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ABSTRACT

Blending surfaces smoothly join two or more primary surfoces thar otherwise wonld interseer in
edges. We outline the potential method for deriving blending surfaces, und explain why the method
needs fo be considered in projective paranteier space, coneentraiing on the case of blending quadrics.
Let W be the quadratic polynomial substitiied for the homogenizing variable of parameter space. We
show that e blending surfuce derived in projective parameter space is the projective imuge of a
different blending suwrface devived in affine parameter space, provided that W= U? for some lincar
U. Afl blending surfaces may therefore by clussified on basis of the projective classification of W.

1. Introduction

In computer aided design, gcometric models of objects in manufacture are
created and manipulated. Virtually all manufactured solid objccls contain
surfaces meant to round sharp edges or smoothly connect surface arcas that
otherwise would intersect in creases. These connecting surfaces are known as
blending surfaces in the literature on solid modeling.

Traditional solid modeling systems have not been successful at incorporating
blending surfaces, and only recently successful attcmpts have been made at
identifying surface classcs that can be used conveniently as blending surfaces
[3-8]. In general, blending surfaces joining curved algebraic surfaces must have
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algebraic degree higher than 2, and extensive classifications of uscful blending
surface families are not widely available.

In a sequence of papers [3-5], we have identified a class of blending surlaces
derived by substitution into base polynomials, and have analyzed some of their
geometric properties. Our principal derivation procedure is called the potential
method and is capable of deriving in a standardized manncr blending surfaces
for any two intersecting algebraic surfaces. We have explored primarily the
properties of blending surfaces when derived from a quadratic basc polyno-
mial, due to the practical importance of this case. Higher-degree base polyno-
mials could be used cqually well and would permit higher-order continuity
between the blending surface and the primary surfaces connected by it.

When we introduced the potential method in [3], we used a quadratic base
polynomial in which three free parameters had to be chosen in order to derive
a specific surface. These parameters have a very intuitive interprctation: two
control the relative distance of the curves at which the blending surfacc joins
the primary surface, i.e., they control the width and centering of the blending
surface about the intersection curve of the primary surfaces. The third parame-
ter controls the shape of the blend. In [4] we have investigated the generality of
this procedure, for blending quadrics. We found that in order to derive as
general a surface class as possible, the quadratic base polynomial must be
homogeneous. That is, the underlying parameter space must be projective.
However, this introduces additional parameters to be instantiated. The con-
scquences of the additional choices for the resulting surface shapes are not fully
undersioed.

In this paper wc summarize and cxlend our previous work on the properties
of blending surfaces derived from homogeneous quadratic base polynomials.
Our ultimate goal is to gain a comprehensive and intuitive interpretation of the
parameters that must be instantiated in the base polynomial in order to derive
specific blending surfaces. To this end, we characterize generic subclasses of
our blending surfaces that arc invariant under projective transformation.

The paper is structured as follows: After reviewing the necessary background
and notation, we summarize in Section 3 the results of [4], leading to a succinct
formulation of all quartic surfaces that scrve as blending surfaces for two
quadrics in general position. Then we review the potential method by consider-
ing first the affine formulation, marked by its intuitiveness, and subsequently
the projective formulation. We then show the equivalence of the projective
formulation for blending quadrics and the surfaces derivable by the methods of
Section 3. In Scction 6 wc investigate how projective transformations map
blending surfaces. In Scction 7 we [linally summarize the other methods
proposed, and discuss the prospects for deriving blending surfaces automati-
cally.

We do not explore techniques and configurations for blending corners that
rcquire joining more than two blends. From a theoretical perspeclive, this
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topic is exceedingly simple, for one could solve il by recursively blending the
arising surfaces. There is, however, a practical matter: Proceeding systemati-
cally in this way, onc quickly arrives at surfaces of very high algebraic degree,
thereby seriously complicating the representation and manipulation of such
surfaces. In [5] we have considered this problem and proposed practical
solutions. See also [11].

2. Nolation and Background

Given two surfaces S, and S,, a blending surfacc is any surface S, that is
tangent to §, in a space curve C, and langent to S, in a space curve C,. All
surfaces are considered in three-dimensional x-y-z space. For parts of our
analysis, we must consider the surfaces in three-dimensional complex projec-
tive space. It is our experience, however, that the intuitive content of the
results we derive is not distorted by this needed generality. For example, we
have never needed surface cquations with complex coefficients.

We will consider blending algebraic surfaces of arbitrary degree. Such
surfaces always have an implicit equation of the form F=0, where F is a
polynomial in x, y, and z. Note that some, but not all such surfaces may
possess a4 parametric representation. For example, all quadratic surfaces have a
rational paramcterization, but only some quartic surfaces can be so parame-
terized.

We must distinpuish between the surface S(F) with implicit equation F =0,
and the polynomial F. The surface S(F) consists of all points (x, y, z) that are
zeros of the polynomial F. The distinctlion is necessary so as to avoid confusing
geontetric and algebraic arguments.

