56 SOLID MODELING
Christoph M. Hoffmann

INTRODUCTION

The objective of solid modeling is to represent, manipulate, and reason about the
three-dimensional shape of solid physical objects, by computer.

Solid modeling is an application-oriented field that has a tradition of implement-
ing systems and algorithms. Major applications include manufacturing, computer
vision, graphics, and virtual reality. Technically, the field draws on diverse sources
including numerical analysis, symbolic algebraic computation, approximation the-
ory, point set topology, algebraic geometry, and computational geometry.

First, the major representations of solids are reviewed in Section 56.1. They
include constructive solid geometry, boundary representation, spatial subdivision,
medial surface representations, and procedural representations. Then, major layers
of abstraction in a typical solid modeling system are characterized in Section 56.2.
The lowest level of abstraction comprises a substratum of basic service algorithms.
At an intermediate level of abstraction there are algorithms for larger, more con-
ceptual operations. Finally, a yet higher level of abstraction presents to the user a
functional view that is typically targeted toward solid design.

Solid design paradigms work with form features and constraints. Often, they
define classes of shape instances, and venture into territory that has yet to be
plumbed mathematically and computationally. Concurrently, there is also a shift
in the system architecture toward modularized confederations of plug-compatible
functional components. We explore these trends lightly in Section 56.3.

Open problems are gathered in Section 56.4.

56.1 MAJOR REPRESENTATION SCHEMATA

GLOSSARY

Solid representation: Any representation allowing a deterministic, algorithmic
point membership test.

Constructive solid geometry (CSG): The solid is represented as union, in-
tersection, and difference of primitive solids.

Boundary representation (Brep): The solid surface is represented as a quilt
of vertices, edges, and faces.

Spatial subdivision: The solid is decomposed into a set of nonintersecting prim-
itive volumes.
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Medzal surface transformation: Closure of the locus of centers of maximal in-
scribed spheres, and a function giving the minimum distance to the solid bound-
ary. Usually called the MAT for “medial axis transformation.”

Procedural representation: The solid is described by a scripting language or
a notational schema that must be evaluated.

A solid representation must allow the unambiguous, algorithmic determination
of point membership: given any point p = (z,y,2), there must be an algorithm
that determines whether the point is inside, outside, or on the surface of the solid.
Moreover, restrictions are placed on the topology of the solid and its embedding,
excluding, for example, fractal solids.

These restrictions are eminently reasonable. Increasingly, however, solid model-
ing systems depart from this strict notion of solid and permit representing a mixture
of solids, surfaces, curves, and points. The additional geometric structures are use-
ful for certain design processes, for interfacing with applications such as meshing
solid volumes, and for abstracting solid features, to name a few.

56.1.1 CONSTRUCTIVE SOLID GEOMETRY

GLOSSARY

Primaitive solids: Traditionally block, sphere, cylinder, cone, and torus. More
general primitives are possible.

Sweep: Volume covered by sweeping a solid or a closed contour in space.
Extrusion: Sweep along a straight line segment.
Revolution: Circular sweep.

Regularized Boolean operation: The closure of the interior of a set-theoretic
union, intersection, or difference.

Algebraic halfspace: Points such that f(z,y,2z) < 0 where f is an irreducible
polynomial.

Irreducible polynomial: Polynomial that cannot be factored over the complex
numbers.

Classical Constructive Solid Geometry (CSG) represents a solid as a set-theor-
etic Boolean expression of primitive solid objects, of a simpler structure. Both the
surface and the interior of the final solid are thereby defined, albeit implicitly. The
CSG representation is valid if the primitives are valid. A solid’s surface is closed
and orientable and encloses a volume. The traditional CSG primitives are block,
sphere, cylinder, cone, and torus.

A solid is represented as an algebraic expression that uses rigid motions and
regularized set operations. The traditional operations are regularized union, in-
tersection, and difference. A regularized set operation is obtained by taking the
closure of the interior of the set-theoretic result. The effect is to obtain solids that
do not contain lower-dimensional parts, such as interior (or dangling exterior) faces,
edges, and vertices.

Each solid has a default coordinate system that can be changed with a rigid
body transformation. A Boolean operation identifies the two coordinate systems
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of the solids to be combined and makes it the default coordinate system of the
resulting solid.

FIGURE 56.1.1
Left and middle: CSG primitives block(w, d, h) and cylinder(r, h) with default coordinate systems.
Right: T-bracket as union of two blocks minus a cylinder.
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As an example, consider Figure 56.1.1. Using the coordinate system conven-
tions shown, the CSG representation of the bracket is the expression

block(8,3,1) U* move(block(2,2.5,3),(0,4.5,1))
—*move(cylinder(0.75,1),(1.5,1.5,—0.5))

where the * indicates a regularized operation. (See also Figure 37.4.1.) ref!

The basic operations one wishes to perform on CSG representations are clas-
sifying points, curves, and surfaces with respect to a solid; detecting redundancies
in the representation; and approximating CSG objects systematically.

