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Parametric solid modeling is a key technology to define and manipulate solid models
through high-level, parameterized steps. These steps can be modified by users and in-
stantiated to specific parameter values and constraint configurations. More than that, the
design paradigm supported allows the shape designer to define entire families of shapes,
not just specific instances. We review the core techniques of parametric modeling, de-
scribe new trends, and sketch a number of open problems that must be resolved to take
full advantage of the potential of parametric modeling.

1. Introduction

A parametric solid can be defined as a solid whose actual shape is a function of a given
set, of parameters and constraints upon them. The objective of parametric solid modeling,
hereafter also referred to as parametrics, is to represent, manipulate, and reason in a
computer about the three-dimensional shape of parameterized solid objects.

Prior to the development of parametrics, designers of solid models created a particular
shape. Once created, editing and altering the shape was not specifically supported. To
accomplish that, the designer had to import the shape and modify it by additional design
steps. In contrast, parametric design focuses on the steps creating a shape and param-
eterizes them. This allows the designer to define an entire class of shapes that later on
can be simply instantiated. The added flexibility can be exploited in many ways, and
constitutes an important advance in solid modeling and its applications in, e.g., product
design.

This overview of parametric solid models covers the two main components, constraints
in Section 4 and in features in Section 5. While constraints comprise a well-defined set
of tools and techniques, features are a more loosely-knit vocabulary. Feature semantics
evolves with applications that seek to conceptualize, in a high-level vocabulary, major
design steps and components. The multiplicity of application requirements and agendas
makes features a less precisely cast subject that continues to be debated.

We also explore trends we perceive in parametric modeling. Those trends bifurcate
into issues especially of interest to academics and issues of immediate interest to industry.
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There is overlap, of course, and we will work out key aspects in Section 6. Naturally, the
trends throw up open problems, to be described more fully in Section 7.

2. Parametric Models

The foundations of solid modeling were laid by the pioneering work of Requicha and
Voelcker in the late 1970s for constructive solid geometry (CSG), in which solid shapes
are composed from instantiated primitives using set-theoretic operations. Their careful
investigation of the topological and geometric foundations of the representation of rigid
solids applies to rigid solid models in general, including the boundary representation
models that arose around the same time from the work by Braid and Eastman. A survey
of the state of the art in 1982 is found in [1].

The framework that originates with the CSG work captures models that have a geo-
metric and a topological structure. The geometric structure relates to the actual shape
of the solid surface, and the topology to adjacency and connectedness of the solid interior
and its boundary surface. Such models can be characterized as semi-algebraic point sets,
and we refer to them as specific solid models.

In contrast, a parametric solid model is more than a specific solid because it includes
a metastructure from which specific solid models can be derived as instances. Thus, it is
more appropriate to think of a parametric solid as a class of specific solid models, and so
very different representational schemes have been proposed for them. See for example [2].
The representational proposals divide into procedural representations and mathematical
ones. In procedural representations a specific solid shape is constructed by elaborating
a sequence of construction steps. In mathematical representations an attempt is made
to characterize variational classes of solids by postulating properties such as, e.g., that
all members of the class have the same topological genus. To add to the diversity, note
that the procedural representations may include nonprocedural substeps. For instance, a
cross section to be extruded may be defined by a set of geometric constraints, with more
than one solution, and the selection of a particular solution may depend on the constraint
solver employed.

The procedural approach is unsatisfactory to some because it does not explicitly char-
acterize a class of solids that can be derived from a common procedural representation.
However, the mathematical approach is unsatisfactory as well to some because it has dif-
ficulty capturing properties accepted in practice. Those properties are based on a veiled
intuition grounded in application requirements or in the particulars of an evaluation mech-
anism. At this point in time, there is no satisfactory definition of the term wvariational
class of solids that has broad acceptance. The field thus moves through territory whose
foundations are not fully understood, propelled by technological advances that arise from
needs of applications. In view of this incomplete state of knowledge, we offer the following
working definition for parametric models:

A parametric solid model is an information structure that permits deriving spe-
cific solid models, in the sense of Requicha and Voelcker, using a deterministic
algorithm. Moreover, the specific shape derived depends on parameters that
are explicit in the information structure and must be valuated for obtaining a
specific solid shape.



Our commitment to the procedural school, apparent in this definition, reflects the
current state of technology and practice. Note also that we understand a parametric solid
model to comprise all specific solid shapes that are derivable from the representation.
Some authors have called this a variational family, [3].

The bulk of tools incorporated into parametric models and their evaluation are geomet-
ric constraints and feature operations. Variant modeling is a precursor to this concept
and has closer ties to specifics of the model representation or creation. We explain those
concepts in separate sections. In addition, operations such as deformations of solid shapes
have been considered, but are found predominantly in experimental solid modeling sys-
tems. We do not discuss them further.

