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Abstract

We are experimenting with a prototype implementation of a simulation system for
rigid body motion where the objects to be simulated are specified by a geometric
description and a few symbolic' data., such as object density, the type of hinge between
certain bodies. and evnironmental factors. In our approach, the system automatically
generates the appropriate mathematical model describing the current system dynamics.
and revises the model so as to account for unanticipated changes in the system's topol­
ogy. For example, when simulating impact behavior. the system will not know in
advance what objects might collide at which points, thus invalidating the usual
approach of defining constraint forces between point pairs that are negligible except
when the points are in close proximity. We describe the overall organization of the
system, and give a general method to effect this self-modification. Focusing on charac­
teristic cases such as gaining or losing contact and low-velocity collision, we discuss
our experience with the system, its flexibilities, and its limitations.

* Research supponed in pan by NSF grants CCR-8619817 and ONR conlract NOOl4-86-K­
0465, and a grant from the AT&T Foundation.
t Computer Science Department, Cornell University, Ilhaca. NY 14853, USA. Supported in pan
by NSF Grant DMC 86-17355, and ONR Contract NOOO14-86-K-0281.



Model Generation and Modification for
Dynamic Systems from Geometric Data

Christoph M. Hoffmann"
John E. Hopcroftt

Abstract

We a.re experimenting with a prototype implementation of a sim­
ulation system for rigid body motion where the objects to be sim­
ulated are specified by a geometric description and a few symbolic
data, such as object density, the type of binge between certain bodies,
and environmental factors. In our approach, the system automatically
generates the appropriate mathematical model describing the current
system dynamics, and revises the model so as to account for unantici­
pated changes in the system's topology. "For example, when simulating
impact behavior, the system will not know in advance what objects
might collide at which points, thus invalidating the usual approach of
defining constraint forces between point pairs that are negligible ex­
cept when the points are in close proximity. We describe the overall
organization of the system, and give a general method to effect this
self-modification. Focusing on characteristic cases such as gaining or
losing contact and low-velocity collision, we discuss our experience with
the system., its flexibilities, and its limitations.

1 Introduction

Traditional approaches to simulation and analysis of mechanical systems
proceed as follows:

·Computer Science Department, Purdue University, West Lafayette, ill 47907, USA.
Supported in part by NSF Grant CCR 86-19817, ONR Contract NOOOl4-86.K.0465, a.nd
a grant from the ATI Founda.tion
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ported in par~ by NSF Gra.nt DMC 86-17355, and ONR Contract NOOOl4-86-K-0281
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1. Formulate a set of algebraic and differential equations that describes
the behavior of the system, for example, as an initial value problem in
time. This set of equations is the mathematical model of the mechan­
ical system.

2. Discretize the mathematical model (in space and/or time) and inte­
grate it using some numerical scheme appropriate to the characteristics
of the equation system.

3. If possible, estimate the error incurred during the previous step com­
paring the computed approximate solution with the exact solution of
the mathematical model.

4. Validate the results by experimentation. This step is only sometimes
included.

The geometric characteristics of the system are usually abstracted out. For
example, in discrete mechanical problems, extended bodies are replaced by
points with identical mass and inertia properties.

There are several:reasons why geometry is not an integral part of the
process. For one, the mathematical model is a precise object that can be an­
alyzed and studied using mathematics. Moreo_ver, truly accounting for com­
plex geometric shapes sharply increases the computational load and cannot
be done with satisfactory speed unless parallel hardware or very fast sln-­
gle processor machines are used. Until recently, the cost of such hardware
has fully justified the traditional desire to simplify or abolish altogether the
geometry of the mechanical system. Moreover, many mechanisms possess
a sufficiently simple structure, so that the kinema.tics of its parts can be
understood beforehand. Thus, all potential motion of these parts can be
known in principle, and often can be accounted for in the formulation of the
mathematical model. Many e.'l:cellent simulation and animation programs
for mechanical systems are based on this principle, e.g., [1,3]. Gilmore de­
velops a similar approach in [4], but limits himself to a two-dimensional
world.

It is a simple fact that many mechanical systems are not naturally de­
scribed in time by a single mathematical model. Rather, as time evolves,
so must the set of equations describing the system's behavior. For exam­
ple, consider a block resting on a table. As the block is pushed towards
the edge of the table. there is a kinematic hinge between the table and the
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block with one rotational and two translational degrees of freedom. As the
block begins to move over the edge of the table, the nature of this hinge
changes, and a new degree of freedom must be described corresponding the
possible rotation of the block about the edge of the table. Finally, as the
block falls, no kinematic relationship e:dsts between the table top and the
block. Thus, the evolution of this mechanical system is best described by
three different mathematical. models, used in sequence, each describing the
respective topological nature of the system, as it exists at that time.