More general primitives are obtained by considering the volume covered by
sweeping a solid along a space curve, or sweeping a planar contour bounding an
area. Defining a sweep is delicate, requiring many parameters to be exactly defined,
but simple cases are widely used. They are extrusion, i.e., sweep along a straight
line; and revolution, i.e., a sweep about an axis. The evaluation of general sweeps
can be done by a number of methods. An even more general set of primitives is
algebraic halfspaces, point sets defined by

P={(x,y,2) € R*| f(x,y,2) <0},

where f(z,y,2) is an irreducible polynomial in z, y, and z.

More general operations are obtained by using nonregularizing Boolean oper-
ations or by defining a nonstandard semantics for Boolean operations on surfaces
and curves.

56.1.2 BOUNDARY REPRESENTATION

In boundary representation (Brep) the solid surface is represented as a quilt of
faces, edges, and vertices. A distinction is drawn between the topological entities,
vertex, edge, and face, related to each other by incidence and adjacency, and the
geometric location and shape of these entities. See also Figure 56.1.2. For example,
when polyhedra are represented, the faces are polygons described geometrically by
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a face equation plus a description of the polygon boundary. Geometrically, the
entities in a Brep are not permitted to intersect anywhere except in edges and
vertices that are explicitly represented in the topology data structure. In addition
to the classification operations mentioned for CSG, Boolean union, intersection, and
difference operations are usually implemented for Brep systems. Both regularized
and nonregularizing Boolean operations may occur.

FIGURE 56.1.2
Topological entities of a box. Adjacency and incidence are
recorded in Brep. Dotted arrows indicate face orientation.

Different Brep schemata appear in the literature, divided into two major fami-
lies. One family restricts the solid surfaces to oriented manifolds. Here, every edge
is incident to two faces, and every vertex is the apex of a single cone of incident
edges and faces. The second family of Brep schemata allows oriented nonmanifolds
in which edges are adjacent to an even number of faces. When these faces are or-
dered radially around the common edge, consecutive face pairs alternatingly bound
solid interior and exterior. See Figure 56.1.3 for examples.

FIGURE 56.1.3 <
A nonmanifold solid without dangling or interior faces, edges,

and vertices; the nonmanifold edges and vertices are drawn
with a thicker pen.

More general nonmanifold Breps are used in systems that combine surface mod-
eling with solid modeling. In such representation schemata, a solid may have interior
(two-sided) faces, dangling edges, and so on. The current trend is to incorporate
surface modeling capabilities into solid modelers.

The topology may be restricted in other ways. For instance, the interior of a
face may be required to be homeomorphic to a disk, and edges required to have
two distinct vertices. In that case, the Brep of a cylinder would have four faces,
two planar and two curved. This may be desirable because of the geometric surface
representation, or may be intended to simplify the algorithms operating on solids.
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56.1.3 SPATIAL SUBDIVISION REPRESENTATIONS

GLOSSARY

Boundary conforming subdivision: Spatial subdivision of a solid that repre-
sents the boundary of the solid exactly.

Boundary approximating subdivision: Spatial subdivision that represents
the boundary of the solid only approximately.

Regular subdivision: A subdivision whose cells are congruent. Grids are regular
subdivisions.

Irregular subdivision: A subdivision with noncongruent cells.
Octree: Recursive selective subdivision of a cuboid volume into eight subcuboids.

Binary space partition (BSP) tree: Recursive irregular subdivision of space,
traditionally by halfplanes. See also Section 37.5. ref!

Spatial subdivision decomposes a solid into cells, each with a simple topological
structure and often also with a simple geometric structure. Subdivision represen-
tations are divided into boundary conforming and boundary approzrimating.

Important boundary conforming subdivision schemata are meshes and the BSP
tree. Mesh representations are used in finite element analysis, a method for solving
continuous physical problems. The mesh elements can be geometric tetrahedra,
hexahedra, or other simple polyhedra, or they can be deformations of topologi-
cal polyhedra so that curved boundaries can be approximated exactly. See Sec-
tions 24.4-5. ref!

Binary space partition trees are recursive subdivisions of 3-space. Each interior
node of the tree separates space into two disjoint point sets. In the simplest case,
the root denotes a separator plane. All points of R® below or on the plane are
represented by one subtree, all points above the plane are represented by the other
subtree. The two point sets are recursively subdivided by halfplanes at the subtree
nodes. The leaves of the tree represent cells that are labeled IN or ouT. The (half)
planes are usually face planes of a polyhedron, and the union of all cells labeled
IN is the polyhedron. For an example in R? see Figure 56.1.4. Note that algebraic
halfspaces can be used as separators, so that curved solids can be represented
exactly.

Boundary approximating representations are grids and octrees. In grids, space
is subdivided in conformity with a coordinate system. For Cartesian coordinates,
the division is into hexahedra whose sides are parallel to the coordinate planes. In
cylindrical coordinate systems, the division is into concentric sectors, and so on.
The grids may be regular or adaptive, and may be used to solve continuous physical
problems by differencing schemes. Rectilinear grids that are geometrically deformed
can be boundary-conforming. Otherwise, they approximate curved boundaries.

