
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1994

Geometric Contraints for CAGD Geometric Contraints for CAGD

Christoph M. Hoffmann
Purdue University, cmh@cs.purdue.edu

Jörg Peters

Report Number:
94-068

Hoffmann, Christoph M. and Peters, Jörg, "Geometric Contraints for CAGD" (1994). Department of
Computer Science Technical Reports. Paper 1167.
https://docs.lib.purdue.edu/cstech/1167

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

GEOMETRIC CONSTRAINTS FOR CAGD

Christoph M. Hoffmann
Jorg Peters

Purdue University
Computer Sciences Department

West Lafayette, IN 47907

CSD-TR-94-068
October 1994

Geometric Constraints for CAGD

Christoph M. Hoffmann and Jorg Peters

Abstract. To enrich the shape vocabulary of mechanical CAD systems,
we develop techniques that allow defining free-form curves from geometric
constraints. An important aspect of this aproach is the ability to obtain
all possible instances of curve segments satisfying the constraints of a
dimensioned sketch. We illustrate the approach by treating constraints on
Tschirnhausen cubics in some detail.

§l. Introduction

Constraint-based sketching has become a major design paradigm in mechani
cal computer-aided design (MCAD). Conceptually, a rough sketch is prepared
by the user and annotated with geometric constraints such as distance, angle,
parallelism, tangency, concentricity, etc. The sketch is then instantiated to
the precise specifications implied by the constraints, and is interpreted as a
profile. This profile, in turn, defines a solid or solid operation through lofting
or sweeping such as a linear extrusion, revolution about an axis, or a general
sweep along a space curve. This style of defining solids and their bounding
surfaces is considered an attractive way to express some of the functionality of
the final design. The use of geometric constraints, moreover, conveys certain
design intent.

The use of geometric constraints in MCAD is not confined to profile spec
ification alone. Other uses include eliminating explicit coordinate computa
tions in assemblies and conveniently specifying relative position, in 3-space, of
geometric form features of parts. Geometric constraint solving is important
because it enables generic design, feature libraries, convenient redesign, and
design variation. Its chief limitations, at this time, are rooted to a significant
part in the absence of strong techniques for solving the mathematical prob
lems that underlie geometric constraint specification. For this reason, the
vocabulary of geometric constraint solvers is typically restricted to points,
lines and circles, and the constraints to dimensioning constraints, concentric
ity, tangency and perpendicularity. For a thorough review of the literature on
this kind of constraint solving, we refer the reader to [1, 14, 16, 17].

Mathematical Methods in CAGD III
M. Drehlen, T. Lyche, and L. L. Schumaker (eds.), pp. 1-16.
Copyright @ 1995 by xxx
ISBN xxx.
All rights of reproduction in any form reserved.

1

2 C. M. Hoffmann and J. Peters

Based on limited vocabulary, extremely efficient constraint solvers have
been devised that achieve interactive speeds for large constraint problems.
While for many MCAD applications the limited shape vocabulary is evidently
satisfactory, this restriction impedes the adoption of the constraint based de
sign paradigm to broader areas of applications and hinders the development
and integration of related design paradigms. In this paper we will sketch an
approach to extending the shape vocabulary of geometric constraint solvers
by including a certain type of Bezier curve as primitive. Other solvers, no
tably DCM [5], permit cubic Bezier curves but require their specification via
a control polygon and do not allow many constraints relating such curves
with other geometric elements in a sketch. In contrast, our approach restricts
neither the specification of the curves nor the constraints.

This paper intends to narrow the gap between MCAD and CAGD. The
technical challenges encountered when defining free-form curves from con
traints are highly nonlinear. We present solutions to some of them. More
general solutions are desirable, and we hope that this paper motivates further
work by the community (see, for example the Nonintersection Conjecture at
the end of Section 6). Note that for conic arcs some solutions are known [10,
9].

§2. Constraint Solvers and Constraint-Based Sketching

In a typical solid modeling system, geometric shapes are defined in a sequence
of steps. At each step, the existing solid shape is modified. This may involve
sketching a profile in a plane that is defined by a planar face or by an auxiliary
plane (a datum) whose position is specified by geometric constraints. The user
draws in this sketching plane using a geometric vocabulary of points, segments,
and circular arcs. In some cases, the shape vocabulary includes certain conic
sections and splines. However, the way in which these shape elements can be
defined and constrained is severely limited.