3. Variant Modeling

If the objective is to shift from an instance design to a generic one, a simple technique
is to prepare a variant design. Using the representation as a symbolic system, parameters
can be identified and valuated in different ways to generate variant designs. For exam-
ple, consider the CSG expression BLO(W, H, D) that evaluates to a block, in standard
position, of width W, height H and depth D. Understanding the quantities W, H, and
D as parameters, we can instantiate many blocks. This paradigm can be broadened by
parameterizing complex expressions built from parametric solid primitives and embedding
the expressions into a programming language that permits computing parameter values
procedurally. Clearly, we can parameterize the transformation expressions that place the
primitives in relation to each other, form conditional branches that may or may not eval-
uate component shapes based on specific parameter valuations, and abstract a design by
encapsulating dependent parameters and exposing independent ones. We call this design
approach, first demonstrated by the PADL-2 system, [4], variant design.

A slightly different variant design approach [5], implemented by Joan-Arinyo at the Uni-
versitat Politecnica de Catalunya in 1993, derives parameters from a symbolic abstraction
of design gestures. Ultimately, a program is derived that generates design instances based
on pre-defined parameters observed from a visual design gesture. For example, in ducting
and pipe design, we may work with a repertoire of standard shapes, to be parameterized
in a predefined way and placed sequentially in a way the user defines. Here, the design
system can derive the design structure from the user interface gestures and create the
variant design.

The variant methodology is especially well suited for applications that deal with those
product families that are composed of standard basic shapes with simple parameterization.
Moreover, the variation in net shape should be small. See for example [6]. Variant
designs survive in libraries of standard parts. For example, there are libraries of fasteners,
brackets, and so on, that are essentially derived from a few variant designs and indexed
by a catalogue. Some limitations of variant design are explained in, e.g., [7].

Recent developments aim to improve the methodology by providing full support for
retrieval of an existing design specification for the purpose of adapting it to design a new
but similar product, [8-11]



4. Constraint-Based Modeling

Variant design depends on a fixed script that has been defined manually. Although the
script could be very complex, as in the case of embedding a design language into a general
programming language, design as programming is less desirable than giving the designer
visual tools and deriving from a visual design process a flexible and intuitive parametric
design. With the arrival of the geometric constraint solving the technology was at hand
to do that. Finally, it was possible to prepare a rough sketch and, by adding specific
dimensional and relational constraints, transform it into a precise drawing. Coupled with
operations such as extrusions and cuts, it became possible to create designs intuitively
and with ease. Furthermore, by valuating the dimensional constraints differently, variants
could be obtained automatically by means of a general purpose constraint solver.

4.1. Constraints
A constraint specifies a relation on or between entities in a model that must be main-
tained. The following classes of constraints arise naturally:

e Geometric relationships such as concentricity, perpendicularity, etc., as well as met-
ric dimensional constraints such as distance or angle.

e Equational constraints that express relations between dimensional parameters and /or
technological variables such as torque.

e Semantic constraints that define validity conditions on a shape.
e Topological relations between entities in a model, such as incidence or connectivity.

To date, constraint systems of varying competence deal with some or all of these types of
constraints. We distinguish between variational and parametric constraint problems.

A parametric geometric constraint problem is one in which a sequence of steps
can be identified or derived that solves the problem. In each step, a single
geometric element is placed in relation to elements already placed.

In contrast, a variational geometric constraint problem includes steps in which
several geometric entities must be placed simultaneously in relation to each
other.

For planar geometric constraint problems competent and efficient solvers are readily avail-
able. For spatial constraint problems the technology is not nearly as to mature, likely
owing to a greater intrinsic difficulty of spatial problems. This difference is manifest in
design systems available today.

4.2. Modeling with Constraints

When defining a model initially, sketches are prepared and annotated with constraints.
Sketching can be done with a mouse or more specialized devices. Constraining the sketch
often is through menu dialogues. The sketches are then converted into precise shapes,
by solving the constraints. Finally, the solid shape is defined from the sketches, using
operations such cuts or protrusions generated from revolving or extruding cross sections.



Most systems allow interleaving sketching and constraining. Figure 1 left shows the sketch
of a constraint problem input to the constraint solver. Here the arc should be tangent to
the adjacent segments, and the two other segments should be perpendicular. Output of
the constraint solver is shown on Figure 1 right.

Figure 1. Sketch of a constraint problem and a solution generated by the solver.

When a sketch is solved, the underlying constraint solver expects in some cases a well-
constrained problem, that is, one in which no additional constraints can be added without
creating redundancies. Overconstrained sketches are usually rejected. In the case of
underconstrained sketches the system will infer additional constraints that, when added,
make the problem well-constrained.

When an already defined model is edited, the user changes some parameters or con-
straint values in the simplest case. The system constructs the new instance automatically
solving for the changed values. More complex editing may change the parametric model
itself, adding or deleting features, or changing the definition of some of them.

4.3. Solving Geometric and Equational Constraints

Some constraint problems permit a sequential solution, in which the geometric elements
are placed one-by-one, in accordance with the constraints. Such problems correspond
to triangular, nonlinear equation systems. For planar cross section definitions, only a
few modelers restrict to sequential problems. Most systems allow variational constraint
problems in 2D, and therefore free the designer from the burden of having to understand
whether the constraint schema is a constructive, sequential one. Note that sequential
problems may also entail multiple solutions. For instance, assume that we are given two
fixed circles and seek a common tangent of them. Then we would have to select one of
up to four possible tangents.