We will consider algebraic curves and surfaces in other spaccs as well. We
call these spaces parameter spaces and consider mapping them to the x-y-z
space by substitution of polynomials in x, y, and z for the principal parameter
space coordinates. We use r, s, and { as coordinates of affine parameter space,
and r, &, f and & as coordinates of projective parameter space. These coordi-
natcs need to take on only real valucs. Polynomials in parameter spaces arc
denoted in lower case letters, ¢.g., f, g, /t, . .., and polynomials in x-y-z space
by upper case letters, e.g., F, G, H,. .. .

2.1. Algebraic geomelry

In Section 3, methods from algebraic geometry are needed. This requires that
we consider F a polynomial over the ground feld C of complex numbers.
Unfortunately, the ficld R of reals is not algebraically closed, so most of the
results of algebraic gecometry no longer hold when only the real roots of F are
considered.

The sct of all polynomials in x, y, z, and with real or complex coefficients is
denoted C[x, y, z]. The completc intcrsection of two surfaces S(G) and S(H)
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is denoted by S(G, H), and is in gencral a space curve. Its algebraic description
is provided by an ideal. Briefly, a set I of polynomials is an ideal if, for all
polynomials G and £ of I, and an arbitrary polynomial A in Clx, y, z], the
polynomials AG and G + H are again in I. It is not hard to sc¢ that the curve
S(G, H) is described by the ideal / = (G, H) generated by (7 and H, that is, by
the set of all polynomials of the form AG + BH, where A and B arc
polynomials in Clx, y, z].

Given an ideal I, the set of points at which all polynomials in ! vanish
simultancously is called the algebraic set of I and is denoted S(f). As we have
mentioned, the algebraic set S(G, H) of the ideal (G, H) is in general a space
curve, whercas the algebraic sct S(G) of the ideal () generated by G is a
surface.

An ideal f may have the property that for all product polynomials AB in [ at
least one of the factors is also in /. In that case [ is called a prime ideal. An
algebraic set S(I) is frreducible if it is not the union of two proper algebraic
subscts. One knows that an algebraic set S(I) is irrcducible if and only if the
ideal 7 is prime (see, e.g., [2]).

For cxample, a quadric surface is irreducible If it does not consist of two
planes. The spacc curve S(G, H) is irreducible if the curve docs not have
separate branches that individually arc algcbraic sets. Note that the two real
branches of the hyperbola are not two scparale algebraic sets, so that the
hyperbola is irreducible. However, the interscction curve of two parallel
circular cylinders has two lines each of which may be described separately as
the intersection of a pair of planes, so that this intersection curve is reducible.

If S(G, H) is a space curve and the surface S(F) contains this curve, then
there is a conncction between the ideal (G, A) and the polynomial F, given by:

Hilbert Nullstellensatz. [f S(£) contains S(G, H), then there is an integer k such
that F* = AG + BH. Moreover, if S(G, H) is irreducible, then k=1.

2.2. Projective space

The reader will be familiar with affine three-dimensional spacc as the set of all
points (x, y, z) where x, y and z have values from a ground field, c.g., are real
or complex numbers. Projective three-dimensional space consists of all lincs
(rx, ry, rz, rw) where x, y, z and w again have values from a ground field and
r#0. The case x=y=z=w=10 is cxcluded. By identifying the affine point
(x, y, z) with the projcctive line (rx, ry, rz, r), r #0, three-dimensional affine
space is embedded into three-dimensional projective space. Then the only
additional “points” in projective space are lines of the form (rx, ry, rz, 0) and
are called points at infinity. The points at infinity form a plane called the pfane

at infinity.
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If Fis a polynomial, S(F) its algebraic sct in affine space, then the
corresponding sct in projective space is the algebraic set of the associated
lromogeneous form F, of F. This form is obrained by subbtltutmg x/w for
x, y/w for y, and z!w for z, followcd by mulnplymg with w" to climinatc the
denominator. For exam le, if F=x +y + z* = 2x —9, then its homogeneous
form is F, = x* +y +z° —2xw — 9w’

In complex projective space a number of algebraic and geometric statements
are true without exception., An example is the following standard result.

Theorem 2.1. If F is a homogeneovus polynomial of degree n, then any line L
intersects S(F) in n points or is contained in S(F).

In rcal affine space, n is only an upper bound on the number of intersection
points. The geometric degree of a surface S(F) is the number of interscction
points the surface has with a line L in general position. The theorem states that
the geomerric degree of S(F) is cqual to the algebraic degree of F. The
geometric degree of a space curve is the number of intersections with a plane in
general posilion. An important result is the following thcorem:

Bezout’s Theorem. A surface S(G) of degree m and a surface S(H) of degree n
intersect in a space curve aof degree m - n or have a common component.

A projective transformation is a nonsingular lincar transformation of projec-
tive space. Some projective transformations arc familiar from computer
graphics where they have been used to change stereographic projection to
orthopraphic projection. Moreover, all nondegenerate conics may be projec-
tively transformed into a circle of unit radius. See also Section 3 below.