The sketch is dimensioned and constrained, and its position and orienta
tion with respect to the existing geometry is determined from constraints that
relate the newly drawn shapes to the (orthographically) projected outlines of
the existing geometry on the sketching plane. The sketch is then solved, i.e.,
the geometric elements of the sketch are instantiated such that all constraints
are satisfied. Overconstrained sketches are usually not allowed, but undercon
strained sketches may be acceptable. Furthermore, some types of constraints
may be inferred; for example, if two lines have been sketched approximately
perpendicular, the system may assume that they should be perpendicular.

There are different types of underlying constraint solvers that could be
used. However, for practical reasons, some requirements should be satisfied
when using such solvers in MCAD:

1. Efficiency. Design is an interactive process, hence the solver has to be
sufficiently fast to provide adequate response time. In many applications,
large constraint problems are solved repeatedly, so this requirement is
given high priority.

Geometric Constraints for CAGD 3

2. Generality. A well-constrained sketch has, in general, more than one so
lution. A solver ought to be able to determine, in principle, all of them.
If the user sketch is accurate in a technical sense, simple heuristics will
identify the intended solution with high probability. But if the solution
is not the intended one, there ought to be mechanisms for finding al
ternatives. Many solvers lack generality and assume that the selection
heuristics succeed. In our opinion, this assumption underestimates the
potential variety of design variants.

3. Robustness. Even when the initial sketch is not close to the desired
shape, some solvers can produce a solution, while others, for example
solvers using Newton iteration, would fail to find any solution.

Below, we will sketch a particular solver that satisfies all three requirements.
In view of a number of papers on this solver, however, we remain brief and
refer the reader to [1, 8, 14] for details. A multimedia description of the core
algorithm is available on the world-wide-web at URL
http://www.cs.purdue.edu/people/cmh/electrobook/intro.html.

A Simple Constraint Solver. The constraint solver has two distinct
phases. In Phase 1, a user sketch is translated into a constraint graph in
which the graph nodes are the geometric elements of the sketch, and the
graph edges are the constraints between them. The graph is analyzed to de
termine a sequence of standard construction steps that generically enforce the
constraints. This analysis may be viewed as a graph reduction algorithm in
which subgraphs are coalesced into clusters and clusters are merged into larger
clusters. The reduction steps of Phase 1 are matched by actual constructions
in Phase 2 that generate an explicit geometric instance that satisfies the con
straints. Phase 2 gives rise to the problems tackled in the remainder of the
paper.

To appreciate the distinction between generic and instance solvability,
consider Figure 1. A quadrilateral is defined and constrained as shown to the
left.

r
T

.----85.0---

Fig. 1. Generic vs. instance solvability.

For almost any assignments of dimension values, the quadrilateral is well
constrained. But if the two angles are diminished to 45 degrees, then the
position of the fourth vertex cannot be determined. In Phase 1, the constraint
problem is analyzed without accounting for specific dimension values, hence

4 c. M. Hoffmann and J. Peters

the problem on the right would be considered generically solvable. During
Phase 2, the actual construction would fail to place the fourth vertex and the
unsolvability of the instance problem would be detected.

When the shape vocabulary is restricted to points, and the constraints are
restricted to distances only, there is a complete characterization of generically
solvable constraint problems; e.g., [4]. This characterization can be extended
to include line segments and angles [11] and thus to constraints on fixed-radius
circular arcs that can be reduced to line and point configurations. However,
the characterization includes a nondeterministic step, and to date no efficient
deterministic solver has been found that can actually solve all generically well
constrained problems. For the more general constraint solver outlined above
neither cluster formation nor cluster merging are unique. However, it has been
proved that generic solvability is independent of the sequence in which clusters
are formed, independent of the clusters constructed, and independent of the
sequence in which clusters are merged [8]. Moreover, even though different
construction sequences can lead to different geometric solutions during Phase
2, the same solution will be constructed if we add selection criteria for the
geometric subproblems. The bad news is that a specific choice may lead to
a final solution that requires imaginary coordinates while a different choice
during Phase 2 might have resulted in a real solution of the constraint problem.
Unfortunately, the solution space is exponential in the number of geometric
elements, and no theories are known that might result in an efficient search for
real solutions. In the case of ruler-constructible problems, Hilbert has shown
that either all solutions are real or all are imaginary [12]. In general, however,
there seem to be no good characterizations of the solution space.