A variational constraint problem is equivalent to a nonlinear system of equations. More-
over, a mathematically well-constrained problem will have more than one solution in
general. There are general algorithms to convert a nontriangular system of nonlinear
equations into a triangular system, [12]. Therefore, the distinction between parametric
and variational constraint solving is artificial in theory. However, triangularization of
systems of nonlinear equations is not tractable even for problems with a relatively small
number of variables and equations.



Ideally, differentiating between the possible solutions and selecting the appropriate one
would be accomplished by adding other, nongeometric constraints. Unfortunately, to-
date no convincing approach to this problem has been discovered, and solvers rely on
proprietary, sometimes rather complicated heuristics to select a solution that hopefully
matches the intent of the designer. Simple “metaconstraints” can be entertained that
might assist solution selection. For example, when designing a cross section, we might
require that the bounding contour is not self-intersecting. Unfortunately, such simple
rules cannot be efficiently implemented; [13].

Owing to the difficulty of variational constraint solving in three-space, spatial constraint
problems are typically sequential. This imposes limitations on the designer that manifest
themselves very clearly when designing mechanical assemblies.

Many approaches to solve geometric constraint problems have been reported in the
literature. They can be categorized roughly as equational, constructive and degree of
freedom analysis. We give a brief sketch of these techniques. For a thorough review see,
e.g., reference [13].

4.3.1. Equational Methods
An equational solver translates the geometric constraint problem into a system of al-
gebraic equations which are then solved using a collection of techniques.

The Numerical Approach

A numerical solver applies iterative techniques to solve the equation system. Such solvers
can be quite general, and many constraint solvers switch to numerical methods as an
alternative to another method. However, most numerical methods have trouble handling
overconstrained and underconstrained problems. Only overconstrained problems which
consistently define an object may be solved using this techniques.

Early systems such as those reported in [14, 15] used relazation methods to solve the
system of equations. Relaxation methods work by perturbing the values assigned to
variables in such a way that the total error is minimized. The main problem is that
convergence is slow.

A widely used numerical technique is the Newton-Raphson iterative method. Its main
drawback is that the iteration requires a good initial value. If, as is usual, the initial
values are taken from a rough sketch defined by the user, the sketch must almost satisfy
all the constraints. Nonlinear systems have an exponential number of solutions and the
Newton-Raphson iteration will find only the solution closest to the initial guess. Since
the approach is unable to find alternative solutions, it is inappropriate when the initial
sketch leads the solver to a solution which does not fit the users needs. Solvers in [16-19]
are based on Newton iteration.

Hel-Or et al., [20], report on a paradigm called relaxed parametric design, to guide
the solver in the selection of a solution amongst a set of candidates, which satisfy all
the constraints. The designer may provide soft constraints weighted by a user-defined
certainty. Soft constraints are represented by a measurement and a tolerance and do not
have to be satisfied exactly. A probabilistic constraint schema is used and an estimate of
the model is computed using the Kalman filter technique developed in control theory.

Kin et al, [21], solve geometric constraint problems using an extended Boltzmann ma-
chine, an artificial neural network. An energy function associated with the constraint



network is defined to include terms of higher order than quadratic with respect to the
binary states of the units that constitute the network. The extended Boltzman machine
minimizes the polynomial energy function.

Recently developed methods in numerical continuation known as homotopy methods,
are able to compute all solutions to polynomial systems [22-24]. The solution of a system
of nonlinear equations by numerical continuation is motivated by the idea that small
changes in the parameters of the system usually produce small changes in the solutions.

The Symbolic Approach

The symbolic approach translates the system of equations into another set of polynomials
with the same roots. The resulting system is solved with symbolic algebraic methods, such
as Buchberger’s Grobner Bases, [25], or the Wu-Ritt method, [26]. Both methods can solve
general nonlinear systems of algebraic equations, but they require exponential running
times. The transformed system is triangular, so the problem of simultaneously solving
n polynomials with n variables is reduced to repeated univariate polynomial solving.
The approach finds in principle all solutions. Solvers in references [27] and [28], use
Buchberger’s algorithm.

Propagation Methods

The method generates an undirected graph whose nodes are the variables and constants
in the system of equations and whose edges represent equations relating these variables
and constants. The propagation method attempts to direct the graph edges so that every
equation can be solved incrementally. The technique thus tries to discover a sequential
strategy for solving the constraint system.

Various propagation techniques have been reported in the literature, [29-31], but none
of them guarantees a solution when one exists, and most fail when a cyclic dependence
is found. Propagation is sometimes used in conjunction with a numerical technique. For
example, in [14, 15], when the propagation of degrees of freedom fails, a relaxation method
is used. For a review of these methods, see [32].

4.3.2. Constructive Methods

Constraint solvers based on a constructive approach take advantage of the fact that
many geometric constraint problems can be seen as engineering drawings which are usually
solvable by ruler, compass and protractor. The two main approaches commonly classified
as constructive are the rule-based and the graph-based approach.

