle orientation convention, based on axis and on sketching
plane orientation.

An angle specifies a half plane through the axis of rotation at the proper
angle. A FULL extent is a full revolution by 360 degrees. The other specification
possibilities are as for extruded features. Note that revolution extents may
overlap, in which case the effect is equivalent to a full revolution.

A.4.3 General Sweeps

There are three differences between general sweeps and extruded or revolved
shapes:

1. The trajectory now can be a general space curve.
2. The orientation of the cross section may vary along the trajectory.
3. The shape of the cross section may vary along the trajectory.

These new possibilities for varying shape require many additional parameters
and attributes whose intuitive control raises research issues. We limit therefore
the possibilities by restricting the cross section to be planar, and closed, and
disallowing shape variation. The orientation at any point is perpendicular to
the trajectory. Patterning has been disallowed arbitrarily. '

<s_feature> ::= FEATURE <name> <stamp> SWEPT;
<feat_depends> ;
<volumetric_type> ;
{ <1_datum> }
<s_trajectory> ;
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<s_trajectory> ::=

<p.trajectory> ::

<g_trajectory> ::=

<s_extent> L=

<s_from_spec> ::=

<s_to_spec> R

<comp_list> 1i=

<edge_spec> =

<spline_spec> ::=

<s_extent> ;
<cross_section>
END_FEATURE

<p_trajectory> | <g_trajectory>

TRAJECTORY_P
PLANE <sketching_plane>
COMPONENTS
<component_list>
END_COMPONENTS
CONSTRAINTS
<constraint_list>
END_CONSTRAINTS
CONSTRUCTICN
POS <point_id> <position>
END_CONSTRUCTION
END_TRAJECTORY

TRAJECTORY_G
COMPONENTS
<comp_list>
END_COMPONENTS
END_TRAJECTORY

EXTENT <s_from_spec> <s_to_spec>
EXTENT FULL

face | <datum_plane> | <datum_point>
ALL

face | <datum_plane> | <datum_point>
ALL

<edge_spec> | <spline_spec>
<comp_list> <edge_spec>
<comp_list> <spline_spec>

edge | ( face , face )

SPLINE <type> <point> <point> { <point> }
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Figure 9: Corner rule for general sweeps

The trajectory is a curve that can be built from components. The curve
must be continuous with nonsingular smooth segments, but may contain tan-
gent discontinuities. At an angle in the trajectory, the sections are joined by
extending the sweep from both sides along the limit tangent until its intersection
with the bisecting plane of the two limit tangents. See also Figure 9.

The extent specification either terminates the sweep at specific faces or da-
tum planes, or else ends the sweep at planes through a datum point that must
lie on the trajectory. This plane through the datum point is perpendicular to
the trajectory tangent at the point.

The trajectory may be open or closed. The extent specification ALL is as
in the <e_extent> applying to open trajectories only. If the trajectory is too
short, it is extended by the tangent at the trajectory end points. A FULL extent
specification only applies to closed trajectories.

A planar trajectory is specified by the same syntax as cross sections, and
is described later. A nonplanar trajectory is specified by a list of components
where each component is an edge occurring in a prior feature or a spline. The
spline is typed so that its construction from the list of points is understood. For
example, type Bézier interprets the points as control points.

A.5 Section Specifications

Sections are two-dimensional drawings. The geometry is specified by describing
the constituent curves and lines, primarily topologically, and giving a set of
constraints that fully describe relative position and dimension of the geometric
quantities. Apart from the component curves that comprise the section, there
may be auxiliary geometric items such as lines of symmetry that are used to
construct the section and/or solve the constraints.

A section is associated with a sketching plane that is typically a datum plane.
The geometry of prior features is available in projection onto the sketching
plane and may be referenced for the purpose of constraining the cross section.
The user draws a rough sketch of the cross section, and from this drawing
initial coordinates are assigned to points. When generating the cross section to
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constraint specification, the point coordinates change. The current set of point
coordinates is recorded in the CONSTRUCTION section, and is edited each time
the cross section is regenerated.

<cross_section> ::= CROSS_SECTION <name>;
PLANE <sketching_plane>
COMPONENTS
<component_list>
END_COMPONENTS
AUXILIARY
<components_list>
END_AUXILIARY
CONSTRAINTS
<constraint_list>
END_CONSTRAINTS
CONSTRUCTION
POS <point_id> <position>
END_CONSTRUCTION
END_CROSS_SECTION

Sketches are made on datum planes or face planes. The geometric com-
ponents are lines, points, arcs and splines. Splines are typed so the point list
following can be interpreted.