When the matrix of the projective transformation is real-valued, then we
speak of a real projeciive transformation, otherwise of a complex projective
transformation. According to [1], the projective classification of all irreducible
quadric surfaccs undcer real projective transformation is as follows:

(1) the imaginary sphere x + y + z + w?

(2) the real sphere x>+ y* + z* — w: this class includes the ellipsoid, the
two-sheeted hyperboloid, and the EHIPIIC Edl’dbOlOld

(3) the one-sheeted hyperboloid x™ + y™ — z” — w™: this class includes also
the hypcrbohc paraboloid,;

(4) the imaginary cylinder x + y +w'

(5) the real cylinder x* + y* — w’: this class includes all conic cylinders and
cones.

Under complex projective transformation the classes (1), (2) and (3) are no
longcer distinct, as well as the classes (4} and (5).
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3. A Completeness Theorem for Blending Quadrics

Approaching the blending problem abstractly, we consider how to determing
all degree-4 surfaccs S(F) that arc tangent to two quadrics S(G) and S(H) at
prescribed space curves. This problem was explored in detail in [4], and some
preliminary considerations are needed before we can give it an exact formula-
tion. Of course, we will assume that the quadrics S(G) and S(H) are not
depencrate. That is, neither splits into a pair of planes.

Recalling Bezout’s Theorem, a quartic surface intersccts a quadric in a space
curve of degree 8. If we require tangency, however, the curve in which the two
surfaces arc tangent must be counted double as it is the limit of two separate
components, infinitesimally aparl. In consequence, a quartic surface S(F) is
tangent to a quadric S((G) in a curve S(F, G) of degree 4. According to [9], the
space curve S(F, &) now must be of onc of the following types:

(1) The curve S(F, G) is irreducible but not planar, and so is the intersec-
tion of two quadrics.

(2) The curve S(F, G) is irreducible and planar, and so is the intersection of
a quartic surface and a plane.

(3) The curve S(F, G) is reducible, and so is one of the following: Four
lines, two lines and a conic, two conics, or onc line and an irreducible degree-3
space curve.

We study the case when S(F, G) is of type (1}. S(F, G) cannot be of type
(2), since it then could not lie or S(G) as planar curve of degree 4. When
S(F, G) is of typc (3), we will need to catalogue a number of special cases,
depending on the curve components. This curve type does arisc, but neither its
practical significance nor its mathemaltics has been sufficiently cxplored. With
this in mind, we formulate the classification problem for blending quadrics with
quartic surfaces as follows:

Given (wo irreducible quadric surfaces ${(G) and S(H), and given
on each an irreducible degree-4 spacc curve, S(G, H') and
S(H, G"), as the complete intersection with auxiliary quadric sur-
faces S(H') and §(G"). Characterize the set of all quartic surfaces
S(F) where S(F) is tangent to S(G) in the curve S(G, H') and S(F)
is tangent to S(H) in the curve S{H, G').

Note that the irreducibility of a space curve S(CG, H) in projective space
implies that the degree-2 terms of G and of H arc coprime polynomials. For if
these polynomials arc not coprime, then S(G, H) has a planar component at
infinity, hence is not irrcducible [10].

We solve the above problem under the additional assumption that the two
quadrics S(G) and S(H) have an irrcducible intersection curve S(G, H). That
is, the curve S(G, H) is of type (1) above. Moreover, we assumc that the




PROIECTIVE BLENDING SURFACES 363

intersection curve ${(G, H) s different from S(G, H') and from S(H, G").
Clearly this is the case for all blending surfaces considered in practice.

Complcteness Theorem. Let S(G) and S(H) be irreducible quadrics. Let S(G')
and S(H') be two quadrics such that S(G, H') and S(H, G') are irreducible,
and assume that S(G, H) Is irreducible and coincides neither with S(G, H') nor
with S(H, G'). Then every degree-4 surface S(F) tangent to S(G) in the curve
S(G, H') and tangent 1o S(H) in the curve S(H, G') has the equarion.

K'— pGH=0,

where p is a constant and S(K) is a gquadric containing both S(G, H') and
S(H, G’).

The proof of this thcorem in [4] proceeds as follows: Since S(G, H'} and
S(H, G') arc irreducible and S(F) contains these curves, the polynomial F can
be wrillen as F= AG+ B'H' and as = BH + A'G’, [or somc polynomials
A, A', B, and B’. These equations follow from Hilbert's Nullstellensatz. By
considering the partial derivatives of F, the rcquirement of tangency to S(G)
and S(H) in the curves implics further that 8'= CH' and A’ = DG’, where C
and D are some other pelynomials. That is, we may write

F=AG+ CH'*=BH+ DG" .