Rule-Based Approach
In a rule-based approach, constraints are expressed by predicates, and geometric construc-
tion operations by functional expressions. These constructive solvers compute a symbolic
solution of the constraint problem using a rewriting system to find a sequence of geometric
operations that build the object which satisfies all the constraints. If the constraints con-
sistently describe the position and orientation of the object, then the constraint problem
can be solved.

The earliest rule-constructive solvers did not consider the problem of nonunique solu-
tions, [33, 34]. However, later approaches, [35—40], compute all possible solutions when
constraint problems are well-defined.



Hoffmann and Joan-Arinyo, in [41], combine a rule-constructive solver with an equa-
tional solver based on graphs. When no more constructive rules apply, a bigraph is used
to analyze the structure of the system of equations. Using matching theory techniques, a
set of equations is isolated and solved in a general purpose equational solver. Joan-Arinyo
and Soto generalized this approach in [42].

Graph-Based Approach

Graph-constructive solvers derive a sequence of construction steps using graph analysis
techniques. DCM, a commercial constraint solver described in [43], uses this method: a
graph is broken up into a set of subgraphs such that an algebraic solution for each class
of the resulting subgraphs exists. Then, the subgraphs are positioned applying rigid body
transformations to all geometric elements that belong to the subgraph.

Fudos and Hoffmann in [44] report on a graph-constructive approach to solve systems
of geometric constraints capable of efficiently handling well-constrained, overconstrained,
and underconstrained configurations.

Although this approach is faster and more methodical than the rule-constructive ap-
proach, the graph analysis algorithm needs to be modified when new types of constraints
have to be considered.

4.4. Degrees of Freedom Analysis

In this approach, the notion of degrees of freedom is associated to primitive geometric
objects and constraints. Any geometric object (point, line, circle, etc.) has a number
of degrees of freedom in its embedding space. Constraints (coincidence, distance, angle,
etc.) reduce the degrees of freedom of an object.

Kramer, [45], solves geometric constraint problems by symbolically reasoning about
the geometric entities themselves using a technique called degrees of freedom analysis.
In this approach, the configuration variables of a geometric object are defined as the
minimum number of real-valued parameters required to specify the object in space unam-
biguously. The configuration variables parameterize an object’s translational, rotational
and dimensional degrees of freedom with one variable required for each degree of freedom.
A constraint solver for three dimensional constraints is described in [45], in which con-
straints on rigid bodies are satisfied incrementally by a sequence of rigid-body motions.
A plan of measurements and actions is devised to satisfy each constraint incrementally,
thus monotonically decreasing the system’s remaining degrees of freedom. This plan is
used to solve, in a maximally decoupled form, the equations resulting from an algebraic
representation of the problem. Kramer’s solver is restricted to kinematic loops of length
4. For more complex interdependence his solver has to resort to numerical methods.

Using a graph-based technique, Hsu derives a plan of evaluation by examining and
updating the degrees of freedom and dependencies between objects, [46]. First the method
generates a connected subgraph and a dependency graph. Then the dependency graph is
solved by a hybrid solver which generates the solution in the form of direct constructions
and iterative constructions.

A flow-based method for decomposing the graph of a geometric constraint problem is
described by Hoffmann et al. in [47]. The method fully generalizes the degree-of-freedom
approach. The method iterates to obtain a decomposition of the system of equations
underlying the constraint graph, into small subsystems.



5. Feature-Based Modeling

Features have become an integral part of parametric modeling. Features provide a
higher level vocabulary for specifying operations to create shapes by providing parametrized
geometry, attributes and geometric constraints. Moreover, parameters, attributes and
constraints can be encapsulated.

In a good design, features capture explicit engineering attributes and relationships for
product definition and provide essential information for various design tasks and perfor-
mance analyses. In manufacturing, features can be linked to manufacturing knowledge,
thereby facilitating manufacturing and process planning. Features also provide a frame-
work for organizing design and manufacturing information in a data repository for reuse
in new product design, [48].

5.1. Features and the Feature Model

Features have been defined in a number of different ways in the literature. A good
definition that captures the current trends in features development is due to Shah, [49],
who defines a feature as a generic shape with which engineers associate certain properties
or attributes and knowledge useful in reasoning about a product.

In order to be useful, a feature should embody at least three different concepts: Generic
shape, behavior, and engineering significance, [48]. The generic shape is parametrically
defined as a boundary representation, a CSG tree or another geometric representation,
including procedural representations.

Behavior and engineering significance are defined by means of attributes and domain-
specific rules. Attributes can be classified into several groups. Geometric attributes
refer to the feature’s shape and examples are dimension attributes, default and feasible
values for parameters, tolerances, location parameters and so on. Technological attributes
give information useful to downstream applications, such as material properties, heat
treatments, tool and fixture information, etc. Some attributes can take the form of rules
to define the behavior of the feature. The rules state what conditions should or must
be imposed on a feature within a given process in order to perform a particular activity.
Attachment validation and symbolic or skeletal representation derivations are examples
of such rules.