There are three types of arcs. ARC3 is a circular arc where three points on the
perimeter are known. The first and last are the end points, the second point is in
the interior. The arc is oriented by the order of the three points. In ARCC+ and
ARCC- the second point is the center of the arc. The ARCC+ is oriented counter
clockwise from the first to the third point. The ARCC- is oriented clockwise from
the first to the third point. For ARCC+ and ARCC- the first and third point may
coincide and the arc is then a full circle oriented as before.

<sketching_plane> ::= face | <datum_plane>

<components_list> ::= <component>
| <components_list> ; <component>

<component> ::= <1line> | <arc> | <spline>
<line> ::= LINE <line_id> <point_id> <point_id>
<arc> ::= ARC3 <arc_id> <point_id> <point_id> <point_id>

| ARCC+ <arc_id> <point_id> <point_id> <point_id>
| ARCC- <arc_id> <point_id> <point_id> <point_id>
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<spline> ::= SPLINE <spline_id> <type>
<point_id> <point_id> {<point_id>}

Constraints are geometric or other, and in most cases relate two named
geometric quantities. Geometric constraints express symbolically that two geo-
metric items are incident, tangent, parallel, perpendicular, or concentric. Other
constraints quantify a symbolic variable, <cs_oth_symb>, whose value will be
a distance or angle between two geometric items. The symbolic variables can
be related explicitly with a relation. Constraints relating three quantities are
collinearity of three points, or naming the angle subtended by three points.

<constraint> 1:= <sec_geo_constr> | <sec_oth_constr>

<sec_geo_constr> ::= <sec_geo2_verb> <name> <name>
| <sec_geo3_verb> <name> <name> <name>

<sec_geo2_verb> ::= ALIGN | TANGEN | ON
|  PARAL | PERP | CONCEN

<sec_geo3_verb> ::= COLLIN

<sec_oth_constr> ::= <sec_oth2_verb> <sec_oth_symb> <name> <name>
| <sec_oth3_verb> <sec_oth_symb> <name> <name> <name>
| <relation>

<sec_oth2_verb> ::= ANGLE | DISTAN

<sec_oth3_verb> ::= ANGLE

<sec_oth_symb> ::=  <name>

Relations assign or constrain the symbolic variables of distance or angle. The
relation syntax is not explicitly given and could be adopted from FORTRAN or
some other programming language.

<relation> ::= <simple_rel>
| <compound_rel>

<simple_rel> ::= <assignment>

| <relational>
<assignment> ::= <sec_oth_symb> = <exp>
<exp> = an arithmetic expression
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<relational>

<compound_rel>

<position>

<component_id>

A.6 Patterns

a Boolean expression using relational and
Boolean operations

IF <relational> THEN
<relation>

{ ELSE
<relation> }

ENDIF

( <number> , <number> )
INTERSECTION <component_id> <component_id>

<line_id>
<arc_id>
<spline_id>

A pattern is a set of features created from a given feature using a replication
rule. - The pattern is treated as a single feature. Replication can follow a linear

or revolute pattern

<pattern>

<p.attributes>

<step>
<instances>

<a_sense>

SINGLE
MULTIPLE <p_attributes>

LINEAR <direction> <step> <instances>

ARRAY <direction> <step> <instances>
<direction> <step> <instances>

CIRCUL <datum_axis> <step> <instances> <a_sense>

real

integer

CW | ccw

A.7 Modifying Features

Modifying features alter three-dimensional geometry of prior features. We con-
sider the edge modifying operations of beveling, rounding, and filleting. Other
operations would be easy to add.
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<c_feature> ::= FEATURE <name> <stamp> CHAMFER;
<feat_depends> ;
<edgelist> ;
<chamf_spec> ;
<end_cond>
END_FEATURE

<o_feature> ::= FEATURE <name> <stamp> ROUND;
<feat_depends> ;
<edgelist> ;
RADIUS radius ;
<end_cond>
END_FEATURE

<f_feature> ::= FEATURE <name> <stamp> FILLET;
<feat_depends> ;
<edgelist> ;
RADIUS radius ;
<end_cond>

END_FEATURE
<edgelist> ::= <edge_spec> { <edge_spec> }
<edge_spec> ::= edge | ( face , face )

<chamf_spec>::= ANGLE angle WIDTH number
| WIDTH! number WIDTH2 number

<end_cond> ::= face | <datum_plane>

An edge can be specified either by referencing it or else by referencing a pair
of adjacent faces whose intersection is the edge. The edges must be an open
linear sequence or a simple, closed loop of edges.