It would be a mistake to make a priori assumptions about the respective
degrees of the polynomials A4, B, C and D. However, irreducibility of $(G, H')
and S(H, G') in projective space has the consequence that A and B must be
polynomials of degree 2, and that € and D must be constants. The proof is
combinatorial in naturc, and makes use of the fact that the degree-2 terms of G
and H', as well as the degree-2 terms of H and G are coprime.

Having so deduccd the form of the polynomial I, the difference polynomial
(AG + CH’?) — (BH + DG'?) is considered modulo the ideal (G, H). Since
this polynomial is zero,

CH" - DG =0mod(G, H).

Moreover, since C and D are constants, the pelynomial CH'* — DG'? factors
over the field of complex numbers. At this point the irreducibility of S(G, H)
enlers into the proof, for it allows us to conclude, by primality of the ideal
(G, H), that one of the factors is in (G, H), i.c., that it can be written
a(G + bH, where a and b are constants. Now il is simple to bring F into the
required form F=K*— pGH.

The existence of the quadric K is of considerable interest., For if the two
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curves of tangency S(G, H') and S(H, G’) do not lic on a common quadric
surface S(K), then no quartic biending surface S(F) will be found in general.
This docs not preclude the cxistence of special cases when one or several of the
assumptions of the theorem do not hold. We will demonstrate such an
exceptional case:

Example 3.1. In [3, color plate 6], a blending surface is shown that smoothly
joins two elliptic cylinders. The two cylinders are given by G =x"+4y* -4
and H=9x"+ y° — 9. They interscct in four parallel lines, hence S(G, H) is
not irreducible and the Completencss Theorem does not apply. The blending
surface has the equation

F="+4y" —4)(z -3V + (9x* + y* — 9)(z +3)* =0.

We show that F cannot be of the form K*>— uGH, for any quadratic
polynomial K.

We scek a quadratic polynomial K such that S(X) contains the curves of
tangency S(G, z +3) and S(H, z — 3), two cllipses in parallel planes. Clearly,
K =(z —3)(z +3) defines the only reducible quadric containing these curves.
But «X*+ BGH contains no x’z° term, so that K = (z —3)(z + 3) docs not
qualify.

Next, let us assume that an irreducible quadric contains the curves S(G, z + 3)
and S(H, z —3). Since S(X) contains $(G, z + 3), we have K(x, y, -3) = aG,
for some o # (. Without loss of generality we assume o = [ and conclude that
K=x"+4y*+ zK,, where K, is linear. Next, the containment of S(H,z - 3)
implies K(x, y,3)= BH for 8 +0. Comparing the x* and y* terms on both
sides, we have x* = 98x% and 4y* = By". Hence there is no irreducible quadric
containing both S(G, z + 3) and S(H, z — 3). It follows that F cannot have the
form GH — uK>

In principle, the Completcness Theorem provides a constructive procedurc
for deriving blending surfaces, as follows:

(1) Given the quadrics $(G) and S(H), pick a quadric S(K) intersecting the
other two surfaces in the desired curves of tangency.

(2) Pick a parameter x and set F= K> — pGH. Then S(F) is a blending
surface.

After so determining F, only the area between the curves of tangency is of
interest as blending surface. Consequently, S(F) must be suitably clipped. We
will see later how this is done with the help of S(K).

How should K and u be selected? Picking S(K) obviously specifies the
curves at which we tangentially connect the blending surface to the primary
surfaces. The numerical parameter p then controls the curvature of the
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resulting blending surfuce. However, considerable expericnce is necessary
before a designer can skillfully manipulate blending surfaces so derived.
Therefore, we explore alternative formulations.

4. Affine Parameter Space Derivations

The blending surfaces characterized above can be derived by substitution from
a parametric base curve, as we now explain. The resulling derivation procedure
is called the potential method [3]. According to whether the basc curve is
viewed in affine or projective space, we speak of the affine or the projective
potential method, respectively. We now explain the affine potential method.

The potential method derivation has the advantage that a greater intuitive
understanding of the resulting shapes is obtained. Moreover, it becomes clear
that this formulation can be¢ used to blend arbitrary algebraic surfaces, and that
higher-order continuitly 1o the primary surfaces could be achieved should the
application require it.

A simple introduction to the parameter spacc formulation is provided by a
two-dimensional cxample. Consider the circle specified by the polynomial

fls, )=(-1 7+ —1Y -1

in the s plane. This circle may be considered a blending curve for the
intersccting coordinate axes t =0 and s =0, as shown in Fig. 1. In analogy to
the three-dimensional case, denote Lhe circle by S(f), the s-axis by S(f), and
the t-axis by S(s). Substitute the polynomial G(x, y) for s, and the polynomial

1= i~

Fig. 1. A circle on rectilincar coordinates; tangency to the lines s =0 and =0,
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H(x, y) for . Then f becomes the polynomial F=(G —1)°+ (H—1)*-1.
What is the shape of $(F) in x-y space? The answer is illustrated in Fig. 2
where the circles S(x*+y°—1) and S((x —1)" + y° —1) have been uscd.
Intuitively, we have redrawn S{f)} in a curvilinear coordinate system.
Moreover, we note that S(¥) remains tangent lo S(G) and S(). Since G and
H have degree 2, F has degree 4.