A feature model is a data structure that represents a part or an assembly in terms of its
constituent features. Feature models are created by organizing the constituent features in
a suitable structure that expresses the required relationships between the various features.

There is a continuing debate on what a precise definition of feature should be. In part,
the debate is fueled by conflicting part and assembly conceptualizations arising from
different categories of design, analysis, and manufacture. For example, the burner casing
of a jet engine may have a set of features relevant to thermal analysis, yet a different
set of features may be relevant to structural analysis. A third set of features may be
important to the casting process by which the casing is manufactured, and a fourth set
of features may be important to analyzing tolerances in the context of the assembly with
other engine parts. These different categories can be considered views, and each view of
the product will focus on its particular set of features.

This divergence of feature sets, on the same product, would be less onerous were it
not that the design process of the geometric shape forces the designer to distinguish
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a particular set of features for the purpose of geometry creation. This set of design
features often is not useful to the manufacturing engineer or the performance analyst.
Owing to limited technology, switching between different feature sets during product
design and manufacture is difficult or not supported by many CAD systems, leading to
privileged views and continuing interest in developing techniques to switch effectively
between different views without losing the flexibility of parametric design.

5.2. A Brief Feature Taxonomy

We distinguish between geometric features and nongeometric features. Geometric fea-
tures are closely related to the geometry of a model and can be further differentiated
into

e Form features: portions of nominal geometry defining a feature’s shape.
e Tolerance features: Deviation from nominal definitions of shape, size or location.

e Assembly features: Grouping of various features to define assembly relations such
as mating conditions, position and orientation, kinematic relations, etc.

Viewed from an application perspective, geometric features can also be classified into
design features, manufacturing features, process planning features, etc.

Nongeometric features are generally related to technological information. Examples of
this type of features are:

e Functional features: Sets of features related to a specific function like design intent,
parameters related to function and performance, etc.

e Material features: Material composition, treatment, surface finish, etc.

5.3. Feature Model Construction

Three basic techniques for constructing parametric feature models have been identi-
fied, [49, 48]: Interactive feature definition, automatic feature recognition and design by
features.

5.3.1. Interactive Feature Definition

In the interactive feature definition technique the user interacts with a model that has
already been defined, possibly using another design methodology. Interactively, the user
selects on this displayed model entities to be grouped into a feature. A feature so defined
can then be annotated with attributes such as surface finish and tolerances. In some
cases, the feature can be parameterized by defining parameters and constraints on the
entities.

Groupings and annotations are easily implemented. Moreover, the entire model need
not be featurized, only those features need to be defined that are of particular use in the
application the user has in mind. Feature validation is usually the task of the user.

If many features have to be defined, this process is error-prone and tedious. Moreover,
the persistence of annotation is usually not guaranteed, although technology exists to
make persistent annotations of parametric models. The definitional task can be assisted by
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feature recognition coupled with a feature library that contains generic feature definitions
and can propose completions of a partially defined feature.

A more complicated issue arises when the original model does not have any parametric
information and the user adds parameters to the features defined on the model. Re-
evaluation of the model with changed parameter values is needed in this case, and there
are commercial modelers that can accomplish this task within certain limits. The problem
increases in difficulty if the original model is parametric, and we wish to preserve the origi-
nal parameterization structure in addition to editing the model from user-defined features
and their parameters. This problem is technically related to reconciling different views
when editing, and requiring that different views can edit from within their perspective.

5.3.2. Automatic Feature Recognition

In automatic feature recognition, a previously defined geometric model is processed
algorithmically to detect features defined in terms of rules or subgraphs or other kind
of generic feature knowledge. This approach has received considerable attention in the
literature. However, several research challenges still need to be addressed and solved in
order to ground the approach in a robust and solid framework. See [50] for a review of
automatic feature recognition systems.

A major difficulty common to all known approaches to automated feature recognition
is the recognition of intersecting features. When several features intersect, their topology
can change dramatically. Since most of the proposed feature recognition techniques seek
to identify among the model’s edges and faces groups that exhibit a specific topological
and geometric character, the fragmentation entailed by intersecting features can foil the
recognition algorithm. Moreover, it can lead to interpretation ambiguities that must
be resolved by adopting certain heuristics. Work has been reported that attempts to
recognize features not only individually but also feature interrelations like containment
and intersection; see, e.g., [51]. Unfortunately, the computational complexity explodes
even for very simple objects.

Most of the existing feature recognizers work in batch mode. They accept as input
a completed design and produce as output a feature model. For the reasons explained
before, the feature model built represents one of several possible interpretations. Even a
small change in the initial model can force feature recognizers to discard the previous work
and start an expensive geometric reasoning process from scratch. Since batch operation
is undesirable in interactive environments, some efforts have been devoted to incremental
feature recognition, [52].

Another drawback arises from the fact that automated feature recognition techniques
process final functional forms. Therefore, it is not adequate for certain types of down-
stream applications. For example, in process planning in the automotive industry, the
intermediate geometry must also be identified, [53]. Since intermediate shapes, sometimes
also called in-process shapes, cannot reliably be reconstructed from the final net shape,
important information has been lost that reduces the applicability of automated feature
recognition.