A major device to accommodate predictable intermittent geometric con­
tact is to formulate a. fictitious contact force between the two points known
to come into contact. This force is postulated to depend on the distance
between the two points. At larger distances, the force is negligible, but it
rises sharply when the two points are in close proximity of each other. Thus,
the contact force is a substitute for the impulse that would be transmitted
if the two points collided. Evidently, this approach requires a priori knowl­
edge of the locus

A
of two points. 'Without accurate and complete knowledge

of possible contact, the model is incapable of approxima.ting real behavior.

From a computer science perspective, a periodic reformulation of the
mathematical. model is in principle straightforward. Technically, it requires
a modicum. of symbolic processing, capable of formulating and manipulat­
ing- equations efficiently. However, the correct formula.tion of the relevant
equations interfaces with the geometry of the system's current state, and it
becomes necessary to automate the equation formulation based on geometric
data.

In this paper, we review Project Newton, an ongoing development project
for simulating mechanical systems based on geometric models and their spa­
tial. interrelationship. The approach chosen is to derive automatically the
relevant mathematical. models from the geometric data, and to reformulate
these models throughout the simulation, whenever appropriate. The work
stresses flexibility and generality, rather than efficiency that might be pos­
sible by e.xploiting special circumstances prevailing a.t certain times, such as
tree-structured component connectivity.
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2 User Input and Translation

The Newton system accepts as input a description of the mechanical world
that is to be simulated. This description is structured in several ways:
Objects are either primitive, Le., rigid bodies of arbitrary shape, or they are
composite, consisting of variously hinged primitive objects. In each ease, the
object definition is understood to be generic, that is, a single description of
an object can be insta.ntiated several times, denoting different objects with
the sa.me mechanical characteristics. Final object instantiation happens in
the world definition where objects are also placed into initial position and
orientation, with initial velocities. Moreover, the world definition includes
environmental declarations such as the presence or absence of gra.vity.

The description of individual objects is structured in sections, each de­
scribing a physical category understood by the simulation system. Presently,
the following sections are understood:

1. Abstract properties: This section describes summary aspects of the
object including density and color.

2. Geometric properties: This section describes the shape of the body as
well as its features. (A feature is a point, line or plane used to place
objects in rel~.tiC?nship to each other.)

3. Control properties: This section interfaces to e.nernal control pro­
grams simulating, e.g.) actuating devices by supplying external forces
at certain times based on current values of the state variables.

4. Dynamic properties: This section describes the motion equations of
relevance to the object. The equations are system derived, and the
section specifies only whether they should be generated. For example,
if the object is assumed to be perfectly controlled, Le., all accelerations
are supplied over time by external control programs, then no motion
equations are produced.

5. Interference properties: This section specifies whether to test for col­
lision and impact. H so, the relevant models are generated automati­
cally.

For a composite object, we must describe its constituent parts and how
they are related to each other. The parts may be primitive objects or they
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may be composite objects in turn. Parts are named and ma.y be hinged
together with a variety of standard hinges. Possible hinges are springs,
dampers, ball and socket hinges, pin hinges, and temporary point/surface
contact hinges. When hinging two parts, they are placed in relation to each
other, the hinge points or lines are identified, and the hinge type is given.
Note that parts can be hinged in an arbitrary topology.

A key aspect of this structured description is that it allows us to include
additional physical categories eventually. Although the system does not
know about other categories at this time, we envision interfacing the simu­
lation of motion with elasticity, deformation and stress model. formulation
and evaluation.

The user's description of the world is compiled into two logical levels of
data structures. The highest level system routines, implementing the flow
of control in the simulation, understand the upper level organization of the
data.. They use this knowledge to extract lower level data structures and
pass those to system components that understand them and can use them
for specific computations. For e.xample, objects and hinges are represented
at the upper level. VVhen the high level simulation routines determine that
some computation involving the geometry of an object must be done, they
extract the relevant lower level data. structures from the object and pass
them on to the geometry processing subsystem.

The structure of the lower level. is hidden by access functions that jointly
comprise the interface to the major system components and their function­
alities. Interfaces exist to the dynamic modeler, to the geometric modeler,
to the display subsystem, etc. With this two-tiered structure we are in
the position to replace individual system components without having to
rewrite the soft'Ware extensively. For e.xample, we are presently replacing
the geometric modeling subsystem. To do so, we only rewrite the interface
functions. These functions must understand the conventions by which the
respective information is obtained from the new modeler, and include, for
example, queries such as volume, volumetric inertia, and whether and how
two objects interfere.
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3 Dynamics Model Creation, Editing, and Eval­
uation

One of the central. functionalities of the software is the creatioD, evaluation,
and modification of the mathematical. models describing the system dynam­
ics. These models are created from vectorial equation schemata that are
instantiated and edited as needed. The model construction goes through
the following stages:

1. An equation is created by instantiating a schema. This involves setting
up appropriate data structures and state variables.