An octree divides a cube into eight subcubes. Each subcube may be further
subdivided recursively. Cubes and their subdivision cubes are labeled white, black,
or grey. A grey cube is one that has been subdivided and contains both white and
black subcubes. A subcube is black if it is inside the solid to be represented, white
if it is outside. Quadtrees, the two-dimensional analogue of octrees, are used in
many geographical information systems. See Figure 37.5.1. ref!
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FIGURE 56.1.4
A polygon and a BSP tree representing it.

in out in out

56.1.4 MEDIAL SURFACE REPRESENTATIONS

GLOSSARY

MAT: Medial axis transform, the two-dimensional version of the medial sur-
face representation. Some authors use “medial axis transform” regardless of the
dimension of the domain.

Maximal inscribed disk: Disk inscribed in a domain and not properly con-
tained in another inscribed disk.

Medial axis and medial surface can unambiguously represent two-dimensional
domains and three-dimensional solids, respectively. The representations are not
widely used for this purpose at this time; more frequently they are used for shape

ref! recognition (see Section 50.4). However, as explained below, some sophisticated
meshing algorithms are based on the medial axis and the medial surface.

The medial axis of a two-dimensional domain is defined as the closure of the
locus of centers of disks inscribed within the domain. A disk is maximal if no other
disk properly contains it. An example is shown in Figure 56.1.5 along with some
maximal disks.

FIGURE 56.1.5
L-shaped domain and associated medial azis. Some mazimal in-
scribed circles contributing to the medial axis are also shown.

The medial surface of a solid is the closure of the locus of centers of maximal
inscribed spheres. When we know the radius (the limit radius in case of closure
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points) of the corresponding sphere for each point on the medial surface, then an
unambiguous solid representation is obtained that is sometimes called the medial
axis transform (MAT). The MAT has a number of intriguing mathematical prop-
erties. For example, by enlarging the radius values by a constant, the MAT of a
dilatation of the solid is obtained.

Originally, solid modeling has investigated the MAT for the purpose of con-
structing shell solids (obtained by subtracting a small inset), for organizing finitie
element meshing algorithms, and for recognizing form features. More recently, the
role of the MAT in surface reconstruction has begun to impact solid modeling; see
Section 30. Surface reconstruction arises in solid modeling for its application in
reverse engineering where a model is to be constructed from a physical object by
an automated measuring strategy.

56.1.5

PROCEDURAL REPRESENTATIONS

Procedural solid representations fall into two families: script language representa-
tions that have a strong programming language character, and descriptive repre-
sentations evaluated by a program or system.

The PADL system used FORTRAN as script language to specify solids. CSG
expressions and directives were embedded into the Fortran program. The solid was
evaluated into an internal format. Alpha_1 originally used Lisp as script language
and evaluated the solid so described into a boundary representation. Subsequently,
a direct manipulation interface was added to the system. The recent SGDL system
uses Scheme as script language, evaluating it into an internal proprietary data for-
mat. Since such script languages are based on a general programming language, the
solid evaluation can be highly complex and may include any computation. Unless
the evaluated solid is represented in one of the other representation schemata, it is
in general not possible to reason about solids using the procedural representation
directly.

Descriptive representations, including the Erep notation are data representa-
tions by nature. Their procedural nature derives from the need to evaluate and
instantiate parameters, based on (computed) geometric relationship and, in many
cases, geometric constraints. Once the parameters are determined, the shape is eval-
uated in steps, where the major steps typically correspond to form features. Usually,
an entire family of solids can be so described and instance solids are obtained by
valuating parameters and dimensional constraints. A semantic characterization of
the family remains largely an open problem, as discussed later.

56.1.6

CONVERSION BETWEEN REPRESENTATIONS

Most solid modeling systems use Brep. Conversion from CSG to Brep is well
understood and is implemented as regularized Boolean operations on Brep solids.
An extensive literature addresses these complex algorithms.

The conversion from Brep to CSG is not completely understood. In the poly-
hedral case, the conversion is essentially the same as the conversion from Brep to
BSP tree. Pure CSG solids, using the PADL primitives, can also be converted.
Conversion involving higher degree surfaces is largely open.

Some progress has been made by Naylor and Rogers in the case of Bézier curves
and B-splines (for definitions, see Section 52.1). Roughly speaking, a coarse BSP

ref!
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tree is constructed that encloses sections of the curve in convex polygonal regions.
On demand, the tree can be extended dynamically, thereby refining the enclosing
regions. In this way, points may be classified efficiently with respect to the curve
to a required resolution.

There are several algorithms for converting from CSG or Brep to the MAT.
Some are based on geometric principles, some on a Delaunay triangulation of an
approximated boundary, and some on a grid subdivision of ambient space. Because
simple boundary geometry elements can produce very complicated curves and sur-
face elements in the MAT, approximation approaches are favored in practice. The
conversion from MAT to Brep has been addressed by Vermeer and later on by
Amenta. Note that a polyhedral MAT produces a solid boundary that can contain
spherical, conical, and cylindrical elements.

The conversion from CSG or Brep to mesh representations is a partially solved
problem when the conversion is done for finite element analysis or other numerical
treatment of continuum problems. In that context, the problem is not a geometric
problem alone: the quality of the subdivision must also be judged by nongeomet-
ric criteria that come from the nature of the physical problem and the numerical
algorithm used to solve it. Many approaches are based on octree subdivision, on
Delaunay triangulation, and on MAT computations.

The conversion relationships are summarized in Table 56.1.1.

TABLE 56.1.1 Representation conversion.