Fig. 2. Left: Cubic defined by four points with distance constraints.
Right: Cubic defined by 2 points and two lines

§3. Problem Formulation

We want to extend the constraint solver of the previous section to include
arcs of rational free-form curves. In order to solve all constraints exactly
and include parallelism as a natural constraint, we consider curves that have
rational offsets, because two curves that are offsets of each other are naturally
considered parallel curves. Among the simplest such curves are Tschirnhausen
cubics [6], called T-cubics in the following, and Pythagorean quartics [18]. T
cubics have quintic rational offsets and a Bezier representation whose control
polygon has a nice geometric characterization. Pythagorean quartics lack a

Geometric Constraints for CAGD 5

simple geometric primary (control point) representation, but their dual class
representation has been elegantly characterized in [18]. A number of nonlinear
problems arise when integrating such curves into geometric constraint solvers.
Neither the point nor the class representation is better suited for all of them,
and ideally one would use both representations. Lacking a suitable geometric
characterization for the Bezier representation of the dual form of T-cubics, we
work exclusively with the primary curve representation in Bezier form.

To incorporate T-cubics into the constraint solver requires the following
computations. We need to construct aT-cubic arc from constraints with or
dinary geometric elements (points, lines and circles) and with other T -cubics.
We also have to consider constructing ordinary geometric elements from two
constraints involving T-cubics. For each such case we require an efficient com
putation that can find every solution possible. Some construction examples
are shown in Figures 2 and 3.

Fig. 3. Left: Line through point at angle to cubic.
Right: Circle tangent to two cubics.

T-cubics Defined. A T-cubic arc is defined by four geometric constraints,
such as incidence to four points, or tangency to two lines plus interpolation
of two points. Using the four parameters UO,VO,UI,VI, we formally define any
T-cubic F following Farouki [6] as

F(t) := Pos3 +PI3s2t +P23st2 +P3t3, s:= 1- t.

where the control points satisfy

1 2 2)PI = Po + 3"(Uo - va' 2uovo

1
P2 =PI + 3"(UOUI-VOVI,UOVI +UIVO)

1 2 2
P3 =P2 + 3"(U I -VI , 2u IVI)

(1)

The parameters Ui and Vi may be chosen in any way, but if the ratios Uo : UI
and va : VI are equal, then the curves degenerate to straight lines.

Farouki also gives a short geometric characterization of T-cubics as de
fined by control polygons that have equal enclosed angles and satisfy a length
constraint on the polygon legs:

IIp3 - Pzllllpl - Poll = IIp2 - Plll
2
.

6 C. M. Hoffmann and J. Peters

Note that up to orientation the geometric characterization is equivalent to the
requirement that the start and end triangle are similar (see Figure 4, left):

Fig. 4. Control polygon of T-cubics; Right: DeCasteljau properties.

Because of the subdivision property of the DeCasteljau algorithm, the
triangles 6.PIPI P2, 6.QIP2Q2 and 6.P2P2P3 are always similar; see Figure 4,
right. This property is helpful for finding a tangent at a given angle and is
used for distance computations.

Configurations of T-cubics. T-cubic arcs can be characterized by the
simple diagram 5 below. The extensions of the control legs Po, PI and P2, P3 cut
the plane into, generically, four regions by intersecting at a point x, possibly
at infinity. The angle constraint requires that the control leg PI, P2 be parallel
or perpendicular to the bisector of the angle a := L(Po, x, P3). This yields
eight topologically distinct configurations characterized by the position PI, P2
relative to the end points, Po and P3'

8

4

5
Fig. 5. Hermite constructions of a T-cubic arc.

Generic configurations: a rt {0°, 30° ,60° ,90°}
2,6,7 Configurations 2, 6 and 7 can be excluded, because T-cubics cannot

have inflections.
1,3,4 Let 2a = L(pO,X,p3)' Then the solutions of type 1, 3 and 4 are

determined by the quadratic equation

(2)

As illustrated in Figure 6, left, positive P values correspond to posi
tions 1 and 3, negative P values to position 4.