2. The eqnation may be modified according to the presence or absence
of newly imposed constraints that require, e.g., constraint forces.

3. The equa.tion is compiled into a. set of routines tha.t effectively evaluate
the equation during the simulation.

An individual equation consists of named quantities and operations on
them. A named quantity is any variable or constant that can be evalu­
ated, such as mass, position, angular acceleration, hinge constraint force,
etc. Each quantity has instances that belong to individual objects or object
components. For instance, every primitive object has a mass, every hinge
of a. fixed type gives rise to a constraint force, and so on. AE. example, con­
sider the creation of the linear acceleration equation for an object linked at
a single hinge and being under the influence of gravity. The :final equation
will have the form

mr- X -mg = 0,

where m is the mass, f the linear acceleration, X the constraint force e.."(­
erted at the hinge, and g is the gravitational constant. Note that the other
object with which this one is hinged would contain a term +X in its linear
acceleration equation.

The equation schema is created in stages:

1. When the primitive object is instantiated as part of some composite
object, the equation mr = 0 is created. At this time, the quantities
m, T, T, T, q, W, and ware created for the object. Here, q are the Euler
parameters.
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2. 'When the object is linked by a hinge, the constraint force term -X
is added, i.e., X is created, and the equation is modified. Also added
is a constraint equation summarizing the kinematic constraints due to
the hinge.

3. 'When processing the world declaration, finally, the term -mg is added.

Other hinges on the object would similarly result in further equation modi­
fications. Note that 'hinge' is understood in the most general sense and
includes springs, dampers, and contacts with other objects.

Named quantities are grouped into classes where each quantity in the
class is evaluated or assigned by essentially the same procedure. For e.xam­
pIe, evaluation of m entails locating the object whose mass is referred to,
querying its density and volume, and multiplying the results of these queries.
For eac1L class, a unique dictionary entry is created and to it is linked a list
of all its members along with a reference to the owning object.

Dyn~'mic equa.tions are compiled for efficiency of evalu"ation. The com­
pi.la.tion strategy is predicated on the fact that the final sy~tem of dynamic
equations is integrated by repeatedly formulating a linear system Ax +b =- 0
and solving it. To this end, each term in the vector equation is compiled
separately. 'When examining a term, such as mof, the instanc~of each named
quantity in it must be found. From it, and.from the class dictionary, it is
determined whether the quantity instance will be known or unknown at th~
time of integration. In forward dynamics, of will be unknown and ultimately
will be determined from the e.\."ternal forces, whereas in backwards dynamics
f is a known quantity that ultimately determines UnknOWIl e.xt:ernal forces.
As long as the final. system remains determined and linear, some objects may
ha.ve known accelerations whereas others may have unknown accelerations.

A vectorial term consisting of known named quantities will evaluate to
a vector of known quantities. The scalar components of this term must be
added to the corresponding components of b in the final system A.:z: +b =
o. Similarly, assume that the term contains unknown quantities, e.g., the
components of r. Then the coefficients of these components must be added
in the matrix A in the proper position. Thus, the compilation of a vectorial
equation requires

1. assigning to the scalar components of the equation row indices in the
final system Ax + b = 0, and
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Figure 1: Point/Surface Collision

2. assigning column indices to the u.n.lrnown occurrences of named quan­
tities.

Thereafter, the terms are compiled into functions that appropriately modify
the system Ax + b = 0 at the respective positions. For efficiency, constant
terms such as mg are recognized in the compilation process, the necessary
evaluation is performed beforehand, and the value so determined stored in
an instance variable belonging to the object. See also [2].

4 Interaction of Geometry and Dynamics during
Collisions

The reformulation of a dynamic model during simulation depends on the
geometric con:figuration of the system of objects simula.ted, and requires in­
teraction between the geometric and dynamic models. k first example,
consider two colliding objects. We assume that all collisions take place
at velocities that are sufficiently small so that no large deforma.tions en­
sue. In that ease, for point/surface collisions, the impulse exchanged at
the point of collision depends on the geometric quantities shown in Figure
1. Summarizing this geometric data as the vectors PI JLI and v, we have
outlined in [51 how to formulate the collision equations.

The determination of the geometric quantities is a subtle problem. Since
the simulation constructs events at discrete points in time l the general sit-
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Figure 2: Nonconvex Bodies that Might Interfere

uation is that at time t the objects are apart, and at time t + -6.t they
interpenetrate. The motion of the two objects in between these two points
in time is approximately a screw, and even for two cuboids we have no closed
form solutions that :fix. the instant of first contac:t, on which the geometric
quantities depend. If -6.t is large, moreover, we may not notice a collision.