CONVERSION REMARKS

CSG — Brep Many methods, e.g., [Chi88, Hof89, Man88|. Active research
seeks better tradeoff between speed, accuracy, and

geometric coverage.

Brep — CSG Largely open. Polyhedral case similar to BSP tree

construction [Hof93b]; quadric cases treated in [Sha91, SV93].
See also [NR95] for parametric case.

Brep, CSG — MAT [CHLO91] uses grid approximation,

[SAR9Y5] uses Delaunay approximation of domain.

MAT — Brep [Ver94] converts polyhedral MAT.
Brep, CSG — Many approaches; see, e.g., [Hof95, TWM85, SERB99].
spatial subdivision Active research seeks improved techniques.

GEOMETRIC COVERAGE

The range and geometric representation of solid surfaces is referred to as geometric
coverage. Polyhedral modeling restricts to planes. Classical CSG allows only planes,
cones, cylinders, spheres, and tori. Experimental modelers have been built allowing
arbitrary algebraic halfspaces. SGDL uses implicit algebraic surfaces of degree up
to 4.

Most commercial and many research modelers use B-splines (uniform or nonuni-
form, nonrational or rational) or Bézier surfaces. The properties and algorithmic
treatment of these surfaces is studied by computer-aided geometric design. See
Chapter 52 of this Handbook, as well as the monographs and surveys [Far88, Hos92,
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HL93].

Subdivision surfaces have also been proposed but have, thus far, not gained
wide acceptance in solid modeling. There are many connections between certain
kinds of subdivision curves and surfaces and certain classes of spline curves and
surfaces. See also 53. ref!

SPATIAL RELATIONSHIPS

In many applications one would like to understand spatial relationships. Some
of the solid representations reviewed have been considered for this purpose. For
instance, the MAT has been used to guide meshing algorithms globally and some
attempts have been made to devise simplifications for isolating specific features of
a shape. Attempts have been made to define suitable simplifications and variations
of the MAT; e.g., [FLMO03].

Shape simplification is fundamental for many tasks, including in collision de-
tection reviewed in chapter 35. When a shape is offset by a large distance, smaller ref!
features tend to disappear, hence offsetting, a close relative of the MAT, can be
used to explore shape simplification; [BDG97]. Other approaches have constructed
hierarchical representations in which shape is approximated by a hierarchy of sim-
ple bounding volumes that at the tree root enclose the entire shape, and in the
interior refine the shape estimate by alternatingly subtracting and adding smaller
bounding volumes; e.g., [GLM96, KGLT98]. Such trees of bounding volumes have
similarity with CSG trees.

56.2 LEVELS OF ABSTRACTION

GLOSSARY

Substratum: Basic computational primitives of a solid modeler, such as inci-
dence tests, vector arithmetic, etc.

Algorithmic infrastructure: Major algorithms implementing conceptual op-
erations, such as surface intersection, edge blending, etc.

Graphical user interface (GUI): Visual presentation of the functionality of
the system.

Application procedural interface (API): Presentation of system functional-
ity in terms of methods and routines that can be included in user programs.

Substratum problem: Unreliability of logical decisions based on floating-point
computations.

Large software systems should be structured into layers of abstraction. Doing
so simplifies the implementation effort because the higher levels of abstraction can
be compactly programmed in terms of the functionality of the lower levels. Thereby,
the complexity of the system is reduced. A solid modeling system spans several
levels of abstraction:
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1. On the lowest level, there is the substratum of arithmetic and symbolic com-
putations that are used as primitives by the algorithmic infrastructure. This
level contains point and vector manipulation routines, incidence tests, and
SO on.

2. Next, there is an intermediate level comprising the algorithmic infrastructure.
This level implements the conceptual operations available in the user interface,
as well as a wide range of auxiliary tools needed by these operations. There
is often an application programming interface available with which programs
can be written that use the algorithmic infrastructure of the modeling system.

3. A graphical user interface (GUI) presents to the user a view of the functional
capabilities of the system. Interaction with the GUI exercises these func-
tions, for instance, for solid design. Tools for editing and archiving solids are
included.

Ideally, the levels of abstraction should be kept separate, with the higher levels
leveraging the functionality of the lower levels. However, this separation is funda-
mentally limited by the interaction of numeric and symbolic computation.

56.2.1

THE SUBSTRATUM

The substratum consists of many low-level computations and tests; for example,
vector computations, simple incidence tests, and computations for ordering points
along a simple curve in space. Ideally, these operations create an abstract machine
whose functionality simplifies the algorithms at the intermediate level of abstrac-
tion. But it turns out that this abstract machine is unreliable in a subtle way when
implemented using floating-point arithmetic. Exact arithmetic would remedy this
unreliability, but is held by many to be unacceptably inefficient when dealing with
solids that have curved boundaries. See Section 40.4. Problems include input
accuracy.

To illustrate how inexact arithmetic at the substratum level can impact the
geometric computation, consider modeling polyhedral solids, the simplest possible
situation for solid modeling. All computational decisions that arise in the course of
a regularized Boolean operation on polyhedra can be reduced to determining the
sign of 4 x 4 determinants. Geometrically, this is a test of whether a point is above,
on, or below a plane. When the determinant’s value is nearly zero, floating-point
evaluation will decide based on a tolerance. But the decision is unreliable because
logically equivalent tests may arise as different determinants in the course of the
algorithm: some of the determinants could have small, others large values, thus
necessitating different tolerances to arrve at consistent decisions. This gives an
opportunity for the algorithm to build inconsistent data structures and fail. The
problems are magnified when dealing with curved solids.