Geometric Constraints for CAGD 7

5,8 For positions 5 and 8, the defining equation is

(m + p)(p - n) = 4p2 cos2 (a) (3)

Positive p values correspond to position 8, negative p values to posi
tion 5.

'--__p .:.:.xl'-mJ pO

Fig. 6. Left: Positions 1, 3 and 4. Right: Positions 5 and 8.

Degenerate configurations. If a = 30° or a = 60°, one of the equations
(2) and (3) becomes linear (see Figure 7 right). When the two lines intersect
at infinity, Equations (2) and (3) are not valid. In that case, there are only
two configurations that are symmetric with respect to Po and P3, as illustrated
in Figure 7 left. If a = 90°, the T-cubic is a straight line segment.

Fig. 7. Left: Parallel tangents.
Right: m = n = 0 and a = 30°.

§4. Basic Measurement Computations

Distance computations involving arcs must account for the endpoints. For
instance, in Figure 8, points that lie below the angled region defined by the
curve normals at the endpoints will be closer to the endpoints of the arc than
to any interior arc point. Since [3] treats the relevant geometric considerations
in some detail, we consider entire curves below.

Fig. 8. Regions for point proximity computations.

8 C. M. Hoffmann and J. Peters

Distance of a Line from a T-cubic. The closest approach of a line from a
smooth curve is generically the distance between the line and a parallel curve
tangent. Because of the similarity properties of the DeCasteljau algorithm for
T-cubics, a simple solution is to determine the parallel tangents to the arc.
This requires measuring the angle 2a between the line and one of the end
tangents. Then, the parameter value t can be found from the angle a for the
first subdivision of the DeCasteljau algorithm. A linear equation determines
t, and the two possible solutions arise from considering both end tangents
separately.

Distance of a Point or Circle from a T-cubic. Algebraically, with P the
point and· the inner product, the point-distance problem requires finding t
from the equation

(P - F(t)) . F'(t) = o.
The equation is polynomial of degree 5 and can be solved using a numerical
root finder. In the case of a fixed-radius circle, the problem reduces to mea
suring the distance of the center point from the arc and accounting for the
radius. If the circle intersects the arc, the distance is zero.

Alternatively, one can use an iterative geometric procedure. By subdivid
ing the plane by curve normals, we can find a curve normal through the point
P, using binary subdivision or a kind of interpolation search that assumes a
simplified Gauss map.

Distance between two T-cubics. The distance computation requires finding
a common normal to the two arcs; Figure 9. This computation is analogous
to certain types of loop detection in surface intersection; e.g., [15].

Fig. 9. Distance between two T-cubics.

§5. Basic Constructions

We consider constructing a T-cubic arc from constraints with points and lines.
As pointed out before, this includes circles with fixed radius. Such construc
tion problems fall into five categories: The constraints are with p points and

Geometric Constraints for CAGD 9

4 - P lines, where P = 0, ... ,4. Within each category, subproblems must be
considered that distinguish between nonzero distance vs. incidence constraints
with the points. Nonzero distance constraints are equivalent to requiring tan
gency to a fixed-radius circle, assuming additionally no intersections with the
circle's interior.

In the following, we concentrate on the category P = 2, and assume that
the two points are to be the endpoints of the arc. Without loss of generality,
we assume that the two lines are to be tangent to the sought arc, because if
not, then a parallel line at the required distance must be tangent. Thus, the
problem can be stated as follows:

Problem 5. Given two points Po and P3 and two lines L 1 and L z, End a
T-cubic arc that starts at Po, tangentially touches L 1 and L z and ends at P3.

This problem has three subproblems of increasing difficulty.
1. The Hermite problem: both lines are tangent to the arc at Po and P3,

respectively.
2. One of the lines is tangent to the arc at an end point, say Po.
3. Neither line is tangent to the arc at the end points.

5.1 The Hermite Problem.

Problem 5.1. Given two points Po and P3 and two lines L 1 and L z, End a
T-cubic arc that starts at Po with tangent L 1 and ends at P3 with tangent L z.