Consider the point (4, v) on S(f). This point is the intcrsection of the lines
S{x — &) and S(r — v). Corresponding to (u, v) in s-f space are all points of the
interscction of S{G — u) with S(H — v), in x-y space. We therefore can think of
the substitution for s and ¢ as a deformation of the coordinate system. Nole,
however, that different points in the curved x-y space may have the same
coordinates (G — &, A — v), as is the casc in Fig. 2.

‘We embed s-f space into three-dimensional r-s-f spacc. Now S{s) and S(r) are
planes, and S(f) is a circular cylinder that is tangent to these plancs in the lines
S{s,1—1) and S(s — 1, 1), respectively. If G and H specify surfaces in x-y-z
space and F is obtained from f through substitution as before, then S(F) will be
a surface tangent to S{(G) and S(H). In particular, S(F) is tangent to S{G) in
x-y-z space in the curve S(G, H — 1}.

Intuitively, the reasen tangency is preserved can be understood as follows: A
iransformation through substitution maps intersection points to intersection
points. Now tangency is a double intersection, hence tangency s preserved. A
formal prool is casily found. Briefly, the partial derivatives of F on the curves

Fig. 2. Cirele deflormalion in curved coordinates; tangency to the lines G =0 and H=10.
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S(G, H—1)and S(H — 1, G) must agrce with the corresponding derivatives of
G and H. It is then easy to scc that the tangent planes must coincide along the
curves: see also [3].

We extend the underlying parameter function f to include all conic cylinders
tangent to S(s) and S({). Assuming tangency at S(s—a, t} and S(s, f— b),
where # and b are given constants, all such conic cylinders are given by

[=b*s—a) +a*(t— b)" — a’b* —2Aabst .

Here A is a number that should be preater than —1. In the range —1 <A <1 we
obtain an elliptic cylinder, for A =1 a parabolic cylinder, and for A>1 a
hyperbolic cylinder. See also Fig. 3. For A = —1 the cylinder degenerates into
the double planc S((bs + at-ab)”). For A< —1 we obtain hyperbaolic cylinders
that arc positioned as shown in Fig. 4. Due to their position, the hyperbolic
cylinders for A << —1 are not useful for deriving blending surfaces.

Substituting quadric surfaces S(G) and S(H) into this family of cylinders
yields quartic blending surfaccs. The relationship to the normal form F=
K? - pGH derived previously for blending quadrics is seen directly from the
equation for f when il is rcwritten as

f=(bs + at — ab)* = 2(1 + A)abst .

tn

Fig. 3. Conics for selected A values.
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Vm

Fig. 4. Conic for A = -2,

Hence S$(K) is the image of the plane S(bs + ar — ab), and p =2(1 + Adab.
Referring again to Fig. 3, it is easy to scc that the plane S(bs + ar — ab) can be
uscd to identify the part of S(F) that is used for blending: Clip those points of
S(f) for which bs + ar — ab >, or, equivalently, clip S(F) when K(x, y, z) >
0. This will sufficc for all elliptic and parabolic basc cylinders, but for the
hyperbolic cylinders the other branch of the hyperbola must be clipped when
5<0 or when r<0), or, equivalently, S(F) is clipped when G <0 or when
H<0.

We see now that blending surfaces may be derived by substituting the
primary surfaccs to be blended in the parametric polynomial £, Intuitively, this
is a deformation of the coordinate system in which the coordinate planes S(s)
and S(r) are mapped to the primary surfaces S(G) and S(#). The conic
cylinder S( f) blending the planes is mapped to the surface S(F) blending S(G)
and S(H). Finally, the plane S(bs + at — ab) is mapped to the surface S(K),
familiar from the normal form equation for quartic blends. This surface S(K)
plays an important rolc both in defining the curves of tangency, as well as in
providing the criterion for clipping S(F).

The blending method described works equally well for blending surfaces of
degree higher than 2. No intrinsic property of quadrics is needed to prove
tangency of the resulting surfaces S(F), given the primary surfaces S(G) and
S(H) [3]. Moreover, one may use other parametric polynomials f. In [5] we
have advocated quadratic polynomials for the simple reason that the resulting
blending surfaces S(F) have a small degrce. If degrec is of no concern, or if
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higher-order continuity to the primary surfaces is needed, higher-degree
polynomials f may be used. For cxample, [7] has used the superellipses as a
paramctric base polynomial.

It is not necessary to think of a three-dimensional parameler space. In [3], a
two-dimensional 5-r space is used instead, and an intuilive interpretation of the
substitution process given. However, for other purposes such as corner blend-
ing the three-dimensional view seems morc natural.