Recent academic solid modeling systems adopt exact arithmetic either outright,
or use exact arithmetic on demand. In the latter approach, an error bound is
evaluated along with the predicate on whose value a logical decision depends. If
the decision is unambiguous based on floating-point arithmetic, no further action
is taken. Otherwise, an exact evaluation is done. If an exact evaluation is to
be made, the input is understood to be exact as given, and the predicate must
be evaluated from the input data without using intermediate, possibly inaccurate,
data. The assumption of exact input data is problematic for Brep solids. Unless the



Solid modeling 11

input solid is very simple, or it was computed using exact arithmetic, it is an open
problem how to interpret the data such that a valid solid is obtained. For a deeper
evaluation of the problem, and for some approaches to solving it, see Chapter 40.

56.2.2

ALGORITHMIC INFRASTRUCTURE

Algorithmic infrastructure is a prominent research subject in solid modeling. Among
the many questions addressed is the development of efficient and robust algorithms
for carrying out the geometric computations that arise in solid modeling. The
problems include point/solid classification, computing the intersection of two solids,
determining the intersection of two surfaces, interpolating smooth surfaces to elimi-
nate sharp edges on solids, and many more. See the reference section for a sampling
of the literature.

Recent academic work considers structuring application procedural interfaces
(APT’s) that encapsulate the functional capabilities of solid modelers so they can
be used in other programs; [ABCT00]. Such API’s play a prominent role in applica-
tions because they allow building on existing software functionality and constructing
different abstraction hierarchies than the one implemented by a full-service solid
modeling system. The work attempts to give a system-independent specification of
basic API functionality for solid modeling.

An important consideration when devising infrastructure is that the algorithms
are often used by other programs, whether or not there is an API. Therefore, they
must be ultra-reliable and in most cases must not require user intervention for
exceptional situations.

The major geometric computations implemented at the infrastructure level
have to balance the conflicting goals of efficiency, accuracy, and robustness. For
this reason, many operations continue to be researched in efforts to seek new per-
ceived optima. Moreover, new variants of surface representations continue to be
devised that necessitate different approaches. Some of the major operations on
which research continues are the following.

Surface intersection. Given two bounded areas of two surfaces, determine all in-
tersection curve components. A major difficulty of the problem is to identify
correctly all components of the intersection, including isolated points and sin-
gularities. Since this computation is done in R*, classical algebraic geometry
is of limited help. The other difficulty is to address properly the substratum
unreliabilities.

Surface intersection remains a key problem with continuing attempts at bal-
ancing efficiency, accuracy and stability of the algorithms.

Offsetting. Given a surface, its offset is the set of all points that have fixed mini-
mum distance from the surface. Offsets can have self-intersections that must
be culled, and there is a technical relationship between offsetting and forming
the MAT. Namely, when offsetting a curve or surface by a fixed distance, the
self-intersections must lie on the medial axis. Offsetting is used to determine
certain blending surfaces, and is also used in the solid operation of shelling
that creates thin-walled solids.

Blending. Given two intersecting surfaces, a third surface is interpolated between
them to smooth the intersection edge. A simple example is shown in Fig-

ref!
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ure 56.2.1. A locally convex blend surface is often called a round, and a
locally concave one a fillet. The blend surface in Figure 56.2.1 is a fillet.

Blending has been considered almost since the beginning of solid modeling,
and some intuitive and interesting techniques have been developed over the
years. For example, consider blending two primary surfaces f and g. Roll
a ball of fixed radius r along the intersection such that it maintains contact

FIGURE 56.2.1
Left: two cylinders intersecting in a closed edge. Right: edge blended with a constant-radius, rolling-
ball blend; the bounding curves of the blend are shown.

FIGURE 56.2.2

Global blend interference [Bra97]: The round of the front edge overlaps with the fillet of the cylinder
edge on top (left). Without further action, the two blends do not connect, leaving a gap in the
surface. The solution shown in the middle modifies the front round. Other possibilities include
modifying the fillet or inserting a separate blend in the overlap region (Tight).

FIGURE 56.2.3
Global blend interference [Bra97]: At ending vertex, the round and the fillet must be merged into a

compatible structure. Several solutions are illustrated.
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with both f and g. Then the surface of the volume swept by the ball can
be used as a blending surface, suitably trimmed. Note that the center of the
ball lies on the intersection of the offsets, by r, of both f and g. In more
complicated schemes the radius of the ball is varied along the intersection.

A less well-understood issue for blending solids arises from the global problem
of how to devise the contact curves and blending surfaces, so that the surfaces
connect properly at adjacent faces, behave correctly at vertices, and so on.
Figure 56.2.2 shows the problem of overlapping blends. The fillet and round
constructed separately do not meet in the region of overlap. The problem is
that then there is no closed surface defining the blended solid. A resolution
could modify the round, or the fillet, or could insert a separate surface in the
overlap region after suitably cutting back both primary blends.