To enumerate and characterize all solutions to the Hermite problem we
first consider the generic case. If 0: tf. {0°, 30°,60°, 90°} then the two quadratic
equations in p, (2) and (3), allow up to four distinct solutions to the Hermite
problem. Figure 10 shows an example where all four solutions are real. Note
that one arc intersects itself. In general, more than one of the four arcs can
have a self-intersection (see Figure 12).

Fig. 10. Four solutions of the Hermite problem in general position..

If the angle 0: = 30°, the quadratic term vanishes in Equation (2). Simi
larly, Equation (3) becomes linear for 0: = 60°. Consequently, there are only
up to three solutions in those cases. When the two lines intersect at infinity,
Equations (2) and (3) are not valid. In that case, there are only two solutions
as illustrated in Figure 7 left. Finally, for 0: = 90° we obtain only a single
desirable solution, the line segment Po, P3. When one of the endpoints is the
intersection of the two tangents, the equations also assume a special form with
one solution degenerating to a straight line. Assume that n = 0 in this case.
If the arc should not self-intersect, the enclosed angle must be less than 30°.

10 c. M. Hoffmann and J. Peters

Fig. 11. Left: One solution if m # 0, n = 0 and ex < 30°.
Right: One solution for m = n = 0 and ex = 30°.

See also Figure 11, left. Finally, if the two points coincide, a solution exists
only for ex = 30°; Figure 11, right.

The following table summarizes all possible solution combinations. The
corresponding proofs are in the Appendix.

Number of
ex n Solutions Types Comments
ex=o unrestricted 2 symmetric, special eqn

0< n < no 4 1,3,8,8 no = 1 +2q(1- \/1 + l/q)
0< ex < 30 n = no 3 1,3,8 where q = 4cos2 (ex) -1

no < n ~ 1 2 1, 3
0< n < no 3 3,8,8

ex = 30 n = no 2 3, 8 no = 5 - 2V6 ~ 0.10102
no < n ~ 1 1 3
0< n < no 4 3,4,8,8

30 < ex < 60 n = no 3 3, 4, 8 no = 1 +2q(1- VI + l/q)
no < n ~ 1 2 3, 4 where q = 4cos2 (ex) -1

ex = 60 O<n~l 3 3, 4, 8
60 < ex < 90 O<n~l 4 3,4,5,8
ex = 90 1 line segment

Table 1. Case analysis of Hermite problem

5.2 One free tangent. We now consider the more difficult case where the
parameter value t, for which the T-cubic is to touch L 2 , is not specified.

Problem 5.2. Given two points Po and q3 and two lines L I and L 2 , find a
T-cubic arc that starts at po with tangent line L I , tangentially touches L2
and ends at q3. Note that the arc is not necessarily parameterized from 0 to
1, because q3 # P3 in general.

After a rigid motion, we may assume that the intersection point x of the
extended polygon legs Po, PI, and P2, P3, is the origin and the x-axis bisects
the angle LpO,X,p3. Then the T-cubic has the coefficients

Po = (mc, -ms), PI = (pc, -ps), P2 = (pc, ps), P3 = (nc, ns)

for n, m,p satisfying (2) or (3). We may normalize m = 1 and enforce F(t) =
q3 by solving a linear system in nand p. Substituting the result into (2) or

Geometric Constraints for CA GD

(3), we obtain a sextic equation in parameter t, e.g. for (2):

4t3c4 s2(1- t)3 + 3t2c2s2(1 - t? - 2c2st2y(1- t)

- c2ys/2 - s2 cx /2 - C
2y2/4 + s2 x2/4 = O. c:= cos(a), s := sinea).

11

The one tangent problem for configurations satisfying (2) is solved by obtain
ing all real roots of the sextic and selecting solutions that satisfy

t> I,m> O,n > O.

Fig. 12. Left: One free tangent. Right: Four solutions.

5.3 Two free tangents.

Problem 5.3. Given two points qo and q3 and two lines L 1 and L 2, find a
T-cubic arc tbat starts at qo, toucbes L 1 and L 2 tangentially and ends at q3.