Clearly, the substirution paradigm yiclds a very intuitive derivation method,
and for quadratic base polynomials f the quantities a, b, and A arc casily
understood. Briefly, the choice of a and b controls the distance the respective
curves of tangency on S(H) and S{G) have, from the interseclion curve
S(G, H). Enlarge a for cxample, and the curve at which S(F} is tangent to
S(H) is further apart from S(G, H). Of course, for a closed quadric surface
S{H) a maximum distance cannol be cxcecded. Moreover, the choice of A
controls the **sag” of the blending surface, i.e., how closely it follows S(G) U
S(H). |5] contains a number of pictures illustrating the choice of A.

The substitution paradigm with a quadratic base polynomial f provides a very
intuitive procedurc for deriving blending surfaces given G and H. At least in
the case of quadrics il is easy to visualize the behavior induced by choosing @, b
and A, Little addirional work seems to be necded to automate the method and
incorporate il into a solid modeler. Difficulties to be faced for blending
higher-degree primary surfaces S{G) all have to do with understanding the
shape of the surfaces S{G — ) when 0 <5< a. For quadrics it is casy to scc
how these surfaces behave, with the cone perhaps exhibiting the most complex
behavior. For higher-degrec surfaces this relationship may be much more
complex, and without a comprehensive surface classilication an automated
blending surface derivation appears to be difficult.

5. Projective Parameter Space Derivalion

The affine potential method described in the previous section is not general
cnough to derive all quartic blends of the form K* — pGH. The limitation is
dug to the fact that we formulated the derivation based on affine polynomials f.
Only by using a projective basc polynomial f and substituting for the
homogeneizing variable i as well do we obrain the full generality possible. We
now describe the projective potential method.

Consider a projective parameter spacc with homogeneous coordinates r, s, f,
and «. The quadratic base polynomial is then

fi=b(s —au) + a’(t — bu)* — a’b’u’ — 2Aabst .

As before, we substitute & for 5 and H for . However, we now choose a
polynomial W to be substituted for «. It is rcasonable to limit the degree of W
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by thc maximum degree of G and H. Thus, when biending quadrics, we
substitute a polynomial of degree no higher than 2 thereby obtaining quartic
blending surfaccs.

This projective method of deriving blending surfaces subsumes the affine
mcthod, since by substituting the polynomial W= 1 for u the affine method is
recovered. This is to be cxpected, for it corresponds Lo the usual way of
embedding affine space into projective space.

Beforc cxploring the gencrality of the projective derivation procedure, we
seek to simplify the base polynomial. It is well known that in projective space
all nondegencrate conics are related by projective transformation. In particu-
lar, the base polynomial f; above can be transformed into the polynomial

L= — Y+ —uw') —u"?

by the protective transformation

5! t
5=—
be’ ac

r=r',

_(-cgs (I-or «
= abe T abc + ab’
where ¢=V1+ A, For A=—1 the conic degencrates, and the projective
transformation becomes singular. We again assume that A > —1, heace V1 + A
is rcal.

We claim that the choice of W already includes the role of a, b, and A. That
is, let F| be the result of substituting G, H and W for s, ¢ and « in f, above.
Then we can find a polynomial W' such that substituting G, / and W' for s', 1’
and #' in f, we obtain F; such that S(F,) = S(F,). To see this, we rewritc (he
polynomials as

f, ={(bs + ar — abu)* —2(1 + Ayabst ,
fi=(s+1—1)?—2st.
Let
W' = (abW—bG — aHYNab(1+ )+ G+ H .
Substituting G, A/ and W' for s’, t" and «’ in f, wc obtain
Fo=(bG + aH — abW ) (ab(1 + X)) - 2GH .

Since substitution of G, H and W for s, r and « in f yiclds
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F,=(bG + aH — abW)’ — 2ab(1 + N)GH ,

we have S(F,)= S(F,), unless A = —1. Hence for nondegenerate conics the
projective base polynomial f, suffices.

Now consider a quartic blending surface S(F) where F= K* — p GH, S(G)
and S(H) are quadrics, and K is of degree 2 or less. Then with W=
G+ H-Kh~/p we have S(F)=S(F'), where F’ is obtained from f; by
substituting G, H, and W. Hence every quartic surface obtained through the
methods of Scction 3 is also derivable from f, using the projective derivation
method,

Although based on substitution as in the case of the affine derivation
method, the role of W is difficult to visualize. More work is needed to interpret
how the form of W influences the shape of the resulting blending surfaces, and
automating the projective proccdure appears difficult. A specific difficulty
ariscs [rom the form of polynomials as follows: Given a # 0, the surfaces S(G)
and ${aG) arc clearly equal. Yet using a in place of G when substituring
alters the resulting blending surface.

6. Projective Transformation of Blending Surfaces

We investigate the behavior of the blending surface S{F) undecr projective
transformation of the projective x-y-z-w space. ln particular, we settle the
question when a projectively derived blending surface can be obtained by first
deriving an affine blending surface followed by a projective transformation of
x-y-z-w space. As in Section 3, we concentrate on quartic blends of quadrics.