5.3.3. Design by Features
Design by features is the most widely used technique in feature-based modeling. Here
the model is built directly by the user by instancing generic feature definitions, which
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are used as templates, and locating them in space or attaching them on existing features.
The features can be instantiated from a library of either standard generic features or from
application-oriented, user-defined features, [54].

Feature-based systems usually provide standard generic feature libraries as collections of
predefined features such as slots, pockets, and holes, and operations for defining sketched
features where geometry is created by sweeping a planar cross section or lofting between
two or more planar cross sections. Standard operations provided by systems allow the
user to create complex shape designs that could not be built using standard features only.

A plausible design process of a pocket with a bridge across the bottom is illustrated in
Figure 2. The designer first creates a pocket of maximum depth, and then adds the rib
as a protrusion with fillets at the edges.

Figure 2. Design sequence: make a cut, then add a protrusion.

The design by features technique provides a set of operations to edit the model. Broadly
speaking, these operations are: Inserting or deleting an entire feature, changing feature
attributes, modifying dimension values that define the feature or place it in the model,
changing the set of constraints associated with the feature, and changing the feature shape
definition. Procedural steps common to these editing operations are given in [55].

5.4. Feature Representation

The shape of a feature may be expressed in terms of construction steps that produce
the geometry corresponding to the feature or in terms of an enumeration of geometric
and topological entities and relations along with dimension parameters, [56]. The first
approach is a procedural approach while the second is a declarative approach.

5.4.1. Procedural Representation

In the procedural approach, generic features are predefined in terms of a collection of
procedures which may include methods for managing a feature as a whole, like instanc-
ing, copying and deleting a feature, and methods for specific operations on a given feature
like generating the geometry, deriving values for parameters, and validating feature opera-
tions. The procedures may be encoded in either a general or special-purpose programming
language.

In procedural feature representation, feature definitions are explicitly expressed in terms
of a computation. So, a feature is always instantiated from a given function with a given
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set, of parameters whose values the user sets. If the given parameter values are changed,
the entire procedure must be run again to compute the new instance.

5.4.2. Declarative Representation

The declarative approach, features and their properties are first described in a declar-
atively; i.e, the definition declares what the feature is rather than how it is built. Then,
a general algorithm constructs the actual detailed feature model. One of the main tools
of the declarative approach is the use of constraints to define the particulars of features.

In [57], the authors proposed the Erep declarative framework that achieves a clean sep-
aration between definition and construction. In this framework, geometry and properties
are represented in a neutral form while the actual construction is performed by algorithms
committed to a clear, underlying semantics. The framework naturally provides tools for
representing constraints and attributes of features.

In declarative feature representation, constraints play a central role because they pro-
vide a natural way to describe spatial relations between geometric entities within a feature
and between features. Furthermore, constraints provide a mechanism to define relation-
ships between geometric and technological parameters. Therefore, all the constraint solv-
ing machinery can be applied effectively.

5.5. Features and Constraints

Increasingly, solid modeling systems use both features and constraints in the design
interface. Typically, feature-based design systems deploy a design paradigm in which the
designer may use a set of predefined features and operations for defining sketched features.
The geometry of sketched features is created by sweeping a planar cross section or lofting
between two or more planar cross sections.

Cross sections are defined as sketches with declarative constraints. A variational con-
straint solver instantiates the cross section based on the sketch and the constraints, and
places it with respect to the geometry constructed so far from prior features. Parameters
and constraints then define the sweep extent.

6. Trends

Trends in parametric solid modeling are fostered mainly by two different requirements:
integration with product data management and downstream applications, and support
for concurrent distributed design environments.

To fulfill these requirements, solid modeling should provide an efficient and direct com-
munication between engineering processes which, in turn, requires advanced modeling
tools and methods to provide users with facilities to capture geometry sufficiently en-
riched with engineering semantics. These requirements affect parametrics, and therefore
features and constraints, in a number of ways.

6.1. Feature Libraries

Devising a universal set of features would improve the interoperability between different
applications in an integrated environment. But seeking to devise such a set of features
would lead to an unmanageable number of features. For this reason, research has begun
to investigate generic mechanisms to give the user the option of building custom feature



14

libraries that might satisfy specific application needs. This approach has been advocated
in the following work.

Shah et al. reported on the ASU shell in [58], a testbed for rapid prototyping of feature
based applications. The library of generic features is organized in the form of a list of
properties. Each feature has a feature type identifier, a name, a list of generic, compatible
features, and a solid representation. A CSG tree provide the solid representation for form
features. Recent developments of the test-bed are reported in [59].

Laakko and Méantyl4, [60], describe an extension of the programming language Common
Lisp to represent features procedurally. The feature models are organized as a structure
of Lisp frames. Such frames model two different types of features: features classes which
are templates that store generic information, and feature instances that store specific
information belonging to individual features. Feature classes are organized by a taxonomy
and use the inheritance mechanism of Common Lisp. A feature model is a list of feature
instances.