Using the setup of the previous section we need to enforce either (2) or
(3) and F(t) = q3 and F(v) = qo for parameters v < a and t > 1. Reduction
of the five equations by elimination of m, nand P leads to two equations of
degree 11,7 and 5,5 in v, t. Since a further reduction to a single equation and
a discrete set of solutions does not seem useful, we propose to attack this case
by restricting the configuration of the T-cubic and using an iterative approach
based on the partial insights listed in the following last section.

§6. Solution Families and the Nonintersection Conjecture

While Section 5.2 gives a concrete algorithm to obtain all solutions to the
one-parameter problem, it would be interesting to know a priori the exact
number of solutions. From the equations, it is clear that there are at most
two times six solutions. The following proposition shows that these solutions
belong to at most four one-parameter families of solutions.

Proposition 6.1. Tbere are four one-parameter families of T-cubics matcb
ing tbe partial Hermite problem of interpolating Po witb tangent line L 1 and

P3·

Proof: Choose Po = (0, 0) and L 1 aligned with the x-axis. With the notation
of Section 3.1 and P3 = (a, b), the following system of equations must be

12

satisfied:

c. M. Hoffmann and J. Peters

z z z z 3Uo - Vo + UOUI - VOVI + u l - vI = a

2uovo + UOVI + UI Vo + 2UI VI = 3b

UOVo = 0

(4)

The last equation expresses tangency to the x-axis and factors. If Vo = 0,
then the control point PI has a positive abscissa, and if Uo = 0, then PI has a
negative abscissa. The two cases can be investigated separately.

Assume Vo = o. Using the lexicographic ordering with UI -< VI -< Uo -< Vo,
the Grabner basis (cf. [2, 13]) of (4) is

Vo = 0

4vt - 3vi(u~ - 4a) - 9bz = 0

6bul - (4v~ + 12avI - 3U~VI - 3buo) = O.

(5)

From this form of the equations, the following conclusions are immediate.
1. The set of T-cubics tangent to the x-axis in (0,0) and interpolating (a, b)

is a one-parameter family.
2. For a fixed value of Uo, there are at most four distinct values of VI.

3. For a fixed value of Uo and VI, there is exactly one value of UI.

If Uo = 0, a Grabner basis computation with the ordering VI -< UI -< Uo -<
Vo yields an equivalent system of equations so that the total number of solution
families remains four. The equivalence is established by the map a -+ -a and
UI f-+ VI. Geometrically this means that the solutions found for P3 = (a, b)

and Vo = 0 are the mirror image of the solutions found for P3 = (-a, b)
and Uo = o. Consequently, there are up to four different solutions for every
distance choice between Po and Pl. Figure 12, right shows an example. •

Fig. 13. One-parameter family of solutions for one free tangent.

The case of two free tangents is more difficult, but as Figure 13 illustrates,
a numerical solution by iteration is possible in some situations. The idea is to
exploit the monotonicity of the curve family in the length of first control leg
and to increase or decrease the length until the curve is tangent to the line
L z. Concretely, pick a T-cubic arc of Type 1 or Type 3 with

Po = (0,0), PI = (r,O), andp3 = (a, b).

Geometric Constraints for CA GD

L

13

Fig. 14. Left, The distance Irl to the first control point should be increased.
Right, the distance should be decreased.

and repeat the following until the distance d of the line L from the cubic is
zero: if the line L lies as shown in Figure 14, left, then d is positive and r is
increased. Otherwise r is decreased.
For this method to work well, we would like to know that the that members
of the one-parameter family do not intersect each other except at the arc
endpoints because this would yield uniqueness and monotonicity. As Reif [19]
points out, this is not true for curves of type 5 or 8, and an example is shown
in Figure 15, left, where the largest curve has the control points Po = (0,0),
PI = (-15.4258,0), P2 = (-8.5411,10.0633), and P3 = (-5.0488,1.0806).
Nevertheless, the statement appears to be true for families of type 1 and 3;
see Figure 15, right. More formally, we conjecture as follows.

Fig. 15. Left: Reif's example. Right: A monotone I-parameter family.

Nonintersection Conjecture. Let F(r, t), 0 < t < 1 be a family of T
cubic arcs of type 1 or 3 with Po = (0,0), P3 fixed and PI = (r,O). Then
F(rI' td = F(r2' t 2) implies rI = "'2.

§A. Appendix

If the endpoints fall together, then the T-cubic is unique. Otherwise, we can
label and scale the distances m and n so that m = 1 and 0 < n :::; 1.