Since we embed the blending surfaces into complex projective space, we
assumc throughout that all polynomials F, G, H, ctc., arc homogeneous in
X, y,z, and sw. Because of the results of the previous scction, we make the
following definition:

Definition 6.1. A blending surface S(¥) with F= K* —2GH is projective if it is
obtained from f, = (5 +  — 1)* — 2sr by substituting G for s, H for £, and W for
1. Moreover, if W= aw’, @ #0, then S(F) is an affine blending surface.

First, let us exclude substituting the zero polynomial for i, for it leads to a
degencrate blending surfuce: If W= 0 is substituted into f, then F= G+ H’,
hence F= (G +iH)(G —iH), where | = V—L. Since F factors, it is in general a
surface that intersccts G and H transversally, i.c., it is uscless as a blending
surface.

Given a projective blend S(F,) of the quadrics 5((,) and S(H,), is therc a
projective transformation p such that S(F) is the image of an affine blend S(F),
i.e., Fy=p(F)? We solve this problem with the following theorem:
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Theorem 6.2. Ler S(F,) be a projective blend where
F,=K:-2G,H,,

and, G,, H,, and K, are quadratic. Let p be a projective transformation such
that

pFy=r, plG)=G,, pH)=H,, pK)=K,.

If F is an affine blending surface, then W, = G, + H,— K, = U? for a linear
form U. Conversely, if W,= G,+ H,~ K,=U®, then p may be chosen such
that F is an affine blending surface.

Proof. Assume F is an affine blend, so that F is cbtained from f, via the
substitution

s=G, t=H, u=G+H-K=aw’.
Let B8 =+ a. The transformation p cffects a substitution
w=ax'+by' +tcz'+dw'=U.
Since p is not singular, U is not the zero polynomial. Then
p(G + H— K) = p(G) + p(H) — p(K) = (BU)" .

Morcover, since F=K>—2GH, we have p(F)=F,=p(K)* - p(G)p(H).
With

Go=p(G), Hy=p(H), K,=p(K), Wo(BU)
the projeclive blend has the required structure.
Converscly, assume that £, is a projective blend with W, = G, + H;— K;=
U Let
U=ax'+ by +cz'+ dw'.
If d # 0, consider the transformation ¢ given by
xX'=x, y' =y, '=z, w' =(w-ax—by—cz)id.

Then g(W,) = g(U) = w’. Since W, = G, + H, — K,,, we have

q(F) = q(Goy + H, ~ Wn)z —29(G,)q(H,) -
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Conscquently, g(F,) is an affine blend. If 4 =0 we may assume without loss of
generality that a # 0. We take as g the transformation

¥'=(w—cy—bx)la, y=x, =y, W=z,

Then g(W,)} = w® The theorem follows with p the inverse transformation of
q. O

It is intcresting to note that not all projective biending surfaces are the image
of affine blending surfaces. Rather, the proof of the theorem suggests classify-
ing the quartic blends S(X* — 2GH), based on the form of W=G + H— K.
This classification is preciscly the projective classification of quadrics [1],
alrcady mentioned in Section 2:

(1) W= x + y + 27+ w the imaginary sphere;

(2) W= 1 + y +z7 - w the real sphere;

3y W= x +y — z* — w’, the onc-sheeted hyperboloid;
(4) w= x +y + w?, the 1maginary cylinder;

(5) W= x +y - w2 the real cylinder;

(6) W=x*+ w’ two imaginary planes;

(7) W=x*— wz, two real planes;

(8) W=w" the doublc plane.

The last class consists of all affine blends and the projective blends character-
ized by the theorem, The other classes can be claborated similarly.

Note that purely imaginary surfaces are of practical interest as W. For
example, we may blend two intersecting cylinders as follows: Let

G=2x"+2y"~20w%, H=2y"+2z2-24%,
W=x2+y2+z2+ we

The resulnng blcndmg surfdce Is tangent at the intersection of the cylinders
with X =x* +3y* + z” — 3w, and does not have the undesirable “bulge” near
the points (0, 1,0, 1) and (0, —1, 0, 1) seen in the illustration in [6]. This bulge
cannot be avoided for affinc blending surfaces, i.e., when using W= w?

7. Other Work and Conclusions

Perhaps the most natural class of blending surfaces are the canal surfaces [8).
These surfaces arc obtained as envelope of the volume swept by a moving
sphere of fixed radius that is kept in contact with both primary surfaces to be
blended. There are major difficulties associated with this approach:

(1) Canal surfaces typically are of high algcbraic degree. For example, the
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canal surface blending two circular cylinders intersecting at right angle has
degree 16 in the simplest case.

(2) Generic derivation of canal surface cquations is computationally very
cxpensive. Since the surface degree is high and since a gencric formulation
must makc c¢xplicit the dependency on shape parameters, very complicaled
symbolic forms are needed. Expressions with several thousand terms arc not
uncommon.

(3) As the radius of the moving sphere is increased in an attempt to obtain a
broader blending surface, uncxpected sclf intersections may result and a
surface with creascs may be obtained.