De Kraker et al. in [61] and Dohmen et al. in [62] report on the specification of
a feature language developed at Delft University of Technology. Features are specified
using predefined types in the object-oriented, imperative programming language LOOKS.
Therefore, the feature library is a library of LOOKS procedures and defining a new feature
means to write new code for it.

Hoffmann and Joan-Arinyo in [57] proposed the Erep framework for expressing form
features and constraints. The representation of a part design is a generative feature
description. It is textual and neutral, in the sense that it is not committed to a particular
core solid modeling system. In [56], the Erep was extended with a procedural mechanism
for generating and deploying user-defined features through standard graphic operations
provided by the underlying modeling system.

6.2. Multiple Views

In an integrated, concurrent and distributed design environment, the data in the prod-
uct model is contributed by different applications. Eeach application has its own wview of
the data. For example, from a machining point of view, the feature structure shown in
Figure 3 is one of many possible interpretation for the design view in Figure 2. Therefore,
a persistent association between data contributed by each application must be establish
and maintained. Creating and maintaining such a persistent association is a key problem.

It is natural to argue that in concurrent engineering, a modification required by a specific
application should be made in the view of that application. Moreover, all modifications
introduced in one view should be propagated automatically to all other views. Some work
based on this assumption has approached the problem in a setting far too general. In
the absence of specifics, such work has not proposed credible mechanisms to address the
view consistency problem. The work by Bronsvoort et al. is a notable proposal in that
respect, [63, 64, 61, 62]. The work addresses formally the problem of different form feature
views editing a common net shape. Briefly, the net shape is modeled by a cell complex
where the cells are subdivided as necessary such that every feature of an application view
is composed of entire cells. That property permits to edit shape mechanically from any
feature view and achieves consistency across all views.

A different approach is developed by Hoffmann and Joan-Arinyo in [65, 66]. The ap-
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Figure 3. Machining view sequence: make a shallow pocket, then deepen the pockets to
the left and right of the bridge.

proach is based on the concept of the master model, an object-oriented repository that
provides essential mechanisms for maintaining the integrity and consistency of the de-
posited information structures. The clients of the master model are the modeling system
and domain-specific applications. An analysis of the needs of different views allows a
simpler solution of consistent edits that uses persistent information associations.

6.3. Semantic Features

The concept of semantic feature was developed in response to the need of capturing
engineering information that connect form with functional intent. Such features also
support integration with downstream applications. Semantic features provide tools for
using features consistently.

Procedural semantics for attaching features to a model in generative constrained-based
modeling systems have been defined by Chen and Hoffmann in [67]. The work considers
generated features that are based on a planar profile swept into a three dimensional shape.
This work was extended in [68] where a set of techniques needed for editing generative
feature-based models is discussed, including persistent naming techniques. Persistent
naming is needed to re-evaluate edited features.

Effectively maintaining the validity of a feature, attached to a model, entails developing
mechanisms to detect invalid situations, mechanisms to properly report improper feature
use, and mechanisms to provide the user with good choices to recover validity. In the work
reported in [69-71] and [62], the validity of a feature is specified as a set of geometric,
topological and functional constraints. Whenever a modeling operation is completed,
a validity check is performed. If a violation of some validity criterion is detected, the
operation branches into a reaction loop where a validity recovery process is triggered. A
valid state is achieved again, either by reestablishing the previous valid state or through
a dialog with the user.

6.4. Persistent Naming

As mentioned before, applications of solid modeling in manufacturing and other appli-
cation arenas seek to enrich the semantic content of a shape model. Geometric constraints
and parameters can be considered semantic information pertaining to shape, sometimes
in an implicit form. Other information, such as annotations or feature definitions relevant



16

to different views, is needed as well. When a parametric model is edited, it is crucial to
preserve and re-attach semantic information. The technology to do this has been called
persistent naming.

The problem of persistent naming arises as follows. Consider a particular shape instance
on which we annotate a selected face with some material property information. This is
done easily for the instance data structure, usually a boundary representation. However,
the parametric model itself need not have any faces, so it is not clear how to record
the information such that it persists under a change of parameters or constraints. More
than that, different model instances of the same parametric model may have zero, one,
or several faces that might correspond to the original annotated face. This problem has
been considered in [68, 72, 3] and [73], and several approaches have been proposed in the
literature.

Ultimately, a solution to the persistent naming problem is a semantic interpretation of
the instantiation of a parametric model. There remain basic questions on what constitutes
a good semantics that may never be resolved by the community. Therefore, the persistent
naming solutions proposed in the literature can be considered to be specific proposals for
such a semantics. Because of this larger context, work on persistent naming should be
considered evolutionary.

We postulate that a successful semantics for parametric shape design has to allow
construction algorithms that exhibit two key properties:

1. The parametric instantiation algorithm has to be continuous.

2. The parametric instantiation algorithm has to be persistent.

Continuity requires that a geometric configuration, derived by instantiating for a set of
parameter values (pi, ..., px) should change by a small amount when altering the values of
the parameters by a small amount. Persistence means that after changing the parameter
values and reinstantiating the configuration, a return to the original parameter values
should result in the original configuration being recovered. Clearly, those are minimal
requirements any user of would expect from parametric design.