Proposition 1. If m = 1, 0 < n :::; 1, and 0 < a < 30°, then there are two
solutions, of types 1 and 3, and no solution of type 4.

14 c. M. Hoffmann and J. Peters

Proof: Equation(2)hastheformqp2-(n+l)p+n = owhere q = 1-4sin2(a).
Note that 0 < q < 1. The solutions are

1
p = -((n + 1) ± J(n + 1)2 - 4nq).

2q

Since n ::; 1 and q < 1, the square root is always real. Moreover, since the
magnitude of the square root must be smaller than n + 1, both solutions are
positive. Clearly one solution is greater than 1, thus yielding a solution of
type 1. To establish that the second solution is of type 3, we need to show
that

J(n + 1)2 - 4nq > (n + 1) - 2qn.

We square both sides, subtract (n + I? and divide by 4qn > 0 to obtain

-1> qn - n-1.

This is true because q < 1. The second solution thus is of Type 3.

Proposition 2. Ifm = 1, 0 < n ::; 1, and a = 30°, then there is one solution,
of type 3, and no solutions of type 1 or 4.

Proof: Equation (2) has the form (n + l)p - n = 0, hence p = n/(n + 1) is
the only solution. Clearly 0 < p < n, so the associated solution is of type 3.

Proposition 3. If m = 1, 0 < n ::; 1, and 30 < a < 90°, then there are
always two solutions, of types 3 and 4.

Proof: Equation (2) takes the form qp2 + (n + l)p - n
4sin2(a) -1. Note that 0 < q < 3. The solutions are

1
p = -(-(n + 1) ± J(n + 1)2 +4qn)

2q

0, where q

Clearly the square root is always real and one solution is negative, while the
other is positive. The negative solution for p yields an arc of type 4. To
establish that the positive p is smaller than n, we must show that

J (n + 1)2 + 4qn < (n + 1) + 2qn

Squaring and subtracting the common terms on both sides yields

which establishes the claimed inequality. Hence this solution yields an arc of
type 3.

We turn now to the analysis of the possible solutions of types 5 and 8.
Here, Equation (3) may have complex solutions, and the analysis is more
complicated.

Geometric Constraints for CA GD 15

Proposition 4. If m = 1, 0 < n < no, and a < 60°, then there are two
solutions of type 8 and no solution oftype 5, where no = 1+2q(1- V1 + l/q).
Moreover, if n = no, there is only one solution of type 8, and if no < n ::; 1,
then there is no solution of type 4 or 8.

Proof: Equation (3) is qp2 - (1 - n)p +n = 0, where q = 4 cos2
(a) - 1. Note

that 0 < q < 3. The discriminant is

D = (1 - n? - 4qn

Given the angle a, therefore, real solutions require n ::; no, where

no = 1 + 2q(1 - V1 + l/q)

For n > no, no real solutions exist. For n = no, there is one solution, and
P = V1 + l/q - 1 > O. It is easy to see that P > no, hence the corresponding
solution is oftype 8. For n < no, the quadratic equation has two real solutions,
both positive. We show that P > n in that case, i.e., that both solutions are
of type 8. The smaller value of pis

PI = ~(1 - n - v(1- n)2 - 4qn)
2q

To show that PI > n, it suffices to show that 1 - n - 2qn > V(l - n)2 - 4qn.
Since 0 < 1 - n < 1 and 4qn < (1 - n)2, the quantity 1 - n - 2qn is positive
and we can square the inequality to obtain (1 - n)2 - 4qn(1 - n) +4q2n 2 >
(1- n)2 - 4qn. Simplification yields 4qn2+4q2n 2 > 0 which is evidently true.
Hence PI > n. Note that the smaller value of P appears to results in an arc
that is self-intersecting.

Proposition 5. Ifm = 1,0 < n < 1, and a = 60°, then there is one solution,
of types 8.

Proof: Equation (3) has the form (1- n)p - n = 0, hence P = n/(l- n) > n
is the only solution. The associated solution is of type 8.

Proposition 6. If m = 1, 0 < n ::; 1, and 60 < a < 90°, then there are
always two solutions, of types 5 and 8.