In |8], Rossignac and Requicha give a method to approximate canal surface
blends with torus and cylinder segments. By approximaring the canal surface,
the degree and derivation problems are nicely side stepped. However, while
the segments join each other smoothly, the resulting surface is not tangent to
curved primary surfaces to be blended. The method is used in a CSG modeler
with standard primitives, and much of the charm of the work derives from the
fact that the underlying sct of primitives nceds no cxtension.

In [6], Middleditch and Scars outline a blending method remarkably similar
to the affine potential mcthod. The method is based on conics tangent to
coordinale lincs in affine s-f parameter space. The conics used are restricted to
be rangent at points equidistant from the coordinate lines, ie., a=D> is
assumed. Moreover, our parameter A is expressed as distance of the apex of
the conic from the lines. Since Middleditch and Sears seek to derive blending
surfaces for which the curves of tangency lie at a fixed Euclidean distance from
the other surface, they must substitute complicated offset cquations into the
underlying conic. In consequence, fairly complex blending surface cquations
are obtained. For instance, blending a cone and a planc results in a surface of
degree 6. Middleditch and Sears observe that substiluting the implicit equa-
tions of the surfaces to be blended leads to algcbraically simpler surfaces. This
class of simpler blending surfaces is a subsct of the affine blending surfaces. It
is a proper subset since @ = b is assumed for the underlying conic. The paper
also discusscs in derail how to integratc the blending method into a CSG
modecler with standard primitives,

Rockwood and Owen give a blending method in [7] that is also based on
substitution. The basic curve used is the superellipse

(1-sita)* +(1—-1b)' =1,

where the parameters a, b, and A are analogous to the parameters in the affine
potential method. The surfaces Lo be blended are substituted for 5 and f. The
constunts & and b can be replaced with functions of the gradicnts of the primary
surfaces. This scems to have the effect of making the curvalure distribution
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more uniform along the length of the blending surface. When A > 2, or when
gradient functions arc used in placc of the constants a and &, blending surfaces
of fairly high algebraic degree arc obtained. Moreover, for large values of A the
order of continuity of the blend with the primary surfaces increases. In both
cases numerical difficulties should be expected.

The methods of [6-8] each have been incorporated into some experimental
solid modeling systems. This requires some degree of automating the blending
process whose prospects we now discuss briefly. Our insights are limited by the
fact that so far we¢ have not had the oppurtunity to experiment with these
systems.

Two problem types are encountered when incorporating a blending method
into a solid modeling systems:

(1) Local control problems. The blending surface(s) to be interpolated must
be specified in an intuitive and concise manner that delivers predictable results
anticipated by the user. This requires an intuitive interpretation of all parame-
ters in the underlying polynomial.

(2) Blend-blend problems. When blending edge cycles bounded by different
faces, a contiguous blending surface can enly be piecewise-algebraic. This not
only complicates blending in that smooth transitions between the picces are
required, but also introduces additional complexities for clipping. In particular,
in CSG type modelers blending operations must be analyzed for sequence
dependency which must be understood fully by the user,

All authors have acknowledged the existence of the two problem types, but
concentrate mostly on blend-blend problems. Perhaps this is because these
problems must be faced immediatcly by any implementation.

In the case of [8], it appcars rcasonable to concentrate on blend-blcnd
problems, since the only parameter that is specified for local shape control is
the radius of the moving sphere. Nevertheless, additional results would be
desirablc that provide information about the prccision to be expected when
choosing the number of primitive segments with which the canal surface is to
be approximatcd. For instance, when blending two intersccting circular cylin-
ders of radius 10 with a canal surface of radius 1, what precision can be
expected from an approximation of, say, 100 segmenis of tori and cylinders?

The blending method of [6] aims at solving the local control problem by
giving the base polynomial a restricted form and explicitly linearizing distance
control purameters. However, such a formulation shifts the problem to finding
suitable potensial functions that conform with the shape expectations based on
Euclidean distance measures. When the set of underlying primitives is simple
and fixed, this appears to be reasonable. However, the potential functions
needed to blend blending surfaces recursively, e.g., when blending at corners,
quickly complicalc the problem, as acknowledged by the authors.

Also in [7] the local control problem remains largely unexplored. Onc is left
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with the impression that the user must determine the desircd shape paramcters
interactively, perhaps by inspecting the resulling surfaces visually. However,
[7] also suggests a blending method similar to the homotopy technique we have
outlined in [3] for which the local control preblem seems more tractable.

All blending methods bascd on substitution face the difficulty that the
deformation effected by this substitution has very few intrinsic properties that
would allow solving local control problems in general. Therefore, we belicve
that the gcometric properties of blending surfaces for spccific surface classes
must be cxplored first, e.g., for the class of all quadrics, or for the class of all
CSG primitives. Clearly, these propertics must be fully understood and
interpreted in the context of the primitive class considered before the method
should be automated. Only then is it possible to give to the casual user a clear
understanding of the range of specification choices and their results.
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