Geometric software is often hard-pressed to make good on continuity which is easily
violated when the configuration passes a degenerate configuration. Such degenerate con-
figurations are not easily recognized because parameter changes are typically discrete.
Cinderella [74] is an example of geometry software whose design pays particular attention
to achieving continuity. Cinderella allows sequential constructions of geometric configura-
tions of points, lines and conic sections. The user can then drag elements and the system
updates the configuration in a continuous way. It accomplishes continuity by tracking
solutions through complex configurations. Since the paths for changing the configuration
avoid singularities by randomization, but do not remember the chosen paths, Cinderella
does not exhibit persistence.

Many constraint solvers exhibit persistence without continuity, including the solvers
we have designed. Here, persistence is accomplished by finding coordinate-independent
characterizations of constraint solutions so that a solution can be designated by a short
certificate that is derived from the initial or the current configuration.
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7. Open Problems

Parametric design has achieved great accomplishments. However, to take full advantage
of its potential, a number of open problems need to be solved. We outline some of the
key problems.

7.1. Constraint Solving

Two-dimensional constraint solving has been studied extensively, and although there is
no single best technique, successful approaches have been developed that are both efficient
and sufficiently general. Geometric constraint solving in three dimensions has been much
less explored, except for the purely numerical techniques, whose drawbacks have been
discussed in Section 4.

The problem in three dimensions grows in difficulty, not only because the number of
variables is larger, but also due to the fact that some of the results valid in two dimensions
do not extend to three dimensions. Some recent developments in placing points, lines and
spheres with fixed radius in three dimensional space with reasonable computational cost
and reliability are reported by Hoffmann and Vermeer, [75, 76] and by Durand [22].
Currently, active research seeks better techniques. A general problem decomposition
algorithm has been given in [47].

7.2. Features

A key obstacle is the lack of techniques to support multiple views effectively. Mapping
algorithms are needed that can connect different feature schemata with each other and
allow designers to edit in different views. This would greatly expand the flexibility of
parametric design, and permit designers to increase the semantic content of parametric
models.

7.3. Semantics of Parametric Design

Advantages of parametrics lie in the ability of the system to allow easy subsequent
edits of the design by changing input parameters that were initially specified when the
design was created. To date, all such changes are described in terms of the procedures
that actually perform the change. For simple objects, those procedures provide highly
productive tools.

When the ranges of parameter values widen or the complexity of the designed objects
increases, today’s algorithms no longer guarantee that the parametric models are valid
and unambiguous, and the results of modeling operations are not always predictable.

As an example, consider the solid shown in Figure 4 left. It was constructed as follows:
First, a rectangle was drawn and extruded into a block. On the front face of the block, a
circle was drawn as a profile of a slot across the top of the block. Then the left edge of
the slot was visually identified for rounding. The result is shown in Figure 4 left. This
design is now edited by altering the position of the circular slot profile. The correct result
is show in Figure 4 middle, but some systems may construct instead the shape in Figure 4
right, clearly an error.

The problem is how to describe in the generic design the edge to be rounded. An
abstract definition of shape change under constraint changes would be needed, as a step
towards a rigorous semantic definition of generic design and constraint-based editing.



Figure 4. A block with a slot and a round on an edge.

7.4. Assembly-Centric Design

Shape design has traditionally been conceptualized as part-centric design, and CAD
systems are very good at designing detailed shapes of individual parts. However, in
many applications the interactions of the parts create the primary view of a mechanism,
and engineering design often begins from this vantage point. In part-centric design, the
focus of the design activity is on the geometry creation, typically of the net shape, and
annotations of the shape with features relevant to various views.

To create an assembly-centric parametric design process, it is minimally required to
interrelate the parameters and constraints of the various parts of the mechanism to each
other. As with views, this raises the question of updating all parts of an assembly when
changing a parameter of a single component part. Here, design methodology might guide
how to conceptualize key parameters and their functional relevance. Assembly-centric
design would find immediate application in areas such as tolerancing and process planning,
and in the functional design of abstract mechanisms.

Assembly-centric design would span two levels. On the basic level, parts are interrelated
to each other in the assembly, and design parameters would be correlated between parts
or derived from assembly-level parameters in an algorithmic way.

A more advanced conceptualization of assembly design would give the designer the
capability to differentiate subassemblies and re-use them as parametric elements of the
overall design. For instance, we might consider the sensor assembly of an automobile cool-
ing system such a subassembly. Depending on dashboard configurations, this subassembly
could be connected to different electric leads, in one combination only lighting up a light
indicating operating range temperature and a warning light if the temperature is too high.
In another combination the leads from the subassembly could drive a temperature gauge
in the dashboard; e.g., [77, 78|.

Finally, specific assembly-level parameters could result in the instantiation of differently
configured subassemblies that would be responsive to different functional characteristics
and ranges.
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