Proof: Equation (3) has the form qp2 + (1 - n)p - n = 0, where q = 1
4cos2 (a). Note that 0 < q < 1. The two solutions

1
PI2 = -(-(1- n) ± J(l- n)2 +4qn), 2q

are always real, with PI < 0 and P2 > O. Now PI < -1, because 0 < q < 1,
and so

(1 - n) + J(1 - n)2 +4qn > 2q

Hence one solution is of type 5. Moreover, P2 > n, by a similar estimation, so
the other solution is of type 8.

16

References

C. M. Hoffmann and J. Peters

1. W. Bouma, I. Fudos, C. Hoffmann, J. Cai, and R. Paige. A geometric
constraint solver. Computer Aided Design, page to appear, 1994.

2. B. Buchberger. Grabner Bases: An Algorithmic Method in Polynomial
Ideal Theory. In N. K. Bose, editor, Multidimensional Systems Theory,
pages 184-232. D. Reidel Publishing Co., 1985.

3. C.-S. Chiang, C. M. Hoffmann, and R. E. Lynch. How to compute off
sets without self-intersection. In Proc SPIE Conf Curves and Surfaces in
Computer Vision and Graphics, Volume 1610, pages 76-87. IntI Society
for Optical Engineering, 1991.

4. G. Crippen and T. Havel. Distance Geometry and Molecular Conforma
tion. John Wiley & Sons, 1988.

5. D-Cubed Ltd, 68 Castle Street, Cambridge, CB3 OAJ, England. The Di
mensional Constraint Manager, May 1993. Version 2.5.

6. R. T. Farouki. Pythagorean hodographs. IBM J of Research and Devel
opment, 34:736-752, 1990.

7. R. T. Farouki, J. Peters, Splining Tschirnhausen cubics, manuscript,
1994.

8. I. Fudos and C. M. Hoffmann. Correctness proof of a geometric constraint
solver. Technical Report 93-076, Purdue University, Computer Science,
1993.

9. I. Fudos and C. M. Hoffmann. On the Hermite problem for conic arcs.
Technical Report 94-065, Purdue University, Computer Science, 1994.

10. G. Geise and Th. Nestler. Bezier representations of conics of contact
in the projective plane. Computer Aided Geometric Design, 11:233-246,
1994.

11. T. Havel. Some examples of the use of distances as coordinates for Eu
clidean geometry. J. of Symbolic Computation, 11:579-594, 1991.

12. D. Hilbert. Grundlagen der Geometrie. B. G. Teubner, Stuttgart, 1956.

13. C. M. Hoffmann. Geometric and Solid Modeling. Morgan Kaufmann, San
Mateo, Cal., 1989.

14. Christoph M. Hoffmann and Pamela J. Vermeer. Geometric constraint
solving in R 2 and R 3 • In D. Z. Du and F. Hwang, editors, Computing in
Euclidean Geometry. World Scientific Publishing, 1994. second edition.

15. M. Hohmeyer. Surface Intersection. PhD thesis, University of California,
Berkeley, Dept. of Computer Science, 1992.

16. G. Kramer. Solving Geometric Constraint Systems. MIT Press, 1992.

17. W. LeIer. Constraint Programming Languages: Their Specification and
Generation. Addison Wesley, 1988.

18. H. Pottmann. Rational curves and surfaces with rational offsets. Techni
cal report, Technical University Vienna, Institut fiir Geometrie, 1993.

19. Reif, V., personal communication, July 1994.

Geometric Constraints for CAGD 17

Acknowledgements. Christoph M. Hoffmann is supported in part by ONR
contract N00014-90-J-1599, by NSF Grant CDA 92-23502, and by NSF Grant
ECD 88-03017. Jorg Peters is supported by NSF RIA 9396164-CCR and NSF
NYI 9457806-CCR.

Christoph M. Hoffmann
Department of Computer Science,
Purdue University,
W-Lafayette IN 47907-1398
USA
http://www.cs.purdue.edu/people/cmh

Jorg Peters
Department of Computer Science,
Purdue University,
W-Lafayette IN 47907-1398
USA
http://www.cs.purdue.edu/peoplefjorg

	Geometric Contraints for CAGD
	Report Number:
	

	tmp.1307986960.pdf.tjP5Q