When the primary surfaces meet at a vertex tangentially, blending surfaces
must “dissipate.” Figure 56.2.3 shows several ways how to dissipate round
and fillet at the end vertices. The examples are from [Bra97] and point out
the dimensions of the global problem.

Deformations. Given a solid body, deform it locally or globally. The deformation
could be required to obey constraints such as preserving volume or optimizing
physical constraints. For example, we could deform the basic shape of a ship
hull to minimize drag in fluids of various viscosities.

Shelling. Given a solid, hollow out the volume so that a thin-wall solid shape
remains whose outer surface is part of the boundary of the input solid. The
wall thickness is a parameter of the operation. Variations include designating
parts of the solid surface as “open.” For instance, taking a solid cylinder and
designating both flat end faces as open the operation creates a hollow tube
of the same outside diameter. Conceptually, the operation subtracts an inset
of the solid, obtained by shrinking the original solid, an offset operation.

56.2.3 USER INTERFACES

Ultimately, the functional capabilities of a solid modeling system have to be pre-
sented to a user, typically through a graphical user interface (GUI). It would be a
mistake to dismiss GUI design as a simple exercise. If the GUI merely presents the
functionality of the infrastructure literally, an opportunity for operational lever-
aging has been lost. Instead, the GUI should conceptualize the functionalities an
application needs. Asin programming language design, this conceptual view can be
convenient or inconvenient for a particular application. Research on GUI’s therefore
is largely done with a particular application area in mind.

For example, in mechanical engineering product design, an important aspect of
the GUI might be to allow the user to specify the shape conveniently and precisely.
This might be accomplished using geometric constraints and constraints of length,
radius, and angle. In GUI’s for virtual environment definition and navigation, on
the other hand, approximate constraints and direct manipulation interfaces would
be better.
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56.3 FEATURES AND CONSTRAINTS

GLOSSARY

Form feature: Any stereotypical shape detail that has application significance.

Geometric constraint: Prescribed distance, angle, collinearity, concentricity,
etc.

Generic design: Solid design with constraints and parameters without regard
to specific values.

Design instance: Resulting solid after substituting specific values for parame-
ters and constraints.

Parametric constraint solving: Solving a system of nonlinear equations that
has a fixed triangular structure.

Variational constraint solving: Solving a system of nonlinear simultaneous
equations.

In solid modeling, two design paradigms have become standard for manufac-
turing applications, feature-based design and constraint-based design. The new
paradigms expose a need to reconsider solid representations at a different level of
abstraction. The representations reviewed before are for individual, specific solids.
However, we need to represent entire classes of solids, comprising a generic design.
Roughly speaking, solids in a class are built structurally in the same way, from
complex shape primitives, and are instantiated subject to constraints that interre-
late specific shape elements and parameters. How these families should be defined
precisely, how each generic design should be represented, and how designs should
be edited are all important research issues of considerable depth.
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56.3.1 FEATURE-BASED DESIGN

Feature-based design is usually understood to mean designing with shape elements
such as slots, holes, pockets, etc., that have significance to manufacturing appli-
cations relating to function, manufacturing process, performance, cost, and so on.
Focusing on shape primarily, we can conceptualize solid design in terms of three
classes of features: generative, modifying, and referencing features. A feature is
added to an existing design using attachment attributes and placement conditions.
Subsequent editing may change both types of attachment information.

As an example, consider the solid shown to the right in Figure 56.3.1. A
hole was added to the design on the left, and this could be specified by giving
the diameter of the hole, placing its cross section, a circle, on the side face, and
requiring that the hole extend to the next face. Should the slot at which the hole
ends be moved or altered by subsequent editing, then the hole would automatically
be adjusted to the required extent.

FIGURE 56.3.1
Left: solid block with a profiled slot. Right: After adding a hole with the attribute “through next
face,” an edited solid is obtained. If the slot is moved later, the hole will adjust automatically.

56.3.2 CONSTRAINT-BASED DESIGN

Constraint-based design refers to specifying shape with the help of constraints, when
placing features or when defining shape parameters. For instance, assume that we
are to design a cross section for use in defining a solid of revolution. A rough
topological sketch is prepared (Figure 56.3.2, left), annotated with constraints, and
instantiated to a sketch that satisfies the constraints exactly (Figure 56.3.2, right).
Auxiliary geometric structures can be added, such as an axis of rotation. There is
an extensive literature on constraint solving, from a variety of perspectives.

Most solid modeling systems use both features and constraints in the design
interface. Often, the constraints on cross sections and other two-dimensional struc-
tures are unordered, but the constraints on three-dimensional geometry are usually
considered in a fixed sequence. Solving systems of unordered constraints is some-
times referred to as variational constraint solving. Mathematically, it is equivalent
to solving a system of nonlinear simultaneous equations. Solving constraints in a
fixed sequence is also known as parametric constraint solving. The latter is equiva-
lent to solving a system of nonlinear equations that has a fixed, triangular structure
where each equation introduces a new variable.
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FIGURE 56.3.2

Geometric constraint solving. Input to the constraint solver shown on the left. Here, the arc should
be tangent to the adjacent segments, and the two other segments should be perpendicular. Output
of the constraint solver shown on the right.