. That is, a block may be above a table top at time t, and below it at time
t + l:!..t, without an interference at either. point in time. While this specific
situation can be remedied fairly easily, using adaptive time stepping, the
general problem is not solved without substantial geometric computation.
Consider Figure 2, in which two nonconvex bodies and their tmjectories are
drawn schematically. Depending on the precise relationship of the angular
motion of the bodies, they mayor may not be colliding. The swept volume
in four-dimensional space-time must be computed for the two objects and
intersected for a correct treatment of possible interference.

In the current implementation we rely on time steps that are sufficiently
small so that no uneA"Pected interference in between steps is likely. When
a collision occurs, the moment of :first contact is determined by repeatedly
halving the time interval until the colliding features have been identified, to
an acceptable resolution. This resolution is specified by the user.

5 Contact Hinge Evolution

Two objects that are in contact at a point are connected by a. special hinge
which sustains compression but not tension. VVbile the contact persists, and
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Figure 3: Contact Hinge

with the geometric quantities shown in Figure 3, the equation constraining
the relative motion is as follows.

This contact equation is differentially valid. For surface/surface contact, as
in the case of rolling, p, J.L and v change over time and must be updated.

The hinge gives rise to a constraint force X acting at the point of contact.
By convention, X acts positively on object 1 and negatively on object 2.
Since the hinge cannot sustain tension,' X must satisfy the inequality

X·v 2: o.

In particular, in the absence of friction, X is collinear with v. Rather than
incorporating this inequality into the mathematical model, we satisfy it pro­
cedurally as follows: The hinge equations are formulated and added to the
dynamic models as if the hinge could sustain tension as well as compression.
'When the constraint force no longer satisfies the inequality, the hinge is re­
moved. Similarly, the hinge is added subsequent to an inelastic impact of
the two objects.

We now consider the case of a block B moving on a table top T. The
argument developed makes use only of the convexity of B and of T. The
block and the table top are in contact in a common plane P. The surface of
B intersects P in a set of points, lines and faces JB. Likewise, the table top
intersects P in the set JT' The two sets intersect each other in the set J BnT.
We must analyze this set JBnT so as to determine the kinematic nature of
the hinge. Note that JBnT is a convex polygon.
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Figure 4: Supporting Triangle, three Degrees. of Freedom

Assuming no friction, if there are thxee noncollinear points Pi in JBnT
such that the contact equation above is satisfied at each point and the corre­
sponding constraint forces are compressive or zero, then the hinge has only
three degrees of freedom. Since JBnT is convex, the requixed points may be
chosen to be vertices of it. We call the triangle spanned by the three points
a sUpport triangle.

We identify the vertices Pi of a support triangle initially as follows: Pick.
three vertices of JBnT. If the constraint forces are all cbmpressive or zero, we
are done. Otherwise, we pick a new vertex of JBnT dropping a verte."C that
has a. tensile constraint force. IT we cannot find three noncollinear points
at which the constraint forces are compressive, we may have a degenerate
support triangle, as discussed next.

During the simulation, the constraint forces change at the vertices of the
chosen support triangle. If one of them becomes negative, say at Pa, then
we must find a new vertex Q such that Pl , P2 and Q span a new support
triangle. Such a triangle cannot be found when the segment (Pl ,P2 ) is an
edge of JBnT, because JBnT is convex. Then the kinematic hinge between
the two objects gains one additional degree of freedom, corresponding to
a rotation about the line through PI and P2. It is also possible that the
constraint force at two support triangle vertices becomes tensile, say at P2
and Pa. Again, a new support triangle may not exist, and then the hinge
has gained two new degrees of freedom, by possible pivoting about Pl' The
situations are graphically summarized in Figures 4 through 6.
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Figure 5: Supporting Triangle Contracts to a. Line, four Degrees of Freedom

'P,

Figure 6: Supporting Triangle contracts to a. Point, five Degrees of Freedom

6 Experiments

We ha.ve thoroughly e.'\.-perimented with collisioIlS between multiple bodies
linked in various ways. Some examples are shown in the figures below, and
include simulation of breaking pool balls, collision with a. linearly hinged
chain with links of eqna.l masses, and collision with a. sheet of masses hinged
by springs. The major limita.tion in these experiments stems from the pos­
sibility of underdetermined systems of equations. Thus, when hinging the
masses in the sheet with ball a.nd socket joints, a. singular system has to
be integrated. This cannot be done presently, and we are e..'qlloring ways
to circumvent this difficulty. Similarly, simulta.neous collisions of a. body at
more than four points of impact leads also to underdetermined equations.
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Plate 1: Pool Break

A ball colliding with ten other balls.
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Plate 2: Chain Collision

A ball colliding with a chain of balls
linked with ball and socket hinges.
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Plate 3: Sheet Collision

A ball colliding with a. sheet of balls
linked by springs.
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