In the case of chamfers, the cut can be specified by giving an angle and a
width of the cut, or by giving two widths on either side of the edge. When an
angle other than 45° is given, the edges must be specified as pairs of faces and
the angle is measured against the first face of each pair which must be planar. If
consecutive left faces in an edge list are not coplanar, the chamfer will have an
edge that is determined by the rules for generating sweeps along trajectories that
have tangent discontinuities, whith the chamfered edges serving as trajectory.

Open edge lists require an <end_cond> of the modifying feature. Here the
modifying feature is considered a sweep of a standard cross section and the end

38



condition is interpreted as the <s_from spec> and <s_to_spec> are in sweeps.
For simplicity, we require a single <end_cond> is applied at both ends.

B Orientation Rules for Axes and Planes

The construction of protrusions and cuts, and the measurement of signed offsets,
requires that datum planes and axes be oriented. Since datums are constructed
from constraints, we need to define rules for unambiguously deriving a default
orientation from the constraints and from the sequence in which they have been
given. Which set of rules is used and whether the rules are intuitively understood
by the user is not important, because the user interface will routinely issue a
query asking whether the default orientation, shown graphically, is the intended
one. If the user indicates that it is not, the ORIENT_OPPOSITE modifier is inserted
into the Erep. Because orientation is used to place dependent features, an
editing operation that alters the orientation of a datum requires in particular
that the Erep definition of dependent geometric entities and features must be
edited accordingly.

Three conceptual devices are used to derive an orientation from constraints.
The first device defines the orientation from an oriented geometric entity that
is used in the constraints. Below, this method accounts for cases (1)—(3). The
second device considers two or three points in space, ordered in a way that
is derived from the geometry of the constraints and the order in which the
constraints have been specified. Two points so ordered orient an axis, and three
points define an oriented triangle that orients a plane by a right-hand rule.
Below, this method accounts for cases (4)—(6). Finally, an orientation may be
implied by observing on which side of a plane that is to be placed a constraining
geometric quantity lies. This method is used below in case (7).

We now give a set of rules for orienting planes. Let P be a plane defined by
the constraints.

1. PARALLEL or OFFSET to a given plane . Then P and ) have the same
orientation.

2. NORMAL or ANGLE to an axis. Then P is oriented so that the inner product
of its normal with the axis orientation vector is positive.

3. One NORMAL PLANE () constraint and either an ON AXIS or two ON POINT
constraints are given. The axis or the two points define an oriented line
that is projected onto the intersection of ) and the plane P and so ori-
ents the intersection ¢. The orientation of P is obtained by rotating @
about £ counter-clockwise, as seen in the orientation of £. An analogous
construction is used for the ANGLE ... PLANE constraint.
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4. ON AXIS and ON POINT ¢. Two points p; and p, are chosen on the AXIS,
ordered by the axis orientation, and the point ¢ is added. If the axis
constraint precedes the point constraint, in the Erep specification, the
order is (p1, P2, ¢), otherwise it is (g, p1, p2). Then the plane orientation is
from the right-hand rule applied to the points.

5. Three ON POINT constraints define the plane. The right hand rule is ap-
plied to the three points in the order in which the constraints have been
given.

6. Two ON AXIS constraints are given. The axes must intersect, and three
points are chosen as follows. The first point p is the axis intersection. The
second point lies on the first axis, following p in the orientation of the axis.

“The second point follows p on the second axis.

7. A PARALLEL AXIS or an OFFSET AXIS constraint. The plane is oriented
so that the axis lies on its positive side.

Axis orientation is based on the analogous principles, inheriting an orien-
tation from a given axis, or being oriented by two ordered points, where again
the point ordering depends in some cases on the order in which the constraints
have been written down. Since any unambiguous set of rules will do we do not
give one here.

40



	Erep An Editable High-Level Representation for Geometric Design and Analysis
	Report Number:
	

	tmp.1307986960.pdf.0WKQv