A well-constrained geometric constraint problem corresponds naturally to a
system of nonlinear algebraic equations with a finite set of solutions. In general,
there will be several solutions of a single, well-constrained geometric problem. An
example is shown in Figure 56.3.3. This raises the interesting question of exactly
how a constraint solver should select one of those solutions efficiently, and why.

FIGURE 56.3.3
The well-constrained geometric problem of placing 4 points by 5 distances has two distinct solutions.
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From symbolic computation we know that there are algorithms to convert a
nontriangular system of nonlinear equations into a triangular system. The distinc-
tion between parametric and variational constraint solving is therefore artificial in
theory. However, full-scale triangularization of systems of nonlinear equations is
not tractable in many cases, so the distinction is relevant in practice. Moreover, a
predetermined sequential evaluation of constraints is simple to implement and can
be interfaced easily with conditional constraint evaluation, thereby increasing the
expressive power of the constraint system without raising new semantic issues. For
these reasons, many developers of solid modeling systems leverage core modeling
capabilities by such (simple) extensions.

Spatial constraint solving is very much more demanding than planar constraint
solving. In the planar case, simple (simultaneous) subsystems can be identified and
isolated using straightforward graph algorithms, and result in practically impor-
tant solvers. Furthermore, in the planar case, there are not many such subsystems
needed. In contrast, no simple simultaneous spatial subsystems exist. When lines
are allowed as geomtric primitives, then the systems become very much harder
and there are many such subsystems even when restricting to only 5 or six geo-
metric elements. The number of basic cases number in the hundreds; [GHYO02].
This structural barrier seems to preclude the emergence of truly spatial constraint
solvers, and with it, of spatial design paradigms. In practice, CAD systems fudge
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the issue by building interrelated planar constraint problems which are variational
in each plane but follow a clear, parametric sequence for elaborating the spatial
relationship between the various planar problems.

56.3.3

SEMANTIC PROBLEMS

When constraints and parameters are used in solid design, a generic design is
obtained. Generic designs are instantiated by constraint values, and may be edited
by changing the constraint values, the constraint schema, and the feature attributes.
A design so edited can then be automatically re-instantiated by the solid modeler.
A central difficulty in implementing this scenario, however, is that the generic
design is usually defined visually on the basis of a particular instance, and when
the design changes, the instance geometry is no longer present. Thus, visually
identified instance structures must be suitably described, so that re-instantiation
can be carried out correctly.

As an example, consider the solid shown in Figure 56.3.4, left. It was con-
structed as follows. First, a rectangle was drawn and extruded into a block. On
the front face of the block, a circle was drawn as a profile of a slot across the top
of the block. Then, an edge was visually identified for rounding. This design is
edited by altering the position of the circular slot profile. The edge to be rounded
is not an explicit design entity, however. Hence, the edge has to be described im-
plicitly, perhaps by the intersection of the circle and the top edge of the face on
which the circle has been drawn. This description does not distinguish between the
two straight edges of the slot, however, so additional information has to be used.
Such information would have to allow a consistent identification under all possible
constraint values, and is called the persistent naming problem.

FIGURE 56.3.4

A block with a slot and round on the left edge is shown left. After editing, in this case decreasing
the depth of the slot, re-instantiation should produce the solid shown in the middle. However, some
systems may re-instantiate as shown to the right, an error.

There has been a small stream of academic work on this topic, although it is
of intense interest in applications. In particular, the formalization of the design
information has profound implications on system architectures because it formal-
izes, in effect, the information flow between functional components. Whenever such
formalization seeks independence from the specific implementation of the system
components, system modularization is facilitated. Ultimately, this will accelerate
the current trend of decomposing solid modeling systems into standardized com-
ponents that can function interchangeably and can be combined in a variety of
ways.
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56.4 OPEN PROBLEMS

Most major problems in solid modeling contain a conceptualization aspect. That
is, a precise, technical formulation of the problem commits to a specific conceptu-
alization of the larger context that may be contentious. For example, consider the
following technical problem. Given an implicit algebraic surface S and a distance d,
find the “offset” of S by d. Assuming a precise definition of offset, and a restriction
to irreducible algebraic surfaces S, the problem statement ignores the fact that a
solid model is not bounded by a single, implicit surface, and that implicit surfaces
of high algebraic degree may cause severe computational problems when used in a
solid modeler.

CONSTRAINT SOLVING

Geometric constraint solvers trade efficiency for generality. Some very interesting
techniques have been developed that are fast but not very general, for planar prob-
lems. They could be extended in various ways without substantially impacting on
efficiency. Such extensions, for constraint solving in the plane, include the incorpo-
ration of parametric curve segments as geometric elements, more general constraint
configurations, relations among distances, and angles.

Spatial geometric constraint solving poses a number of open problems, includ-
ing determining whether a constraint problem is generically well-constrained. The
problem of how many lines can be found at prescribed distance from four fixed
points has been solved, one of the sequential construction problems for lines. Other
construction problems for lines are not completely solved. The smaller simulta-
neous problems involving points and planes have been solved. Most simultaneous
problems involving lines require numerical treatment, however, and are not well
understood.

FEATURES

Manufacturing applications need cogent definitions of features to accelerate design.
Such definitions ought to be in terms of generic mechanisms of form and of function.
Also needed are mapping algorithms interrelating different feature schemata.

A set of features, say those conceptualizing machining a shape from stock, is
called a design view. In manufacturing applications there are many views, including
machining, tolerancing, design view, etc. Work has begun to address the problem
of altering a design in one view with an automatic update of the other views. To
do so requires reasoning about shape and is a hard problem. Some approaches have
been based on subdividing the shape by superimposing all feature boundaries, and
then tracking how the subdivision is affected by changes to one of the features.

SEMANTICS OF CONSTRAINT-BASED DESIGN

A solid shape design in terms of constraints can be changed simply by changing
constraint values. To date, all such changes have been specified in terms of the
procedures and algorithms that effect the change. What is needed is an abstract
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definition of shape change under such constraint changes to obtain a semantic
definition of generic design and constraint-based editing. Such a definition must be
visually intuitive.

MODEL RECTIFICATION

Because of the substratum problem, Brep data structures can be invalid in the sense
that the geometric description does not agree fully with the topological description.
For instance, there may be small cracks between adjacent faces, the edge between
two adjacent faces may not be where the curve description would place it, and
so on. This has motivated work to “heal” the defective surface by closing cracks,
eliminating overlaps, and so on. Some approaches sew up cracks with smaller faces,
and in the case of polyhedra with triangles. Optimal healing is known to be NP-
hard.

An intuitive idea is to assign a thickness to faces, edges and vertices, and enlarge
the thickness so that the surface closes up. The difficulty is to work out what
happens when nonadjacent faces merge into adjacent ones. The natural geometric
enlargement creates mathematically difficult surfaces; for instance, the offset surface
of an ellipsoid increases the algebraic degree by a factor of 4. So, an interval based
approach has also been proposed in which there is no closed-form description of the
enlarged geometric elements.

56.5 SOURCES AND RELATED MATERIAL

FURTHER READING

Monographs on solid modeling. Monographs and surveys provide an excellent en-
try into solid modeling. Major monographs on solid modeling are [Chi88, Hof89,
Mi&n88]. Books on the related field of CAGD (computer-aided geometric design)
may also contain material on solid modeling but concentrate primarily on curve
and surface design and manipulation. Surface interrogation from a solid modeling
point of view is explored in [Hos92, PM02].

Solid representations and conversion. There is a large and diverse literature on rep-
resentations and representation conversion. Classical work focused primarily on the
semantic foundations of CSG and Brep and includes [Req77, Wei86]. Maintaining
Brep and CSG simultaneously has been explored in [RS00]. The mesh and octree
representations are treated in [BN90, Hof95, Sam89a, Sam89b, TWMS85], including
the associated conversion problems. The medial axis representation of solids, and
how to compute with it, are considered in [Hof92, SAR95, Ver94]. Implicit algebraic
halfspaces as solid primitives are discussed in [BDL*91]. The conversion between
boundary representation and CSG can be considered a generalization of the bi-
nary space partition tree and is explored in [Hof93b, Nay90, NR95, Sha91, SV93].
Curve and surface representations, and their manipulation, are the subject of
[Far88, Hos92, HL93, PM02]. More specialized treatment of offsets and sweeps is
found in [BL90, CHL91]. Procedural script language representations are discussed
in [Bro82, oU94, Sys01] for PADL, Alpha_1, and SGDL. Data representations that
neutrally describe form features and constraints are developed in [HJ92].
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Substratum, infrastructure and user interfaces. The substratum robustness issue is
presented in greater depth in Chapter 40; [SI89, For97] explores the use of exact
arithmetic in polyhedral modeling. Manocha and Keyser work with exact arith-
metic for curved solids; [KKM99a, KKM99b]. A recent survey is found in [Hof01].
Infrastructure work is traditionally quite extensive. Surface intersection is
treated in [Hoh92]; this thesis contains an excellent summary of previous work.
A recent monograph on the subject is [PMO02]. Global solid operations are con-
sidered in [BW89, For95, PS95, RSB95]; local solid operations are discussed in
[HH87, Pet92]. Much work has been done in blending. The local problem ios
often addressed in the context of CAGD, and the monographs on that subject con-
tain much material. The global blending problem is treated extensively in [Bra97].
Work in symbolic algebraic computation (Chapter 32) has foundational importance,
for instance in regard to converting between surface representations. Some of the
applications of symbolic computation are explored in [BCK88, Cho87, Hof90).

Features and constraints. Neither topic is new, so there is a sizable literature on
both. The confluence of the two issues in recent solid modeling systems, however,
is new. It raises a number of questions that have only recently been articulated
and addressed. [SHL92, KRU94] discuss feature work. Constraints are the subject
of [BFH'95, HV94, Kra92]. The confluence of the two strands and some of the
implications are discussed in [HJ92]. Some of the technical issues that must be
addressed are explained in [Hof93a, CH94], and there is more work emerging on
this subject. In particular, Shapiro and Raghothama propose several criteria for
defining a family of solids; [RS02, RS98].

RELATED CHAPTERS

Chapter 24: Triangulations and mesh generation
Chapter 32: Computational real algebraic geometry
Chapter 37: Geometric Intersection

Chapter 40: Robust geometric computation
Chapter 48: Computer graphics

Chapter 50: Pattern recognition

Chapter 52: Splines and geometric modeling
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